OpenCloudOS-Kernel/drivers/scsi/lpfc/lpfc_init.c

13582 lines
394 KiB
C

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/ctype.h>
#include <linux/aer.h>
#include <linux/slab.h>
#include <linux/firmware.h>
#include <linux/miscdevice.h>
#include <linux/percpu.h>
#include <linux/msi.h>
#include <linux/irq.h>
#include <linux/bitops.h>
#include <linux/crash_dump.h>
#include <linux/cpuhotplug.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/scsi_tcq.h>
#include <scsi/fc/fc_fs.h>
#include <linux/nvme-fc-driver.h>
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_nvme.h"
#include "lpfc_nvmet.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_version.h"
#include "lpfc_ids.h"
static enum cpuhp_state lpfc_cpuhp_state;
/* Used when mapping IRQ vectors in a driver centric manner */
static uint32_t lpfc_present_cpu;
static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
static void lpfc_cpuhp_add(struct lpfc_hba *phba);
static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
static int lpfc_post_rcv_buf(struct lpfc_hba *);
static int lpfc_sli4_queue_verify(struct lpfc_hba *);
static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
static int lpfc_setup_endian_order(struct lpfc_hba *);
static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
static void lpfc_free_els_sgl_list(struct lpfc_hba *);
static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
static void lpfc_init_sgl_list(struct lpfc_hba *);
static int lpfc_init_active_sgl_array(struct lpfc_hba *);
static void lpfc_free_active_sgl(struct lpfc_hba *);
static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
static void lpfc_sli4_disable_intr(struct lpfc_hba *);
static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
static struct scsi_transport_template *lpfc_transport_template = NULL;
static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
static DEFINE_IDR(lpfc_hba_index);
#define LPFC_NVMET_BUF_POST 254
/**
* lpfc_config_port_prep - Perform lpfc initialization prior to config port
* @phba: pointer to lpfc hba data structure.
*
* This routine will do LPFC initialization prior to issuing the CONFIG_PORT
* mailbox command. It retrieves the revision information from the HBA and
* collects the Vital Product Data (VPD) about the HBA for preparing the
* configuration of the HBA.
*
* Return codes:
* 0 - success.
* -ERESTART - requests the SLI layer to reset the HBA and try again.
* Any other value - indicates an error.
**/
int
lpfc_config_port_prep(struct lpfc_hba *phba)
{
lpfc_vpd_t *vp = &phba->vpd;
int i = 0, rc;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
char *lpfc_vpd_data = NULL;
uint16_t offset = 0;
static char licensed[56] =
"key unlock for use with gnu public licensed code only\0";
static int init_key = 1;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->u.mb;
phba->link_state = LPFC_INIT_MBX_CMDS;
if (lpfc_is_LC_HBA(phba->pcidev->device)) {
if (init_key) {
uint32_t *ptext = (uint32_t *) licensed;
for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
*ptext = cpu_to_be32(*ptext);
init_key = 0;
}
lpfc_read_nv(phba, pmb);
memset((char*)mb->un.varRDnvp.rsvd3, 0,
sizeof (mb->un.varRDnvp.rsvd3));
memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
sizeof (licensed));
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0324 Config Port initialization "
"error, mbxCmd x%x READ_NVPARM, "
"mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mempool_free(pmb, phba->mbox_mem_pool);
return -ERESTART;
}
memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
sizeof(phba->wwnn));
memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
sizeof(phba->wwpn));
}
/*
* Clear all option bits except LPFC_SLI3_BG_ENABLED,
* which was already set in lpfc_get_cfgparam()
*/
phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
/* Setup and issue mailbox READ REV command */
lpfc_read_rev(phba, pmb);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0439 Adapter failed to init, mbxCmd x%x "
"READ_REV, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mempool_free( pmb, phba->mbox_mem_pool);
return -ERESTART;
}
/*
* The value of rr must be 1 since the driver set the cv field to 1.
* This setting requires the FW to set all revision fields.
*/
if (mb->un.varRdRev.rr == 0) {
vp->rev.rBit = 0;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0440 Adapter failed to init, READ_REV has "
"missing revision information.\n");
mempool_free(pmb, phba->mbox_mem_pool);
return -ERESTART;
}
if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
mempool_free(pmb, phba->mbox_mem_pool);
return -EINVAL;
}
/* Save information as VPD data */
vp->rev.rBit = 1;
memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
vp->rev.biuRev = mb->un.varRdRev.biuRev;
vp->rev.smRev = mb->un.varRdRev.smRev;
vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
vp->rev.endecRev = mb->un.varRdRev.endecRev;
vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
/* If the sli feature level is less then 9, we must
* tear down all RPIs and VPIs on link down if NPIV
* is enabled.
*/
if (vp->rev.feaLevelHigh < 9)
phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
if (lpfc_is_LC_HBA(phba->pcidev->device))
memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
sizeof (phba->RandomData));
/* Get adapter VPD information */
lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
if (!lpfc_vpd_data)
goto out_free_mbox;
do {
lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0441 VPD not present on adapter, "
"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mb->un.varDmp.word_cnt = 0;
}
/* dump mem may return a zero when finished or we got a
* mailbox error, either way we are done.
*/
if (mb->un.varDmp.word_cnt == 0)
break;
if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
lpfc_vpd_data + offset,
mb->un.varDmp.word_cnt);
offset += mb->un.varDmp.word_cnt;
} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
kfree(lpfc_vpd_data);
out_free_mbox:
mempool_free(pmb, phba->mbox_mem_pool);
return 0;
}
/**
* lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the completion handler for driver's configuring asynchronous event
* mailbox command to the device. If the mailbox command returns successfully,
* it will set internal async event support flag to 1; otherwise, it will
* set internal async event support flag to 0.
**/
static void
lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
{
if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
phba->temp_sensor_support = 1;
else
phba->temp_sensor_support = 0;
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
/**
* lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the completion handler for dump mailbox command for getting
* wake up parameters. When this command complete, the response contain
* Option rom version of the HBA. This function translate the version number
* into a human readable string and store it in OptionROMVersion.
**/
static void
lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
{
struct prog_id *prg;
uint32_t prog_id_word;
char dist = ' ';
/* character array used for decoding dist type. */
char dist_char[] = "nabx";
if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
prg = (struct prog_id *) &prog_id_word;
/* word 7 contain option rom version */
prog_id_word = pmboxq->u.mb.un.varWords[7];
/* Decode the Option rom version word to a readable string */
if (prg->dist < 4)
dist = dist_char[prg->dist];
if ((prg->dist == 3) && (prg->num == 0))
snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
prg->ver, prg->rev, prg->lev);
else
snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
prg->ver, prg->rev, prg->lev,
dist, prg->num);
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
/**
* lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
* cfg_soft_wwnn, cfg_soft_wwpn
* @vport: pointer to lpfc vport data structure.
*
*
* Return codes
* None.
**/
void
lpfc_update_vport_wwn(struct lpfc_vport *vport)
{
uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
/* If the soft name exists then update it using the service params */
if (vport->phba->cfg_soft_wwnn)
u64_to_wwn(vport->phba->cfg_soft_wwnn,
vport->fc_sparam.nodeName.u.wwn);
if (vport->phba->cfg_soft_wwpn)
u64_to_wwn(vport->phba->cfg_soft_wwpn,
vport->fc_sparam.portName.u.wwn);
/*
* If the name is empty or there exists a soft name
* then copy the service params name, otherwise use the fc name
*/
if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn)
memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
sizeof(struct lpfc_name));
else
memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
sizeof(struct lpfc_name));
/*
* If the port name has changed, then set the Param changes flag
* to unreg the login
*/
if (vport->fc_portname.u.wwn[0] != 0 &&
memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
sizeof(struct lpfc_name)))
vport->vport_flag |= FAWWPN_PARAM_CHG;
if (vport->fc_portname.u.wwn[0] == 0 ||
vport->phba->cfg_soft_wwpn ||
(vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
vport->vport_flag & FAWWPN_SET) {
memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
sizeof(struct lpfc_name));
vport->vport_flag &= ~FAWWPN_SET;
if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
vport->vport_flag |= FAWWPN_SET;
}
else
memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
sizeof(struct lpfc_name));
}
/**
* lpfc_config_port_post - Perform lpfc initialization after config port
* @phba: pointer to lpfc hba data structure.
*
* This routine will do LPFC initialization after the CONFIG_PORT mailbox
* command call. It performs all internal resource and state setups on the
* port: post IOCB buffers, enable appropriate host interrupt attentions,
* ELS ring timers, etc.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_config_port_post(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
struct lpfc_dmabuf *mp;
struct lpfc_sli *psli = &phba->sli;
uint32_t status, timeout;
int i, j;
int rc;
spin_lock_irq(&phba->hbalock);
/*
* If the Config port completed correctly the HBA is not
* over heated any more.
*/
if (phba->over_temp_state == HBA_OVER_TEMP)
phba->over_temp_state = HBA_NORMAL_TEMP;
spin_unlock_irq(&phba->hbalock);
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->u.mb;
/* Get login parameters for NID. */
rc = lpfc_read_sparam(phba, pmb, 0);
if (rc) {
mempool_free(pmb, phba->mbox_mem_pool);
return -ENOMEM;
}
pmb->vport = vport;
if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0448 Adapter failed init, mbxCmd x%x "
"READ_SPARM mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
phba->link_state = LPFC_HBA_ERROR;
mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
mempool_free(pmb, phba->mbox_mem_pool);
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
return -EIO;
}
mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
pmb->ctx_buf = NULL;
lpfc_update_vport_wwn(vport);
/* Update the fc_host data structures with new wwn. */
fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
fc_host_max_npiv_vports(shost) = phba->max_vpi;
/* If no serial number in VPD data, use low 6 bytes of WWNN */
/* This should be consolidated into parse_vpd ? - mr */
if (phba->SerialNumber[0] == 0) {
uint8_t *outptr;
outptr = &vport->fc_nodename.u.s.IEEE[0];
for (i = 0; i < 12; i++) {
status = *outptr++;
j = ((status & 0xf0) >> 4);
if (j <= 9)
phba->SerialNumber[i] =
(char)((uint8_t) 0x30 + (uint8_t) j);
else
phba->SerialNumber[i] =
(char)((uint8_t) 0x61 + (uint8_t) (j - 10));
i++;
j = (status & 0xf);
if (j <= 9)
phba->SerialNumber[i] =
(char)((uint8_t) 0x30 + (uint8_t) j);
else
phba->SerialNumber[i] =
(char)((uint8_t) 0x61 + (uint8_t) (j - 10));
}
}
lpfc_read_config(phba, pmb);
pmb->vport = vport;
if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0453 Adapter failed to init, mbxCmd x%x "
"READ_CONFIG, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
phba->link_state = LPFC_HBA_ERROR;
mempool_free( pmb, phba->mbox_mem_pool);
return -EIO;
}
/* Check if the port is disabled */
lpfc_sli_read_link_ste(phba);
/* Reset the DFT_HBA_Q_DEPTH to the max xri */
i = (mb->un.varRdConfig.max_xri + 1);
if (phba->cfg_hba_queue_depth > i) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3359 HBA queue depth changed from %d to %d\n",
phba->cfg_hba_queue_depth, i);
phba->cfg_hba_queue_depth = i;
}
/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
i = (mb->un.varRdConfig.max_xri >> 3);
if (phba->pport->cfg_lun_queue_depth > i) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3360 LUN queue depth changed from %d to %d\n",
phba->pport->cfg_lun_queue_depth, i);
phba->pport->cfg_lun_queue_depth = i;
}
phba->lmt = mb->un.varRdConfig.lmt;
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
phba->link_state = LPFC_LINK_DOWN;
/* Only process IOCBs on ELS ring till hba_state is READY */
if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
/* Post receive buffers for desired rings */
if (phba->sli_rev != 3)
lpfc_post_rcv_buf(phba);
/*
* Configure HBA MSI-X attention conditions to messages if MSI-X mode
*/
if (phba->intr_type == MSIX) {
rc = lpfc_config_msi(phba, pmb);
if (rc) {
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0352 Config MSI mailbox command "
"failed, mbxCmd x%x, mbxStatus x%x\n",
pmb->u.mb.mbxCommand,
pmb->u.mb.mbxStatus);
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
}
spin_lock_irq(&phba->hbalock);
/* Initialize ERATT handling flag */
phba->hba_flag &= ~HBA_ERATT_HANDLED;
/* Enable appropriate host interrupts */
if (lpfc_readl(phba->HCregaddr, &status)) {
spin_unlock_irq(&phba->hbalock);
return -EIO;
}
status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
if (psli->num_rings > 0)
status |= HC_R0INT_ENA;
if (psli->num_rings > 1)
status |= HC_R1INT_ENA;
if (psli->num_rings > 2)
status |= HC_R2INT_ENA;
if (psli->num_rings > 3)
status |= HC_R3INT_ENA;
if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
(phba->cfg_poll & DISABLE_FCP_RING_INT))
status &= ~(HC_R0INT_ENA);
writel(status, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
/* Set up ring-0 (ELS) timer */
timeout = phba->fc_ratov * 2;
mod_timer(&vport->els_tmofunc,
jiffies + msecs_to_jiffies(1000 * timeout));
/* Set up heart beat (HB) timer */
mod_timer(&phba->hb_tmofunc,
jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
phba->hb_outstanding = 0;
phba->last_completion_time = jiffies;
/* Set up error attention (ERATT) polling timer */
mod_timer(&phba->eratt_poll,
jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
if (phba->hba_flag & LINK_DISABLED) {
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"2598 Adapter Link is disabled.\n");
lpfc_down_link(phba, pmb);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"2599 Adapter failed to issue DOWN_LINK"
" mbox command rc 0x%x\n", rc);
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
mempool_free(pmb, phba->mbox_mem_pool);
rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
if (rc)
return rc;
}
/* MBOX buffer will be freed in mbox compl */
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
lpfc_config_async(phba, pmb, LPFC_ELS_RING);
pmb->mbox_cmpl = lpfc_config_async_cmpl;
pmb->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba,
KERN_ERR,
LOG_INIT,
"0456 Adapter failed to issue "
"ASYNCEVT_ENABLE mbox status x%x\n",
rc);
mempool_free(pmb, phba->mbox_mem_pool);
}
/* Get Option rom version */
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
lpfc_dump_wakeup_param(phba, pmb);
pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
pmb->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0435 Adapter failed "
"to get Option ROM version status x%x\n", rc);
mempool_free(pmb, phba->mbox_mem_pool);
}
return 0;
}
/**
* lpfc_hba_init_link - Initialize the FC link
* @phba: pointer to lpfc hba data structure.
* @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
*
* This routine will issue the INIT_LINK mailbox command call.
* It is available to other drivers through the lpfc_hba data
* structure for use as a delayed link up mechanism with the
* module parameter lpfc_suppress_link_up.
*
* Return code
* 0 - success
* Any other value - error
**/
static int
lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
{
return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
}
/**
* lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
* @phba: pointer to lpfc hba data structure.
* @fc_topology: desired fc topology.
* @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
*
* This routine will issue the INIT_LINK mailbox command call.
* It is available to other drivers through the lpfc_hba data
* structure for use as a delayed link up mechanism with the
* module parameter lpfc_suppress_link_up.
*
* Return code
* 0 - success
* Any other value - error
**/
int
lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
uint32_t flag)
{
struct lpfc_vport *vport = phba->pport;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
int rc;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->u.mb;
pmb->vport = vport;
if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
!(phba->lmt & LMT_1Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
!(phba->lmt & LMT_2Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
!(phba->lmt & LMT_4Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
!(phba->lmt & LMT_8Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
!(phba->lmt & LMT_10Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
!(phba->lmt & LMT_16Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
!(phba->lmt & LMT_32Gb)) ||
((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
!(phba->lmt & LMT_64Gb))) {
/* Reset link speed to auto */
lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT,
"1302 Invalid speed for this board:%d "
"Reset link speed to auto.\n",
phba->cfg_link_speed);
phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
}
lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
if (phba->sli_rev < LPFC_SLI_REV4)
lpfc_set_loopback_flag(phba);
rc = lpfc_sli_issue_mbox(phba, pmb, flag);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0498 Adapter failed to init, mbxCmd x%x "
"INIT_LINK, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
if (phba->sli_rev <= LPFC_SLI_REV3) {
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear all pending interrupts */
writel(0xffffffff, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
}
phba->link_state = LPFC_HBA_ERROR;
if (rc != MBX_BUSY || flag == MBX_POLL)
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
if (flag == MBX_POLL)
mempool_free(pmb, phba->mbox_mem_pool);
return 0;
}
/**
* lpfc_hba_down_link - this routine downs the FC link
* @phba: pointer to lpfc hba data structure.
* @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
*
* This routine will issue the DOWN_LINK mailbox command call.
* It is available to other drivers through the lpfc_hba data
* structure for use to stop the link.
*
* Return code
* 0 - success
* Any other value - error
**/
static int
lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
{
LPFC_MBOXQ_t *pmb;
int rc;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"0491 Adapter Link is disabled.\n");
lpfc_down_link(phba, pmb);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(phba, pmb, flag);
if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"2522 Adapter failed to issue DOWN_LINK"
" mbox command rc 0x%x\n", rc);
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
if (flag == MBX_POLL)
mempool_free(pmb, phba->mbox_mem_pool);
return 0;
}
/**
* lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do LPFC uninitialization before the HBA is reset when
* bringing down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_hba_down_prep(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
int i;
if (phba->sli_rev <= LPFC_SLI_REV3) {
/* Disable interrupts */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
}
if (phba->pport->load_flag & FC_UNLOADING)
lpfc_cleanup_discovery_resources(phba->pport);
else {
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports &&
vports[i] != NULL; i++)
lpfc_cleanup_discovery_resources(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
}
return 0;
}
/**
* lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
* rspiocb which got deferred
*
* @phba: pointer to lpfc HBA data structure.
*
* This routine will cleanup completed slow path events after HBA is reset
* when bringing down the SLI Layer.
*
*
* Return codes
* void.
**/
static void
lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
{
struct lpfc_iocbq *rspiocbq;
struct hbq_dmabuf *dmabuf;
struct lpfc_cq_event *cq_event;
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
spin_unlock_irq(&phba->hbalock);
while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
/* Get the response iocb from the head of work queue */
spin_lock_irq(&phba->hbalock);
list_remove_head(&phba->sli4_hba.sp_queue_event,
cq_event, struct lpfc_cq_event, list);
spin_unlock_irq(&phba->hbalock);
switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
case CQE_CODE_COMPL_WQE:
rspiocbq = container_of(cq_event, struct lpfc_iocbq,
cq_event);
lpfc_sli_release_iocbq(phba, rspiocbq);
break;
case CQE_CODE_RECEIVE:
case CQE_CODE_RECEIVE_V1:
dmabuf = container_of(cq_event, struct hbq_dmabuf,
cq_event);
lpfc_in_buf_free(phba, &dmabuf->dbuf);
}
}
}
/**
* lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will cleanup posted ELS buffers after the HBA is reset
* when bringing down the SLI Layer.
*
*
* Return codes
* void.
**/
static void
lpfc_hba_free_post_buf(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
struct lpfc_dmabuf *mp, *next_mp;
LIST_HEAD(buflist);
int count;
if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
lpfc_sli_hbqbuf_free_all(phba);
else {
/* Cleanup preposted buffers on the ELS ring */
pring = &psli->sli3_ring[LPFC_ELS_RING];
spin_lock_irq(&phba->hbalock);
list_splice_init(&pring->postbufq, &buflist);
spin_unlock_irq(&phba->hbalock);
count = 0;
list_for_each_entry_safe(mp, next_mp, &buflist, list) {
list_del(&mp->list);
count++;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
spin_lock_irq(&phba->hbalock);
pring->postbufq_cnt -= count;
spin_unlock_irq(&phba->hbalock);
}
}
/**
* lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will cleanup the txcmplq after the HBA is reset when bringing
* down the SLI Layer.
*
* Return codes
* void
**/
static void
lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
struct lpfc_queue *qp = NULL;
struct lpfc_sli_ring *pring;
LIST_HEAD(completions);
int i;
struct lpfc_iocbq *piocb, *next_iocb;
if (phba->sli_rev != LPFC_SLI_REV4) {
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
spin_lock_irq(&phba->hbalock);
/* At this point in time the HBA is either reset or DOA
* Nothing should be on txcmplq as it will
* NEVER complete.
*/
list_splice_init(&pring->txcmplq, &completions);
pring->txcmplq_cnt = 0;
spin_unlock_irq(&phba->hbalock);
lpfc_sli_abort_iocb_ring(phba, pring);
}
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions,
IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
return;
}
list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
pring = qp->pring;
if (!pring)
continue;
spin_lock_irq(&pring->ring_lock);
list_for_each_entry_safe(piocb, next_iocb,
&pring->txcmplq, list)
piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
list_splice_init(&pring->txcmplq, &completions);
pring->txcmplq_cnt = 0;
spin_unlock_irq(&pring->ring_lock);
lpfc_sli_abort_iocb_ring(phba, pring);
}
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions,
IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
}
/**
* lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
int i;
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do uninitialization after the HBA is reset when bring
* down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
static int
lpfc_hba_down_post_s3(struct lpfc_hba *phba)
{
lpfc_hba_free_post_buf(phba);
lpfc_hba_clean_txcmplq(phba);
return 0;
}
/**
* lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do uninitialization after the HBA is reset when bring
* down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
static int
lpfc_hba_down_post_s4(struct lpfc_hba *phba)
{
struct lpfc_io_buf *psb, *psb_next;
struct lpfc_nvmet_rcv_ctx *ctxp, *ctxp_next;
struct lpfc_sli4_hdw_queue *qp;
LIST_HEAD(aborts);
LIST_HEAD(nvme_aborts);
LIST_HEAD(nvmet_aborts);
struct lpfc_sglq *sglq_entry = NULL;
int cnt, idx;
lpfc_sli_hbqbuf_free_all(phba);
lpfc_hba_clean_txcmplq(phba);
/* At this point in time the HBA is either reset or DOA. Either
* way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
* on the lpfc_els_sgl_list so that it can either be freed if the
* driver is unloading or reposted if the driver is restarting
* the port.
*/
spin_lock_irq(&phba->hbalock); /* required for lpfc_els_sgl_list and */
/* scsl_buf_list */
/* sgl_list_lock required because worker thread uses this
* list.
*/
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_for_each_entry(sglq_entry,
&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
sglq_entry->state = SGL_FREED;
list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
&phba->sli4_hba.lpfc_els_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
/* abts_xxxx_buf_list_lock required because worker thread uses this
* list.
*/
cnt = 0;
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
qp = &phba->sli4_hba.hdwq[idx];
spin_lock(&qp->abts_io_buf_list_lock);
list_splice_init(&qp->lpfc_abts_io_buf_list,
&aborts);
list_for_each_entry_safe(psb, psb_next, &aborts, list) {
psb->pCmd = NULL;
psb->status = IOSTAT_SUCCESS;
cnt++;
}
spin_lock(&qp->io_buf_list_put_lock);
list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
qp->put_io_bufs += qp->abts_scsi_io_bufs;
qp->put_io_bufs += qp->abts_nvme_io_bufs;
qp->abts_scsi_io_bufs = 0;
qp->abts_nvme_io_bufs = 0;
spin_unlock(&qp->io_buf_list_put_lock);
spin_unlock(&qp->abts_io_buf_list_lock);
}
spin_unlock_irq(&phba->hbalock);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
&nvmet_aborts);
spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
ctxp->flag &= ~(LPFC_NVMET_XBUSY | LPFC_NVMET_ABORT_OP);
lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
}
}
lpfc_sli4_free_sp_events(phba);
return cnt;
}
/**
* lpfc_hba_down_post - Wrapper func for hba down post routine
* @phba: pointer to lpfc HBA data structure.
*
* This routine wraps the actual SLI3 or SLI4 routine for performing
* uninitialization after the HBA is reset when bring down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_hba_down_post(struct lpfc_hba *phba)
{
return (*phba->lpfc_hba_down_post)(phba);
}
/**
* lpfc_hb_timeout - The HBA-timer timeout handler
* @ptr: unsigned long holds the pointer to lpfc hba data structure.
*
* This is the HBA-timer timeout handler registered to the lpfc driver. When
* this timer fires, a HBA timeout event shall be posted to the lpfc driver
* work-port-events bitmap and the worker thread is notified. This timeout
* event will be used by the worker thread to invoke the actual timeout
* handler routine, lpfc_hb_timeout_handler. Any periodical operations will
* be performed in the timeout handler and the HBA timeout event bit shall
* be cleared by the worker thread after it has taken the event bitmap out.
**/
static void
lpfc_hb_timeout(struct timer_list *t)
{
struct lpfc_hba *phba;
uint32_t tmo_posted;
unsigned long iflag;
phba = from_timer(phba, t, hb_tmofunc);
/* Check for heart beat timeout conditions */
spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
if (!tmo_posted)
phba->pport->work_port_events |= WORKER_HB_TMO;
spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
/* Tell the worker thread there is work to do */
if (!tmo_posted)
lpfc_worker_wake_up(phba);
return;
}
/**
* lpfc_rrq_timeout - The RRQ-timer timeout handler
* @ptr: unsigned long holds the pointer to lpfc hba data structure.
*
* This is the RRQ-timer timeout handler registered to the lpfc driver. When
* this timer fires, a RRQ timeout event shall be posted to the lpfc driver
* work-port-events bitmap and the worker thread is notified. This timeout
* event will be used by the worker thread to invoke the actual timeout
* handler routine, lpfc_rrq_handler. Any periodical operations will
* be performed in the timeout handler and the RRQ timeout event bit shall
* be cleared by the worker thread after it has taken the event bitmap out.
**/
static void
lpfc_rrq_timeout(struct timer_list *t)
{
struct lpfc_hba *phba;
unsigned long iflag;
phba = from_timer(phba, t, rrq_tmr);
spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
if (!(phba->pport->load_flag & FC_UNLOADING))
phba->hba_flag |= HBA_RRQ_ACTIVE;
else
phba->hba_flag &= ~HBA_RRQ_ACTIVE;
spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
if (!(phba->pport->load_flag & FC_UNLOADING))
lpfc_worker_wake_up(phba);
}
/**
* lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the callback function to the lpfc heart-beat mailbox command.
* If configured, the lpfc driver issues the heart-beat mailbox command to
* the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
* heart-beat mailbox command is issued, the driver shall set up heart-beat
* timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
* heart-beat outstanding state. Once the mailbox command comes back and
* no error conditions detected, the heart-beat mailbox command timer is
* reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
* state is cleared for the next heart-beat. If the timer expired with the
* heart-beat outstanding state set, the driver will put the HBA offline.
**/
static void
lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
{
unsigned long drvr_flag;
spin_lock_irqsave(&phba->hbalock, drvr_flag);
phba->hb_outstanding = 0;
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
/* Check and reset heart-beat timer is necessary */
mempool_free(pmboxq, phba->mbox_mem_pool);
if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
!(phba->link_state == LPFC_HBA_ERROR) &&
!(phba->pport->load_flag & FC_UNLOADING))
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
return;
}
static void
lpfc_hb_eq_delay_work(struct work_struct *work)
{
struct lpfc_hba *phba = container_of(to_delayed_work(work),
struct lpfc_hba, eq_delay_work);
struct lpfc_eq_intr_info *eqi, *eqi_new;
struct lpfc_queue *eq, *eq_next;
unsigned char *eqcnt = NULL;
uint32_t usdelay;
int i;
bool update = false;
if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
return;
if (phba->link_state == LPFC_HBA_ERROR ||
phba->pport->fc_flag & FC_OFFLINE_MODE)
goto requeue;
eqcnt = kcalloc(num_possible_cpus(), sizeof(unsigned char),
GFP_KERNEL);
if (!eqcnt)
goto requeue;
if (phba->cfg_irq_chann > 1) {
/* Loop thru all IRQ vectors */
for (i = 0; i < phba->cfg_irq_chann; i++) {
/* Get the EQ corresponding to the IRQ vector */
eq = phba->sli4_hba.hba_eq_hdl[i].eq;
if (!eq)
continue;
if (eq->q_mode) {
update = true;
break;
}
if (eqcnt[eq->last_cpu] < 2)
eqcnt[eq->last_cpu]++;
}
} else
update = true;
for_each_present_cpu(i) {
eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
if (!update && eqcnt[i] < 2) {
eqi->icnt = 0;
continue;
}
usdelay = (eqi->icnt / LPFC_IMAX_THRESHOLD) *
LPFC_EQ_DELAY_STEP;
if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
usdelay = LPFC_MAX_AUTO_EQ_DELAY;
eqi->icnt = 0;
list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
if (eq->last_cpu != i) {
eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
eq->last_cpu);
list_move_tail(&eq->cpu_list, &eqi_new->list);
continue;
}
if (usdelay != eq->q_mode)
lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
usdelay);
}
}
kfree(eqcnt);
requeue:
queue_delayed_work(phba->wq, &phba->eq_delay_work,
msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
}
/**
* lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
* @phba: pointer to lpfc hba data structure.
*
* For each heartbeat, this routine does some heuristic methods to adjust
* XRI distribution. The goal is to fully utilize free XRIs.
**/
static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
{
u32 i;
u32 hwq_count;
hwq_count = phba->cfg_hdw_queue;
for (i = 0; i < hwq_count; i++) {
/* Adjust XRIs in private pool */
lpfc_adjust_pvt_pool_count(phba, i);
/* Adjust high watermark */
lpfc_adjust_high_watermark(phba, i);
#ifdef LPFC_MXP_STAT
/* Snapshot pbl, pvt and busy count */
lpfc_snapshot_mxp(phba, i);
#endif
}
}
/**
* lpfc_hb_timeout_handler - The HBA-timer timeout handler
* @phba: pointer to lpfc hba data structure.
*
* This is the actual HBA-timer timeout handler to be invoked by the worker
* thread whenever the HBA timer fired and HBA-timeout event posted. This
* handler performs any periodic operations needed for the device. If such
* periodic event has already been attended to either in the interrupt handler
* or by processing slow-ring or fast-ring events within the HBA-timer
* timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
* the timer for the next timeout period. If lpfc heart-beat mailbox command
* is configured and there is no heart-beat mailbox command outstanding, a
* heart-beat mailbox is issued and timer set properly. Otherwise, if there
* has been a heart-beat mailbox command outstanding, the HBA shall be put
* to offline.
**/
void
lpfc_hb_timeout_handler(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
LPFC_MBOXQ_t *pmboxq;
struct lpfc_dmabuf *buf_ptr;
int retval, i;
struct lpfc_sli *psli = &phba->sli;
LIST_HEAD(completions);
if (phba->cfg_xri_rebalancing) {
/* Multi-XRI pools handler */
lpfc_hb_mxp_handler(phba);
}
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
lpfc_rcv_seq_check_edtov(vports[i]);
lpfc_fdmi_change_check(vports[i]);
}
lpfc_destroy_vport_work_array(phba, vports);
if ((phba->link_state == LPFC_HBA_ERROR) ||
(phba->pport->load_flag & FC_UNLOADING) ||
(phba->pport->fc_flag & FC_OFFLINE_MODE))
return;
spin_lock_irq(&phba->pport->work_port_lock);
if (time_after(phba->last_completion_time +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
jiffies)) {
spin_unlock_irq(&phba->pport->work_port_lock);
if (!phba->hb_outstanding)
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
else
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT));
return;
}
spin_unlock_irq(&phba->pport->work_port_lock);
if (phba->elsbuf_cnt &&
(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
spin_lock_irq(&phba->hbalock);
list_splice_init(&phba->elsbuf, &completions);
phba->elsbuf_cnt = 0;
phba->elsbuf_prev_cnt = 0;
spin_unlock_irq(&phba->hbalock);
while (!list_empty(&completions)) {
list_remove_head(&completions, buf_ptr,
struct lpfc_dmabuf, list);
lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
kfree(buf_ptr);
}
}
phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
/* If there is no heart beat outstanding, issue a heartbeat command */
if (phba->cfg_enable_hba_heartbeat) {
if (!phba->hb_outstanding) {
if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
(list_empty(&psli->mboxq))) {
pmboxq = mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!pmboxq) {
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 *
LPFC_HB_MBOX_INTERVAL));
return;
}
lpfc_heart_beat(phba, pmboxq);
pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
pmboxq->vport = phba->pport;
retval = lpfc_sli_issue_mbox(phba, pmboxq,
MBX_NOWAIT);
if (retval != MBX_BUSY &&
retval != MBX_SUCCESS) {
mempool_free(pmboxq,
phba->mbox_mem_pool);
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 *
LPFC_HB_MBOX_INTERVAL));
return;
}
phba->skipped_hb = 0;
phba->hb_outstanding = 1;
} else if (time_before_eq(phba->last_completion_time,
phba->skipped_hb)) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2857 Last completion time not "
" updated in %d ms\n",
jiffies_to_msecs(jiffies
- phba->last_completion_time));
} else
phba->skipped_hb = jiffies;
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT));
return;
} else {
/*
* If heart beat timeout called with hb_outstanding set
* we need to give the hb mailbox cmd a chance to
* complete or TMO.
*/
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0459 Adapter heartbeat still out"
"standing:last compl time was %d ms.\n",
jiffies_to_msecs(jiffies
- phba->last_completion_time));
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT));
}
} else {
mod_timer(&phba->hb_tmofunc,
jiffies +
msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
}
}
/**
* lpfc_offline_eratt - Bring lpfc offline on hardware error attention
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to bring the HBA offline when HBA hardware error
* other than Port Error 6 has been detected.
**/
static void
lpfc_offline_eratt(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_offline(phba);
lpfc_reset_barrier(phba);
spin_lock_irq(&phba->hbalock);
lpfc_sli_brdreset(phba);
spin_unlock_irq(&phba->hbalock);
lpfc_hba_down_post(phba);
lpfc_sli_brdready(phba, HS_MBRDY);
lpfc_unblock_mgmt_io(phba);
phba->link_state = LPFC_HBA_ERROR;
return;
}
/**
* lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to bring a SLI4 HBA offline when HBA hardware error
* other than Port Error 6 has been detected.
**/
void
lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
{
spin_lock_irq(&phba->hbalock);
phba->link_state = LPFC_HBA_ERROR;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_sli_flush_io_rings(phba);
lpfc_offline(phba);
lpfc_hba_down_post(phba);
lpfc_unblock_mgmt_io(phba);
}
/**
* lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the deferred HBA hardware error
* conditions. This type of error is indicated by HBA by setting ER1
* and another ER bit in the host status register. The driver will
* wait until the ER1 bit clears before handling the error condition.
**/
static void
lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
{
uint32_t old_host_status = phba->work_hs;
struct lpfc_sli *psli = &phba->sli;
/* If the pci channel is offline, ignore possible errors,
* since we cannot communicate with the pci card anyway.
*/
if (pci_channel_offline(phba->pcidev)) {
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~DEFER_ERATT;
spin_unlock_irq(&phba->hbalock);
return;
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0479 Deferred Adapter Hardware Error "
"Data: x%x x%x x%x\n",
phba->work_hs,
phba->work_status[0], phba->work_status[1]);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/*
* Firmware stops when it triggred erratt. That could cause the I/Os
* dropped by the firmware. Error iocb (I/O) on txcmplq and let the
* SCSI layer retry it after re-establishing link.
*/
lpfc_sli_abort_fcp_rings(phba);
/*
* There was a firmware error. Take the hba offline and then
* attempt to restart it.
*/
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
/* Wait for the ER1 bit to clear.*/
while (phba->work_hs & HS_FFER1) {
msleep(100);
if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
phba->work_hs = UNPLUG_ERR ;
break;
}
/* If driver is unloading let the worker thread continue */
if (phba->pport->load_flag & FC_UNLOADING) {
phba->work_hs = 0;
break;
}
}
/*
* This is to ptrotect against a race condition in which
* first write to the host attention register clear the
* host status register.
*/
if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
phba->work_hs = old_host_status & ~HS_FFER1;
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~DEFER_ERATT;
spin_unlock_irq(&phba->hbalock);
phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
}
static void
lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
{
struct lpfc_board_event_header board_event;
struct Scsi_Host *shost;
board_event.event_type = FC_REG_BOARD_EVENT;
board_event.subcategory = LPFC_EVENT_PORTINTERR;
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(board_event),
(char *) &board_event,
LPFC_NL_VENDOR_ID);
}
/**
* lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the following HBA hardware error
* conditions:
* 1 - HBA error attention interrupt
* 2 - DMA ring index out of range
* 3 - Mailbox command came back as unknown
**/
static void
lpfc_handle_eratt_s3(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_sli *psli = &phba->sli;
uint32_t event_data;
unsigned long temperature;
struct temp_event temp_event_data;
struct Scsi_Host *shost;
/* If the pci channel is offline, ignore possible errors,
* since we cannot communicate with the pci card anyway.
*/
if (pci_channel_offline(phba->pcidev)) {
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~DEFER_ERATT;
spin_unlock_irq(&phba->hbalock);
return;
}
/* If resets are disabled then leave the HBA alone and return */
if (!phba->cfg_enable_hba_reset)
return;
/* Send an internal error event to mgmt application */
lpfc_board_errevt_to_mgmt(phba);
if (phba->hba_flag & DEFER_ERATT)
lpfc_handle_deferred_eratt(phba);
if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
if (phba->work_hs & HS_FFER6)
/* Re-establishing Link */
lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
"1301 Re-establishing Link "
"Data: x%x x%x x%x\n",
phba->work_hs, phba->work_status[0],
phba->work_status[1]);
if (phba->work_hs & HS_FFER8)
/* Device Zeroization */
lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
"2861 Host Authentication device "
"zeroization Data:x%x x%x x%x\n",
phba->work_hs, phba->work_status[0],
phba->work_status[1]);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/*
* Firmware stops when it triggled erratt with HS_FFER6.
* That could cause the I/Os dropped by the firmware.
* Error iocb (I/O) on txcmplq and let the SCSI layer
* retry it after re-establishing link.
*/
lpfc_sli_abort_fcp_rings(phba);
/*
* There was a firmware error. Take the hba offline and then
* attempt to restart it.
*/
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
if (lpfc_online(phba) == 0) { /* Initialize the HBA */
lpfc_unblock_mgmt_io(phba);
return;
}
lpfc_unblock_mgmt_io(phba);
} else if (phba->work_hs & HS_CRIT_TEMP) {
temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_CRIT_TEMP;
temp_event_data.data = (uint32_t)temperature;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0406 Adapter maximum temperature exceeded "
"(%ld), taking this port offline "
"Data: x%x x%x x%x\n",
temperature, phba->work_hs,
phba->work_status[0], phba->work_status[1]);
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *) &temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
spin_lock_irq(&phba->hbalock);
phba->over_temp_state = HBA_OVER_TEMP;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_eratt(phba);
} else {
/* The if clause above forces this code path when the status
* failure is a value other than FFER6. Do not call the offline
* twice. This is the adapter hardware error path.
*/
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0457 Adapter Hardware Error "
"Data: x%x x%x x%x\n",
phba->work_hs,
phba->work_status[0], phba->work_status[1]);
event_data = FC_REG_DUMP_EVENT;
shost = lpfc_shost_from_vport(vport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(event_data), (char *) &event_data,
SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
lpfc_offline_eratt(phba);
}
return;
}
/**
* lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
* @phba: pointer to lpfc hba data structure.
* @mbx_action: flag for mailbox shutdown action.
*
* This routine is invoked to perform an SLI4 port PCI function reset in
* response to port status register polling attention. It waits for port
* status register (ERR, RDY, RN) bits before proceeding with function reset.
* During this process, interrupt vectors are freed and later requested
* for handling possible port resource change.
**/
static int
lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
bool en_rn_msg)
{
int rc;
uint32_t intr_mode;
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
LPFC_SLI_INTF_IF_TYPE_2) {
/*
* On error status condition, driver need to wait for port
* ready before performing reset.
*/
rc = lpfc_sli4_pdev_status_reg_wait(phba);
if (rc)
return rc;
}
/* need reset: attempt for port recovery */
if (en_rn_msg)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2887 Reset Needed: Attempting Port "
"Recovery...\n");
lpfc_offline_prep(phba, mbx_action);
lpfc_sli_flush_io_rings(phba);
lpfc_offline(phba);
/* release interrupt for possible resource change */
lpfc_sli4_disable_intr(phba);
rc = lpfc_sli_brdrestart(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6309 Failed to restart board\n");
return rc;
}
/* request and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3175 Failed to enable interrupt\n");
return -EIO;
}
phba->intr_mode = intr_mode;
rc = lpfc_online(phba);
if (rc == 0)
lpfc_unblock_mgmt_io(phba);
return rc;
}
/**
* lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the SLI4 HBA hardware error attention
* conditions.
**/
static void
lpfc_handle_eratt_s4(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
uint32_t event_data;
struct Scsi_Host *shost;
uint32_t if_type;
struct lpfc_register portstat_reg = {0};
uint32_t reg_err1, reg_err2;
uint32_t uerrlo_reg, uemasklo_reg;
uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
bool en_rn_msg = true;
struct temp_event temp_event_data;
struct lpfc_register portsmphr_reg;
int rc, i;
/* If the pci channel is offline, ignore possible errors, since
* we cannot communicate with the pci card anyway.
*/
if (pci_channel_offline(phba->pcidev)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3166 pci channel is offline\n");
lpfc_sli4_offline_eratt(phba);
return;
}
memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
pci_rd_rc1 = lpfc_readl(
phba->sli4_hba.u.if_type0.UERRLOregaddr,
&uerrlo_reg);
pci_rd_rc2 = lpfc_readl(
phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
&uemasklo_reg);
/* consider PCI bus read error as pci_channel_offline */
if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
return;
if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
lpfc_sli4_offline_eratt(phba);
return;
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"7623 Checking UE recoverable");
for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
&portsmphr_reg.word0))
continue;
smphr_port_status = bf_get(lpfc_port_smphr_port_status,
&portsmphr_reg);
if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
LPFC_PORT_SEM_UE_RECOVERABLE)
break;
/*Sleep for 1Sec, before checking SEMAPHORE */
msleep(1000);
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"4827 smphr_port_status x%x : Waited %dSec",
smphr_port_status, i);
/* Recoverable UE, reset the HBA device */
if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
LPFC_PORT_SEM_UE_RECOVERABLE) {
for (i = 0; i < 20; i++) {
msleep(1000);
if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
&portsmphr_reg.word0) &&
(LPFC_POST_STAGE_PORT_READY ==
bf_get(lpfc_port_smphr_port_status,
&portsmphr_reg))) {
rc = lpfc_sli4_port_sta_fn_reset(phba,
LPFC_MBX_NO_WAIT, en_rn_msg);
if (rc == 0)
return;
lpfc_printf_log(phba,
KERN_ERR, LOG_INIT,
"4215 Failed to recover UE");
break;
}
}
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"7624 Firmware not ready: Failing UE recovery,"
" waited %dSec", i);
phba->link_state = LPFC_HBA_ERROR;
break;
case LPFC_SLI_INTF_IF_TYPE_2:
case LPFC_SLI_INTF_IF_TYPE_6:
pci_rd_rc1 = lpfc_readl(
phba->sli4_hba.u.if_type2.STATUSregaddr,
&portstat_reg.word0);
/* consider PCI bus read error as pci_channel_offline */
if (pci_rd_rc1 == -EIO) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3151 PCI bus read access failure: x%x\n",
readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
lpfc_sli4_offline_eratt(phba);
return;
}
reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2889 Port Overtemperature event, "
"taking port offline Data: x%x x%x\n",
reg_err1, reg_err2);
phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_CRIT_TEMP;
temp_event_data.data = 0xFFFFFFFF;
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *)&temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
spin_lock_irq(&phba->hbalock);
phba->over_temp_state = HBA_OVER_TEMP;
spin_unlock_irq(&phba->hbalock);
lpfc_sli4_offline_eratt(phba);
return;
}
if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3143 Port Down: Firmware Update "
"Detected\n");
en_rn_msg = false;
} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3144 Port Down: Debug Dump\n");
else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3145 Port Down: Provisioning\n");
/* If resets are disabled then leave the HBA alone and return */
if (!phba->cfg_enable_hba_reset)
return;
/* Check port status register for function reset */
rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
en_rn_msg);
if (rc == 0) {
/* don't report event on forced debug dump */
if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
return;
else
break;
}
/* fall through for not able to recover */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3152 Unrecoverable error\n");
phba->link_state = LPFC_HBA_ERROR;
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3123 Report dump event to upper layer\n");
/* Send an internal error event to mgmt application */
lpfc_board_errevt_to_mgmt(phba);
event_data = FC_REG_DUMP_EVENT;
shost = lpfc_shost_from_vport(vport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(event_data), (char *) &event_data,
SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
}
/**
* lpfc_handle_eratt - Wrapper func for handling hba error attention
* @phba: pointer to lpfc HBA data structure.
*
* This routine wraps the actual SLI3 or SLI4 hba error attention handling
* routine from the API jump table function pointer from the lpfc_hba struct.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
void
lpfc_handle_eratt(struct lpfc_hba *phba)
{
(*phba->lpfc_handle_eratt)(phba);
}
/**
* lpfc_handle_latt - The HBA link event handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked from the worker thread to handle a HBA host
* attention link event. SLI3 only.
**/
void
lpfc_handle_latt(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_sli *psli = &phba->sli;
LPFC_MBOXQ_t *pmb;
volatile uint32_t control;
struct lpfc_dmabuf *mp;
int rc = 0;
pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
rc = 1;
goto lpfc_handle_latt_err_exit;
}
mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!mp) {
rc = 2;
goto lpfc_handle_latt_free_pmb;
}
mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
if (!mp->virt) {
rc = 3;
goto lpfc_handle_latt_free_mp;
}
/* Cleanup any outstanding ELS commands */
lpfc_els_flush_all_cmd(phba);
psli->slistat.link_event++;
lpfc_read_topology(phba, pmb, mp);
pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
pmb->vport = vport;
/* Block ELS IOCBs until we have processed this mbox command */
phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
rc = 4;
goto lpfc_handle_latt_free_mbuf;
}
/* Clear Link Attention in HA REG */
spin_lock_irq(&phba->hbalock);
writel(HA_LATT, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
return;
lpfc_handle_latt_free_mbuf:
phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
lpfc_handle_latt_free_mp:
kfree(mp);
lpfc_handle_latt_free_pmb:
mempool_free(pmb, phba->mbox_mem_pool);
lpfc_handle_latt_err_exit:
/* Enable Link attention interrupts */
spin_lock_irq(&phba->hbalock);
psli->sli_flag |= LPFC_PROCESS_LA;
control = readl(phba->HCregaddr);
control |= HC_LAINT_ENA;
writel(control, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear Link Attention in HA REG */
writel(HA_LATT, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
lpfc_linkdown(phba);
phba->link_state = LPFC_HBA_ERROR;
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
return;
}
/**
* lpfc_parse_vpd - Parse VPD (Vital Product Data)
* @phba: pointer to lpfc hba data structure.
* @vpd: pointer to the vital product data.
* @len: length of the vital product data in bytes.
*
* This routine parses the Vital Product Data (VPD). The VPD is treated as
* an array of characters. In this routine, the ModelName, ProgramType, and
* ModelDesc, etc. fields of the phba data structure will be populated.
*
* Return codes
* 0 - pointer to the VPD passed in is NULL
* 1 - success
**/
int
lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
{
uint8_t lenlo, lenhi;
int Length;
int i, j;
int finished = 0;
int index = 0;
if (!vpd)
return 0;
/* Vital Product */
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0455 Vital Product Data: x%x x%x x%x x%x\n",
(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
(uint32_t) vpd[3]);
while (!finished && (index < (len - 4))) {
switch (vpd[index]) {
case 0x82:
case 0x91:
index += 1;
lenlo = vpd[index];
index += 1;
lenhi = vpd[index];
index += 1;
i = ((((unsigned short)lenhi) << 8) + lenlo);
index += i;
break;
case 0x90:
index += 1;
lenlo = vpd[index];
index += 1;
lenhi = vpd[index];
index += 1;
Length = ((((unsigned short)lenhi) << 8) + lenlo);
if (Length > len - index)
Length = len - index;
while (Length > 0) {
/* Look for Serial Number */
if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->SerialNumber[j++] = vpd[index++];
if (j == 31)
break;
}
phba->SerialNumber[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
phba->vpd_flag |= VPD_MODEL_DESC;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ModelDesc[j++] = vpd[index++];
if (j == 255)
break;
}
phba->ModelDesc[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
phba->vpd_flag |= VPD_MODEL_NAME;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ModelName[j++] = vpd[index++];
if (j == 79)
break;
}
phba->ModelName[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
phba->vpd_flag |= VPD_PROGRAM_TYPE;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ProgramType[j++] = vpd[index++];
if (j == 255)
break;
}
phba->ProgramType[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
phba->vpd_flag |= VPD_PORT;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
if ((phba->sli_rev == LPFC_SLI_REV4) &&
(phba->sli4_hba.pport_name_sta ==
LPFC_SLI4_PPNAME_GET)) {
j++;
index++;
} else
phba->Port[j++] = vpd[index++];
if (j == 19)
break;
}
if ((phba->sli_rev != LPFC_SLI_REV4) ||
(phba->sli4_hba.pport_name_sta ==
LPFC_SLI4_PPNAME_NON))
phba->Port[j] = 0;
continue;
}
else {
index += 2;
i = vpd[index];
index += 1;
index += i;
Length -= (3 + i);
}
}
finished = 0;
break;
case 0x78:
finished = 1;
break;
default:
index ++;
break;
}
}
return(1);
}
/**
* lpfc_get_hba_model_desc - Retrieve HBA device model name and description
* @phba: pointer to lpfc hba data structure.
* @mdp: pointer to the data structure to hold the derived model name.
* @descp: pointer to the data structure to hold the derived description.
*
* This routine retrieves HBA's description based on its registered PCI device
* ID. The @descp passed into this function points to an array of 256 chars. It
* shall be returned with the model name, maximum speed, and the host bus type.
* The @mdp passed into this function points to an array of 80 chars. When the
* function returns, the @mdp will be filled with the model name.
**/
static void
lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
{
lpfc_vpd_t *vp;
uint16_t dev_id = phba->pcidev->device;
int max_speed;
int GE = 0;
int oneConnect = 0; /* default is not a oneConnect */
struct {
char *name;
char *bus;
char *function;
} m = {"<Unknown>", "", ""};
if (mdp && mdp[0] != '\0'
&& descp && descp[0] != '\0')
return;
if (phba->lmt & LMT_64Gb)
max_speed = 64;
else if (phba->lmt & LMT_32Gb)
max_speed = 32;
else if (phba->lmt & LMT_16Gb)
max_speed = 16;
else if (phba->lmt & LMT_10Gb)
max_speed = 10;
else if (phba->lmt & LMT_8Gb)
max_speed = 8;
else if (phba->lmt & LMT_4Gb)
max_speed = 4;
else if (phba->lmt & LMT_2Gb)
max_speed = 2;
else if (phba->lmt & LMT_1Gb)
max_speed = 1;
else
max_speed = 0;
vp = &phba->vpd;
switch (dev_id) {
case PCI_DEVICE_ID_FIREFLY:
m = (typeof(m)){"LP6000", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SUPERFLY:
if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
m = (typeof(m)){"LP7000", "PCI", ""};
else
m = (typeof(m)){"LP7000E", "PCI", ""};
m.function = "Obsolete, Unsupported Fibre Channel Adapter";
break;
case PCI_DEVICE_ID_DRAGONFLY:
m = (typeof(m)){"LP8000", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_CENTAUR:
if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
m = (typeof(m)){"LP9002", "PCI", ""};
else
m = (typeof(m)){"LP9000", "PCI", ""};
m.function = "Obsolete, Unsupported Fibre Channel Adapter";
break;
case PCI_DEVICE_ID_RFLY:
m = (typeof(m)){"LP952", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PEGASUS:
m = (typeof(m)){"LP9802", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_THOR:
m = (typeof(m)){"LP10000", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_VIPER:
m = (typeof(m)){"LPX1000", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PFLY:
m = (typeof(m)){"LP982", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_TFLY:
m = (typeof(m)){"LP1050", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HELIOS:
m = (typeof(m)){"LP11000", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HELIOS_SCSP:
m = (typeof(m)){"LP11000-SP", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HELIOS_DCSP:
m = (typeof(m)){"LP11002-SP", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_NEPTUNE:
m = (typeof(m)){"LPe1000", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_NEPTUNE_SCSP:
m = (typeof(m)){"LPe1000-SP", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_NEPTUNE_DCSP:
m = (typeof(m)){"LPe1002-SP", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_BMID:
m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_BSMB:
m = (typeof(m)){"LP111", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZEPHYR:
m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZEPHYR_SCSP:
m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZEPHYR_DCSP:
m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
GE = 1;
break;
case PCI_DEVICE_ID_ZMID:
m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_ZSMB:
m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LP101:
m = (typeof(m)){"LP101", "PCI-X",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LP10000S:
m = (typeof(m)){"LP10000-S", "PCI",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LP11000S:
m = (typeof(m)){"LP11000-S", "PCI-X2",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LPE11000S:
m = (typeof(m)){"LPe11000-S", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT:
m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_MID:
m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_SMB:
m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_DCSP:
m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_SCSP:
m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SAT_S:
m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_HORNET:
m = (typeof(m)){"LP21000", "PCIe",
"Obsolete, Unsupported FCoE Adapter"};
GE = 1;
break;
case PCI_DEVICE_ID_PROTEUS_VF:
m = (typeof(m)){"LPev12000", "PCIe IOV",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PROTEUS_PF:
m = (typeof(m)){"LPev12000", "PCIe IOV",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_PROTEUS_S:
m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_TIGERSHARK:
oneConnect = 1;
m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
break;
case PCI_DEVICE_ID_TOMCAT:
oneConnect = 1;
m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
break;
case PCI_DEVICE_ID_FALCON:
m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
"EmulexSecure Fibre"};
break;
case PCI_DEVICE_ID_BALIUS:
m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LANCER_FC:
m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LANCER_FC_VF:
m = (typeof(m)){"LPe16000", "PCIe",
"Obsolete, Unsupported Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LANCER_FCOE:
oneConnect = 1;
m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
break;
case PCI_DEVICE_ID_LANCER_FCOE_VF:
oneConnect = 1;
m = (typeof(m)){"OCe15100", "PCIe",
"Obsolete, Unsupported FCoE"};
break;
case PCI_DEVICE_ID_LANCER_G6_FC:
m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_LANCER_G7_FC:
m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
break;
case PCI_DEVICE_ID_SKYHAWK:
case PCI_DEVICE_ID_SKYHAWK_VF:
oneConnect = 1;
m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
break;
default:
m = (typeof(m)){"Unknown", "", ""};
break;
}
if (mdp && mdp[0] == '\0')
snprintf(mdp, 79,"%s", m.name);
/*
* oneConnect hba requires special processing, they are all initiators
* and we put the port number on the end
*/
if (descp && descp[0] == '\0') {
if (oneConnect)
snprintf(descp, 255,
"Emulex OneConnect %s, %s Initiator %s",
m.name, m.function,
phba->Port);
else if (max_speed == 0)
snprintf(descp, 255,
"Emulex %s %s %s",
m.name, m.bus, m.function);
else
snprintf(descp, 255,
"Emulex %s %d%s %s %s",
m.name, max_speed, (GE) ? "GE" : "Gb",
m.bus, m.function);
}
}
/**
* lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
* @phba: pointer to lpfc hba data structure.
* @pring: pointer to a IOCB ring.
* @cnt: the number of IOCBs to be posted to the IOCB ring.
*
* This routine posts a given number of IOCBs with the associated DMA buffer
* descriptors specified by the cnt argument to the given IOCB ring.
*
* Return codes
* The number of IOCBs NOT able to be posted to the IOCB ring.
**/
int
lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
{
IOCB_t *icmd;
struct lpfc_iocbq *iocb;
struct lpfc_dmabuf *mp1, *mp2;
cnt += pring->missbufcnt;
/* While there are buffers to post */
while (cnt > 0) {
/* Allocate buffer for command iocb */
iocb = lpfc_sli_get_iocbq(phba);
if (iocb == NULL) {
pring->missbufcnt = cnt;
return cnt;
}
icmd = &iocb->iocb;
/* 2 buffers can be posted per command */
/* Allocate buffer to post */
mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
if (mp1)
mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
if (!mp1 || !mp1->virt) {
kfree(mp1);
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
INIT_LIST_HEAD(&mp1->list);
/* Allocate buffer to post */
if (cnt > 1) {
mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
if (mp2)
mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
&mp2->phys);
if (!mp2 || !mp2->virt) {
kfree(mp2);
lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
kfree(mp1);
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
INIT_LIST_HEAD(&mp2->list);
} else {
mp2 = NULL;
}
icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
icmd->ulpBdeCount = 1;
cnt--;
if (mp2) {
icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
cnt--;
icmd->ulpBdeCount = 2;
}
icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
icmd->ulpLe = 1;
if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
IOCB_ERROR) {
lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
kfree(mp1);
cnt++;
if (mp2) {
lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
kfree(mp2);
cnt++;
}
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
lpfc_sli_ringpostbuf_put(phba, pring, mp1);
if (mp2)
lpfc_sli_ringpostbuf_put(phba, pring, mp2);
}
pring->missbufcnt = 0;
return 0;
}
/**
* lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
* @phba: pointer to lpfc hba data structure.
*
* This routine posts initial receive IOCB buffers to the ELS ring. The
* current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
* set to 64 IOCBs. SLI3 only.
*
* Return codes
* 0 - success (currently always success)
**/
static int
lpfc_post_rcv_buf(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
/* Ring 0, ELS / CT buffers */
lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
/* Ring 2 - FCP no buffers needed */
return 0;
}
#define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
/**
* lpfc_sha_init - Set up initial array of hash table entries
* @HashResultPointer: pointer to an array as hash table.
*
* This routine sets up the initial values to the array of hash table entries
* for the LC HBAs.
**/
static void
lpfc_sha_init(uint32_t * HashResultPointer)
{
HashResultPointer[0] = 0x67452301;
HashResultPointer[1] = 0xEFCDAB89;
HashResultPointer[2] = 0x98BADCFE;
HashResultPointer[3] = 0x10325476;
HashResultPointer[4] = 0xC3D2E1F0;
}
/**
* lpfc_sha_iterate - Iterate initial hash table with the working hash table
* @HashResultPointer: pointer to an initial/result hash table.
* @HashWorkingPointer: pointer to an working hash table.
*
* This routine iterates an initial hash table pointed by @HashResultPointer
* with the values from the working hash table pointeed by @HashWorkingPointer.
* The results are putting back to the initial hash table, returned through
* the @HashResultPointer as the result hash table.
**/
static void
lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
{
int t;
uint32_t TEMP;
uint32_t A, B, C, D, E;
t = 16;
do {
HashWorkingPointer[t] =
S(1,
HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
8] ^
HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
} while (++t <= 79);
t = 0;
A = HashResultPointer[0];
B = HashResultPointer[1];
C = HashResultPointer[2];
D = HashResultPointer[3];
E = HashResultPointer[4];
do {
if (t < 20) {
TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
} else if (t < 40) {
TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
} else if (t < 60) {
TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
} else {
TEMP = (B ^ C ^ D) + 0xCA62C1D6;
}
TEMP += S(5, A) + E + HashWorkingPointer[t];
E = D;
D = C;
C = S(30, B);
B = A;
A = TEMP;
} while (++t <= 79);
HashResultPointer[0] += A;
HashResultPointer[1] += B;
HashResultPointer[2] += C;
HashResultPointer[3] += D;
HashResultPointer[4] += E;
}
/**
* lpfc_challenge_key - Create challenge key based on WWPN of the HBA
* @RandomChallenge: pointer to the entry of host challenge random number array.
* @HashWorking: pointer to the entry of the working hash array.
*
* This routine calculates the working hash array referred by @HashWorking
* from the challenge random numbers associated with the host, referred by
* @RandomChallenge. The result is put into the entry of the working hash
* array and returned by reference through @HashWorking.
**/
static void
lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
{
*HashWorking = (*RandomChallenge ^ *HashWorking);
}
/**
* lpfc_hba_init - Perform special handling for LC HBA initialization
* @phba: pointer to lpfc hba data structure.
* @hbainit: pointer to an array of unsigned 32-bit integers.
*
* This routine performs the special handling for LC HBA initialization.
**/
void
lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
{
int t;
uint32_t *HashWorking;
uint32_t *pwwnn = (uint32_t *) phba->wwnn;
HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
if (!HashWorking)
return;
HashWorking[0] = HashWorking[78] = *pwwnn++;
HashWorking[1] = HashWorking[79] = *pwwnn;
for (t = 0; t < 7; t++)
lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
lpfc_sha_init(hbainit);
lpfc_sha_iterate(hbainit, HashWorking);
kfree(HashWorking);
}
/**
* lpfc_cleanup - Performs vport cleanups before deleting a vport
* @vport: pointer to a virtual N_Port data structure.
*
* This routine performs the necessary cleanups before deleting the @vport.
* It invokes the discovery state machine to perform necessary state
* transitions and to release the ndlps associated with the @vport. Note,
* the physical port is treated as @vport 0.
**/
void
lpfc_cleanup(struct lpfc_vport *vport)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_nodelist *ndlp, *next_ndlp;
int i = 0;
if (phba->link_state > LPFC_LINK_DOWN)
lpfc_port_link_failure(vport);
list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp)) {
ndlp = lpfc_enable_node(vport, ndlp,
NLP_STE_UNUSED_NODE);
if (!ndlp)
continue;
spin_lock_irq(&phba->ndlp_lock);
NLP_SET_FREE_REQ(ndlp);
spin_unlock_irq(&phba->ndlp_lock);
/* Trigger the release of the ndlp memory */
lpfc_nlp_put(ndlp);
continue;
}
spin_lock_irq(&phba->ndlp_lock);
if (NLP_CHK_FREE_REQ(ndlp)) {
/* The ndlp should not be in memory free mode already */
spin_unlock_irq(&phba->ndlp_lock);
continue;
} else
/* Indicate request for freeing ndlp memory */
NLP_SET_FREE_REQ(ndlp);
spin_unlock_irq(&phba->ndlp_lock);
if (vport->port_type != LPFC_PHYSICAL_PORT &&
ndlp->nlp_DID == Fabric_DID) {
/* Just free up ndlp with Fabric_DID for vports */
lpfc_nlp_put(ndlp);
continue;
}
/* take care of nodes in unused state before the state
* machine taking action.
*/
if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
lpfc_nlp_put(ndlp);
continue;
}
if (ndlp->nlp_type & NLP_FABRIC)
lpfc_disc_state_machine(vport, ndlp, NULL,
NLP_EVT_DEVICE_RECOVERY);
lpfc_disc_state_machine(vport, ndlp, NULL,
NLP_EVT_DEVICE_RM);
}
/* At this point, ALL ndlp's should be gone
* because of the previous NLP_EVT_DEVICE_RM.
* Lets wait for this to happen, if needed.
*/
while (!list_empty(&vport->fc_nodes)) {
if (i++ > 3000) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY,
"0233 Nodelist not empty\n");
list_for_each_entry_safe(ndlp, next_ndlp,
&vport->fc_nodes, nlp_listp) {
lpfc_printf_vlog(ndlp->vport, KERN_ERR,
LOG_NODE,
"0282 did:x%x ndlp:x%px "
"usgmap:x%x refcnt:%d\n",
ndlp->nlp_DID, (void *)ndlp,
ndlp->nlp_usg_map,
kref_read(&ndlp->kref));
}
break;
}
/* Wait for any activity on ndlps to settle */
msleep(10);
}
lpfc_cleanup_vports_rrqs(vport, NULL);
}
/**
* lpfc_stop_vport_timers - Stop all the timers associated with a vport
* @vport: pointer to a virtual N_Port data structure.
*
* This routine stops all the timers associated with a @vport. This function
* is invoked before disabling or deleting a @vport. Note that the physical
* port is treated as @vport 0.
**/
void
lpfc_stop_vport_timers(struct lpfc_vport *vport)
{
del_timer_sync(&vport->els_tmofunc);
del_timer_sync(&vport->delayed_disc_tmo);
lpfc_can_disctmo(vport);
return;
}
/**
* __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
* @phba: pointer to lpfc hba data structure.
*
* This routine stops the SLI4 FCF rediscover wait timer if it's on. The
* caller of this routine should already hold the host lock.
**/
void
__lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
{
/* Clear pending FCF rediscovery wait flag */
phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
/* Now, try to stop the timer */
del_timer(&phba->fcf.redisc_wait);
}
/**
* lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
* @phba: pointer to lpfc hba data structure.
*
* This routine stops the SLI4 FCF rediscover wait timer if it's on. It
* checks whether the FCF rediscovery wait timer is pending with the host
* lock held before proceeding with disabling the timer and clearing the
* wait timer pendig flag.
**/
void
lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
{
spin_lock_irq(&phba->hbalock);
if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
/* FCF rediscovery timer already fired or stopped */
spin_unlock_irq(&phba->hbalock);
return;
}
__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
/* Clear failover in progress flags */
phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_stop_hba_timers - Stop all the timers associated with an HBA
* @phba: pointer to lpfc hba data structure.
*
* This routine stops all the timers associated with a HBA. This function is
* invoked before either putting a HBA offline or unloading the driver.
**/
void
lpfc_stop_hba_timers(struct lpfc_hba *phba)
{
if (phba->pport)
lpfc_stop_vport_timers(phba->pport);
cancel_delayed_work_sync(&phba->eq_delay_work);
del_timer_sync(&phba->sli.mbox_tmo);
del_timer_sync(&phba->fabric_block_timer);
del_timer_sync(&phba->eratt_poll);
del_timer_sync(&phba->hb_tmofunc);
if (phba->sli_rev == LPFC_SLI_REV4) {
del_timer_sync(&phba->rrq_tmr);
phba->hba_flag &= ~HBA_RRQ_ACTIVE;
}
phba->hb_outstanding = 0;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
/* Stop any LightPulse device specific driver timers */
del_timer_sync(&phba->fcp_poll_timer);
break;
case LPFC_PCI_DEV_OC:
/* Stop any OneConnect device specific driver timers */
lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0297 Invalid device group (x%x)\n",
phba->pci_dev_grp);
break;
}
return;
}
/**
* lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
* @phba: pointer to lpfc hba data structure.
*
* This routine marks a HBA's management interface as blocked. Once the HBA's
* management interface is marked as blocked, all the user space access to
* the HBA, whether they are from sysfs interface or libdfc interface will
* all be blocked. The HBA is set to block the management interface when the
* driver prepares the HBA interface for online or offline.
**/
static void
lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
{
unsigned long iflag;
uint8_t actcmd = MBX_HEARTBEAT;
unsigned long timeout;
spin_lock_irqsave(&phba->hbalock, iflag);
phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
spin_unlock_irqrestore(&phba->hbalock, iflag);
if (mbx_action == LPFC_MBX_NO_WAIT)
return;
timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
spin_lock_irqsave(&phba->hbalock, iflag);
if (phba->sli.mbox_active) {
actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
/* Determine how long we might wait for the active mailbox
* command to be gracefully completed by firmware.
*/
timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
phba->sli.mbox_active) * 1000) + jiffies;
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
/* Wait for the outstnading mailbox command to complete */
while (phba->sli.mbox_active) {
/* Check active mailbox complete status every 2ms */
msleep(2);
if (time_after(jiffies, timeout)) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2813 Mgmt IO is Blocked %x "
"- mbox cmd %x still active\n",
phba->sli.sli_flag, actcmd);
break;
}
}
}
/**
* lpfc_sli4_node_prep - Assign RPIs for active nodes.
* @phba: pointer to lpfc hba data structure.
*
* Allocate RPIs for all active remote nodes. This is needed whenever
* an SLI4 adapter is reset and the driver is not unloading. Its purpose
* is to fixup the temporary rpi assignments.
**/
void
lpfc_sli4_node_prep(struct lpfc_hba *phba)
{
struct lpfc_nodelist *ndlp, *next_ndlp;
struct lpfc_vport **vports;
int i, rpi;
unsigned long flags;
if (phba->sli_rev != LPFC_SLI_REV4)
return;
vports = lpfc_create_vport_work_array(phba);
if (vports == NULL)
return;
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->load_flag & FC_UNLOADING)
continue;
list_for_each_entry_safe(ndlp, next_ndlp,
&vports[i]->fc_nodes,
nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp))
continue;
rpi = lpfc_sli4_alloc_rpi(phba);
if (rpi == LPFC_RPI_ALLOC_ERROR) {
spin_lock_irqsave(&phba->ndlp_lock, flags);
NLP_CLR_NODE_ACT(ndlp);
spin_unlock_irqrestore(&phba->ndlp_lock, flags);
continue;
}
ndlp->nlp_rpi = rpi;
lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE,
"0009 rpi:%x DID:%x "
"flg:%x map:%x x%px\n", ndlp->nlp_rpi,
ndlp->nlp_DID, ndlp->nlp_flag,
ndlp->nlp_usg_map, ndlp);
}
}
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_create_expedite_pool - create expedite pool
* @phba: pointer to lpfc hba data structure.
*
* This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
* to expedite pool. Mark them as expedite.
**/
static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
{
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
struct lpfc_epd_pool *epd_pool;
unsigned long iflag;
epd_pool = &phba->epd_pool;
qp = &phba->sli4_hba.hdwq[0];
spin_lock_init(&epd_pool->lock);
spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
spin_lock(&epd_pool->lock);
INIT_LIST_HEAD(&epd_pool->list);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&qp->lpfc_io_buf_list_put, list) {
list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
lpfc_ncmd->expedite = true;
qp->put_io_bufs--;
epd_pool->count++;
if (epd_pool->count >= XRI_BATCH)
break;
}
spin_unlock(&epd_pool->lock);
spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
}
/**
* lpfc_destroy_expedite_pool - destroy expedite pool
* @phba: pointer to lpfc hba data structure.
*
* This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
* of HWQ 0. Clear the mark.
**/
static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
{
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
struct lpfc_epd_pool *epd_pool;
unsigned long iflag;
epd_pool = &phba->epd_pool;
qp = &phba->sli4_hba.hdwq[0];
spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
spin_lock(&epd_pool->lock);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&epd_pool->list, list) {
list_move_tail(&lpfc_ncmd->list,
&qp->lpfc_io_buf_list_put);
lpfc_ncmd->flags = false;
qp->put_io_bufs++;
epd_pool->count--;
}
spin_unlock(&epd_pool->lock);
spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
}
/**
* lpfc_create_multixri_pools - create multi-XRI pools
* @phba: pointer to lpfc hba data structure.
*
* This routine initialize public, private per HWQ. Then, move XRIs from
* lpfc_io_buf_list_put to public pool. High and low watermark are also
* Initialized.
**/
void lpfc_create_multixri_pools(struct lpfc_hba *phba)
{
u32 i, j;
u32 hwq_count;
u32 count_per_hwq;
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
unsigned long iflag;
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_pbl_pool *pbl_pool;
struct lpfc_pvt_pool *pvt_pool;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
phba->sli4_hba.io_xri_cnt);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
lpfc_create_expedite_pool(phba);
hwq_count = phba->cfg_hdw_queue;
count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
for (i = 0; i < hwq_count; i++) {
multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
if (!multixri_pool) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1238 Failed to allocate memory for "
"multixri_pool\n");
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
lpfc_destroy_expedite_pool(phba);
j = 0;
while (j < i) {
qp = &phba->sli4_hba.hdwq[j];
kfree(qp->p_multixri_pool);
j++;
}
phba->cfg_xri_rebalancing = 0;
return;
}
qp = &phba->sli4_hba.hdwq[i];
qp->p_multixri_pool = multixri_pool;
multixri_pool->xri_limit = count_per_hwq;
multixri_pool->rrb_next_hwqid = i;
/* Deal with public free xri pool */
pbl_pool = &multixri_pool->pbl_pool;
spin_lock_init(&pbl_pool->lock);
spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
spin_lock(&pbl_pool->lock);
INIT_LIST_HEAD(&pbl_pool->list);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&qp->lpfc_io_buf_list_put, list) {
list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
qp->put_io_bufs--;
pbl_pool->count++;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
pbl_pool->count, i);
spin_unlock(&pbl_pool->lock);
spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
/* Deal with private free xri pool */
pvt_pool = &multixri_pool->pvt_pool;
pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
pvt_pool->low_watermark = XRI_BATCH;
spin_lock_init(&pvt_pool->lock);
spin_lock_irqsave(&pvt_pool->lock, iflag);
INIT_LIST_HEAD(&pvt_pool->list);
pvt_pool->count = 0;
spin_unlock_irqrestore(&pvt_pool->lock, iflag);
}
}
/**
* lpfc_destroy_multixri_pools - destroy multi-XRI pools
* @phba: pointer to lpfc hba data structure.
*
* This routine returns XRIs from public/private to lpfc_io_buf_list_put.
**/
static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
{
u32 i;
u32 hwq_count;
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
unsigned long iflag;
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_pbl_pool *pbl_pool;
struct lpfc_pvt_pool *pvt_pool;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
lpfc_destroy_expedite_pool(phba);
if (!(phba->pport->load_flag & FC_UNLOADING))
lpfc_sli_flush_io_rings(phba);
hwq_count = phba->cfg_hdw_queue;
for (i = 0; i < hwq_count; i++) {
qp = &phba->sli4_hba.hdwq[i];
multixri_pool = qp->p_multixri_pool;
if (!multixri_pool)
continue;
qp->p_multixri_pool = NULL;
spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
/* Deal with public free xri pool */
pbl_pool = &multixri_pool->pbl_pool;
spin_lock(&pbl_pool->lock);
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
pbl_pool->count, i);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&pbl_pool->list, list) {
list_move_tail(&lpfc_ncmd->list,
&qp->lpfc_io_buf_list_put);
qp->put_io_bufs++;
pbl_pool->count--;
}
INIT_LIST_HEAD(&pbl_pool->list);
pbl_pool->count = 0;
spin_unlock(&pbl_pool->lock);
/* Deal with private free xri pool */
pvt_pool = &multixri_pool->pvt_pool;
spin_lock(&pvt_pool->lock);
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
pvt_pool->count, i);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&pvt_pool->list, list) {
list_move_tail(&lpfc_ncmd->list,
&qp->lpfc_io_buf_list_put);
qp->put_io_bufs++;
pvt_pool->count--;
}
INIT_LIST_HEAD(&pvt_pool->list);
pvt_pool->count = 0;
spin_unlock(&pvt_pool->lock);
spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
kfree(multixri_pool);
}
}
/**
* lpfc_online - Initialize and bring a HBA online
* @phba: pointer to lpfc hba data structure.
*
* This routine initializes the HBA and brings a HBA online. During this
* process, the management interface is blocked to prevent user space access
* to the HBA interfering with the driver initialization.
*
* Return codes
* 0 - successful
* 1 - failed
**/
int
lpfc_online(struct lpfc_hba *phba)
{
struct lpfc_vport *vport;
struct lpfc_vport **vports;
int i, error = 0;
bool vpis_cleared = false;
if (!phba)
return 0;
vport = phba->pport;
if (!(vport->fc_flag & FC_OFFLINE_MODE))
return 0;
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0458 Bring Adapter online\n");
lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
if (phba->sli_rev == LPFC_SLI_REV4) {
if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
lpfc_unblock_mgmt_io(phba);
return 1;
}
spin_lock_irq(&phba->hbalock);
if (!phba->sli4_hba.max_cfg_param.vpi_used)
vpis_cleared = true;
spin_unlock_irq(&phba->hbalock);
/* Reestablish the local initiator port.
* The offline process destroyed the previous lport.
*/
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
!phba->nvmet_support) {
error = lpfc_nvme_create_localport(phba->pport);
if (error)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6132 NVME restore reg failed "
"on nvmei error x%x\n", error);
}
} else {
lpfc_sli_queue_init(phba);
if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */
lpfc_unblock_mgmt_io(phba);
return 1;
}
}
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
struct Scsi_Host *shost;
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
if (phba->sli_rev == LPFC_SLI_REV4) {
vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
if ((vpis_cleared) &&
(vports[i]->port_type !=
LPFC_PHYSICAL_PORT))
vports[i]->vpi = 0;
}
spin_unlock_irq(shost->host_lock);
}
}
lpfc_destroy_vport_work_array(phba, vports);
if (phba->cfg_xri_rebalancing)
lpfc_create_multixri_pools(phba);
lpfc_cpuhp_add(phba);
lpfc_unblock_mgmt_io(phba);
return 0;
}
/**
* lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
* @phba: pointer to lpfc hba data structure.
*
* This routine marks a HBA's management interface as not blocked. Once the
* HBA's management interface is marked as not blocked, all the user space
* access to the HBA, whether they are from sysfs interface or libdfc
* interface will be allowed. The HBA is set to block the management interface
* when the driver prepares the HBA interface for online or offline and then
* set to unblock the management interface afterwards.
**/
void
lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
{
unsigned long iflag;
spin_lock_irqsave(&phba->hbalock, iflag);
phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
/**
* lpfc_offline_prep - Prepare a HBA to be brought offline
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to prepare a HBA to be brought offline. It performs
* unregistration login to all the nodes on all vports and flushes the mailbox
* queue to make it ready to be brought offline.
**/
void
lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_nodelist *ndlp, *next_ndlp;
struct lpfc_vport **vports;
struct Scsi_Host *shost;
int i;
if (vport->fc_flag & FC_OFFLINE_MODE)
return;
lpfc_block_mgmt_io(phba, mbx_action);
lpfc_linkdown(phba);
/* Issue an unreg_login to all nodes on all vports */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->load_flag & FC_UNLOADING)
continue;
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
spin_unlock_irq(shost->host_lock);
shost = lpfc_shost_from_vport(vports[i]);
list_for_each_entry_safe(ndlp, next_ndlp,
&vports[i]->fc_nodes,
nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp))
continue;
if (ndlp->nlp_state == NLP_STE_UNUSED_NODE)
continue;
if (ndlp->nlp_type & NLP_FABRIC) {
lpfc_disc_state_machine(vports[i], ndlp,
NULL, NLP_EVT_DEVICE_RECOVERY);
lpfc_disc_state_machine(vports[i], ndlp,
NULL, NLP_EVT_DEVICE_RM);
}
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(shost->host_lock);
/*
* Whenever an SLI4 port goes offline, free the
* RPI. Get a new RPI when the adapter port
* comes back online.
*/
if (phba->sli_rev == LPFC_SLI_REV4) {
lpfc_printf_vlog(ndlp->vport,
KERN_INFO, LOG_NODE,
"0011 lpfc_offline: "
"ndlp:x%px did %x "
"usgmap:x%x rpi:%x\n",
ndlp, ndlp->nlp_DID,
ndlp->nlp_usg_map,
ndlp->nlp_rpi);
lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
}
lpfc_unreg_rpi(vports[i], ndlp);
}
}
}
lpfc_destroy_vport_work_array(phba, vports);
lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
if (phba->wq)
flush_workqueue(phba->wq);
}
/**
* lpfc_offline - Bring a HBA offline
* @phba: pointer to lpfc hba data structure.
*
* This routine actually brings a HBA offline. It stops all the timers
* associated with the HBA, brings down the SLI layer, and eventually
* marks the HBA as in offline state for the upper layer protocol.
**/
void
lpfc_offline(struct lpfc_hba *phba)
{
struct Scsi_Host *shost;
struct lpfc_vport **vports;
int i;
if (phba->pport->fc_flag & FC_OFFLINE_MODE)
return;
/* stop port and all timers associated with this hba */
lpfc_stop_port(phba);
/* Tear down the local and target port registrations. The
* nvme transports need to cleanup.
*/
lpfc_nvmet_destroy_targetport(phba);
lpfc_nvme_destroy_localport(phba->pport);
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
lpfc_stop_vport_timers(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0460 Bring Adapter offline\n");
/* Bring down the SLI Layer and cleanup. The HBA is offline
now. */
lpfc_sli_hba_down(phba);
spin_lock_irq(&phba->hbalock);
phba->work_ha = 0;
spin_unlock_irq(&phba->hbalock);
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->work_port_events = 0;
vports[i]->fc_flag |= FC_OFFLINE_MODE;
spin_unlock_irq(shost->host_lock);
}
lpfc_destroy_vport_work_array(phba, vports);
__lpfc_cpuhp_remove(phba);
if (phba->cfg_xri_rebalancing)
lpfc_destroy_multixri_pools(phba);
}
/**
* lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
* @phba: pointer to lpfc hba data structure.
*
* This routine is to free all the SCSI buffers and IOCBs from the driver
* list back to kernel. It is called from lpfc_pci_remove_one to free
* the internal resources before the device is removed from the system.
**/
static void
lpfc_scsi_free(struct lpfc_hba *phba)
{
struct lpfc_io_buf *sb, *sb_next;
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
return;
spin_lock_irq(&phba->hbalock);
/* Release all the lpfc_scsi_bufs maintained by this host. */
spin_lock(&phba->scsi_buf_list_put_lock);
list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
list) {
list_del(&sb->list);
dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
sb->dma_handle);
kfree(sb);
phba->total_scsi_bufs--;
}
spin_unlock(&phba->scsi_buf_list_put_lock);
spin_lock(&phba->scsi_buf_list_get_lock);
list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
list) {
list_del(&sb->list);
dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
sb->dma_handle);
kfree(sb);
phba->total_scsi_bufs--;
}
spin_unlock(&phba->scsi_buf_list_get_lock);
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
* @phba: pointer to lpfc hba data structure.
*
* This routine is to free all the IO buffers and IOCBs from the driver
* list back to kernel. It is called from lpfc_pci_remove_one to free
* the internal resources before the device is removed from the system.
**/
void
lpfc_io_free(struct lpfc_hba *phba)
{
struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
struct lpfc_sli4_hdw_queue *qp;
int idx;
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
qp = &phba->sli4_hba.hdwq[idx];
/* Release all the lpfc_nvme_bufs maintained by this host. */
spin_lock(&qp->io_buf_list_put_lock);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&qp->lpfc_io_buf_list_put,
list) {
list_del(&lpfc_ncmd->list);
qp->put_io_bufs--;
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
lpfc_ncmd->data, lpfc_ncmd->dma_handle);
if (phba->cfg_xpsgl && !phba->nvmet_support)
lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
kfree(lpfc_ncmd);
qp->total_io_bufs--;
}
spin_unlock(&qp->io_buf_list_put_lock);
spin_lock(&qp->io_buf_list_get_lock);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&qp->lpfc_io_buf_list_get,
list) {
list_del(&lpfc_ncmd->list);
qp->get_io_bufs--;
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
lpfc_ncmd->data, lpfc_ncmd->dma_handle);
if (phba->cfg_xpsgl && !phba->nvmet_support)
lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
kfree(lpfc_ncmd);
qp->total_io_bufs--;
}
spin_unlock(&qp->io_buf_list_get_lock);
}
}
/**
* lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
* @phba: pointer to lpfc hba data structure.
*
* This routine first calculates the sizes of the current els and allocated
* scsi sgl lists, and then goes through all sgls to updates the physical
* XRIs assigned due to port function reset. During port initialization, the
* current els and allocated scsi sgl lists are 0s.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
int
lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
uint16_t i, lxri, xri_cnt, els_xri_cnt;
LIST_HEAD(els_sgl_list);
int rc;
/*
* update on pci function's els xri-sgl list
*/
els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
/* els xri-sgl expanded */
xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3157 ELS xri-sgl count increased from "
"%d to %d\n", phba->sli4_hba.els_xri_cnt,
els_xri_cnt);
/* allocate the additional els sgls */
for (i = 0; i < xri_cnt; i++) {
sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
GFP_KERNEL);
if (sglq_entry == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2562 Failure to allocate an "
"ELS sgl entry:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->buff_type = GEN_BUFF_TYPE;
sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
&sglq_entry->phys);
if (sglq_entry->virt == NULL) {
kfree(sglq_entry);
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2563 Failure to allocate an "
"ELS mbuf:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sgl = sglq_entry->virt;
memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
sglq_entry->state = SGL_FREED;
list_add_tail(&sglq_entry->list, &els_sgl_list);
}
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&els_sgl_list,
&phba->sli4_hba.lpfc_els_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
/* els xri-sgl shrinked */
xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3158 ELS xri-sgl count decreased from "
"%d to %d\n", phba->sli4_hba.els_xri_cnt,
els_xri_cnt);
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
&els_sgl_list);
/* release extra els sgls from list */
for (i = 0; i < xri_cnt; i++) {
list_remove_head(&els_sgl_list,
sglq_entry, struct lpfc_sglq, list);
if (sglq_entry) {
__lpfc_mbuf_free(phba, sglq_entry->virt,
sglq_entry->phys);
kfree(sglq_entry);
}
}
list_splice_init(&els_sgl_list,
&phba->sli4_hba.lpfc_els_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3163 ELS xri-sgl count unchanged: %d\n",
els_xri_cnt);
phba->sli4_hba.els_xri_cnt = els_xri_cnt;
/* update xris to els sgls on the list */
sglq_entry = NULL;
sglq_entry_next = NULL;
list_for_each_entry_safe(sglq_entry, sglq_entry_next,
&phba->sli4_hba.lpfc_els_sgl_list, list) {
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2400 Failed to allocate xri for "
"ELS sgl\n");
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sli4_lxritag = lxri;
sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
}
return 0;
out_free_mem:
lpfc_free_els_sgl_list(phba);
return rc;
}
/**
* lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
* @phba: pointer to lpfc hba data structure.
*
* This routine first calculates the sizes of the current els and allocated
* scsi sgl lists, and then goes through all sgls to updates the physical
* XRIs assigned due to port function reset. During port initialization, the
* current els and allocated scsi sgl lists are 0s.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
int
lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
uint16_t i, lxri, xri_cnt, els_xri_cnt;
uint16_t nvmet_xri_cnt;
LIST_HEAD(nvmet_sgl_list);
int rc;
/*
* update on pci function's nvmet xri-sgl list
*/
els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
/* els xri-sgl expanded */
xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6302 NVMET xri-sgl cnt grew from %d to %d\n",
phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
/* allocate the additional nvmet sgls */
for (i = 0; i < xri_cnt; i++) {
sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
GFP_KERNEL);
if (sglq_entry == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6303 Failure to allocate an "
"NVMET sgl entry:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->buff_type = NVMET_BUFF_TYPE;
sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
&sglq_entry->phys);
if (sglq_entry->virt == NULL) {
kfree(sglq_entry);
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6304 Failure to allocate an "
"NVMET buf:%d\n", i);
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sgl = sglq_entry->virt;
memset(sglq_entry->sgl, 0,
phba->cfg_sg_dma_buf_size);
sglq_entry->state = SGL_FREED;
list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
}
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&nvmet_sgl_list,
&phba->sli4_hba.lpfc_nvmet_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
/* nvmet xri-sgl shrunk */
xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6305 NVMET xri-sgl count decreased from "
"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
nvmet_xri_cnt);
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
&nvmet_sgl_list);
/* release extra nvmet sgls from list */
for (i = 0; i < xri_cnt; i++) {
list_remove_head(&nvmet_sgl_list,
sglq_entry, struct lpfc_sglq, list);
if (sglq_entry) {
lpfc_nvmet_buf_free(phba, sglq_entry->virt,
sglq_entry->phys);
kfree(sglq_entry);
}
}
list_splice_init(&nvmet_sgl_list,
&phba->sli4_hba.lpfc_nvmet_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6306 NVMET xri-sgl count unchanged: %d\n",
nvmet_xri_cnt);
phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
/* update xris to nvmet sgls on the list */
sglq_entry = NULL;
sglq_entry_next = NULL;
list_for_each_entry_safe(sglq_entry, sglq_entry_next,
&phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6307 Failed to allocate xri for "
"NVMET sgl\n");
rc = -ENOMEM;
goto out_free_mem;
}
sglq_entry->sli4_lxritag = lxri;
sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
}
return 0;
out_free_mem:
lpfc_free_nvmet_sgl_list(phba);
return rc;
}
int
lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
{
LIST_HEAD(blist);
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_io_buf *lpfc_cmd;
struct lpfc_io_buf *iobufp, *prev_iobufp;
int idx, cnt, xri, inserted;
cnt = 0;
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
qp = &phba->sli4_hba.hdwq[idx];
spin_lock_irq(&qp->io_buf_list_get_lock);
spin_lock(&qp->io_buf_list_put_lock);
/* Take everything off the get and put lists */
list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
list_splice(&qp->lpfc_io_buf_list_put, &blist);
INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
cnt += qp->get_io_bufs + qp->put_io_bufs;
qp->get_io_bufs = 0;
qp->put_io_bufs = 0;
qp->total_io_bufs = 0;
spin_unlock(&qp->io_buf_list_put_lock);
spin_unlock_irq(&qp->io_buf_list_get_lock);
}
/*
* Take IO buffers off blist and put on cbuf sorted by XRI.
* This is because POST_SGL takes a sequential range of XRIs
* to post to the firmware.
*/
for (idx = 0; idx < cnt; idx++) {
list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
if (!lpfc_cmd)
return cnt;
if (idx == 0) {
list_add_tail(&lpfc_cmd->list, cbuf);
continue;
}
xri = lpfc_cmd->cur_iocbq.sli4_xritag;
inserted = 0;
prev_iobufp = NULL;
list_for_each_entry(iobufp, cbuf, list) {
if (xri < iobufp->cur_iocbq.sli4_xritag) {
if (prev_iobufp)
list_add(&lpfc_cmd->list,
&prev_iobufp->list);
else
list_add(&lpfc_cmd->list, cbuf);
inserted = 1;
break;
}
prev_iobufp = iobufp;
}
if (!inserted)
list_add_tail(&lpfc_cmd->list, cbuf);
}
return cnt;
}
int
lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
{
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_io_buf *lpfc_cmd;
int idx, cnt;
qp = phba->sli4_hba.hdwq;
cnt = 0;
while (!list_empty(cbuf)) {
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
list_remove_head(cbuf, lpfc_cmd,
struct lpfc_io_buf, list);
if (!lpfc_cmd)
return cnt;
cnt++;
qp = &phba->sli4_hba.hdwq[idx];
lpfc_cmd->hdwq_no = idx;
lpfc_cmd->hdwq = qp;
lpfc_cmd->cur_iocbq.wqe_cmpl = NULL;
lpfc_cmd->cur_iocbq.iocb_cmpl = NULL;
spin_lock(&qp->io_buf_list_put_lock);
list_add_tail(&lpfc_cmd->list,
&qp->lpfc_io_buf_list_put);
qp->put_io_bufs++;
qp->total_io_bufs++;
spin_unlock(&qp->io_buf_list_put_lock);
}
}
return cnt;
}
/**
* lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
* @phba: pointer to lpfc hba data structure.
*
* This routine first calculates the sizes of the current els and allocated
* scsi sgl lists, and then goes through all sgls to updates the physical
* XRIs assigned due to port function reset. During port initialization, the
* current els and allocated scsi sgl lists are 0s.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
int
lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
{
struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
uint16_t i, lxri, els_xri_cnt;
uint16_t io_xri_cnt, io_xri_max;
LIST_HEAD(io_sgl_list);
int rc, cnt;
/*
* update on pci function's allocated nvme xri-sgl list
*/
/* maximum number of xris available for nvme buffers */
els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
phba->sli4_hba.io_xri_max = io_xri_max;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"6074 Current allocated XRI sgl count:%d, "
"maximum XRI count:%d\n",
phba->sli4_hba.io_xri_cnt,
phba->sli4_hba.io_xri_max);
cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
/* max nvme xri shrunk below the allocated nvme buffers */
io_xri_cnt = phba->sli4_hba.io_xri_cnt -
phba->sli4_hba.io_xri_max;
/* release the extra allocated nvme buffers */
for (i = 0; i < io_xri_cnt; i++) {
list_remove_head(&io_sgl_list, lpfc_ncmd,
struct lpfc_io_buf, list);
if (lpfc_ncmd) {
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
lpfc_ncmd->data,
lpfc_ncmd->dma_handle);
kfree(lpfc_ncmd);
}
}
phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
}
/* update xris associated to remaining allocated nvme buffers */
lpfc_ncmd = NULL;
lpfc_ncmd_next = NULL;
phba->sli4_hba.io_xri_cnt = cnt;
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&io_sgl_list, list) {
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6075 Failed to allocate xri for "
"nvme buffer\n");
rc = -ENOMEM;
goto out_free_mem;
}
lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
}
cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
return 0;
out_free_mem:
lpfc_io_free(phba);
return rc;
}
/**
* lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
* @vport: The virtual port for which this call being executed.
* @num_to_allocate: The requested number of buffers to allocate.
*
* This routine allocates nvme buffers for device with SLI-4 interface spec,
* the nvme buffer contains all the necessary information needed to initiate
* an I/O. After allocating up to @num_to_allocate IO buffers and put
* them on a list, it post them to the port by using SGL block post.
*
* Return codes:
* int - number of IO buffers that were allocated and posted.
* 0 = failure, less than num_to_alloc is a partial failure.
**/
int
lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
{
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_iocbq *pwqeq;
uint16_t iotag, lxri = 0;
int bcnt, num_posted;
LIST_HEAD(prep_nblist);
LIST_HEAD(post_nblist);
LIST_HEAD(nvme_nblist);
phba->sli4_hba.io_xri_cnt = 0;
for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
if (!lpfc_ncmd)
break;
/*
* Get memory from the pci pool to map the virt space to
* pci bus space for an I/O. The DMA buffer includes the
* number of SGE's necessary to support the sg_tablesize.
*/
lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
GFP_KERNEL,
&lpfc_ncmd->dma_handle);
if (!lpfc_ncmd->data) {
kfree(lpfc_ncmd);
break;
}
if (phba->cfg_xpsgl && !phba->nvmet_support) {
INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
} else {
/*
* 4K Page alignment is CRITICAL to BlockGuard, double
* check to be sure.
*/
if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
(((unsigned long)(lpfc_ncmd->data) &
(unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
"3369 Memory alignment err: "
"addr=%lx\n",
(unsigned long)lpfc_ncmd->data);
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
lpfc_ncmd->data,
lpfc_ncmd->dma_handle);
kfree(lpfc_ncmd);
break;
}
}
INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
lxri = lpfc_sli4_next_xritag(phba);
if (lxri == NO_XRI) {
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
lpfc_ncmd->data, lpfc_ncmd->dma_handle);
kfree(lpfc_ncmd);
break;
}
pwqeq = &lpfc_ncmd->cur_iocbq;
/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
iotag = lpfc_sli_next_iotag(phba, pwqeq);
if (iotag == 0) {
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
lpfc_ncmd->data, lpfc_ncmd->dma_handle);
kfree(lpfc_ncmd);
lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
"6121 Failed to allocate IOTAG for"
" XRI:0x%x\n", lxri);
lpfc_sli4_free_xri(phba, lxri);
break;
}
pwqeq->sli4_lxritag = lxri;
pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
pwqeq->context1 = lpfc_ncmd;
/* Initialize local short-hand pointers. */
lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd;
spin_lock_init(&lpfc_ncmd->buf_lock);
/* add the nvme buffer to a post list */
list_add_tail(&lpfc_ncmd->list, &post_nblist);
phba->sli4_hba.io_xri_cnt++;
}
lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
"6114 Allocate %d out of %d requested new NVME "
"buffers\n", bcnt, num_to_alloc);
/* post the list of nvme buffer sgls to port if available */
if (!list_empty(&post_nblist))
num_posted = lpfc_sli4_post_io_sgl_list(
phba, &post_nblist, bcnt);
else
num_posted = 0;
return num_posted;
}
static uint64_t
lpfc_get_wwpn(struct lpfc_hba *phba)
{
uint64_t wwn;
int rc;
LPFC_MBOXQ_t *mboxq;
MAILBOX_t *mb;
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq)
return (uint64_t)-1;
/* First get WWN of HBA instance */
lpfc_read_nv(phba, mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6019 Mailbox failed , mbxCmd x%x "
"READ_NV, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
bf_get(lpfc_mqe_status, &mboxq->u.mqe));
mempool_free(mboxq, phba->mbox_mem_pool);
return (uint64_t) -1;
}
mb = &mboxq->u.mb;
memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
/* wwn is WWPN of HBA instance */
mempool_free(mboxq, phba->mbox_mem_pool);
if (phba->sli_rev == LPFC_SLI_REV4)
return be64_to_cpu(wwn);
else
return rol64(wwn, 32);
}
/**
* lpfc_create_port - Create an FC port
* @phba: pointer to lpfc hba data structure.
* @instance: a unique integer ID to this FC port.
* @dev: pointer to the device data structure.
*
* This routine creates a FC port for the upper layer protocol. The FC port
* can be created on top of either a physical port or a virtual port provided
* by the HBA. This routine also allocates a SCSI host data structure (shost)
* and associates the FC port created before adding the shost into the SCSI
* layer.
*
* Return codes
* @vport - pointer to the virtual N_Port data structure.
* NULL - port create failed.
**/
struct lpfc_vport *
lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
{
struct lpfc_vport *vport;
struct Scsi_Host *shost = NULL;
int error = 0;
int i;
uint64_t wwn;
bool use_no_reset_hba = false;
int rc;
if (lpfc_no_hba_reset_cnt) {
if (phba->sli_rev < LPFC_SLI_REV4 &&
dev == &phba->pcidev->dev) {
/* Reset the port first */
lpfc_sli_brdrestart(phba);
rc = lpfc_sli_chipset_init(phba);
if (rc)
return NULL;
}
wwn = lpfc_get_wwpn(phba);
}
for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
if (wwn == lpfc_no_hba_reset[i]) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6020 Setting use_no_reset port=%llx\n",
wwn);
use_no_reset_hba = true;
break;
}
}
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
if (dev != &phba->pcidev->dev) {
shost = scsi_host_alloc(&lpfc_vport_template,
sizeof(struct lpfc_vport));
} else {
if (!use_no_reset_hba)
shost = scsi_host_alloc(&lpfc_template,
sizeof(struct lpfc_vport));
else
shost = scsi_host_alloc(&lpfc_template_no_hr,
sizeof(struct lpfc_vport));
}
} else if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
shost = scsi_host_alloc(&lpfc_template_nvme,
sizeof(struct lpfc_vport));
}
if (!shost)
goto out;
vport = (struct lpfc_vport *) shost->hostdata;
vport->phba = phba;
vport->load_flag |= FC_LOADING;
vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
vport->fc_rscn_flush = 0;
lpfc_get_vport_cfgparam(vport);
/* Adjust value in vport */
vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
shost->unique_id = instance;
shost->max_id = LPFC_MAX_TARGET;
shost->max_lun = vport->cfg_max_luns;
shost->this_id = -1;
shost->max_cmd_len = 16;
if (phba->sli_rev == LPFC_SLI_REV4) {
if (!phba->cfg_fcp_mq_threshold ||
phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
phba->cfg_fcp_mq_threshold);
shost->dma_boundary =
phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
if (phba->cfg_xpsgl && !phba->nvmet_support)
shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
else
shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
} else
/* SLI-3 has a limited number of hardware queues (3),
* thus there is only one for FCP processing.
*/
shost->nr_hw_queues = 1;
/*
* Set initial can_queue value since 0 is no longer supported and
* scsi_add_host will fail. This will be adjusted later based on the
* max xri value determined in hba setup.
*/
shost->can_queue = phba->cfg_hba_queue_depth - 10;
if (dev != &phba->pcidev->dev) {
shost->transportt = lpfc_vport_transport_template;
vport->port_type = LPFC_NPIV_PORT;
} else {
shost->transportt = lpfc_transport_template;
vport->port_type = LPFC_PHYSICAL_PORT;
}
/* Initialize all internally managed lists. */
INIT_LIST_HEAD(&vport->fc_nodes);
INIT_LIST_HEAD(&vport->rcv_buffer_list);
spin_lock_init(&vport->work_port_lock);
timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
lpfc_setup_bg(phba, shost);
error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
if (error)
goto out_put_shost;
spin_lock_irq(&phba->port_list_lock);
list_add_tail(&vport->listentry, &phba->port_list);
spin_unlock_irq(&phba->port_list_lock);
return vport;
out_put_shost:
scsi_host_put(shost);
out:
return NULL;
}
/**
* destroy_port - destroy an FC port
* @vport: pointer to an lpfc virtual N_Port data structure.
*
* This routine destroys a FC port from the upper layer protocol. All the
* resources associated with the port are released.
**/
void
destroy_port(struct lpfc_vport *vport)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
lpfc_debugfs_terminate(vport);
fc_remove_host(shost);
scsi_remove_host(shost);
spin_lock_irq(&phba->port_list_lock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->port_list_lock);
lpfc_cleanup(vport);
return;
}
/**
* lpfc_get_instance - Get a unique integer ID
*
* This routine allocates a unique integer ID from lpfc_hba_index pool. It
* uses the kernel idr facility to perform the task.
*
* Return codes:
* instance - a unique integer ID allocated as the new instance.
* -1 - lpfc get instance failed.
**/
int
lpfc_get_instance(void)
{
int ret;
ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
return ret < 0 ? -1 : ret;
}
/**
* lpfc_scan_finished - method for SCSI layer to detect whether scan is done
* @shost: pointer to SCSI host data structure.
* @time: elapsed time of the scan in jiffies.
*
* This routine is called by the SCSI layer with a SCSI host to determine
* whether the scan host is finished.
*
* Note: there is no scan_start function as adapter initialization will have
* asynchronously kicked off the link initialization.
*
* Return codes
* 0 - SCSI host scan is not over yet.
* 1 - SCSI host scan is over.
**/
int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
int stat = 0;
spin_lock_irq(shost->host_lock);
if (vport->load_flag & FC_UNLOADING) {
stat = 1;
goto finished;
}
if (time >= msecs_to_jiffies(30 * 1000)) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0461 Scanning longer than 30 "
"seconds. Continuing initialization\n");
stat = 1;
goto finished;
}
if (time >= msecs_to_jiffies(15 * 1000) &&
phba->link_state <= LPFC_LINK_DOWN) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0465 Link down longer than 15 "
"seconds. Continuing initialization\n");
stat = 1;
goto finished;
}
if (vport->port_state != LPFC_VPORT_READY)
goto finished;
if (vport->num_disc_nodes || vport->fc_prli_sent)
goto finished;
if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
goto finished;
if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
goto finished;
stat = 1;
finished:
spin_unlock_irq(shost->host_lock);
return stat;
}
static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
{
struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
struct lpfc_hba *phba = vport->phba;
fc_host_supported_speeds(shost) = 0;
if (phba->lmt & LMT_128Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
if (phba->lmt & LMT_64Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
if (phba->lmt & LMT_32Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
if (phba->lmt & LMT_16Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
if (phba->lmt & LMT_10Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
if (phba->lmt & LMT_8Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
if (phba->lmt & LMT_4Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
if (phba->lmt & LMT_2Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
if (phba->lmt & LMT_1Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
}
/**
* lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
* @shost: pointer to SCSI host data structure.
*
* This routine initializes a given SCSI host attributes on a FC port. The
* SCSI host can be either on top of a physical port or a virtual port.
**/
void lpfc_host_attrib_init(struct Scsi_Host *shost)
{
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
/*
* Set fixed host attributes. Must done after lpfc_sli_hba_setup().
*/
fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
fc_host_supported_classes(shost) = FC_COS_CLASS3;
memset(fc_host_supported_fc4s(shost), 0,
sizeof(fc_host_supported_fc4s(shost)));
fc_host_supported_fc4s(shost)[2] = 1;
fc_host_supported_fc4s(shost)[7] = 1;
lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
sizeof fc_host_symbolic_name(shost));
lpfc_host_supported_speeds_set(shost);
fc_host_maxframe_size(shost) =
(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
/* This value is also unchanging */
memset(fc_host_active_fc4s(shost), 0,
sizeof(fc_host_active_fc4s(shost)));
fc_host_active_fc4s(shost)[2] = 1;
fc_host_active_fc4s(shost)[7] = 1;
fc_host_max_npiv_vports(shost) = phba->max_vpi;
spin_lock_irq(shost->host_lock);
vport->load_flag &= ~FC_LOADING;
spin_unlock_irq(shost->host_lock);
}
/**
* lpfc_stop_port_s3 - Stop SLI3 device port
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to stop an SLI3 device port, it stops the device
* from generating interrupts and stops the device driver's timers for the
* device.
**/
static void
lpfc_stop_port_s3(struct lpfc_hba *phba)
{
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear all pending interrupts */
writel(0xffffffff, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
/* Reset some HBA SLI setup states */
lpfc_stop_hba_timers(phba);
phba->pport->work_port_events = 0;
}
/**
* lpfc_stop_port_s4 - Stop SLI4 device port
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to stop an SLI4 device port, it stops the device
* from generating interrupts and stops the device driver's timers for the
* device.
**/
static void
lpfc_stop_port_s4(struct lpfc_hba *phba)
{
/* Reset some HBA SLI4 setup states */
lpfc_stop_hba_timers(phba);
if (phba->pport)
phba->pport->work_port_events = 0;
phba->sli4_hba.intr_enable = 0;
}
/**
* lpfc_stop_port - Wrapper function for stopping hba port
* @phba: Pointer to HBA context object.
*
* This routine wraps the actual SLI3 or SLI4 hba stop port routine from
* the API jump table function pointer from the lpfc_hba struct.
**/
void
lpfc_stop_port(struct lpfc_hba *phba)
{
phba->lpfc_stop_port(phba);
if (phba->wq)
flush_workqueue(phba->wq);
}
/**
* lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
* @phba: Pointer to hba for which this call is being executed.
*
* This routine starts the timer waiting for the FCF rediscovery to complete.
**/
void
lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
{
unsigned long fcf_redisc_wait_tmo =
(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
/* Start fcf rediscovery wait period timer */
mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
spin_lock_irq(&phba->hbalock);
/* Allow action to new fcf asynchronous event */
phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
/* Mark the FCF rediscovery pending state */
phba->fcf.fcf_flag |= FCF_REDISC_PEND;
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
* @ptr: Map to lpfc_hba data structure pointer.
*
* This routine is invoked when waiting for FCF table rediscover has been
* timed out. If new FCF record(s) has (have) been discovered during the
* wait period, a new FCF event shall be added to the FCOE async event
* list, and then worker thread shall be waked up for processing from the
* worker thread context.
**/
static void
lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
{
struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
/* Don't send FCF rediscovery event if timer cancelled */
spin_lock_irq(&phba->hbalock);
if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
spin_unlock_irq(&phba->hbalock);
return;
}
/* Clear FCF rediscovery timer pending flag */
phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
/* FCF rediscovery event to worker thread */
phba->fcf.fcf_flag |= FCF_REDISC_EVT;
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
"2776 FCF rediscover quiescent timer expired\n");
/* wake up worker thread */
lpfc_worker_wake_up(phba);
}
/**
* lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async link completion queue entry.
*
* This routine is to parse the SLI4 link-attention link fault code.
**/
static void
lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
struct lpfc_acqe_link *acqe_link)
{
switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
case LPFC_ASYNC_LINK_FAULT_NONE:
case LPFC_ASYNC_LINK_FAULT_LOCAL:
case LPFC_ASYNC_LINK_FAULT_REMOTE:
case LPFC_ASYNC_LINK_FAULT_LR_LRR:
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0398 Unknown link fault code: x%x\n",
bf_get(lpfc_acqe_link_fault, acqe_link));
break;
}
}
/**
* lpfc_sli4_parse_latt_type - Parse sli4 link attention type
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async link completion queue entry.
*
* This routine is to parse the SLI4 link attention type and translate it
* into the base driver's link attention type coding.
*
* Return: Link attention type in terms of base driver's coding.
**/
static uint8_t
lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
struct lpfc_acqe_link *acqe_link)
{
uint8_t att_type;
switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
case LPFC_ASYNC_LINK_STATUS_DOWN:
case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
att_type = LPFC_ATT_LINK_DOWN;
break;
case LPFC_ASYNC_LINK_STATUS_UP:
/* Ignore physical link up events - wait for logical link up */
att_type = LPFC_ATT_RESERVED;
break;
case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
att_type = LPFC_ATT_LINK_UP;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0399 Invalid link attention type: x%x\n",
bf_get(lpfc_acqe_link_status, acqe_link));
att_type = LPFC_ATT_RESERVED;
break;
}
return att_type;
}
/**
* lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
* @phba: pointer to lpfc hba data structure.
*
* This routine is to get an SLI3 FC port's link speed in Mbps.
*
* Return: link speed in terms of Mbps.
**/
uint32_t
lpfc_sli_port_speed_get(struct lpfc_hba *phba)
{
uint32_t link_speed;
if (!lpfc_is_link_up(phba))
return 0;
if (phba->sli_rev <= LPFC_SLI_REV3) {
switch (phba->fc_linkspeed) {
case LPFC_LINK_SPEED_1GHZ:
link_speed = 1000;
break;
case LPFC_LINK_SPEED_2GHZ:
link_speed = 2000;
break;
case LPFC_LINK_SPEED_4GHZ:
link_speed = 4000;
break;
case LPFC_LINK_SPEED_8GHZ:
link_speed = 8000;
break;
case LPFC_LINK_SPEED_10GHZ:
link_speed = 10000;
break;
case LPFC_LINK_SPEED_16GHZ:
link_speed = 16000;
break;
default:
link_speed = 0;
}
} else {
if (phba->sli4_hba.link_state.logical_speed)
link_speed =
phba->sli4_hba.link_state.logical_speed;
else
link_speed = phba->sli4_hba.link_state.speed;
}
return link_speed;
}
/**
* lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
* @phba: pointer to lpfc hba data structure.
* @evt_code: asynchronous event code.
* @speed_code: asynchronous event link speed code.
*
* This routine is to parse the giving SLI4 async event link speed code into
* value of Mbps for the link speed.
*
* Return: link speed in terms of Mbps.
**/
static uint32_t
lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
uint8_t speed_code)
{
uint32_t port_speed;
switch (evt_code) {
case LPFC_TRAILER_CODE_LINK:
switch (speed_code) {
case LPFC_ASYNC_LINK_SPEED_ZERO:
port_speed = 0;
break;
case LPFC_ASYNC_LINK_SPEED_10MBPS:
port_speed = 10;
break;
case LPFC_ASYNC_LINK_SPEED_100MBPS:
port_speed = 100;
break;
case LPFC_ASYNC_LINK_SPEED_1GBPS:
port_speed = 1000;
break;
case LPFC_ASYNC_LINK_SPEED_10GBPS:
port_speed = 10000;
break;
case LPFC_ASYNC_LINK_SPEED_20GBPS:
port_speed = 20000;
break;
case LPFC_ASYNC_LINK_SPEED_25GBPS:
port_speed = 25000;
break;
case LPFC_ASYNC_LINK_SPEED_40GBPS:
port_speed = 40000;
break;
default:
port_speed = 0;
}
break;
case LPFC_TRAILER_CODE_FC:
switch (speed_code) {
case LPFC_FC_LA_SPEED_UNKNOWN:
port_speed = 0;
break;
case LPFC_FC_LA_SPEED_1G:
port_speed = 1000;
break;
case LPFC_FC_LA_SPEED_2G:
port_speed = 2000;
break;
case LPFC_FC_LA_SPEED_4G:
port_speed = 4000;
break;
case LPFC_FC_LA_SPEED_8G:
port_speed = 8000;
break;
case LPFC_FC_LA_SPEED_10G:
port_speed = 10000;
break;
case LPFC_FC_LA_SPEED_16G:
port_speed = 16000;
break;
case LPFC_FC_LA_SPEED_32G:
port_speed = 32000;
break;
case LPFC_FC_LA_SPEED_64G:
port_speed = 64000;
break;
case LPFC_FC_LA_SPEED_128G:
port_speed = 128000;
break;
default:
port_speed = 0;
}
break;
default:
port_speed = 0;
}
return port_speed;
}
/**
* lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async link completion queue entry.
*
* This routine is to handle the SLI4 asynchronous FCoE link event.
**/
static void
lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
struct lpfc_acqe_link *acqe_link)
{
struct lpfc_dmabuf *mp;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
struct lpfc_mbx_read_top *la;
uint8_t att_type;
int rc;
att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
return;
phba->fcoe_eventtag = acqe_link->event_tag;
pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0395 The mboxq allocation failed\n");
return;
}
mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!mp) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0396 The lpfc_dmabuf allocation failed\n");
goto out_free_pmb;
}
mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
if (!mp->virt) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0397 The mbuf allocation failed\n");
goto out_free_dmabuf;
}
/* Cleanup any outstanding ELS commands */
lpfc_els_flush_all_cmd(phba);
/* Block ELS IOCBs until we have done process link event */
phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
/* Update link event statistics */
phba->sli.slistat.link_event++;
/* Create lpfc_handle_latt mailbox command from link ACQE */
lpfc_read_topology(phba, pmb, mp);
pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
pmb->vport = phba->pport;
/* Keep the link status for extra SLI4 state machine reference */
phba->sli4_hba.link_state.speed =
lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
bf_get(lpfc_acqe_link_speed, acqe_link));
phba->sli4_hba.link_state.duplex =
bf_get(lpfc_acqe_link_duplex, acqe_link);
phba->sli4_hba.link_state.status =
bf_get(lpfc_acqe_link_status, acqe_link);
phba->sli4_hba.link_state.type =
bf_get(lpfc_acqe_link_type, acqe_link);
phba->sli4_hba.link_state.number =
bf_get(lpfc_acqe_link_number, acqe_link);
phba->sli4_hba.link_state.fault =
bf_get(lpfc_acqe_link_fault, acqe_link);
phba->sli4_hba.link_state.logical_speed =
bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2900 Async FC/FCoE Link event - Speed:%dGBit "
"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
"Logical speed:%dMbps Fault:%d\n",
phba->sli4_hba.link_state.speed,
phba->sli4_hba.link_state.topology,
phba->sli4_hba.link_state.status,
phba->sli4_hba.link_state.type,
phba->sli4_hba.link_state.number,
phba->sli4_hba.link_state.logical_speed,
phba->sli4_hba.link_state.fault);
/*
* For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
* topology info. Note: Optional for non FC-AL ports.
*/
if (!(phba->hba_flag & HBA_FCOE_MODE)) {
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
goto out_free_dmabuf;
return;
}
/*
* For FCoE Mode: fill in all the topology information we need and call
* the READ_TOPOLOGY completion routine to continue without actually
* sending the READ_TOPOLOGY mailbox command to the port.
*/
/* Initialize completion status */
mb = &pmb->u.mb;
mb->mbxStatus = MBX_SUCCESS;
/* Parse port fault information field */
lpfc_sli4_parse_latt_fault(phba, acqe_link);
/* Parse and translate link attention fields */
la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
la->eventTag = acqe_link->event_tag;
bf_set(lpfc_mbx_read_top_att_type, la, att_type);
bf_set(lpfc_mbx_read_top_link_spd, la,
(bf_get(lpfc_acqe_link_speed, acqe_link)));
/* Fake the the following irrelvant fields */
bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
bf_set(lpfc_mbx_read_top_il, la, 0);
bf_set(lpfc_mbx_read_top_pb, la, 0);
bf_set(lpfc_mbx_read_top_fa, la, 0);
bf_set(lpfc_mbx_read_top_mm, la, 0);
/* Invoke the lpfc_handle_latt mailbox command callback function */
lpfc_mbx_cmpl_read_topology(phba, pmb);
return;
out_free_dmabuf:
kfree(mp);
out_free_pmb:
mempool_free(pmb, phba->mbox_mem_pool);
}
/**
* lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
* topology.
* @phba: pointer to lpfc hba data structure.
* @evt_code: asynchronous event code.
* @speed_code: asynchronous event link speed code.
*
* This routine is to parse the giving SLI4 async event link speed code into
* value of Read topology link speed.
*
* Return: link speed in terms of Read topology.
**/
static uint8_t
lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
{
uint8_t port_speed;
switch (speed_code) {
case LPFC_FC_LA_SPEED_1G:
port_speed = LPFC_LINK_SPEED_1GHZ;
break;
case LPFC_FC_LA_SPEED_2G:
port_speed = LPFC_LINK_SPEED_2GHZ;
break;
case LPFC_FC_LA_SPEED_4G:
port_speed = LPFC_LINK_SPEED_4GHZ;
break;
case LPFC_FC_LA_SPEED_8G:
port_speed = LPFC_LINK_SPEED_8GHZ;
break;
case LPFC_FC_LA_SPEED_16G:
port_speed = LPFC_LINK_SPEED_16GHZ;
break;
case LPFC_FC_LA_SPEED_32G:
port_speed = LPFC_LINK_SPEED_32GHZ;
break;
case LPFC_FC_LA_SPEED_64G:
port_speed = LPFC_LINK_SPEED_64GHZ;
break;
case LPFC_FC_LA_SPEED_128G:
port_speed = LPFC_LINK_SPEED_128GHZ;
break;
case LPFC_FC_LA_SPEED_256G:
port_speed = LPFC_LINK_SPEED_256GHZ;
break;
default:
port_speed = 0;
break;
}
return port_speed;
}
#define trunk_link_status(__idx)\
bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
"Link up" : "Link down") : "NA"
/* Did port __idx reported an error */
#define trunk_port_fault(__idx)\
bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
(port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
static void
lpfc_update_trunk_link_status(struct lpfc_hba *phba,
struct lpfc_acqe_fc_la *acqe_fc)
{
uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
phba->sli4_hba.link_state.speed =
lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
phba->sli4_hba.link_state.logical_speed =
bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
phba->fc_linkspeed =
lpfc_async_link_speed_to_read_top(
phba,
bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
phba->trunk_link.link0.state =
bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
? LPFC_LINK_UP : LPFC_LINK_DOWN;
phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
}
if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
phba->trunk_link.link1.state =
bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
? LPFC_LINK_UP : LPFC_LINK_DOWN;
phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
}
if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
phba->trunk_link.link2.state =
bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
? LPFC_LINK_UP : LPFC_LINK_DOWN;
phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
}
if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
phba->trunk_link.link3.state =
bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
? LPFC_LINK_UP : LPFC_LINK_DOWN;
phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
}
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2910 Async FC Trunking Event - Speed:%d\n"
"\tLogical speed:%d "
"port0: %s port1: %s port2: %s port3: %s\n",
phba->sli4_hba.link_state.speed,
phba->sli4_hba.link_state.logical_speed,
trunk_link_status(0), trunk_link_status(1),
trunk_link_status(2), trunk_link_status(3));
if (port_fault)
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3202 trunk error:0x%x (%s) seen on port0:%s "
/*
* SLI-4: We have only 0xA error codes
* defined as of now. print an appropriate
* message in case driver needs to be updated.
*/
"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
"UNDEFINED. update driver." : trunk_errmsg[err],
trunk_port_fault(0), trunk_port_fault(1),
trunk_port_fault(2), trunk_port_fault(3));
}
/**
* lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
* @phba: pointer to lpfc hba data structure.
* @acqe_fc: pointer to the async fc completion queue entry.
*
* This routine is to handle the SLI4 asynchronous FC event. It will simply log
* that the event was received and then issue a read_topology mailbox command so
* that the rest of the driver will treat it the same as SLI3.
**/
static void
lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
{
struct lpfc_dmabuf *mp;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
struct lpfc_mbx_read_top *la;
int rc;
if (bf_get(lpfc_trailer_type, acqe_fc) !=
LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2895 Non FC link Event detected.(%d)\n",
bf_get(lpfc_trailer_type, acqe_fc));
return;
}
if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
lpfc_update_trunk_link_status(phba, acqe_fc);
return;
}
/* Keep the link status for extra SLI4 state machine reference */
phba->sli4_hba.link_state.speed =
lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
phba->sli4_hba.link_state.topology =
bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
phba->sli4_hba.link_state.status =
bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
phba->sli4_hba.link_state.type =
bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
phba->sli4_hba.link_state.number =
bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
phba->sli4_hba.link_state.fault =
bf_get(lpfc_acqe_link_fault, acqe_fc);
if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
LPFC_FC_LA_TYPE_LINK_DOWN)
phba->sli4_hba.link_state.logical_speed = 0;
else if (!phba->sli4_hba.conf_trunk)
phba->sli4_hba.link_state.logical_speed =
bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2896 Async FC event - Speed:%dGBaud Topology:x%x "
"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
"%dMbps Fault:%d\n",
phba->sli4_hba.link_state.speed,
phba->sli4_hba.link_state.topology,
phba->sli4_hba.link_state.status,
phba->sli4_hba.link_state.type,
phba->sli4_hba.link_state.number,
phba->sli4_hba.link_state.logical_speed,
phba->sli4_hba.link_state.fault);
pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2897 The mboxq allocation failed\n");
return;
}
mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!mp) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2898 The lpfc_dmabuf allocation failed\n");
goto out_free_pmb;
}
mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
if (!mp->virt) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2899 The mbuf allocation failed\n");
goto out_free_dmabuf;
}
/* Cleanup any outstanding ELS commands */
lpfc_els_flush_all_cmd(phba);
/* Block ELS IOCBs until we have done process link event */
phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
/* Update link event statistics */
phba->sli.slistat.link_event++;
/* Create lpfc_handle_latt mailbox command from link ACQE */
lpfc_read_topology(phba, pmb, mp);
pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
pmb->vport = phba->pport;
if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
switch (phba->sli4_hba.link_state.status) {
case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
phba->link_flag |= LS_MDS_LINK_DOWN;
break;
case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
phba->link_flag |= LS_MDS_LOOPBACK;
break;
default:
break;
}
/* Initialize completion status */
mb = &pmb->u.mb;
mb->mbxStatus = MBX_SUCCESS;
/* Parse port fault information field */
lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
/* Parse and translate link attention fields */
la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
la->eventTag = acqe_fc->event_tag;
if (phba->sli4_hba.link_state.status ==
LPFC_FC_LA_TYPE_UNEXP_WWPN) {
bf_set(lpfc_mbx_read_top_att_type, la,
LPFC_FC_LA_TYPE_UNEXP_WWPN);
} else {
bf_set(lpfc_mbx_read_top_att_type, la,
LPFC_FC_LA_TYPE_LINK_DOWN);
}
/* Invoke the mailbox command callback function */
lpfc_mbx_cmpl_read_topology(phba, pmb);
return;
}
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
goto out_free_dmabuf;
return;
out_free_dmabuf:
kfree(mp);
out_free_pmb:
mempool_free(pmb, phba->mbox_mem_pool);
}
/**
* lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
* @phba: pointer to lpfc hba data structure.
* @acqe_fc: pointer to the async SLI completion queue entry.
*
* This routine is to handle the SLI4 asynchronous SLI events.
**/
static void
lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
{
char port_name;
char message[128];
uint8_t status;
uint8_t evt_type;
uint8_t operational = 0;
struct temp_event temp_event_data;
struct lpfc_acqe_misconfigured_event *misconfigured;
struct Scsi_Host *shost;
struct lpfc_vport **vports;
int rc, i;
evt_type = bf_get(lpfc_trailer_type, acqe_sli);
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2901 Async SLI event - Event Data1:x%08x Event Data2:"
"x%08x SLI Event Type:%d\n",
acqe_sli->event_data1, acqe_sli->event_data2,
evt_type);
port_name = phba->Port[0];
if (port_name == 0x00)
port_name = '?'; /* get port name is empty */
switch (evt_type) {
case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
temp_event_data.data = (uint32_t)acqe_sli->event_data1;
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3190 Over Temperature:%d Celsius- Port Name %c\n",
acqe_sli->event_data1, port_name);
phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *)&temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
break;
case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_NORMAL_TEMP;
temp_event_data.data = (uint32_t)acqe_sli->event_data1;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3191 Normal Temperature:%d Celsius - Port Name %c\n",
acqe_sli->event_data1, port_name);
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *)&temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
break;
case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
misconfigured = (struct lpfc_acqe_misconfigured_event *)
&acqe_sli->event_data1;
/* fetch the status for this port */
switch (phba->sli4_hba.lnk_info.lnk_no) {
case LPFC_LINK_NUMBER_0:
status = bf_get(lpfc_sli_misconfigured_port0_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port0_op,
&misconfigured->theEvent);
break;
case LPFC_LINK_NUMBER_1:
status = bf_get(lpfc_sli_misconfigured_port1_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port1_op,
&misconfigured->theEvent);
break;
case LPFC_LINK_NUMBER_2:
status = bf_get(lpfc_sli_misconfigured_port2_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port2_op,
&misconfigured->theEvent);
break;
case LPFC_LINK_NUMBER_3:
status = bf_get(lpfc_sli_misconfigured_port3_state,
&misconfigured->theEvent);
operational = bf_get(lpfc_sli_misconfigured_port3_op,
&misconfigured->theEvent);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3296 "
"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
"event: Invalid link %d",
phba->sli4_hba.lnk_info.lnk_no);
return;
}
/* Skip if optic state unchanged */
if (phba->sli4_hba.lnk_info.optic_state == status)
return;
switch (status) {
case LPFC_SLI_EVENT_STATUS_VALID:
sprintf(message, "Physical Link is functional");
break;
case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
sprintf(message, "Optics faulted/incorrectly "
"installed/not installed - Reseat optics, "
"if issue not resolved, replace.");
break;
case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
sprintf(message,
"Optics of two types installed - Remove one "
"optic or install matching pair of optics.");
break;
case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
sprintf(message, "Incompatible optics - Replace with "
"compatible optics for card to function.");
break;
case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
sprintf(message, "Unqualified optics - Replace with "
"Avago optics for Warranty and Technical "
"Support - Link is%s operational",
(operational) ? " not" : "");
break;
case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
sprintf(message, "Uncertified optics - Replace with "
"Avago-certified optics to enable link "
"operation - Link is%s operational",
(operational) ? " not" : "");
break;
default:
/* firmware is reporting a status we don't know about */
sprintf(message, "Unknown event status x%02x", status);
break;
}
/* Issue READ_CONFIG mbox command to refresh supported speeds */
rc = lpfc_sli4_read_config(phba);
if (rc) {
phba->lmt = 0;
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3194 Unable to retrieve supported "
"speeds, rc = 0x%x\n", rc);
}
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL;
i++) {
shost = lpfc_shost_from_vport(vports[i]);
lpfc_host_supported_speeds_set(shost);
}
}
lpfc_destroy_vport_work_array(phba, vports);
phba->sli4_hba.lnk_info.optic_state = status;
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3176 Port Name %c %s\n", port_name, message);
break;
case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3192 Remote DPort Test Initiated - "
"Event Data1:x%08x Event Data2: x%08x\n",
acqe_sli->event_data1, acqe_sli->event_data2);
break;
default:
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3193 Async SLI event - Event Data1:x%08x Event Data2:"
"x%08x SLI Event Type:%d\n",
acqe_sli->event_data1, acqe_sli->event_data2,
evt_type);
break;
}
}
/**
* lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
* @vport: pointer to vport data structure.
*
* This routine is to perform Clear Virtual Link (CVL) on a vport in
* response to a CVL event.
*
* Return the pointer to the ndlp with the vport if successful, otherwise
* return NULL.
**/
static struct lpfc_nodelist *
lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
{
struct lpfc_nodelist *ndlp;
struct Scsi_Host *shost;
struct lpfc_hba *phba;
if (!vport)
return NULL;
phba = vport->phba;
if (!phba)
return NULL;
ndlp = lpfc_findnode_did(vport, Fabric_DID);
if (!ndlp) {
/* Cannot find existing Fabric ndlp, so allocate a new one */
ndlp = lpfc_nlp_init(vport, Fabric_DID);
if (!ndlp)
return 0;
/* Set the node type */
ndlp->nlp_type |= NLP_FABRIC;
/* Put ndlp onto node list */
lpfc_enqueue_node(vport, ndlp);
} else if (!NLP_CHK_NODE_ACT(ndlp)) {
/* re-setup ndlp without removing from node list */
ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
if (!ndlp)
return 0;
}
if ((phba->pport->port_state < LPFC_FLOGI) &&
(phba->pport->port_state != LPFC_VPORT_FAILED))
return NULL;
/* If virtual link is not yet instantiated ignore CVL */
if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
&& (vport->port_state != LPFC_VPORT_FAILED))
return NULL;
shost = lpfc_shost_from_vport(vport);
if (!shost)
return NULL;
lpfc_linkdown_port(vport);
lpfc_cleanup_pending_mbox(vport);
spin_lock_irq(shost->host_lock);
vport->fc_flag |= FC_VPORT_CVL_RCVD;
spin_unlock_irq(shost->host_lock);
return ndlp;
}
/**
* lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
* @vport: pointer to lpfc hba data structure.
*
* This routine is to perform Clear Virtual Link (CVL) on all vports in
* response to a FCF dead event.
**/
static void
lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
int i;
vports = lpfc_create_vport_work_array(phba);
if (vports)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
lpfc_sli4_perform_vport_cvl(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async fcoe completion queue entry.
*
* This routine is to handle the SLI4 asynchronous fcoe event.
**/
static void
lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
struct lpfc_acqe_fip *acqe_fip)
{
uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
int rc;
struct lpfc_vport *vport;
struct lpfc_nodelist *ndlp;
struct Scsi_Host *shost;
int active_vlink_present;
struct lpfc_vport **vports;
int i;
phba->fc_eventTag = acqe_fip->event_tag;
phba->fcoe_eventtag = acqe_fip->event_tag;
switch (event_type) {
case LPFC_FIP_EVENT_TYPE_NEW_FCF:
case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
LOG_DISCOVERY,
"2546 New FCF event, evt_tag:x%x, "
"index:x%x\n",
acqe_fip->event_tag,
acqe_fip->index);
else
lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
LOG_DISCOVERY,
"2788 FCF param modified event, "
"evt_tag:x%x, index:x%x\n",
acqe_fip->event_tag,
acqe_fip->index);
if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
/*
* During period of FCF discovery, read the FCF
* table record indexed by the event to update
* FCF roundrobin failover eligible FCF bmask.
*/
lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
LOG_DISCOVERY,
"2779 Read FCF (x%x) for updating "
"roundrobin FCF failover bmask\n",
acqe_fip->index);
rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
}
/* If the FCF discovery is in progress, do nothing. */
spin_lock_irq(&phba->hbalock);
if (phba->hba_flag & FCF_TS_INPROG) {
spin_unlock_irq(&phba->hbalock);
break;
}
/* If fast FCF failover rescan event is pending, do nothing */
if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
spin_unlock_irq(&phba->hbalock);
break;
}
/* If the FCF has been in discovered state, do nothing. */
if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
spin_unlock_irq(&phba->hbalock);
break;
}
spin_unlock_irq(&phba->hbalock);
/* Otherwise, scan the entire FCF table and re-discover SAN */
lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
"2770 Start FCF table scan per async FCF "
"event, evt_tag:x%x, index:x%x\n",
acqe_fip->event_tag, acqe_fip->index);
rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
LPFC_FCOE_FCF_GET_FIRST);
if (rc)
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2547 Issue FCF scan read FCF mailbox "
"command failed (x%x)\n", rc);
break;
case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2548 FCF Table full count 0x%x tag 0x%x\n",
bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
acqe_fip->event_tag);
break;
case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2549 FCF (x%x) disconnected from network, "
"tag:x%x\n", acqe_fip->index, acqe_fip->event_tag);
/*
* If we are in the middle of FCF failover process, clear
* the corresponding FCF bit in the roundrobin bitmap.
*/
spin_lock_irq(&phba->hbalock);
if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
(phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
spin_unlock_irq(&phba->hbalock);
/* Update FLOGI FCF failover eligible FCF bmask */
lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
break;
}
spin_unlock_irq(&phba->hbalock);
/* If the event is not for currently used fcf do nothing */
if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
break;
/*
* Otherwise, request the port to rediscover the entire FCF
* table for a fast recovery from case that the current FCF
* is no longer valid as we are not in the middle of FCF
* failover process already.
*/
spin_lock_irq(&phba->hbalock);
/* Mark the fast failover process in progress */
phba->fcf.fcf_flag |= FCF_DEAD_DISC;
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
"2771 Start FCF fast failover process due to "
"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
"\n", acqe_fip->event_tag, acqe_fip->index);
rc = lpfc_sli4_redisc_fcf_table(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
LOG_DISCOVERY,
"2772 Issue FCF rediscover mailbox "
"command failed, fail through to FCF "
"dead event\n");
spin_lock_irq(&phba->hbalock);
phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
spin_unlock_irq(&phba->hbalock);
/*
* Last resort will fail over by treating this
* as a link down to FCF registration.
*/
lpfc_sli4_fcf_dead_failthrough(phba);
} else {
/* Reset FCF roundrobin bmask for new discovery */
lpfc_sli4_clear_fcf_rr_bmask(phba);
/*
* Handling fast FCF failover to a DEAD FCF event is
* considered equalivant to receiving CVL to all vports.
*/
lpfc_sli4_perform_all_vport_cvl(phba);
}
break;
case LPFC_FIP_EVENT_TYPE_CVL:
phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2718 Clear Virtual Link Received for VPI 0x%x"
" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
vport = lpfc_find_vport_by_vpid(phba,
acqe_fip->index);
ndlp = lpfc_sli4_perform_vport_cvl(vport);
if (!ndlp)
break;
active_vlink_present = 0;
vports = lpfc_create_vport_work_array(phba);
if (vports) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL;
i++) {
if ((!(vports[i]->fc_flag &
FC_VPORT_CVL_RCVD)) &&
(vports[i]->port_state > LPFC_FDISC)) {
active_vlink_present = 1;
break;
}
}
lpfc_destroy_vport_work_array(phba, vports);
}
/*
* Don't re-instantiate if vport is marked for deletion.
* If we are here first then vport_delete is going to wait
* for discovery to complete.
*/
if (!(vport->load_flag & FC_UNLOADING) &&
active_vlink_present) {
/*
* If there are other active VLinks present,
* re-instantiate the Vlink using FDISC.
*/
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000));
shost = lpfc_shost_from_vport(vport);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
vport->port_state = LPFC_FDISC;
} else {
/*
* Otherwise, we request port to rediscover
* the entire FCF table for a fast recovery
* from possible case that the current FCF
* is no longer valid if we are not already
* in the FCF failover process.
*/
spin_lock_irq(&phba->hbalock);
if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
spin_unlock_irq(&phba->hbalock);
break;
}
/* Mark the fast failover process in progress */
phba->fcf.fcf_flag |= FCF_ACVL_DISC;
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
LOG_DISCOVERY,
"2773 Start FCF failover per CVL, "
"evt_tag:x%x\n", acqe_fip->event_tag);
rc = lpfc_sli4_redisc_fcf_table(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
LOG_DISCOVERY,
"2774 Issue FCF rediscover "
"mailbox command failed, "
"through to CVL event\n");
spin_lock_irq(&phba->hbalock);
phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
spin_unlock_irq(&phba->hbalock);
/*
* Last resort will be re-try on the
* the current registered FCF entry.
*/
lpfc_retry_pport_discovery(phba);
} else
/*
* Reset FCF roundrobin bmask for new
* discovery.
*/
lpfc_sli4_clear_fcf_rr_bmask(phba);
}
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0288 Unknown FCoE event type 0x%x event tag "
"0x%x\n", event_type, acqe_fip->event_tag);
break;
}
}
/**
* lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async dcbx completion queue entry.
*
* This routine is to handle the SLI4 asynchronous dcbx event.
**/
static void
lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
struct lpfc_acqe_dcbx *acqe_dcbx)
{
phba->fc_eventTag = acqe_dcbx->event_tag;
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0290 The SLI4 DCBX asynchronous event is not "
"handled yet\n");
}
/**
* lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
* @phba: pointer to lpfc hba data structure.
* @acqe_link: pointer to the async grp5 completion queue entry.
*
* This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
* is an asynchronous notified of a logical link speed change. The Port
* reports the logical link speed in units of 10Mbps.
**/
static void
lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
struct lpfc_acqe_grp5 *acqe_grp5)
{
uint16_t prev_ll_spd;
phba->fc_eventTag = acqe_grp5->event_tag;
phba->fcoe_eventtag = acqe_grp5->event_tag;
prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
phba->sli4_hba.link_state.logical_speed =
(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2789 GRP5 Async Event: Updating logical link speed "
"from %dMbps to %dMbps\n", prev_ll_spd,
phba->sli4_hba.link_state.logical_speed);
}
/**
* lpfc_sli4_async_event_proc - Process all the pending asynchronous event
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked by the worker thread to process all the pending
* SLI4 asynchronous events.
**/
void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event;
/* First, declare the async event has been handled */
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~ASYNC_EVENT;
spin_unlock_irq(&phba->hbalock);
/* Now, handle all the async events */
while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
/* Get the first event from the head of the event queue */
spin_lock_irq(&phba->hbalock);
list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
cq_event, struct lpfc_cq_event, list);
spin_unlock_irq(&phba->hbalock);
/* Process the asynchronous event */
switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
case LPFC_TRAILER_CODE_LINK:
lpfc_sli4_async_link_evt(phba,
&cq_event->cqe.acqe_link);
break;
case LPFC_TRAILER_CODE_FCOE:
lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
break;
case LPFC_TRAILER_CODE_DCBX:
lpfc_sli4_async_dcbx_evt(phba,
&cq_event->cqe.acqe_dcbx);
break;
case LPFC_TRAILER_CODE_GRP5:
lpfc_sli4_async_grp5_evt(phba,
&cq_event->cqe.acqe_grp5);
break;
case LPFC_TRAILER_CODE_FC:
lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
break;
case LPFC_TRAILER_CODE_SLI:
lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"1804 Invalid asynchrous event code: "
"x%x\n", bf_get(lpfc_trailer_code,
&cq_event->cqe.mcqe_cmpl));
break;
}
/* Free the completion event processed to the free pool */
lpfc_sli4_cq_event_release(phba, cq_event);
}
}
/**
* lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked by the worker thread to process FCF table
* rediscovery pending completion event.
**/
void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
{
int rc;
spin_lock_irq(&phba->hbalock);
/* Clear FCF rediscovery timeout event */
phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
/* Clear driver fast failover FCF record flag */
phba->fcf.failover_rec.flag = 0;
/* Set state for FCF fast failover */
phba->fcf.fcf_flag |= FCF_REDISC_FOV;
spin_unlock_irq(&phba->hbalock);
/* Scan FCF table from the first entry to re-discover SAN */
lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
"2777 Start post-quiescent FCF table scan\n");
rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
if (rc)
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY,
"2747 Issue FCF scan read FCF mailbox "
"command failed 0x%x\n", rc);
}
/**
* lpfc_api_table_setup - Set up per hba pci-device group func api jump table
* @phba: pointer to lpfc hba data structure.
* @dev_grp: The HBA PCI-Device group number.
*
* This routine is invoked to set up the per HBA PCI-Device group function
* API jump table entries.
*
* Return: 0 if success, otherwise -ENODEV
**/
int
lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{
int rc;
/* Set up lpfc PCI-device group */
phba->pci_dev_grp = dev_grp;
/* The LPFC_PCI_DEV_OC uses SLI4 */
if (dev_grp == LPFC_PCI_DEV_OC)
phba->sli_rev = LPFC_SLI_REV4;
/* Set up device INIT API function jump table */
rc = lpfc_init_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
/* Set up SCSI API function jump table */
rc = lpfc_scsi_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
/* Set up SLI API function jump table */
rc = lpfc_sli_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
/* Set up MBOX API function jump table */
rc = lpfc_mbox_api_table_setup(phba, dev_grp);
if (rc)
return -ENODEV;
return 0;
}
/**
* lpfc_log_intr_mode - Log the active interrupt mode
* @phba: pointer to lpfc hba data structure.
* @intr_mode: active interrupt mode adopted.
*
* This routine it invoked to log the currently used active interrupt mode
* to the device.
**/
static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
{
switch (intr_mode) {
case 0:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0470 Enable INTx interrupt mode.\n");
break;
case 1:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0481 Enabled MSI interrupt mode.\n");
break;
case 2:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0480 Enabled MSI-X interrupt mode.\n");
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0482 Illegal interrupt mode.\n");
break;
}
return;
}
/**
* lpfc_enable_pci_dev - Enable a generic PCI device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the PCI device that is common to all
* PCI devices.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_enable_pci_dev(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
/* Obtain PCI device reference */
if (!phba->pcidev)
goto out_error;
else
pdev = phba->pcidev;
/* Enable PCI device */
if (pci_enable_device_mem(pdev))
goto out_error;
/* Request PCI resource for the device */
if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
goto out_disable_device;
/* Set up device as PCI master and save state for EEH */
pci_set_master(pdev);
pci_try_set_mwi(pdev);
pci_save_state(pdev);
/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
if (pci_is_pcie(pdev))
pdev->needs_freset = 1;
return 0;
out_disable_device:
pci_disable_device(pdev);
out_error:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1401 Failed to enable pci device\n");
return -ENODEV;
}
/**
* lpfc_disable_pci_dev - Disable a generic PCI device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable the PCI device that is common to all
* PCI devices.
**/
static void
lpfc_disable_pci_dev(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
/* Obtain PCI device reference */
if (!phba->pcidev)
return;
else
pdev = phba->pcidev;
/* Release PCI resource and disable PCI device */
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
return;
}
/**
* lpfc_reset_hba - Reset a hba
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to reset a hba device. It brings the HBA
* offline, performs a board restart, and then brings the board back
* online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
* on outstanding mailbox commands.
**/
void
lpfc_reset_hba(struct lpfc_hba *phba)
{
/* If resets are disabled then set error state and return. */
if (!phba->cfg_enable_hba_reset) {
phba->link_state = LPFC_HBA_ERROR;
return;
}
if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
else
lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
lpfc_online(phba);
lpfc_unblock_mgmt_io(phba);
}
/**
* lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
* @phba: pointer to lpfc hba data structure.
*
* This function enables the PCI SR-IOV virtual functions to a physical
* function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
* enable the number of virtual functions to the physical function. As
* not all devices support SR-IOV, the return code from the pci_enable_sriov()
* API call does not considered as an error condition for most of the device.
**/
uint16_t
lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
{
struct pci_dev *pdev = phba->pcidev;
uint16_t nr_virtfn;
int pos;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (pos == 0)
return 0;
pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
return nr_virtfn;
}
/**
* lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
* @phba: pointer to lpfc hba data structure.
* @nr_vfn: number of virtual functions to be enabled.
*
* This function enables the PCI SR-IOV virtual functions to a physical
* function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
* enable the number of virtual functions to the physical function. As
* not all devices support SR-IOV, the return code from the pci_enable_sriov()
* API call does not considered as an error condition for most of the device.
**/
int
lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
{
struct pci_dev *pdev = phba->pcidev;
uint16_t max_nr_vfn;
int rc;
max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
if (nr_vfn > max_nr_vfn) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3057 Requested vfs (%d) greater than "
"supported vfs (%d)", nr_vfn, max_nr_vfn);
return -EINVAL;
}
rc = pci_enable_sriov(pdev, nr_vfn);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"2806 Failed to enable sriov on this device "
"with vfn number nr_vf:%d, rc:%d\n",
nr_vfn, rc);
} else
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"2807 Successful enable sriov on this device "
"with vfn number nr_vf:%d\n", nr_vfn);
return rc;
}
/**
* lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources before the
* device specific resource setup to support the HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
/*
* Driver resources common to all SLI revisions
*/
atomic_set(&phba->fast_event_count, 0);
spin_lock_init(&phba->hbalock);
/* Initialize ndlp management spinlock */
spin_lock_init(&phba->ndlp_lock);
/* Initialize port_list spinlock */
spin_lock_init(&phba->port_list_lock);
INIT_LIST_HEAD(&phba->port_list);
INIT_LIST_HEAD(&phba->work_list);
init_waitqueue_head(&phba->wait_4_mlo_m_q);
/* Initialize the wait queue head for the kernel thread */
init_waitqueue_head(&phba->work_waitq);
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1403 Protocols supported %s %s %s\n",
((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
"SCSI" : " "),
((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
"NVME" : " "),
(phba->nvmet_support ? "NVMET" : " "));
/* Initialize the IO buffer list used by driver for SLI3 SCSI */
spin_lock_init(&phba->scsi_buf_list_get_lock);
INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
spin_lock_init(&phba->scsi_buf_list_put_lock);
INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
/* Initialize the fabric iocb list */
INIT_LIST_HEAD(&phba->fabric_iocb_list);
/* Initialize list to save ELS buffers */
INIT_LIST_HEAD(&phba->elsbuf);
/* Initialize FCF connection rec list */
INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
/* Initialize OAS configuration list */
spin_lock_init(&phba->devicelock);
INIT_LIST_HEAD(&phba->luns);
/* MBOX heartbeat timer */
timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
/* Fabric block timer */
timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
/* EA polling mode timer */
timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
/* Heartbeat timer */
timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
return 0;
}
/**
* lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources specific to
* support the SLI-3 HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
{
int rc, entry_sz;
/*
* Initialize timers used by driver
*/
/* FCP polling mode timer */
timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
/* Host attention work mask setup */
phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
/* Get all the module params for configuring this host */
lpfc_get_cfgparam(phba);
/* Set up phase-1 common device driver resources */
rc = lpfc_setup_driver_resource_phase1(phba);
if (rc)
return -ENODEV;
if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
phba->menlo_flag |= HBA_MENLO_SUPPORT;
/* check for menlo minimum sg count */
if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
}
if (!phba->sli.sli3_ring)
phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
sizeof(struct lpfc_sli_ring),
GFP_KERNEL);
if (!phba->sli.sli3_ring)
return -ENOMEM;
/*
* Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
* used to create the sg_dma_buf_pool must be dynamically calculated.
*/
/* Initialize the host templates the configured values. */
lpfc_vport_template.sg_tablesize = phba->cfg_sg_seg_cnt;
lpfc_template_no_hr.sg_tablesize = phba->cfg_sg_seg_cnt;
lpfc_template.sg_tablesize = phba->cfg_sg_seg_cnt;
if (phba->sli_rev == LPFC_SLI_REV4)
entry_sz = sizeof(struct sli4_sge);
else
entry_sz = sizeof(struct ulp_bde64);
/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
if (phba->cfg_enable_bg) {
/*
* The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
* the FCP rsp, and a BDE for each. Sice we have no control
* over how many protection data segments the SCSI Layer
* will hand us (ie: there could be one for every block
* in the IO), we just allocate enough BDEs to accomidate
* our max amount and we need to limit lpfc_sg_seg_cnt to
* minimize the risk of running out.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) +
(LPFC_MAX_SG_SEG_CNT * entry_sz);
if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
} else {
/*
* The scsi_buf for a regular I/O will hold the FCP cmnd,
* the FCP rsp, a BDE for each, and a BDE for up to
* cfg_sg_seg_cnt data segments.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) +
((phba->cfg_sg_seg_cnt + 2) * entry_sz);
/* Total BDEs in BPL for scsi_sg_list */
phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
"9088 sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
phba->cfg_total_seg_cnt);
phba->max_vpi = LPFC_MAX_VPI;
/* This will be set to correct value after config_port mbox */
phba->max_vports = 0;
/*
* Initialize the SLI Layer to run with lpfc HBAs.
*/
lpfc_sli_setup(phba);
lpfc_sli_queue_init(phba);
/* Allocate device driver memory */
if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
return -ENOMEM;
phba->lpfc_sg_dma_buf_pool =
dma_pool_create("lpfc_sg_dma_buf_pool",
&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
BPL_ALIGN_SZ, 0);
if (!phba->lpfc_sg_dma_buf_pool)
goto fail_free_mem;
phba->lpfc_cmd_rsp_buf_pool =
dma_pool_create("lpfc_cmd_rsp_buf_pool",
&phba->pcidev->dev,
sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp),
BPL_ALIGN_SZ, 0);
if (!phba->lpfc_cmd_rsp_buf_pool)
goto fail_free_dma_buf_pool;
/*
* Enable sr-iov virtual functions if supported and configured
* through the module parameter.
*/
if (phba->cfg_sriov_nr_virtfn > 0) {
rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
phba->cfg_sriov_nr_virtfn);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"2808 Requested number of SR-IOV "
"virtual functions (%d) is not "
"supported\n",
phba->cfg_sriov_nr_virtfn);
phba->cfg_sriov_nr_virtfn = 0;
}
}
return 0;
fail_free_dma_buf_pool:
dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
phba->lpfc_sg_dma_buf_pool = NULL;
fail_free_mem:
lpfc_mem_free(phba);
return -ENOMEM;
}
/**
* lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the driver internal resources set up
* specific for supporting the SLI-3 HBA device it attached to.
**/
static void
lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
{
/* Free device driver memory allocated */
lpfc_mem_free_all(phba);
return;
}
/**
* lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources specific to
* support the SLI-4 HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
MAILBOX_t *mb;
int rc, i, max_buf_size;
int longs;
int extra;
uint64_t wwn;
u32 if_type;
u32 if_fam;
phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
phba->sli4_hba.num_possible_cpu = num_possible_cpus();
phba->sli4_hba.curr_disp_cpu = 0;
/* Get all the module params for configuring this host */
lpfc_get_cfgparam(phba);
/* Set up phase-1 common device driver resources */
rc = lpfc_setup_driver_resource_phase1(phba);
if (rc)
return -ENODEV;
/* Before proceed, wait for POST done and device ready */
rc = lpfc_sli4_post_status_check(phba);
if (rc)
return -ENODEV;
/* Allocate all driver workqueues here */
/* The lpfc_wq workqueue for deferred irq use */
phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
/*
* Initialize timers used by driver
*/
timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
/* FCF rediscover timer */
timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
/*
* Control structure for handling external multi-buffer mailbox
* command pass-through.
*/
memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
sizeof(struct lpfc_mbox_ext_buf_ctx));
INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
phba->max_vpi = LPFC_MAX_VPI;
/* This will be set to correct value after the read_config mbox */
phba->max_vports = 0;
/* Program the default value of vlan_id and fc_map */
phba->valid_vlan = 0;
phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
/*
* For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
* we will associate a new ring, for each EQ/CQ/WQ tuple.
* The WQ create will allocate the ring.
*/
/* Initialize buffer queue management fields */
INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
/*
* Initialize the SLI Layer to run with lpfc SLI4 HBAs.
*/
/* Initialize the Abort buffer list used by driver */
spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Initialize the Abort nvme buffer list used by driver */
spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
spin_lock_init(&phba->sli4_hba.t_active_list_lock);
INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
}
/* This abort list used by worker thread */
spin_lock_init(&phba->sli4_hba.sgl_list_lock);
spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
/*
* Initialize driver internal slow-path work queues
*/
/* Driver internel slow-path CQ Event pool */
INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
/* Response IOCB work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
/* Asynchronous event CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
/* Fast-path XRI aborted CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
/* Slow-path XRI aborted CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
/* Receive queue CQ Event work queue list */
INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
/* Initialize extent block lists. */
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
/* Initialize mboxq lists. If the early init routines fail
* these lists need to be correctly initialized.
*/
INIT_LIST_HEAD(&phba->sli.mboxq);
INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
/* initialize optic_state to 0xFF */
phba->sli4_hba.lnk_info.optic_state = 0xff;
/* Allocate device driver memory */
rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
if (rc)
goto out_destroy_workqueue;
/* IF Type 2 ports get initialized now. */
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
LPFC_SLI_INTF_IF_TYPE_2) {
rc = lpfc_pci_function_reset(phba);
if (unlikely(rc)) {
rc = -ENODEV;
goto out_free_mem;
}
phba->temp_sensor_support = 1;
}
/* Create the bootstrap mailbox command */
rc = lpfc_create_bootstrap_mbox(phba);
if (unlikely(rc))
goto out_free_mem;
/* Set up the host's endian order with the device. */
rc = lpfc_setup_endian_order(phba);
if (unlikely(rc))
goto out_free_bsmbx;
/* Set up the hba's configuration parameters. */
rc = lpfc_sli4_read_config(phba);
if (unlikely(rc))
goto out_free_bsmbx;
rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
if (unlikely(rc))
goto out_free_bsmbx;
/* IF Type 0 ports get initialized now. */
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_IF_TYPE_0) {
rc = lpfc_pci_function_reset(phba);
if (unlikely(rc))
goto out_free_bsmbx;
}
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq) {
rc = -ENOMEM;
goto out_free_bsmbx;
}
/* Check for NVMET being configured */
phba->nvmet_support = 0;
if (lpfc_enable_nvmet_cnt) {
/* First get WWN of HBA instance */
lpfc_read_nv(phba, mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6016 Mailbox failed , mbxCmd x%x "
"READ_NV, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
bf_get(lpfc_mqe_status, &mboxq->u.mqe));
mempool_free(mboxq, phba->mbox_mem_pool);
rc = -EIO;
goto out_free_bsmbx;
}
mb = &mboxq->u.mb;
memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
sizeof(uint64_t));
wwn = cpu_to_be64(wwn);
phba->sli4_hba.wwnn.u.name = wwn;
memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
sizeof(uint64_t));
/* wwn is WWPN of HBA instance */
wwn = cpu_to_be64(wwn);
phba->sli4_hba.wwpn.u.name = wwn;
/* Check to see if it matches any module parameter */
for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
if (wwn == lpfc_enable_nvmet[i]) {
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
if (lpfc_nvmet_mem_alloc(phba))
break;
phba->nvmet_support = 1; /* a match */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6017 NVME Target %016llx\n",
wwn);
#else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6021 Can't enable NVME Target."
" NVME_TARGET_FC infrastructure"
" is not in kernel\n");
#endif
/* Not supported for NVMET */
phba->cfg_xri_rebalancing = 0;
break;
}
}
}
lpfc_nvme_mod_param_dep(phba);
/*
* Get sli4 parameters that override parameters from Port capabilities.
* If this call fails, it isn't critical unless the SLI4 parameters come
* back in conflict.
*/
rc = lpfc_get_sli4_parameters(phba, mboxq);
if (rc) {
if_type = bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf);
if_fam = bf_get(lpfc_sli_intf_sli_family,
&phba->sli4_hba.sli_intf);
if (phba->sli4_hba.extents_in_use &&
phba->sli4_hba.rpi_hdrs_in_use) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2999 Unsupported SLI4 Parameters "
"Extents and RPI headers enabled.\n");
if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
if_fam == LPFC_SLI_INTF_FAMILY_BE2) {
mempool_free(mboxq, phba->mbox_mem_pool);
rc = -EIO;
goto out_free_bsmbx;
}
}
if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
mempool_free(mboxq, phba->mbox_mem_pool);
rc = -EIO;
goto out_free_bsmbx;
}
}
/*
* 1 for cmd, 1 for rsp, NVME adds an extra one
* for boundary conditions in its max_sgl_segment template.
*/
extra = 2;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
extra++;
/*
* It doesn't matter what family our adapter is in, we are
* limited to 2 Pages, 512 SGEs, for our SGL.
* There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
*/
max_buf_size = (2 * SLI4_PAGE_SIZE);
/*
* Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
* used to create the sg_dma_buf_pool must be calculated.
*/
if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
/* Both cfg_enable_bg and cfg_external_dif code paths */
/*
* The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
* the FCP rsp, and a SGE. Sice we have no control
* over how many protection segments the SCSI Layer
* will hand us (ie: there could be one for every block
* in the IO), just allocate enough SGEs to accomidate
* our max amount and we need to limit lpfc_sg_seg_cnt
* to minimize the risk of running out.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) + max_buf_size;
/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
/*
* If supporting DIF, reduce the seg count for scsi to
* allow room for the DIF sges.
*/
if (phba->cfg_enable_bg &&
phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
else
phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
} else {
/*
* The scsi_buf for a regular I/O holds the FCP cmnd,
* the FCP rsp, a SGE for each, and a SGE for up to
* cfg_sg_seg_cnt data segments.
*/
phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) +
((phba->cfg_sg_seg_cnt + extra) *
sizeof(struct sli4_sge));
/* Total SGEs for scsi_sg_list */
phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
/*
* NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
* need to post 1 page for the SGL.
*/
}
if (phba->cfg_xpsgl && !phba->nvmet_support)
phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ)
phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
else
phba->cfg_sg_dma_buf_size =
SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
phba->border_sge_num = phba->cfg_sg_dma_buf_size /
sizeof(struct sli4_sge);
/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
"6300 Reducing NVME sg segment "
"cnt to %d\n",
LPFC_MAX_NVME_SEG_CNT);
phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
} else
phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
}
/* Initialize the host templates with the updated values. */
lpfc_vport_template.sg_tablesize = phba->cfg_scsi_seg_cnt;
lpfc_template.sg_tablesize = phba->cfg_scsi_seg_cnt;
lpfc_template_no_hr.sg_tablesize = phba->cfg_scsi_seg_cnt;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
"9087 sg_seg_cnt:%d dmabuf_size:%d "
"total:%d scsi:%d nvme:%d\n",
phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt,
phba->cfg_nvme_seg_cnt);
if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
i = phba->cfg_sg_dma_buf_size;
else
i = SLI4_PAGE_SIZE;
phba->lpfc_sg_dma_buf_pool =
dma_pool_create("lpfc_sg_dma_buf_pool",
&phba->pcidev->dev,
phba->cfg_sg_dma_buf_size,
i, 0);
if (!phba->lpfc_sg_dma_buf_pool)
goto out_free_bsmbx;
phba->lpfc_cmd_rsp_buf_pool =
dma_pool_create("lpfc_cmd_rsp_buf_pool",
&phba->pcidev->dev,
sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp),
i, 0);
if (!phba->lpfc_cmd_rsp_buf_pool)
goto out_free_sg_dma_buf;
mempool_free(mboxq, phba->mbox_mem_pool);
/* Verify OAS is supported */
lpfc_sli4_oas_verify(phba);
/* Verify RAS support on adapter */
lpfc_sli4_ras_init(phba);
/* Verify all the SLI4 queues */
rc = lpfc_sli4_queue_verify(phba);
if (rc)
goto out_free_cmd_rsp_buf;
/* Create driver internal CQE event pool */
rc = lpfc_sli4_cq_event_pool_create(phba);
if (rc)
goto out_free_cmd_rsp_buf;
/* Initialize sgl lists per host */
lpfc_init_sgl_list(phba);
/* Allocate and initialize active sgl array */
rc = lpfc_init_active_sgl_array(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1430 Failed to initialize sgl list.\n");
goto out_destroy_cq_event_pool;
}
rc = lpfc_sli4_init_rpi_hdrs(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1432 Failed to initialize rpi headers.\n");
goto out_free_active_sgl;
}
/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
GFP_KERNEL);
if (!phba->fcf.fcf_rr_bmask) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2759 Failed allocate memory for FCF round "
"robin failover bmask\n");
rc = -ENOMEM;
goto out_remove_rpi_hdrs;
}
phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
sizeof(struct lpfc_hba_eq_hdl),
GFP_KERNEL);
if (!phba->sli4_hba.hba_eq_hdl) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2572 Failed allocate memory for "
"fast-path per-EQ handle array\n");
rc = -ENOMEM;
goto out_free_fcf_rr_bmask;
}
phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
sizeof(struct lpfc_vector_map_info),
GFP_KERNEL);
if (!phba->sli4_hba.cpu_map) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3327 Failed allocate memory for msi-x "
"interrupt vector mapping\n");
rc = -ENOMEM;
goto out_free_hba_eq_hdl;
}
phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
if (!phba->sli4_hba.eq_info) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3321 Failed allocation for per_cpu stats\n");
rc = -ENOMEM;
goto out_free_hba_cpu_map;
}
/*
* Enable sr-iov virtual functions if supported and configured
* through the module parameter.
*/
if (phba->cfg_sriov_nr_virtfn > 0) {
rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
phba->cfg_sriov_nr_virtfn);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3020 Requested number of SR-IOV "
"virtual functions (%d) is not "
"supported\n",
phba->cfg_sriov_nr_virtfn);
phba->cfg_sriov_nr_virtfn = 0;
}
}
return 0;
out_free_hba_cpu_map:
kfree(phba->sli4_hba.cpu_map);
out_free_hba_eq_hdl:
kfree(phba->sli4_hba.hba_eq_hdl);
out_free_fcf_rr_bmask:
kfree(phba->fcf.fcf_rr_bmask);
out_remove_rpi_hdrs:
lpfc_sli4_remove_rpi_hdrs(phba);
out_free_active_sgl:
lpfc_free_active_sgl(phba);
out_destroy_cq_event_pool:
lpfc_sli4_cq_event_pool_destroy(phba);
out_free_cmd_rsp_buf:
dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
phba->lpfc_cmd_rsp_buf_pool = NULL;
out_free_sg_dma_buf:
dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
phba->lpfc_sg_dma_buf_pool = NULL;
out_free_bsmbx:
lpfc_destroy_bootstrap_mbox(phba);
out_free_mem:
lpfc_mem_free(phba);
out_destroy_workqueue:
destroy_workqueue(phba->wq);
phba->wq = NULL;
return rc;
}
/**
* lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the driver internal resources set up
* specific for supporting the SLI-4 HBA device it attached to.
**/
static void
lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
{
struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
free_percpu(phba->sli4_hba.eq_info);
/* Free memory allocated for msi-x interrupt vector to CPU mapping */
kfree(phba->sli4_hba.cpu_map);
phba->sli4_hba.num_possible_cpu = 0;
phba->sli4_hba.num_present_cpu = 0;
phba->sli4_hba.curr_disp_cpu = 0;
/* Free memory allocated for fast-path work queue handles */
kfree(phba->sli4_hba.hba_eq_hdl);
/* Free the allocated rpi headers. */
lpfc_sli4_remove_rpi_hdrs(phba);
lpfc_sli4_remove_rpis(phba);
/* Free eligible FCF index bmask */
kfree(phba->fcf.fcf_rr_bmask);
/* Free the ELS sgl list */
lpfc_free_active_sgl(phba);
lpfc_free_els_sgl_list(phba);
lpfc_free_nvmet_sgl_list(phba);
/* Free the completion queue EQ event pool */
lpfc_sli4_cq_event_release_all(phba);
lpfc_sli4_cq_event_pool_destroy(phba);
/* Release resource identifiers. */
lpfc_sli4_dealloc_resource_identifiers(phba);
/* Free the bsmbx region. */
lpfc_destroy_bootstrap_mbox(phba);
/* Free the SLI Layer memory with SLI4 HBAs */
lpfc_mem_free_all(phba);
/* Free the current connect table */
list_for_each_entry_safe(conn_entry, next_conn_entry,
&phba->fcf_conn_rec_list, list) {
list_del_init(&conn_entry->list);
kfree(conn_entry);
}
return;
}
/**
* lpfc_init_api_table_setup - Set up init api function jump table
* @phba: The hba struct for which this call is being executed.
* @dev_grp: The HBA PCI-Device group number.
*
* This routine sets up the device INIT interface API function jump table
* in @phba struct.
*
* Returns: 0 - success, -ENODEV - failure.
**/
int
lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{
phba->lpfc_hba_init_link = lpfc_hba_init_link;
phba->lpfc_hba_down_link = lpfc_hba_down_link;
phba->lpfc_selective_reset = lpfc_selective_reset;
switch (dev_grp) {
case LPFC_PCI_DEV_LP:
phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
phba->lpfc_stop_port = lpfc_stop_port_s3;
break;
case LPFC_PCI_DEV_OC:
phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
phba->lpfc_stop_port = lpfc_stop_port_s4;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1431 Invalid HBA PCI-device group: 0x%x\n",
dev_grp);
return -ENODEV;
break;
}
return 0;
}
/**
* lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the driver internal resources after the
* device specific resource setup to support the HBA device it attached to.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
{
int error;
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
return error;
}
return 0;
}
/**
* lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the driver internal resources set up after
* the device specific resource setup for supporting the HBA device it
* attached to.
**/
static void
lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
{
if (phba->wq) {
flush_workqueue(phba->wq);
destroy_workqueue(phba->wq);
phba->wq = NULL;
}
/* Stop kernel worker thread */
if (phba->worker_thread)
kthread_stop(phba->worker_thread);
}
/**
* lpfc_free_iocb_list - Free iocb list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver's IOCB list and memory.
**/
void
lpfc_free_iocb_list(struct lpfc_hba *phba)
{
struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(iocbq_entry, iocbq_next,
&phba->lpfc_iocb_list, list) {
list_del(&iocbq_entry->list);
kfree(iocbq_entry);
phba->total_iocbq_bufs--;
}
spin_unlock_irq(&phba->hbalock);
return;
}
/**
* lpfc_init_iocb_list - Allocate and initialize iocb list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate and initizlize the driver's IOCB
* list and set up the IOCB tag array accordingly.
*
* Return codes
* 0 - successful
* other values - error
**/
int
lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
{
struct lpfc_iocbq *iocbq_entry = NULL;
uint16_t iotag;
int i;
/* Initialize and populate the iocb list per host. */
INIT_LIST_HEAD(&phba->lpfc_iocb_list);
for (i = 0; i < iocb_count; i++) {
iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
if (iocbq_entry == NULL) {
printk(KERN_ERR "%s: only allocated %d iocbs of "
"expected %d count. Unloading driver.\n",
__func__, i, LPFC_IOCB_LIST_CNT);
goto out_free_iocbq;
}
iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
if (iotag == 0) {
kfree(iocbq_entry);
printk(KERN_ERR "%s: failed to allocate IOTAG. "
"Unloading driver.\n", __func__);
goto out_free_iocbq;
}
iocbq_entry->sli4_lxritag = NO_XRI;
iocbq_entry->sli4_xritag = NO_XRI;
spin_lock_irq(&phba->hbalock);
list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
phba->total_iocbq_bufs++;
spin_unlock_irq(&phba->hbalock);
}
return 0;
out_free_iocbq:
lpfc_free_iocb_list(phba);
return -ENOMEM;
}
/**
* lpfc_free_sgl_list - Free a given sgl list.
* @phba: pointer to lpfc hba data structure.
* @sglq_list: pointer to the head of sgl list.
*
* This routine is invoked to free a give sgl list and memory.
**/
void
lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
list_del(&sglq_entry->list);
lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
kfree(sglq_entry);
}
}
/**
* lpfc_free_els_sgl_list - Free els sgl list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver's els sgl list and memory.
**/
static void
lpfc_free_els_sgl_list(struct lpfc_hba *phba)
{
LIST_HEAD(sglq_list);
/* Retrieve all els sgls from driver list */
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
/* Now free the sgl list */
lpfc_free_sgl_list(phba, &sglq_list);
}
/**
* lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver's nvmet sgl list and memory.
**/
static void
lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
LIST_HEAD(sglq_list);
/* Retrieve all nvmet sgls from driver list */
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
/* Now free the sgl list */
list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
list_del(&sglq_entry->list);
lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
kfree(sglq_entry);
}
/* Update the nvmet_xri_cnt to reflect no current sgls.
* The next initialization cycle sets the count and allocates
* the sgls over again.
*/
phba->sli4_hba.nvmet_xri_cnt = 0;
}
/**
* lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate the driver's active sgl memory.
* This array will hold the sglq_entry's for active IOs.
**/
static int
lpfc_init_active_sgl_array(struct lpfc_hba *phba)
{
int size;
size = sizeof(struct lpfc_sglq *);
size *= phba->sli4_hba.max_cfg_param.max_xri;
phba->sli4_hba.lpfc_sglq_active_list =
kzalloc(size, GFP_KERNEL);
if (!phba->sli4_hba.lpfc_sglq_active_list)
return -ENOMEM;
return 0;
}
/**
* lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to walk through the array of active sglq entries
* and free all of the resources.
* This is just a place holder for now.
**/
static void
lpfc_free_active_sgl(struct lpfc_hba *phba)
{
kfree(phba->sli4_hba.lpfc_sglq_active_list);
}
/**
* lpfc_init_sgl_list - Allocate and initialize sgl list.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate and initizlize the driver's sgl
* list and set up the sgl xritag tag array accordingly.
*
**/
static void
lpfc_init_sgl_list(struct lpfc_hba *phba)
{
/* Initialize and populate the sglq list per host/VF. */
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
/* els xri-sgl book keeping */
phba->sli4_hba.els_xri_cnt = 0;
/* nvme xri-buffer book keeping */
phba->sli4_hba.io_xri_cnt = 0;
}
/**
* lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to post rpi header templates to the
* port for those SLI4 ports that do not support extents. This routine
* posts a PAGE_SIZE memory region to the port to hold up to
* PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine
* and should be called only when interrupts are disabled.
*
* Return codes
* 0 - successful
* -ERROR - otherwise.
**/
int
lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
{
int rc = 0;
struct lpfc_rpi_hdr *rpi_hdr;
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
if (!phba->sli4_hba.rpi_hdrs_in_use)
return rc;
if (phba->sli4_hba.extents_in_use)
return -EIO;
rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
if (!rpi_hdr) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
"0391 Error during rpi post operation\n");
lpfc_sli4_remove_rpis(phba);
rc = -ENODEV;
}
return rc;
}
/**
* lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate a single 4KB memory region to
* support rpis and stores them in the phba. This single region
* provides support for up to 64 rpis. The region is used globally
* by the device.
*
* Returns:
* A valid rpi hdr on success.
* A NULL pointer on any failure.
**/
struct lpfc_rpi_hdr *
lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
{
uint16_t rpi_limit, curr_rpi_range;
struct lpfc_dmabuf *dmabuf;
struct lpfc_rpi_hdr *rpi_hdr;
/*
* If the SLI4 port supports extents, posting the rpi header isn't
* required. Set the expected maximum count and let the actual value
* get set when extents are fully allocated.
*/
if (!phba->sli4_hba.rpi_hdrs_in_use)
return NULL;
if (phba->sli4_hba.extents_in_use)
return NULL;
/* The limit on the logical index is just the max_rpi count. */
rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
spin_lock_irq(&phba->hbalock);
/*
* Establish the starting RPI in this header block. The starting
* rpi is normalized to a zero base because the physical rpi is
* port based.
*/
curr_rpi_range = phba->sli4_hba.next_rpi;
spin_unlock_irq(&phba->hbalock);
/* Reached full RPI range */
if (curr_rpi_range == rpi_limit)
return NULL;
/*
* First allocate the protocol header region for the port. The
* port expects a 4KB DMA-mapped memory region that is 4K aligned.
*/
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!dmabuf)
return NULL;
dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
LPFC_HDR_TEMPLATE_SIZE,
&dmabuf->phys, GFP_KERNEL);
if (!dmabuf->virt) {
rpi_hdr = NULL;
goto err_free_dmabuf;
}
if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
rpi_hdr = NULL;
goto err_free_coherent;
}
/* Save the rpi header data for cleanup later. */
rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
if (!rpi_hdr)
goto err_free_coherent;
rpi_hdr->dmabuf = dmabuf;
rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
rpi_hdr->page_count = 1;
spin_lock_irq(&phba->hbalock);
/* The rpi_hdr stores the logical index only. */
rpi_hdr->start_rpi = curr_rpi_range;
rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
spin_unlock_irq(&phba->hbalock);
return rpi_hdr;
err_free_coherent:
dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
dmabuf->virt, dmabuf->phys);
err_free_dmabuf:
kfree(dmabuf);
return NULL;
}
/**
* lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to remove all memory resources allocated
* to support rpis for SLI4 ports not supporting extents. This routine
* presumes the caller has released all rpis consumed by fabric or port
* logins and is prepared to have the header pages removed.
**/
void
lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
{
struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
if (!phba->sli4_hba.rpi_hdrs_in_use)
goto exit;
list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
&phba->sli4_hba.lpfc_rpi_hdr_list, list) {
list_del(&rpi_hdr->list);
dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
kfree(rpi_hdr->dmabuf);
kfree(rpi_hdr);
}
exit:
/* There are no rpis available to the port now. */
phba->sli4_hba.next_rpi = 0;
}
/**
* lpfc_hba_alloc - Allocate driver hba data structure for a device.
* @pdev: pointer to pci device data structure.
*
* This routine is invoked to allocate the driver hba data structure for an
* HBA device. If the allocation is successful, the phba reference to the
* PCI device data structure is set.
*
* Return codes
* pointer to @phba - successful
* NULL - error
**/
static struct lpfc_hba *
lpfc_hba_alloc(struct pci_dev *pdev)
{
struct lpfc_hba *phba;
/* Allocate memory for HBA structure */
phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
if (!phba) {
dev_err(&pdev->dev, "failed to allocate hba struct\n");
return NULL;
}
/* Set reference to PCI device in HBA structure */
phba->pcidev = pdev;
/* Assign an unused board number */
phba->brd_no = lpfc_get_instance();
if (phba->brd_no < 0) {
kfree(phba);
return NULL;
}
phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
spin_lock_init(&phba->ct_ev_lock);
INIT_LIST_HEAD(&phba->ct_ev_waiters);
return phba;
}
/**
* lpfc_hba_free - Free driver hba data structure with a device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the driver hba data structure with an
* HBA device.
**/
static void
lpfc_hba_free(struct lpfc_hba *phba)
{
if (phba->sli_rev == LPFC_SLI_REV4)
kfree(phba->sli4_hba.hdwq);
/* Release the driver assigned board number */
idr_remove(&lpfc_hba_index, phba->brd_no);
/* Free memory allocated with sli3 rings */
kfree(phba->sli.sli3_ring);
phba->sli.sli3_ring = NULL;
kfree(phba);
return;
}
/**
* lpfc_create_shost - Create hba physical port with associated scsi host.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to create HBA physical port and associate a SCSI
* host with it.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_create_shost(struct lpfc_hba *phba)
{
struct lpfc_vport *vport;
struct Scsi_Host *shost;
/* Initialize HBA FC structure */
phba->fc_edtov = FF_DEF_EDTOV;
phba->fc_ratov = FF_DEF_RATOV;
phba->fc_altov = FF_DEF_ALTOV;
phba->fc_arbtov = FF_DEF_ARBTOV;
atomic_set(&phba->sdev_cnt, 0);
vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
if (!vport)
return -ENODEV;
shost = lpfc_shost_from_vport(vport);
phba->pport = vport;
if (phba->nvmet_support) {
/* Only 1 vport (pport) will support NVME target */
if (phba->txrdy_payload_pool == NULL) {
phba->txrdy_payload_pool = dma_pool_create(
"txrdy_pool", &phba->pcidev->dev,
TXRDY_PAYLOAD_LEN, 16, 0);
if (phba->txrdy_payload_pool) {
phba->targetport = NULL;
phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
lpfc_printf_log(phba, KERN_INFO,
LOG_INIT | LOG_NVME_DISC,
"6076 NVME Target Found\n");
}
}
}
lpfc_debugfs_initialize(vport);
/* Put reference to SCSI host to driver's device private data */
pci_set_drvdata(phba->pcidev, shost);
/*
* At this point we are fully registered with PSA. In addition,
* any initial discovery should be completed.
*/
vport->load_flag |= FC_ALLOW_FDMI;
if (phba->cfg_enable_SmartSAN ||
(phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
/* Setup appropriate attribute masks */
vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
if (phba->cfg_enable_SmartSAN)
vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
else
vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
}
return 0;
}
/**
* lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to destroy HBA physical port and the associated
* SCSI host.
**/
static void
lpfc_destroy_shost(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
/* Destroy physical port that associated with the SCSI host */
destroy_port(vport);
return;
}
/**
* lpfc_setup_bg - Setup Block guard structures and debug areas.
* @phba: pointer to lpfc hba data structure.
* @shost: the shost to be used to detect Block guard settings.
*
* This routine sets up the local Block guard protocol settings for @shost.
* This routine also allocates memory for debugging bg buffers.
**/
static void
lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
{
uint32_t old_mask;
uint32_t old_guard;
if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1478 Registering BlockGuard with the "
"SCSI layer\n");
old_mask = phba->cfg_prot_mask;
old_guard = phba->cfg_prot_guard;
/* Only allow supported values */
phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
SHOST_DIX_TYPE0_PROTECTION |
SHOST_DIX_TYPE1_PROTECTION);
phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
SHOST_DIX_GUARD_CRC);
/* DIF Type 1 protection for profiles AST1/C1 is end to end */
if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
if ((old_mask != phba->cfg_prot_mask) ||
(old_guard != phba->cfg_prot_guard))
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1475 Registering BlockGuard with the "
"SCSI layer: mask %d guard %d\n",
phba->cfg_prot_mask,
phba->cfg_prot_guard);
scsi_host_set_prot(shost, phba->cfg_prot_mask);
scsi_host_set_guard(shost, phba->cfg_prot_guard);
} else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1479 Not Registering BlockGuard with the SCSI "
"layer, Bad protection parameters: %d %d\n",
old_mask, old_guard);
}
}
/**
* lpfc_post_init_setup - Perform necessary device post initialization setup.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to perform all the necessary post initialization
* setup for the device.
**/
static void
lpfc_post_init_setup(struct lpfc_hba *phba)
{
struct Scsi_Host *shost;
struct lpfc_adapter_event_header adapter_event;
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
/*
* hba setup may have changed the hba_queue_depth so we need to
* adjust the value of can_queue.
*/
shost = pci_get_drvdata(phba->pcidev);
shost->can_queue = phba->cfg_hba_queue_depth - 10;
lpfc_host_attrib_init(shost);
if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
spin_lock_irq(shost->host_lock);
lpfc_poll_start_timer(phba);
spin_unlock_irq(shost->host_lock);
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0428 Perform SCSI scan\n");
/* Send board arrival event to upper layer */
adapter_event.event_type = FC_REG_ADAPTER_EVENT;
adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(adapter_event),
(char *) &adapter_event,
LPFC_NL_VENDOR_ID);
return;
}
/**
* lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the PCI device memory space for device
* with SLI-3 interface spec.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
{
struct pci_dev *pdev = phba->pcidev;
unsigned long bar0map_len, bar2map_len;
int i, hbq_count;
void *ptr;
int error;
if (!pdev)
return -ENODEV;
/* Set the device DMA mask size */
error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (error)
error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (error)
return error;
error = -ENODEV;
/* Get the bus address of Bar0 and Bar2 and the number of bytes
* required by each mapping.
*/
phba->pci_bar0_map = pci_resource_start(pdev, 0);
bar0map_len = pci_resource_len(pdev, 0);
phba->pci_bar2_map = pci_resource_start(pdev, 2);
bar2map_len = pci_resource_len(pdev, 2);
/* Map HBA SLIM to a kernel virtual address. */
phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
if (!phba->slim_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLIM memory.\n");
goto out;
}
/* Map HBA Control Registers to a kernel virtual address. */
phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
if (!phba->ctrl_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for HBA control registers.\n");
goto out_iounmap_slim;
}
/* Allocate memory for SLI-2 structures */
phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
&phba->slim2p.phys, GFP_KERNEL);
if (!phba->slim2p.virt)
goto out_iounmap;
phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
phba->mbox_ext = (phba->slim2p.virt +
offsetof(struct lpfc_sli2_slim, mbx_ext_words));
phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
phba->IOCBs = (phba->slim2p.virt +
offsetof(struct lpfc_sli2_slim, IOCBs));
phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
lpfc_sli_hbq_size(),
&phba->hbqslimp.phys,
GFP_KERNEL);
if (!phba->hbqslimp.virt)
goto out_free_slim;
hbq_count = lpfc_sli_hbq_count();
ptr = phba->hbqslimp.virt;
for (i = 0; i < hbq_count; ++i) {
phba->hbqs[i].hbq_virt = ptr;
INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
ptr += (lpfc_hbq_defs[i]->entry_count *
sizeof(struct lpfc_hbq_entry));
}
phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
phba->MBslimaddr = phba->slim_memmap_p;
phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
return 0;
out_free_slim:
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
out_iounmap:
iounmap(phba->ctrl_regs_memmap_p);
out_iounmap_slim:
iounmap(phba->slim_memmap_p);
out:
return error;
}
/**
* lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the PCI device memory space for device
* with SLI-3 interface spec.
**/
static void
lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
{
struct pci_dev *pdev;
/* Obtain PCI device reference */
if (!phba->pcidev)
return;
else
pdev = phba->pcidev;
/* Free coherent DMA memory allocated */
dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
phba->hbqslimp.virt, phba->hbqslimp.phys);
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
/* I/O memory unmap */
iounmap(phba->ctrl_regs_memmap_p);
iounmap(phba->slim_memmap_p);
return;
}
/**
* lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to wait for SLI4 device Power On Self Test (POST)
* done and check status.
*
* Return 0 if successful, otherwise -ENODEV.
**/
int
lpfc_sli4_post_status_check(struct lpfc_hba *phba)
{
struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
struct lpfc_register reg_data;
int i, port_error = 0;
uint32_t if_type;
memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
memset(&reg_data, 0, sizeof(reg_data));
if (!phba->sli4_hba.PSMPHRregaddr)
return -ENODEV;
/* Wait up to 30 seconds for the SLI Port POST done and ready */
for (i = 0; i < 3000; i++) {
if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
&portsmphr_reg.word0) ||
(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
/* Port has a fatal POST error, break out */
port_error = -ENODEV;
break;
}
if (LPFC_POST_STAGE_PORT_READY ==
bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
break;
msleep(10);
}
/*
* If there was a port error during POST, then don't proceed with
* other register reads as the data may not be valid. Just exit.
*/
if (port_error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1408 Port Failed POST - portsmphr=0x%x, "
"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
portsmphr_reg.word0,
bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2534 Device Info: SLIFamily=0x%x, "
"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
"SLIHint_2=0x%x, FT=0x%x\n",
bf_get(lpfc_sli_intf_sli_family,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_slirev,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_sli_hint1,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_sli_hint2,
&phba->sli4_hba.sli_intf),
bf_get(lpfc_sli_intf_func_type,
&phba->sli4_hba.sli_intf));
/*
* Check for other Port errors during the initialization
* process. Fail the load if the port did not come up
* correctly.
*/
if_type = bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
phba->sli4_hba.ue_mask_lo =
readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
phba->sli4_hba.ue_mask_hi =
readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
uerrlo_reg.word0 =
readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
uerrhi_reg.word0 =
readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
(~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1422 Unrecoverable Error "
"Detected during POST "
"uerr_lo_reg=0x%x, "
"uerr_hi_reg=0x%x, "
"ue_mask_lo_reg=0x%x, "
"ue_mask_hi_reg=0x%x\n",
uerrlo_reg.word0,
uerrhi_reg.word0,
phba->sli4_hba.ue_mask_lo,
phba->sli4_hba.ue_mask_hi);
port_error = -ENODEV;
}
break;
case LPFC_SLI_INTF_IF_TYPE_2:
case LPFC_SLI_INTF_IF_TYPE_6:
/* Final checks. The port status should be clean. */
if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
&reg_data.word0) ||
(bf_get(lpfc_sliport_status_err, &reg_data) &&
!bf_get(lpfc_sliport_status_rn, &reg_data))) {
phba->work_status[0] =
readl(phba->sli4_hba.u.if_type2.
ERR1regaddr);
phba->work_status[1] =
readl(phba->sli4_hba.u.if_type2.
ERR2regaddr);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2888 Unrecoverable port error "
"following POST: port status reg "
"0x%x, port_smphr reg 0x%x, "
"error 1=0x%x, error 2=0x%x\n",
reg_data.word0,
portsmphr_reg.word0,
phba->work_status[0],
phba->work_status[1]);
port_error = -ENODEV;
}
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
}
return port_error;
}
/**
* lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
* @phba: pointer to lpfc hba data structure.
* @if_type: The SLI4 interface type getting configured.
*
* This routine is invoked to set up SLI4 BAR0 PCI config space register
* memory map.
**/
static void
lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
{
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
phba->sli4_hba.u.if_type0.UERRLOregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
phba->sli4_hba.u.if_type0.UERRHIregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
phba->sli4_hba.SLIINTFregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
break;
case LPFC_SLI_INTF_IF_TYPE_2:
phba->sli4_hba.u.if_type2.EQDregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_EQ_DELAY_OFFSET;
phba->sli4_hba.u.if_type2.ERR1regaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER1_OFFSET;
phba->sli4_hba.u.if_type2.ERR2regaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER2_OFFSET;
phba->sli4_hba.u.if_type2.CTRLregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_CTL_OFFSET;
phba->sli4_hba.u.if_type2.STATUSregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_STA_OFFSET;
phba->sli4_hba.SLIINTFregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
phba->sli4_hba.PSMPHRregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_SEM_OFFSET;
phba->sli4_hba.RQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_ULP0_RQ_DOORBELL;
phba->sli4_hba.WQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_ULP0_WQ_DOORBELL;
phba->sli4_hba.CQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
phba->sli4_hba.MQDBregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
phba->sli4_hba.BMBXregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
break;
case LPFC_SLI_INTF_IF_TYPE_6:
phba->sli4_hba.u.if_type2.EQDregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_EQ_DELAY_OFFSET;
phba->sli4_hba.u.if_type2.ERR1regaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER1_OFFSET;
phba->sli4_hba.u.if_type2.ERR2regaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER2_OFFSET;
phba->sli4_hba.u.if_type2.CTRLregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_CTL_OFFSET;
phba->sli4_hba.u.if_type2.STATUSregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_STA_OFFSET;
phba->sli4_hba.PSMPHRregaddr =
phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_SEM_OFFSET;
phba->sli4_hba.BMBXregaddr =
phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
dev_printk(KERN_ERR, &phba->pcidev->dev,
"FATAL - unsupported SLI4 interface type - %d\n",
if_type);
break;
}
}
/**
* lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up SLI4 BAR1 register memory map.
**/
static void
lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
{
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
phba->sli4_hba.PSMPHRregaddr =
phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_SLIPORT_IF0_SMPHR;
phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_HST_ISR0;
phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_HST_IMR0;
phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
LPFC_HST_ISCR0;
break;
case LPFC_SLI_INTF_IF_TYPE_6:
phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
LPFC_IF6_RQ_DOORBELL;
phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
LPFC_IF6_WQ_DOORBELL;
phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
LPFC_IF6_CQ_DOORBELL;
phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
LPFC_IF6_EQ_DOORBELL;
phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
LPFC_IF6_MQ_DOORBELL;
break;
case LPFC_SLI_INTF_IF_TYPE_2:
case LPFC_SLI_INTF_IF_TYPE_1:
default:
dev_err(&phba->pcidev->dev,
"FATAL - unsupported SLI4 interface type - %d\n",
if_type);
break;
}
}
/**
* lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
* @phba: pointer to lpfc hba data structure.
* @vf: virtual function number
*
* This routine is invoked to set up SLI4 BAR2 doorbell register memory map
* based on the given viftual function number, @vf.
*
* Return 0 if successful, otherwise -ENODEV.
**/
static int
lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
{
if (vf > LPFC_VIR_FUNC_MAX)
return -ENODEV;
phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE +
LPFC_ULP0_RQ_DOORBELL);
phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE +
LPFC_ULP0_WQ_DOORBELL);
phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE +
LPFC_EQCQ_DOORBELL);
phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
return 0;
}
/**
* lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to create the bootstrap mailbox
* region consistent with the SLI-4 interface spec. This
* routine allocates all memory necessary to communicate
* mailbox commands to the port and sets up all alignment
* needs. No locks are expected to be held when calling
* this routine.
*
* Return codes
* 0 - successful
* -ENOMEM - could not allocated memory.
**/
static int
lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
{
uint32_t bmbx_size;
struct lpfc_dmabuf *dmabuf;
struct dma_address *dma_address;
uint32_t pa_addr;
uint64_t phys_addr;
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!dmabuf)
return -ENOMEM;
/*
* The bootstrap mailbox region is comprised of 2 parts
* plus an alignment restriction of 16 bytes.
*/
bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
&dmabuf->phys, GFP_KERNEL);
if (!dmabuf->virt) {
kfree(dmabuf);
return -ENOMEM;
}
/*
* Initialize the bootstrap mailbox pointers now so that the register
* operations are simple later. The mailbox dma address is required
* to be 16-byte aligned. Also align the virtual memory as each
* maibox is copied into the bmbx mailbox region before issuing the
* command to the port.
*/
phba->sli4_hba.bmbx.dmabuf = dmabuf;
phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
LPFC_ALIGN_16_BYTE);
phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
LPFC_ALIGN_16_BYTE);
/*
* Set the high and low physical addresses now. The SLI4 alignment
* requirement is 16 bytes and the mailbox is posted to the port
* as two 30-bit addresses. The other data is a bit marking whether
* the 30-bit address is the high or low address.
* Upcast bmbx aphys to 64bits so shift instruction compiles
* clean on 32 bit machines.
*/
dma_address = &phba->sli4_hba.bmbx.dma_address;
phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
LPFC_BMBX_BIT1_ADDR_HI);
pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
LPFC_BMBX_BIT1_ADDR_LO);
return 0;
}
/**
* lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to teardown the bootstrap mailbox
* region and release all host resources. This routine requires
* the caller to ensure all mailbox commands recovered, no
* additional mailbox comands are sent, and interrupts are disabled
* before calling this routine.
*
**/
static void
lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
{
dma_free_coherent(&phba->pcidev->dev,
phba->sli4_hba.bmbx.bmbx_size,
phba->sli4_hba.bmbx.dmabuf->virt,
phba->sli4_hba.bmbx.dmabuf->phys);
kfree(phba->sli4_hba.bmbx.dmabuf);
memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
}
/**
* lpfc_sli4_read_config - Get the config parameters.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to read the configuration parameters from the HBA.
* The configuration parameters are used to set the base and maximum values
* for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
* allocation for the port.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_sli4_read_config(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *pmb;
struct lpfc_mbx_read_config *rd_config;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t shdr_status, shdr_add_status;
struct lpfc_mbx_get_func_cfg *get_func_cfg;
struct lpfc_rsrc_desc_fcfcoe *desc;
char *pdesc_0;
uint16_t forced_link_speed;
uint32_t if_type, qmin;
int length, i, rc = 0, rc2;
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2011 Unable to allocate memory for issuing "
"SLI_CONFIG_SPECIAL mailbox command\n");
return -ENOMEM;
}
lpfc_read_config(phba, pmb);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2012 Mailbox failed , mbxCmd x%x "
"READ_CONFIG, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &pmb->u.mqe),
bf_get(lpfc_mqe_status, &pmb->u.mqe));
rc = -EIO;
} else {
rd_config = &pmb->u.mqe.un.rd_config;
if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
phba->sli4_hba.lnk_info.lnk_tp =
bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
phba->sli4_hba.lnk_info.lnk_no =
bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3081 lnk_type:%d, lnk_numb:%d\n",
phba->sli4_hba.lnk_info.lnk_tp,
phba->sli4_hba.lnk_info.lnk_no);
} else
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3082 Mailbox (x%x) returned ldv:x0\n",
bf_get(lpfc_mqe_command, &pmb->u.mqe));
if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
phba->bbcredit_support = 1;
phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
}
phba->sli4_hba.conf_trunk =
bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
phba->sli4_hba.extents_in_use =
bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
phba->sli4_hba.max_cfg_param.max_xri =
bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
/* Reduce resource usage in kdump environment */
if (is_kdump_kernel() &&
phba->sli4_hba.max_cfg_param.max_xri > 512)
phba->sli4_hba.max_cfg_param.max_xri = 512;
phba->sli4_hba.max_cfg_param.xri_base =
bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
phba->sli4_hba.max_cfg_param.max_vpi =
bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
/* Limit the max we support */
if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
phba->sli4_hba.max_cfg_param.vpi_base =
bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
phba->sli4_hba.max_cfg_param.max_rpi =
bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
phba->sli4_hba.max_cfg_param.rpi_base =
bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
phba->sli4_hba.max_cfg_param.max_vfi =
bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
phba->sli4_hba.max_cfg_param.vfi_base =
bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
phba->sli4_hba.max_cfg_param.max_fcfi =
bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
phba->sli4_hba.max_cfg_param.max_eq =
bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
phba->sli4_hba.max_cfg_param.max_rq =
bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
phba->sli4_hba.max_cfg_param.max_wq =
bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
phba->sli4_hba.max_cfg_param.max_cq =
bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
phba->max_vports = phba->max_vpi;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2003 cfg params Extents? %d "
"XRI(B:%d M:%d), "
"VPI(B:%d M:%d) "
"VFI(B:%d M:%d) "
"RPI(B:%d M:%d) "
"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d\n",
phba->sli4_hba.extents_in_use,
phba->sli4_hba.max_cfg_param.xri_base,
phba->sli4_hba.max_cfg_param.max_xri,
phba->sli4_hba.max_cfg_param.vpi_base,
phba->sli4_hba.max_cfg_param.max_vpi,
phba->sli4_hba.max_cfg_param.vfi_base,
phba->sli4_hba.max_cfg_param.max_vfi,
phba->sli4_hba.max_cfg_param.rpi_base,
phba->sli4_hba.max_cfg_param.max_rpi,
phba->sli4_hba.max_cfg_param.max_fcfi,
phba->sli4_hba.max_cfg_param.max_eq,
phba->sli4_hba.max_cfg_param.max_cq,
phba->sli4_hba.max_cfg_param.max_wq,
phba->sli4_hba.max_cfg_param.max_rq);
/*
* Calculate queue resources based on how
* many WQ/CQ/EQs are available.
*/
qmin = phba->sli4_hba.max_cfg_param.max_wq;
if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
qmin = phba->sli4_hba.max_cfg_param.max_cq;
if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
qmin = phba->sli4_hba.max_cfg_param.max_eq;
/*
* Whats left after this can go toward NVME / FCP.
* The minus 4 accounts for ELS, NVME LS, MBOX
* plus one extra. When configured for
* NVMET, FCP io channel WQs are not created.
*/
qmin -= 4;
/* Check to see if there is enough for NVME */
if ((phba->cfg_irq_chann > qmin) ||
(phba->cfg_hdw_queue > qmin)) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2005 Reducing Queues: "
"WQ %d CQ %d EQ %d: min %d: "
"IRQ %d HDWQ %d\n",
phba->sli4_hba.max_cfg_param.max_wq,
phba->sli4_hba.max_cfg_param.max_cq,
phba->sli4_hba.max_cfg_param.max_eq,
qmin, phba->cfg_irq_chann,
phba->cfg_hdw_queue);
if (phba->cfg_irq_chann > qmin)
phba->cfg_irq_chann = qmin;
if (phba->cfg_hdw_queue > qmin)
phba->cfg_hdw_queue = qmin;
}
}
if (rc)
goto read_cfg_out;
/* Update link speed if forced link speed is supported */
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
forced_link_speed =
bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
if (forced_link_speed) {
phba->hba_flag |= HBA_FORCED_LINK_SPEED;
switch (forced_link_speed) {
case LINK_SPEED_1G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_1G;
break;
case LINK_SPEED_2G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_2G;
break;
case LINK_SPEED_4G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_4G;
break;
case LINK_SPEED_8G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_8G;
break;
case LINK_SPEED_10G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_10G;
break;
case LINK_SPEED_16G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_16G;
break;
case LINK_SPEED_32G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_32G;
break;
case LINK_SPEED_64G:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_64G;
break;
case 0xffff:
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_AUTO;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"0047 Unrecognized link "
"speed : %d\n",
forced_link_speed);
phba->cfg_link_speed =
LPFC_USER_LINK_SPEED_AUTO;
}
}
}
/* Reset the DFT_HBA_Q_DEPTH to the max xri */
length = phba->sli4_hba.max_cfg_param.max_xri -
lpfc_sli4_get_els_iocb_cnt(phba);
if (phba->cfg_hba_queue_depth > length) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3361 HBA queue depth changed from %d to %d\n",
phba->cfg_hba_queue_depth, length);
phba->cfg_hba_queue_depth = length;
}
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
LPFC_SLI_INTF_IF_TYPE_2)
goto read_cfg_out;
/* get the pf# and vf# for SLI4 if_type 2 port */
length = (sizeof(struct lpfc_mbx_get_func_cfg) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
length, LPFC_SLI4_MBX_EMBED);
rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (rc2 || shdr_status || shdr_add_status) {
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3026 Mailbox failed , mbxCmd x%x "
"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
bf_get(lpfc_mqe_command, &pmb->u.mqe),
bf_get(lpfc_mqe_status, &pmb->u.mqe));
goto read_cfg_out;
}
/* search for fc_fcoe resrouce descriptor */
get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
goto read_cfg_out;
for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
phba->sli4_hba.iov.pf_number =
bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
phba->sli4_hba.iov.vf_number =
bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
break;
}
}
if (i < LPFC_RSRC_DESC_MAX_NUM)
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
phba->sli4_hba.iov.vf_number);
else
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"3028 GET_FUNCTION_CONFIG: failed to find "
"Resource Descriptor:x%x\n",
LPFC_RSRC_DESC_TYPE_FCFCOE);
read_cfg_out:
mempool_free(pmb, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to setup the port-side endian order when
* the port if_type is 0. This routine has no function for other
* if_types.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
static int
lpfc_setup_endian_order(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
uint32_t if_type, rc = 0;
uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
HOST_ENDIAN_HIGH_WORD1};
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0492 Unable to allocate memory for "
"issuing SLI_CONFIG_SPECIAL mailbox "
"command\n");
return -ENOMEM;
}
/*
* The SLI4_CONFIG_SPECIAL mailbox command requires the first
* two words to contain special data values and no other data.
*/
memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0493 SLI_CONFIG_SPECIAL mailbox "
"failed with status x%x\n",
rc);
rc = -EIO;
}
mempool_free(mboxq, phba->mbox_mem_pool);
break;
case LPFC_SLI_INTF_IF_TYPE_6:
case LPFC_SLI_INTF_IF_TYPE_2:
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
return rc;
}
/**
* lpfc_sli4_queue_verify - Verify and update EQ counts
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to check the user settable queue counts for EQs.
* After this routine is called the counts will be set to valid values that
* adhere to the constraints of the system's interrupt vectors and the port's
* queue resources.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
**/
static int
lpfc_sli4_queue_verify(struct lpfc_hba *phba)
{
/*
* Sanity check for configured queue parameters against the run-time
* device parameters
*/
if (phba->nvmet_support) {
if (phba->cfg_irq_chann < phba->cfg_nvmet_mrq)
phba->cfg_nvmet_mrq = phba->cfg_irq_chann;
if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
}
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
phba->cfg_hdw_queue, phba->cfg_irq_chann,
phba->cfg_nvmet_mrq);
/* Get EQ depth from module parameter, fake the default for now */
phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
/* Get CQ depth from module parameter, fake the default for now */
phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
return 0;
}
static int
lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
{
struct lpfc_queue *qdesc;
u32 wqesize;
int cpu;
cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
/* Create Fast Path IO CQs */
if (phba->enab_exp_wqcq_pages)
/* Increase the CQ size when WQEs contain an embedded cdb */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
phba->sli4_hba.cq_esize,
LPFC_CQE_EXP_COUNT, cpu);
else
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0499 Failed allocate fast-path IO CQ (%d)\n", idx);
return 1;
}
qdesc->qe_valid = 1;
qdesc->hdwq = idx;
qdesc->chann = cpu;
phba->sli4_hba.hdwq[idx].io_cq = qdesc;
/* Create Fast Path IO WQs */
if (phba->enab_exp_wqcq_pages) {
/* Increase the WQ size when WQEs contain an embedded cdb */
wqesize = (phba->fcp_embed_io) ?
LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
wqesize,
LPFC_WQE_EXP_COUNT, cpu);
} else
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.wq_esize,
phba->sli4_hba.wq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0503 Failed allocate fast-path IO WQ (%d)\n",
idx);
return 1;
}
qdesc->hdwq = idx;
qdesc->chann = cpu;
phba->sli4_hba.hdwq[idx].io_wq = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
return 0;
}
/**
* lpfc_sli4_queue_create - Create all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
* operation. For each SLI4 queue type, the parameters such as queue entry
* count (queue depth) shall be taken from the module parameter. For now,
* we just use some constant number as place holder.
*
* Return codes
* 0 - successful
* -ENOMEM - No availble memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_sli4_queue_create(struct lpfc_hba *phba)
{
struct lpfc_queue *qdesc;
int idx, cpu, eqcpu;
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_vector_map_info *cpup;
struct lpfc_vector_map_info *eqcpup;
struct lpfc_eq_intr_info *eqi;
/*
* Create HBA Record arrays.
* Both NVME and FCP will share that same vectors / EQs
*/
phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
if (!phba->sli4_hba.hdwq) {
phba->sli4_hba.hdwq = kcalloc(
phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
GFP_KERNEL);
if (!phba->sli4_hba.hdwq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6427 Failed allocate memory for "
"fast-path Hardware Queue array\n");
goto out_error;
}
/* Prepare hardware queues to take IO buffers */
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
qp = &phba->sli4_hba.hdwq[idx];
spin_lock_init(&qp->io_buf_list_get_lock);
spin_lock_init(&qp->io_buf_list_put_lock);
INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
qp->get_io_bufs = 0;
qp->put_io_bufs = 0;
qp->total_io_bufs = 0;
spin_lock_init(&qp->abts_io_buf_list_lock);
INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
qp->abts_scsi_io_bufs = 0;
qp->abts_nvme_io_bufs = 0;
INIT_LIST_HEAD(&qp->sgl_list);
INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
spin_lock_init(&qp->hdwq_lock);
}
}
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
if (phba->nvmet_support) {
phba->sli4_hba.nvmet_cqset = kcalloc(
phba->cfg_nvmet_mrq,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvmet_cqset) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3121 Fail allocate memory for "
"fast-path CQ set array\n");
goto out_error;
}
phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
phba->cfg_nvmet_mrq,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvmet_mrq_hdr) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3122 Fail allocate memory for "
"fast-path RQ set hdr array\n");
goto out_error;
}
phba->sli4_hba.nvmet_mrq_data = kcalloc(
phba->cfg_nvmet_mrq,
sizeof(struct lpfc_queue *),
GFP_KERNEL);
if (!phba->sli4_hba.nvmet_mrq_data) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3124 Fail allocate memory for "
"fast-path RQ set data array\n");
goto out_error;
}
}
}
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
/* Create HBA Event Queues (EQs) */
for_each_present_cpu(cpu) {
/* We only want to create 1 EQ per vector, even though
* multiple CPUs might be using that vector. so only
* selects the CPUs that are LPFC_CPU_FIRST_IRQ.
*/
cpup = &phba->sli4_hba.cpu_map[cpu];
if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
continue;
/* Get a ptr to the Hardware Queue associated with this CPU */
qp = &phba->sli4_hba.hdwq[cpup->hdwq];
/* Allocate an EQ */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.eq_esize,
phba->sli4_hba.eq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0497 Failed allocate EQ (%d)\n",
cpup->hdwq);
goto out_error;
}
qdesc->qe_valid = 1;
qdesc->hdwq = cpup->hdwq;
qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
qdesc->last_cpu = qdesc->chann;
/* Save the allocated EQ in the Hardware Queue */
qp->hba_eq = qdesc;
eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
list_add(&qdesc->cpu_list, &eqi->list);
}
/* Now we need to populate the other Hardware Queues, that share
* an IRQ vector, with the associated EQ ptr.
*/
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
/* Check for EQ already allocated in previous loop */
if (cpup->flag & LPFC_CPU_FIRST_IRQ)
continue;
/* Check for multiple CPUs per hdwq */
qp = &phba->sli4_hba.hdwq[cpup->hdwq];
if (qp->hba_eq)
continue;
/* We need to share an EQ for this hdwq */
eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
}
/* Allocate IO Path SLI4 CQ/WQs */
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
if (lpfc_alloc_io_wq_cq(phba, idx))
goto out_error;
}
if (phba->nvmet_support) {
for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
cpu = lpfc_find_cpu_handle(phba, idx,
LPFC_FIND_BY_HDWQ);
qdesc = lpfc_sli4_queue_alloc(phba,
LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount,
cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3142 Failed allocate NVME "
"CQ Set (%d)\n", idx);
goto out_error;
}
qdesc->qe_valid = 1;
qdesc->hdwq = idx;
qdesc->chann = cpu;
phba->sli4_hba.nvmet_cqset[idx] = qdesc;
}
}
/*
* Create Slow Path Completion Queues (CQs)
*/
cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
/* Create slow-path Mailbox Command Complete Queue */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0500 Failed allocate slow-path mailbox CQ\n");
goto out_error;
}
qdesc->qe_valid = 1;
phba->sli4_hba.mbx_cq = qdesc;
/* Create slow-path ELS Complete Queue */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0501 Failed allocate slow-path ELS CQ\n");
goto out_error;
}
qdesc->qe_valid = 1;
qdesc->chann = cpu;
phba->sli4_hba.els_cq = qdesc;
/*
* Create Slow Path Work Queues (WQs)
*/
/* Create Mailbox Command Queue */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.mq_esize,
phba->sli4_hba.mq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0505 Failed allocate slow-path MQ\n");
goto out_error;
}
qdesc->chann = cpu;
phba->sli4_hba.mbx_wq = qdesc;
/*
* Create ELS Work Queues
*/
/* Create slow-path ELS Work Queue */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.wq_esize,
phba->sli4_hba.wq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0504 Failed allocate slow-path ELS WQ\n");
goto out_error;
}
qdesc->chann = cpu;
phba->sli4_hba.els_wq = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Create NVME LS Complete Queue */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.cq_esize,
phba->sli4_hba.cq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6079 Failed allocate NVME LS CQ\n");
goto out_error;
}
qdesc->chann = cpu;
qdesc->qe_valid = 1;
phba->sli4_hba.nvmels_cq = qdesc;
/* Create NVME LS Work Queue */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.wq_esize,
phba->sli4_hba.wq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6080 Failed allocate NVME LS WQ\n");
goto out_error;
}
qdesc->chann = cpu;
phba->sli4_hba.nvmels_wq = qdesc;
list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
}
/*
* Create Receive Queue (RQ)
*/
/* Create Receive Queue for header */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.rq_esize,
phba->sli4_hba.rq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0506 Failed allocate receive HRQ\n");
goto out_error;
}
phba->sli4_hba.hdr_rq = qdesc;
/* Create Receive Queue for data */
qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.rq_esize,
phba->sli4_hba.rq_ecount, cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0507 Failed allocate receive DRQ\n");
goto out_error;
}
phba->sli4_hba.dat_rq = qdesc;
if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
phba->nvmet_support) {
for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
cpu = lpfc_find_cpu_handle(phba, idx,
LPFC_FIND_BY_HDWQ);
/* Create NVMET Receive Queue for header */
qdesc = lpfc_sli4_queue_alloc(phba,
LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.rq_esize,
LPFC_NVMET_RQE_DEF_COUNT,
cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3146 Failed allocate "
"receive HRQ\n");
goto out_error;
}
qdesc->hdwq = idx;
phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
/* Only needed for header of RQ pair */
qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
GFP_KERNEL,
cpu_to_node(cpu));
if (qdesc->rqbp == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6131 Failed allocate "
"Header RQBP\n");
goto out_error;
}
/* Put list in known state in case driver load fails. */
INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
/* Create NVMET Receive Queue for data */
qdesc = lpfc_sli4_queue_alloc(phba,
LPFC_DEFAULT_PAGE_SIZE,
phba->sli4_hba.rq_esize,
LPFC_NVMET_RQE_DEF_COUNT,
cpu);
if (!qdesc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3156 Failed allocate "
"receive DRQ\n");
goto out_error;
}
qdesc->hdwq = idx;
phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
}
}
/* Clear NVME stats */
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
}
}
/* Clear SCSI stats */
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
}
}
return 0;
out_error:
lpfc_sli4_queue_destroy(phba);
return -ENOMEM;
}
static inline void
__lpfc_sli4_release_queue(struct lpfc_queue **qp)
{
if (*qp != NULL) {
lpfc_sli4_queue_free(*qp);
*qp = NULL;
}
}
static inline void
lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
{
int idx;
if (*qs == NULL)
return;
for (idx = 0; idx < max; idx++)
__lpfc_sli4_release_queue(&(*qs)[idx]);
kfree(*qs);
*qs = NULL;
}
static inline void
lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
{
struct lpfc_sli4_hdw_queue *hdwq;
struct lpfc_queue *eq;
uint32_t idx;
hdwq = phba->sli4_hba.hdwq;
/* Loop thru all Hardware Queues */
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
/* Free the CQ/WQ corresponding to the Hardware Queue */
lpfc_sli4_queue_free(hdwq[idx].io_cq);
lpfc_sli4_queue_free(hdwq[idx].io_wq);
hdwq[idx].hba_eq = NULL;
hdwq[idx].io_cq = NULL;
hdwq[idx].io_wq = NULL;
if (phba->cfg_xpsgl && !phba->nvmet_support)
lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
}
/* Loop thru all IRQ vectors */
for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
/* Free the EQ corresponding to the IRQ vector */
eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
lpfc_sli4_queue_free(eq);
phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
}
}
/**
* lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to release all the SLI4 queues with the FCoE HBA
* operation.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
void
lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
{
/*
* Set FREE_INIT before beginning to free the queues.
* Wait until the users of queues to acknowledge to
* release queues by clearing FREE_WAIT.
*/
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
spin_unlock_irq(&phba->hbalock);
msleep(20);
spin_lock_irq(&phba->hbalock);
}
spin_unlock_irq(&phba->hbalock);
lpfc_sli4_cleanup_poll_list(phba);
/* Release HBA eqs */
if (phba->sli4_hba.hdwq)
lpfc_sli4_release_hdwq(phba);
if (phba->nvmet_support) {
lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
phba->cfg_nvmet_mrq);
lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
phba->cfg_nvmet_mrq);
lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
phba->cfg_nvmet_mrq);
}
/* Release mailbox command work queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
/* Release ELS work queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
/* Release ELS work queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
/* Release unsolicited receive queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
/* Release ELS complete queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
/* Release NVME LS complete queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
/* Release mailbox command complete queue */
__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
/* Everything on this list has been freed */
INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
/* Done with freeing the queues */
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
spin_unlock_irq(&phba->hbalock);
}
int
lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
{
struct lpfc_rqb *rqbp;
struct lpfc_dmabuf *h_buf;
struct rqb_dmabuf *rqb_buffer;
rqbp = rq->rqbp;
while (!list_empty(&rqbp->rqb_buffer_list)) {
list_remove_head(&rqbp->rqb_buffer_list, h_buf,
struct lpfc_dmabuf, list);
rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
(rqbp->rqb_free_buffer)(phba, rqb_buffer);
rqbp->buffer_count--;
}
return 1;
}
static int
lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
int qidx, uint32_t qtype)
{
struct lpfc_sli_ring *pring;
int rc;
if (!eq || !cq || !wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6085 Fast-path %s (%d) not allocated\n",
((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
return -ENOMEM;
}
/* create the Cq first */
rc = lpfc_cq_create(phba, cq, eq,
(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6086 Failed setup of CQ (%d), rc = 0x%x\n",
qidx, (uint32_t)rc);
return rc;
}
if (qtype != LPFC_MBOX) {
/* Setup cq_map for fast lookup */
if (cq_map)
*cq_map = cq->queue_id;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
qidx, cq->queue_id, qidx, eq->queue_id);
/* create the wq */
rc = lpfc_wq_create(phba, wq, cq, qtype);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
qidx, (uint32_t)rc);
/* no need to tear down cq - caller will do so */
return rc;
}
/* Bind this CQ/WQ to the NVME ring */
pring = wq->pring;
pring->sli.sli4.wqp = (void *)wq;
cq->pring = pring;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
} else {
rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0539 Failed setup of slow-path MQ: "
"rc = 0x%x\n", rc);
/* no need to tear down cq - caller will do so */
return rc;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
phba->sli4_hba.mbx_wq->queue_id,
phba->sli4_hba.mbx_cq->queue_id);
}
return 0;
}
/**
* lpfc_setup_cq_lookup - Setup the CQ lookup table
* @phba: pointer to lpfc hba data structure.
*
* This routine will populate the cq_lookup table by all
* available CQ queue_id's.
**/
static void
lpfc_setup_cq_lookup(struct lpfc_hba *phba)
{
struct lpfc_queue *eq, *childq;
int qidx;
memset(phba->sli4_hba.cq_lookup, 0,
(sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
/* Loop thru all IRQ vectors */
for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
/* Get the EQ corresponding to the IRQ vector */
eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
if (!eq)
continue;
/* Loop through all CQs associated with that EQ */
list_for_each_entry(childq, &eq->child_list, list) {
if (childq->queue_id > phba->sli4_hba.cq_max)
continue;
if (childq->subtype == LPFC_IO)
phba->sli4_hba.cq_lookup[childq->queue_id] =
childq;
}
}
}
/**
* lpfc_sli4_queue_setup - Set up all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up all the SLI4 queues for the FCoE HBA
* operation.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_sli4_queue_setup(struct lpfc_hba *phba)
{
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
struct lpfc_vector_map_info *cpup;
struct lpfc_sli4_hdw_queue *qp;
LPFC_MBOXQ_t *mboxq;
int qidx, cpu;
uint32_t length, usdelay;
int rc = -ENOMEM;
/* Check for dual-ULP support */
mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3249 Unable to allocate memory for "
"QUERY_FW_CFG mailbox command\n");
return -ENOMEM;
}
length = (sizeof(struct lpfc_mbx_query_fw_config) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_QUERY_FW_CFG,
length, LPFC_SLI4_MBX_EMBED);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3250 QUERY_FW_CFG mailbox failed with status "
"x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
mempool_free(mboxq, phba->mbox_mem_pool);
rc = -ENXIO;
goto out_error;
}
phba->sli4_hba.fw_func_mode =
mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
phba->sli4_hba.physical_port =
mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
mempool_free(mboxq, phba->mbox_mem_pool);
/*
* Set up HBA Event Queues (EQs)
*/
qp = phba->sli4_hba.hdwq;
/* Set up HBA event queue */
if (!qp) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3147 Fast-path EQs not allocated\n");
rc = -ENOMEM;
goto out_error;
}
/* Loop thru all IRQ vectors */
for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
/* Create HBA Event Queues (EQs) in order */
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
/* Look for the CPU thats using that vector with
* LPFC_CPU_FIRST_IRQ set.
*/
if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
continue;
if (qidx != cpup->eq)
continue;
/* Create an EQ for that vector */
rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
phba->cfg_fcp_imax);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0523 Failed setup of fast-path"
" EQ (%d), rc = 0x%x\n",
cpup->eq, (uint32_t)rc);
goto out_destroy;
}
/* Save the EQ for that vector in the hba_eq_hdl */
phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
qp[cpup->hdwq].hba_eq;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2584 HBA EQ setup: queue[%d]-id=%d\n",
cpup->eq,
qp[cpup->hdwq].hba_eq->queue_id);
}
}
/* Loop thru all Hardware Queues */
for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
cpup = &phba->sli4_hba.cpu_map[cpu];
/* Create the CQ/WQ corresponding to the Hardware Queue */
rc = lpfc_create_wq_cq(phba,
phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
qp[qidx].io_cq,
qp[qidx].io_wq,
&phba->sli4_hba.hdwq[qidx].io_cq_map,
qidx,
LPFC_IO);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0535 Failed to setup fastpath "
"IO WQ/CQ (%d), rc = 0x%x\n",
qidx, (uint32_t)rc);
goto out_destroy;
}
}
/*
* Set up Slow Path Complete Queues (CQs)
*/
/* Set up slow-path MBOX CQ/MQ */
if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0528 %s not allocated\n",
phba->sli4_hba.mbx_cq ?
"Mailbox WQ" : "Mailbox CQ");
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
phba->sli4_hba.mbx_cq,
phba->sli4_hba.mbx_wq,
NULL, 0, LPFC_MBOX);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
if (phba->nvmet_support) {
if (!phba->sli4_hba.nvmet_cqset) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3165 Fast-path NVME CQ Set "
"array not allocated\n");
rc = -ENOMEM;
goto out_destroy;
}
if (phba->cfg_nvmet_mrq > 1) {
rc = lpfc_cq_create_set(phba,
phba->sli4_hba.nvmet_cqset,
qp,
LPFC_WCQ, LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3164 Failed setup of NVME CQ "
"Set, rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
} else {
/* Set up NVMET Receive Complete Queue */
rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
qp[0].hba_eq,
LPFC_WCQ, LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6089 Failed setup NVMET CQ: "
"rc = 0x%x\n", (uint32_t)rc);
goto out_destroy;
}
phba->sli4_hba.nvmet_cqset[0]->chann = 0;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"6090 NVMET CQ setup: cq-id=%d, "
"parent eq-id=%d\n",
phba->sli4_hba.nvmet_cqset[0]->queue_id,
qp[0].hba_eq->queue_id);
}
}
/* Set up slow-path ELS WQ/CQ */
if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0530 ELS %s not allocated\n",
phba->sli4_hba.els_cq ? "WQ" : "CQ");
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
phba->sli4_hba.els_cq,
phba->sli4_hba.els_wq,
NULL, 0, LPFC_ELS);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
phba->sli4_hba.els_wq->queue_id,
phba->sli4_hba.els_cq->queue_id);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Set up NVME LS Complete Queue */
if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6091 LS %s not allocated\n",
phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
phba->sli4_hba.nvmels_cq,
phba->sli4_hba.nvmels_wq,
NULL, 0, LPFC_NVME_LS);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0526 Failed setup of NVVME LS WQ/CQ: "
"rc = 0x%x\n", (uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"6096 ELS WQ setup: wq-id=%d, "
"parent cq-id=%d\n",
phba->sli4_hba.nvmels_wq->queue_id,
phba->sli4_hba.nvmels_cq->queue_id);
}
/*
* Create NVMET Receive Queue (RQ)
*/
if (phba->nvmet_support) {
if ((!phba->sli4_hba.nvmet_cqset) ||
(!phba->sli4_hba.nvmet_mrq_hdr) ||
(!phba->sli4_hba.nvmet_mrq_data)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6130 MRQ CQ Queues not "
"allocated\n");
rc = -ENOMEM;
goto out_destroy;
}
if (phba->cfg_nvmet_mrq > 1) {
rc = lpfc_mrq_create(phba,
phba->sli4_hba.nvmet_mrq_hdr,
phba->sli4_hba.nvmet_mrq_data,
phba->sli4_hba.nvmet_cqset,
LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6098 Failed setup of NVMET "
"MRQ: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
} else {
rc = lpfc_rq_create(phba,
phba->sli4_hba.nvmet_mrq_hdr[0],
phba->sli4_hba.nvmet_mrq_data[0],
phba->sli4_hba.nvmet_cqset[0],
LPFC_NVMET);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6057 Failed setup of NVMET "
"Receive Queue: rc = 0x%x\n",
(uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(
phba, KERN_INFO, LOG_INIT,
"6099 NVMET RQ setup: hdr-rq-id=%d, "
"dat-rq-id=%d parent cq-id=%d\n",
phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
phba->sli4_hba.nvmet_cqset[0]->queue_id);
}
}
if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0540 Receive Queue not allocated\n");
rc = -ENOMEM;
goto out_destroy;
}
rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
phba->sli4_hba.els_cq, LPFC_USOL);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0541 Failed setup of Receive Queue: "
"rc = 0x%x\n", (uint32_t)rc);
goto out_destroy;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
"parent cq-id=%d\n",
phba->sli4_hba.hdr_rq->queue_id,
phba->sli4_hba.dat_rq->queue_id,
phba->sli4_hba.els_cq->queue_id);
if (phba->cfg_fcp_imax)
usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
else
usdelay = 0;
for (qidx = 0; qidx < phba->cfg_irq_chann;
qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
usdelay);
if (phba->sli4_hba.cq_max) {
kfree(phba->sli4_hba.cq_lookup);
phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
sizeof(struct lpfc_queue *), GFP_KERNEL);
if (!phba->sli4_hba.cq_lookup) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0549 Failed setup of CQ Lookup table: "
"size 0x%x\n", phba->sli4_hba.cq_max);
rc = -ENOMEM;
goto out_destroy;
}
lpfc_setup_cq_lookup(phba);
}
return 0;
out_destroy:
lpfc_sli4_queue_unset(phba);
out_error:
return rc;
}
/**
* lpfc_sli4_queue_unset - Unset all the SLI4 queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset all the SLI4 queues with the FCoE HBA
* operation.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
void
lpfc_sli4_queue_unset(struct lpfc_hba *phba)
{
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_queue *eq;
int qidx;
/* Unset mailbox command work queue */
if (phba->sli4_hba.mbx_wq)
lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
/* Unset NVME LS work queue */
if (phba->sli4_hba.nvmels_wq)
lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
/* Unset ELS work queue */
if (phba->sli4_hba.els_wq)
lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
/* Unset unsolicited receive queue */
if (phba->sli4_hba.hdr_rq)
lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
phba->sli4_hba.dat_rq);
/* Unset mailbox command complete queue */
if (phba->sli4_hba.mbx_cq)
lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
/* Unset ELS complete queue */
if (phba->sli4_hba.els_cq)
lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
/* Unset NVME LS complete queue */
if (phba->sli4_hba.nvmels_cq)
lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
if (phba->nvmet_support) {
/* Unset NVMET MRQ queue */
if (phba->sli4_hba.nvmet_mrq_hdr) {
for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
lpfc_rq_destroy(
phba,
phba->sli4_hba.nvmet_mrq_hdr[qidx],
phba->sli4_hba.nvmet_mrq_data[qidx]);
}
/* Unset NVMET CQ Set complete queue */
if (phba->sli4_hba.nvmet_cqset) {
for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
lpfc_cq_destroy(
phba, phba->sli4_hba.nvmet_cqset[qidx]);
}
}
/* Unset fast-path SLI4 queues */
if (phba->sli4_hba.hdwq) {
/* Loop thru all Hardware Queues */
for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
/* Destroy the CQ/WQ corresponding to Hardware Queue */
qp = &phba->sli4_hba.hdwq[qidx];
lpfc_wq_destroy(phba, qp->io_wq);
lpfc_cq_destroy(phba, qp->io_cq);
}
/* Loop thru all IRQ vectors */
for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
/* Destroy the EQ corresponding to the IRQ vector */
eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
lpfc_eq_destroy(phba, eq);
}
}
kfree(phba->sli4_hba.cq_lookup);
phba->sli4_hba.cq_lookup = NULL;
phba->sli4_hba.cq_max = 0;
}
/**
* lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to allocate and set up a pool of completion queue
* events. The body of the completion queue event is a completion queue entry
* CQE. For now, this pool is used for the interrupt service routine to queue
* the following HBA completion queue events for the worker thread to process:
* - Mailbox asynchronous events
* - Receive queue completion unsolicited events
* Later, this can be used for all the slow-path events.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
**/
static int
lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event;
int i;
for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
if (!cq_event)
goto out_pool_create_fail;
list_add_tail(&cq_event->list,
&phba->sli4_hba.sp_cqe_event_pool);
}
return 0;
out_pool_create_fail:
lpfc_sli4_cq_event_pool_destroy(phba);
return -ENOMEM;
}
/**
* lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to free the pool of completion queue events at
* driver unload time. Note that, it is the responsibility of the driver
* cleanup routine to free all the outstanding completion-queue events
* allocated from this pool back into the pool before invoking this routine
* to destroy the pool.
**/
static void
lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event, *next_cq_event;
list_for_each_entry_safe(cq_event, next_cq_event,
&phba->sli4_hba.sp_cqe_event_pool, list) {
list_del(&cq_event->list);
kfree(cq_event);
}
}
/**
* __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is the lock free version of the API invoked to allocate a
* completion-queue event from the free pool.
*
* Return: Pointer to the newly allocated completion-queue event if successful
* NULL otherwise.
**/
struct lpfc_cq_event *
__lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event = NULL;
list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
struct lpfc_cq_event, list);
return cq_event;
}
/**
* lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is the lock version of the API invoked to allocate a
* completion-queue event from the free pool.
*
* Return: Pointer to the newly allocated completion-queue event if successful
* NULL otherwise.
**/
struct lpfc_cq_event *
lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event;
unsigned long iflags;
spin_lock_irqsave(&phba->hbalock, iflags);
cq_event = __lpfc_sli4_cq_event_alloc(phba);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return cq_event;
}
/**
* __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
* @phba: pointer to lpfc hba data structure.
* @cq_event: pointer to the completion queue event to be freed.
*
* This routine is the lock free version of the API invoked to release a
* completion-queue event back into the free pool.
**/
void
__lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
struct lpfc_cq_event *cq_event)
{
list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
}
/**
* lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
* @phba: pointer to lpfc hba data structure.
* @cq_event: pointer to the completion queue event to be freed.
*
* This routine is the lock version of the API invoked to release a
* completion-queue event back into the free pool.
**/
void
lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
struct lpfc_cq_event *cq_event)
{
unsigned long iflags;
spin_lock_irqsave(&phba->hbalock, iflags);
__lpfc_sli4_cq_event_release(phba, cq_event);
spin_unlock_irqrestore(&phba->hbalock, iflags);
}
/**
* lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
* @phba: pointer to lpfc hba data structure.
*
* This routine is to free all the pending completion-queue events to the
* back into the free pool for device reset.
**/
static void
lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
{
LIST_HEAD(cqelist);
struct lpfc_cq_event *cqe;
unsigned long iflags;
/* Retrieve all the pending WCQEs from pending WCQE lists */
spin_lock_irqsave(&phba->hbalock, iflags);
/* Pending FCP XRI abort events */
list_splice_init(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
&cqelist);
/* Pending ELS XRI abort events */
list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
&cqelist);
/* Pending asynnc events */
list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
&cqelist);
spin_unlock_irqrestore(&phba->hbalock, iflags);
while (!list_empty(&cqelist)) {
list_remove_head(&cqelist, cqe, struct lpfc_cq_event, list);
lpfc_sli4_cq_event_release(phba, cqe);
}
}
/**
* lpfc_pci_function_reset - Reset pci function.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to request a PCI function reset. It will destroys
* all resources assigned to the PCI function which originates this request.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_pci_function_reset(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
uint32_t rc = 0, if_type;
uint32_t shdr_status, shdr_add_status;
uint32_t rdy_chk;
uint32_t port_reset = 0;
union lpfc_sli4_cfg_shdr *shdr;
struct lpfc_register reg_data;
uint16_t devid;
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0494 Unable to allocate memory for "
"issuing SLI_FUNCTION_RESET mailbox "
"command\n");
return -ENOMEM;
}
/* Setup PCI function reset mailbox-ioctl command */
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
LPFC_SLI4_MBX_EMBED);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
&shdr->response);
mempool_free(mboxq, phba->mbox_mem_pool);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0495 SLI_FUNCTION_RESET mailbox "
"failed with status x%x add_status x%x,"
" mbx status x%x\n",
shdr_status, shdr_add_status, rc);
rc = -ENXIO;
}
break;
case LPFC_SLI_INTF_IF_TYPE_2:
case LPFC_SLI_INTF_IF_TYPE_6:
wait:
/*
* Poll the Port Status Register and wait for RDY for
* up to 30 seconds. If the port doesn't respond, treat
* it as an error.
*/
for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
if (lpfc_readl(phba->sli4_hba.u.if_type2.
STATUSregaddr, &reg_data.word0)) {
rc = -ENODEV;
goto out;
}
if (bf_get(lpfc_sliport_status_rdy, &reg_data))
break;
msleep(20);
}
if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
phba->work_status[0] = readl(
phba->sli4_hba.u.if_type2.ERR1regaddr);
phba->work_status[1] = readl(
phba->sli4_hba.u.if_type2.ERR2regaddr);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2890 Port not ready, port status reg "
"0x%x error 1=0x%x, error 2=0x%x\n",
reg_data.word0,
phba->work_status[0],
phba->work_status[1]);
rc = -ENODEV;
goto out;
}
if (!port_reset) {
/*
* Reset the port now
*/
reg_data.word0 = 0;
bf_set(lpfc_sliport_ctrl_end, &reg_data,
LPFC_SLIPORT_LITTLE_ENDIAN);
bf_set(lpfc_sliport_ctrl_ip, &reg_data,
LPFC_SLIPORT_INIT_PORT);
writel(reg_data.word0, phba->sli4_hba.u.if_type2.
CTRLregaddr);
/* flush */
pci_read_config_word(phba->pcidev,
PCI_DEVICE_ID, &devid);
port_reset = 1;
msleep(20);
goto wait;
} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
rc = -ENODEV;
goto out;
}
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
break;
}
out:
/* Catch the not-ready port failure after a port reset. */
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3317 HBA not functional: IP Reset Failed "
"try: echo fw_reset > board_mode\n");
rc = -ENODEV;
}
return rc;
}
/**
* lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to set up the PCI device memory space for device
* with SLI-4 interface spec.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
{
struct pci_dev *pdev = phba->pcidev;
unsigned long bar0map_len, bar1map_len, bar2map_len;
int error;
uint32_t if_type;
if (!pdev)
return -ENODEV;
/* Set the device DMA mask size */
error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (error)
error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (error)
return error;
/*
* The BARs and register set definitions and offset locations are
* dependent on the if_type.
*/
if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
&phba->sli4_hba.sli_intf.word0)) {
return -ENODEV;
}
/* There is no SLI3 failback for SLI4 devices. */
if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
LPFC_SLI_INTF_VALID) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2894 SLI_INTF reg contents invalid "
"sli_intf reg 0x%x\n",
phba->sli4_hba.sli_intf.word0);
return -ENODEV;
}
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
/*
* Get the bus address of SLI4 device Bar regions and the
* number of bytes required by each mapping. The mapping of the
* particular PCI BARs regions is dependent on the type of
* SLI4 device.
*/
if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
/*
* Map SLI4 PCI Config Space Register base to a kernel virtual
* addr
*/
phba->sli4_hba.conf_regs_memmap_p =
ioremap(phba->pci_bar0_map, bar0map_len);
if (!phba->sli4_hba.conf_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLI4 PCI config "
"registers.\n");
return -ENODEV;
}
phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
/* Set up BAR0 PCI config space register memory map */
lpfc_sli4_bar0_register_memmap(phba, if_type);
} else {
phba->pci_bar0_map = pci_resource_start(pdev, 1);
bar0map_len = pci_resource_len(pdev, 1);
if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
dev_printk(KERN_ERR, &pdev->dev,
"FATAL - No BAR0 mapping for SLI4, if_type 2\n");
return -ENODEV;
}
phba->sli4_hba.conf_regs_memmap_p =
ioremap(phba->pci_bar0_map, bar0map_len);
if (!phba->sli4_hba.conf_regs_memmap_p) {
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLI4 PCI config "
"registers.\n");
return -ENODEV;
}
lpfc_sli4_bar0_register_memmap(phba, if_type);
}
if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
/*
* Map SLI4 if type 0 HBA Control Register base to a
* kernel virtual address and setup the registers.
*/
phba->pci_bar1_map = pci_resource_start(pdev,
PCI_64BIT_BAR2);
bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
phba->sli4_hba.ctrl_regs_memmap_p =
ioremap(phba->pci_bar1_map,
bar1map_len);
if (!phba->sli4_hba.ctrl_regs_memmap_p) {
dev_err(&pdev->dev,
"ioremap failed for SLI4 HBA "
"control registers.\n");
error = -ENOMEM;
goto out_iounmap_conf;
}
phba->pci_bar2_memmap_p =
phba->sli4_hba.ctrl_regs_memmap_p;
lpfc_sli4_bar1_register_memmap(phba, if_type);
} else {
error = -ENOMEM;
goto out_iounmap_conf;
}
}
if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
(pci_resource_start(pdev, PCI_64BIT_BAR2))) {
/*
* Map SLI4 if type 6 HBA Doorbell Register base to a kernel
* virtual address and setup the registers.
*/
phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
phba->sli4_hba.drbl_regs_memmap_p =
ioremap(phba->pci_bar1_map, bar1map_len);
if (!phba->sli4_hba.drbl_regs_memmap_p) {
dev_err(&pdev->dev,
"ioremap failed for SLI4 HBA doorbell registers.\n");
error = -ENOMEM;
goto out_iounmap_conf;
}
phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
lpfc_sli4_bar1_register_memmap(phba, if_type);
}
if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
/*
* Map SLI4 if type 0 HBA Doorbell Register base to
* a kernel virtual address and setup the registers.
*/
phba->pci_bar2_map = pci_resource_start(pdev,
PCI_64BIT_BAR4);
bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
phba->sli4_hba.drbl_regs_memmap_p =
ioremap(phba->pci_bar2_map,
bar2map_len);
if (!phba->sli4_hba.drbl_regs_memmap_p) {
dev_err(&pdev->dev,
"ioremap failed for SLI4 HBA"
" doorbell registers.\n");
error = -ENOMEM;
goto out_iounmap_ctrl;
}
phba->pci_bar4_memmap_p =
phba->sli4_hba.drbl_regs_memmap_p;
error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
if (error)
goto out_iounmap_all;
} else {
error = -ENOMEM;
goto out_iounmap_all;
}
}
if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
pci_resource_start(pdev, PCI_64BIT_BAR4)) {
/*
* Map SLI4 if type 6 HBA DPP Register base to a kernel
* virtual address and setup the registers.
*/
phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
phba->sli4_hba.dpp_regs_memmap_p =
ioremap(phba->pci_bar2_map, bar2map_len);
if (!phba->sli4_hba.dpp_regs_memmap_p) {
dev_err(&pdev->dev,
"ioremap failed for SLI4 HBA dpp registers.\n");
error = -ENOMEM;
goto out_iounmap_ctrl;
}
phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
}
/* Set up the EQ/CQ register handeling functions now */
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
case LPFC_SLI_INTF_IF_TYPE_2:
phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
break;
case LPFC_SLI_INTF_IF_TYPE_6:
phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
break;
default:
break;
}
return 0;
out_iounmap_all:
iounmap(phba->sli4_hba.drbl_regs_memmap_p);
out_iounmap_ctrl:
iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
out_iounmap_conf:
iounmap(phba->sli4_hba.conf_regs_memmap_p);
return error;
}
/**
* lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the PCI device memory space for device
* with SLI-4 interface spec.
**/
static void
lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
{
uint32_t if_type;
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
iounmap(phba->sli4_hba.drbl_regs_memmap_p);
iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
iounmap(phba->sli4_hba.conf_regs_memmap_p);
break;
case LPFC_SLI_INTF_IF_TYPE_2:
iounmap(phba->sli4_hba.conf_regs_memmap_p);
break;
case LPFC_SLI_INTF_IF_TYPE_6:
iounmap(phba->sli4_hba.drbl_regs_memmap_p);
iounmap(phba->sli4_hba.conf_regs_memmap_p);
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
dev_printk(KERN_ERR, &phba->pcidev->dev,
"FATAL - unsupported SLI4 interface type - %d\n",
if_type);
break;
}
}
/**
* lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI-X interrupt vectors to device
* with SLI-3 interface specs.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli_enable_msix(struct lpfc_hba *phba)
{
int rc;
LPFC_MBOXQ_t *pmb;
/* Set up MSI-X multi-message vectors */
rc = pci_alloc_irq_vectors(phba->pcidev,
LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
if (rc < 0) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0420 PCI enable MSI-X failed (%d)\n", rc);
goto vec_fail_out;
}
/*
* Assign MSI-X vectors to interrupt handlers
*/
/* vector-0 is associated to slow-path handler */
rc = request_irq(pci_irq_vector(phba->pcidev, 0),
&lpfc_sli_sp_intr_handler, 0,
LPFC_SP_DRIVER_HANDLER_NAME, phba);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0421 MSI-X slow-path request_irq failed "
"(%d)\n", rc);
goto msi_fail_out;
}
/* vector-1 is associated to fast-path handler */
rc = request_irq(pci_irq_vector(phba->pcidev, 1),
&lpfc_sli_fp_intr_handler, 0,
LPFC_FP_DRIVER_HANDLER_NAME, phba);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0429 MSI-X fast-path request_irq failed "
"(%d)\n", rc);
goto irq_fail_out;
}
/*
* Configure HBA MSI-X attention conditions to messages
*/
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
rc = -ENOMEM;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0474 Unable to allocate memory for issuing "
"MBOX_CONFIG_MSI command\n");
goto mem_fail_out;
}
rc = lpfc_config_msi(phba, pmb);
if (rc)
goto mbx_fail_out;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
"0351 Config MSI mailbox command failed, "
"mbxCmd x%x, mbxStatus x%x\n",
pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
goto mbx_fail_out;
}
/* Free memory allocated for mailbox command */
mempool_free(pmb, phba->mbox_mem_pool);
return rc;
mbx_fail_out:
/* Free memory allocated for mailbox command */
mempool_free(pmb, phba->mbox_mem_pool);
mem_fail_out:
/* free the irq already requested */
free_irq(pci_irq_vector(phba->pcidev, 1), phba);
irq_fail_out:
/* free the irq already requested */
free_irq(pci_irq_vector(phba->pcidev, 0), phba);
msi_fail_out:
/* Unconfigure MSI-X capability structure */
pci_free_irq_vectors(phba->pcidev);
vec_fail_out:
return rc;
}
/**
* lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI interrupt mode to device with
* SLI-3 interface spec. The kernel function pci_enable_msi() is called to
* enable the MSI vector. The device driver is responsible for calling the
* request_irq() to register MSI vector with a interrupt the handler, which
* is done in this function.
*
* Return codes
* 0 - successful
* other values - error
*/
static int
lpfc_sli_enable_msi(struct lpfc_hba *phba)
{
int rc;
rc = pci_enable_msi(phba->pcidev);
if (!rc)
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0462 PCI enable MSI mode success.\n");
else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0471 PCI enable MSI mode failed (%d)\n", rc);
return rc;
}
rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
0, LPFC_DRIVER_NAME, phba);
if (rc) {
pci_disable_msi(phba->pcidev);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0478 MSI request_irq failed (%d)\n", rc);
}
return rc;
}
/**
* lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable device interrupt and associate driver's
* interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
* spec. Depends on the interrupt mode configured to the driver, the driver
* will try to fallback from the configured interrupt mode to an interrupt
* mode which is supported by the platform, kernel, and device in the order
* of:
* MSI-X -> MSI -> IRQ.
*
* Return codes
* 0 - successful
* other values - error
**/
static uint32_t
lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
{
uint32_t intr_mode = LPFC_INTR_ERROR;
int retval;
if (cfg_mode == 2) {
/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
if (!retval) {
/* Now, try to enable MSI-X interrupt mode */
retval = lpfc_sli_enable_msix(phba);
if (!retval) {
/* Indicate initialization to MSI-X mode */
phba->intr_type = MSIX;
intr_mode = 2;
}
}
}
/* Fallback to MSI if MSI-X initialization failed */
if (cfg_mode >= 1 && phba->intr_type == NONE) {
retval = lpfc_sli_enable_msi(phba);
if (!retval) {
/* Indicate initialization to MSI mode */
phba->intr_type = MSI;
intr_mode = 1;
}
}
/* Fallback to INTx if both MSI-X/MSI initalization failed */
if (phba->intr_type == NONE) {
retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
IRQF_SHARED, LPFC_DRIVER_NAME, phba);
if (!retval) {
/* Indicate initialization to INTx mode */
phba->intr_type = INTx;
intr_mode = 0;
}
}
return intr_mode;
}
/**
* lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable device interrupt and disassociate the
* driver's interrupt handler(s) from interrupt vector(s) to device with
* SLI-3 interface spec. Depending on the interrupt mode, the driver will
* release the interrupt vector(s) for the message signaled interrupt.
**/
static void
lpfc_sli_disable_intr(struct lpfc_hba *phba)
{
int nr_irqs, i;
if (phba->intr_type == MSIX)
nr_irqs = LPFC_MSIX_VECTORS;
else
nr_irqs = 1;
for (i = 0; i < nr_irqs; i++)
free_irq(pci_irq_vector(phba->pcidev, i), phba);
pci_free_irq_vectors(phba->pcidev);
/* Reset interrupt management states */
phba->intr_type = NONE;
phba->sli.slistat.sli_intr = 0;
}
/**
* lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
* @phba: pointer to lpfc hba data structure.
* @id: EQ vector index or Hardware Queue index
* @match: LPFC_FIND_BY_EQ = match by EQ
* LPFC_FIND_BY_HDWQ = match by Hardware Queue
* Return the CPU that matches the selection criteria
*/
static uint16_t
lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
{
struct lpfc_vector_map_info *cpup;
int cpu;
/* Loop through all CPUs */
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
/* If we are matching by EQ, there may be multiple CPUs using
* using the same vector, so select the one with
* LPFC_CPU_FIRST_IRQ set.
*/
if ((match == LPFC_FIND_BY_EQ) &&
(cpup->flag & LPFC_CPU_FIRST_IRQ) &&
(cpup->irq != LPFC_VECTOR_MAP_EMPTY) &&
(cpup->eq == id))
return cpu;
/* If matching by HDWQ, select the first CPU that matches */
if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
return cpu;
}
return 0;
}
#ifdef CONFIG_X86
/**
* lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
* @phba: pointer to lpfc hba data structure.
* @cpu: CPU map index
* @phys_id: CPU package physical id
* @core_id: CPU core id
*/
static int
lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
uint16_t phys_id, uint16_t core_id)
{
struct lpfc_vector_map_info *cpup;
int idx;
for_each_present_cpu(idx) {
cpup = &phba->sli4_hba.cpu_map[idx];
/* Does the cpup match the one we are looking for */
if ((cpup->phys_id == phys_id) &&
(cpup->core_id == core_id) &&
(cpu != idx))
return 1;
}
return 0;
}
#endif
/**
* lpfc_cpu_affinity_check - Check vector CPU affinity mappings
* @phba: pointer to lpfc hba data structure.
* @vectors: number of msix vectors allocated.
*
* The routine will figure out the CPU affinity assignment for every
* MSI-X vector allocated for the HBA.
* In addition, the CPU to IO channel mapping will be calculated
* and the phba->sli4_hba.cpu_map array will reflect this.
*/
static void
lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
{
int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
int max_phys_id, min_phys_id;
int max_core_id, min_core_id;
struct lpfc_vector_map_info *cpup;
struct lpfc_vector_map_info *new_cpup;
const struct cpumask *maskp;
#ifdef CONFIG_X86
struct cpuinfo_x86 *cpuinfo;
#endif
/* Init cpu_map array */
for_each_possible_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
cpup->eq = LPFC_VECTOR_MAP_EMPTY;
cpup->irq = LPFC_VECTOR_MAP_EMPTY;
cpup->flag = 0;
}
max_phys_id = 0;
min_phys_id = LPFC_VECTOR_MAP_EMPTY;
max_core_id = 0;
min_core_id = LPFC_VECTOR_MAP_EMPTY;
/* Update CPU map with physical id and core id of each CPU */
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
#ifdef CONFIG_X86
cpuinfo = &cpu_data(cpu);
cpup->phys_id = cpuinfo->phys_proc_id;
cpup->core_id = cpuinfo->cpu_core_id;
if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
cpup->flag |= LPFC_CPU_MAP_HYPER;
#else
/* No distinction between CPUs for other platforms */
cpup->phys_id = 0;
cpup->core_id = cpu;
#endif
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3328 CPU %d physid %d coreid %d flag x%x\n",
cpu, cpup->phys_id, cpup->core_id, cpup->flag);
if (cpup->phys_id > max_phys_id)
max_phys_id = cpup->phys_id;
if (cpup->phys_id < min_phys_id)
min_phys_id = cpup->phys_id;
if (cpup->core_id > max_core_id)
max_core_id = cpup->core_id;
if (cpup->core_id < min_core_id)
min_core_id = cpup->core_id;
}
for_each_possible_cpu(i) {
struct lpfc_eq_intr_info *eqi =
per_cpu_ptr(phba->sli4_hba.eq_info, i);
INIT_LIST_HEAD(&eqi->list);
eqi->icnt = 0;
}
/* This loop sets up all CPUs that are affinitized with a
* irq vector assigned to the driver. All affinitized CPUs
* will get a link to that vectors IRQ and EQ.
*
* NULL affinity mask handling:
* If irq count is greater than one, log an error message.
* If the null mask is received for the first irq, find the
* first present cpu, and assign the eq index to ensure at
* least one EQ is assigned.
*/
for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
/* Get a CPU mask for all CPUs affinitized to this vector */
maskp = pci_irq_get_affinity(phba->pcidev, idx);
if (!maskp) {
if (phba->cfg_irq_chann > 1)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3329 No affinity mask found "
"for vector %d (%d)\n",
idx, phba->cfg_irq_chann);
if (!idx) {
cpu = cpumask_first(cpu_present_mask);
cpup = &phba->sli4_hba.cpu_map[cpu];
cpup->eq = idx;
cpup->irq = pci_irq_vector(phba->pcidev, idx);
cpup->flag |= LPFC_CPU_FIRST_IRQ;
}
break;
}
i = 0;
/* Loop through all CPUs associated with vector idx */
for_each_cpu_and(cpu, maskp, cpu_present_mask) {
/* Set the EQ index and IRQ for that vector */
cpup = &phba->sli4_hba.cpu_map[cpu];
cpup->eq = idx;
cpup->irq = pci_irq_vector(phba->pcidev, idx);
/* If this is the first CPU thats assigned to this
* vector, set LPFC_CPU_FIRST_IRQ.
*/
if (!i)
cpup->flag |= LPFC_CPU_FIRST_IRQ;
i++;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3336 Set Affinity: CPU %d "
"irq %d eq %d flag x%x\n",
cpu, cpup->irq, cpup->eq, cpup->flag);
}
}
/* After looking at each irq vector assigned to this pcidev, its
* possible to see that not ALL CPUs have been accounted for.
* Next we will set any unassigned (unaffinitized) cpu map
* entries to a IRQ on the same phys_id.
*/
first_cpu = cpumask_first(cpu_present_mask);
start_cpu = first_cpu;
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
/* Is this CPU entry unassigned */
if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
/* Mark CPU as IRQ not assigned by the kernel */
cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
/* If so, find a new_cpup thats on the the SAME
* phys_id as cpup. start_cpu will start where we
* left off so all unassigned entries don't get assgined
* the IRQ of the first entry.
*/
new_cpu = start_cpu;
for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
(new_cpup->irq != LPFC_VECTOR_MAP_EMPTY) &&
(new_cpup->phys_id == cpup->phys_id))
goto found_same;
new_cpu = cpumask_next(
new_cpu, cpu_present_mask);
if (new_cpu == nr_cpumask_bits)
new_cpu = first_cpu;
}
/* At this point, we leave the CPU as unassigned */
continue;
found_same:
/* We found a matching phys_id, so copy the IRQ info */
cpup->eq = new_cpup->eq;
cpup->irq = new_cpup->irq;
/* Bump start_cpu to the next slot to minmize the
* chance of having multiple unassigned CPU entries
* selecting the same IRQ.
*/
start_cpu = cpumask_next(new_cpu, cpu_present_mask);
if (start_cpu == nr_cpumask_bits)
start_cpu = first_cpu;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3337 Set Affinity: CPU %d "
"irq %d from id %d same "
"phys_id (%d)\n",
cpu, cpup->irq, new_cpu, cpup->phys_id);
}
}
/* Set any unassigned cpu map entries to a IRQ on any phys_id */
start_cpu = first_cpu;
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
/* Is this entry unassigned */
if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
/* Mark it as IRQ not assigned by the kernel */
cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
/* If so, find a new_cpup thats on ANY phys_id
* as the cpup. start_cpu will start where we
* left off so all unassigned entries don't get
* assigned the IRQ of the first entry.
*/
new_cpu = start_cpu;
for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
(new_cpup->irq != LPFC_VECTOR_MAP_EMPTY))
goto found_any;
new_cpu = cpumask_next(
new_cpu, cpu_present_mask);
if (new_cpu == nr_cpumask_bits)
new_cpu = first_cpu;
}
/* We should never leave an entry unassigned */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3339 Set Affinity: CPU %d "
"irq %d UNASSIGNED\n",
cpup->hdwq, cpup->irq);
continue;
found_any:
/* We found an available entry, copy the IRQ info */
cpup->eq = new_cpup->eq;
cpup->irq = new_cpup->irq;
/* Bump start_cpu to the next slot to minmize the
* chance of having multiple unassigned CPU entries
* selecting the same IRQ.
*/
start_cpu = cpumask_next(new_cpu, cpu_present_mask);
if (start_cpu == nr_cpumask_bits)
start_cpu = first_cpu;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3338 Set Affinity: CPU %d "
"irq %d from id %d (%d/%d)\n",
cpu, cpup->irq, new_cpu,
new_cpup->phys_id, new_cpup->core_id);
}
}
/* Assign hdwq indices that are unique across all cpus in the map
* that are also FIRST_CPUs.
*/
idx = 0;
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
/* Only FIRST IRQs get a hdwq index assignment. */
if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
continue;
/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
cpup->hdwq = idx;
idx++;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3333 Set Affinity: CPU %d (phys %d core %d): "
"hdwq %d eq %d irq %d flg x%x\n",
cpu, cpup->phys_id, cpup->core_id,
cpup->hdwq, cpup->eq, cpup->irq, cpup->flag);
}
/* Finally we need to associate a hdwq with each cpu_map entry
* This will be 1 to 1 - hdwq to cpu, unless there are less
* hardware queues then CPUs. For that case we will just round-robin
* the available hardware queues as they get assigned to CPUs.
* The next_idx is the idx from the FIRST_CPU loop above to account
* for irq_chann < hdwq. The idx is used for round-robin assignments
* and needs to start at 0.
*/
next_idx = idx;
start_cpu = 0;
idx = 0;
for_each_present_cpu(cpu) {
cpup = &phba->sli4_hba.cpu_map[cpu];
/* FIRST cpus are already mapped. */
if (cpup->flag & LPFC_CPU_FIRST_IRQ)
continue;
/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
* of the unassigned cpus to the next idx so that all
* hdw queues are fully utilized.
*/
if (next_idx < phba->cfg_hdw_queue) {
cpup->hdwq = next_idx;
next_idx++;
continue;
}
/* Not a First CPU and all hdw_queues are used. Reuse a
* Hardware Queue for another CPU, so be smart about it
* and pick one that has its IRQ/EQ mapped to the same phys_id
* (CPU package) and core_id.
*/
new_cpu = start_cpu;
for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
new_cpup->phys_id == cpup->phys_id &&
new_cpup->core_id == cpup->core_id) {
goto found_hdwq;
}
new_cpu = cpumask_next(new_cpu, cpu_present_mask);
if (new_cpu == nr_cpumask_bits)
new_cpu = first_cpu;
}
/* If we can't match both phys_id and core_id,
* settle for just a phys_id match.
*/
new_cpu = start_cpu;
for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
new_cpup->phys_id == cpup->phys_id)
goto found_hdwq;
new_cpu = cpumask_next(new_cpu, cpu_present_mask);
if (new_cpu == nr_cpumask_bits)
new_cpu = first_cpu;
}
/* Otherwise just round robin on cfg_hdw_queue */
cpup->hdwq = idx % phba->cfg_hdw_queue;
idx++;
goto logit;
found_hdwq:
/* We found an available entry, copy the IRQ info */
start_cpu = cpumask_next(new_cpu, cpu_present_mask);
if (start_cpu == nr_cpumask_bits)
start_cpu = first_cpu;
cpup->hdwq = new_cpup->hdwq;
logit:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3335 Set Affinity: CPU %d (phys %d core %d): "
"hdwq %d eq %d irq %d flg x%x\n",
cpu, cpup->phys_id, cpup->core_id,
cpup->hdwq, cpup->eq, cpup->irq, cpup->flag);
}
/* The cpu_map array will be used later during initialization
* when EQ / CQ / WQs are allocated and configured.
*/
return;
}
/**
* lpfc_cpuhp_get_eq
*
* @phba: pointer to lpfc hba data structure.
* @cpu: cpu going offline
* @eqlist:
*/
static void
lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
struct list_head *eqlist)
{
struct lpfc_vector_map_info *map;
const struct cpumask *maskp;
struct lpfc_queue *eq;
unsigned int i;
cpumask_t tmp;
u16 idx;
for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
maskp = pci_irq_get_affinity(phba->pcidev, idx);
if (!maskp)
continue;
/*
* if irq is not affinitized to the cpu going
* then we don't need to poll the eq attached
* to it.
*/
if (!cpumask_and(&tmp, maskp, cpumask_of(cpu)))
continue;
/* get the cpus that are online and are affini-
* tized to this irq vector. If the count is
* more than 1 then cpuhp is not going to shut-
* down this vector. Since this cpu has not
* gone offline yet, we need >1.
*/
cpumask_and(&tmp, maskp, cpu_online_mask);
if (cpumask_weight(&tmp) > 1)
continue;
/* Now that we have an irq to shutdown, get the eq
* mapped to this irq. Note: multiple hdwq's in
* the software can share an eq, but eventually
* only eq will be mapped to this vector
*/
for_each_possible_cpu(i) {
map = &phba->sli4_hba.cpu_map[i];
if (!(map->irq == pci_irq_vector(phba->pcidev, idx)))
continue;
eq = phba->sli4_hba.hdwq[map->hdwq].hba_eq;
list_add(&eq->_poll_list, eqlist);
/* 1 is good enough. others will be a copy of this */
break;
}
}
}
static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
{
if (phba->sli_rev != LPFC_SLI_REV4)
return;
cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
&phba->cpuhp);
/*
* unregistering the instance doesn't stop the polling
* timer. Wait for the poll timer to retire.
*/
synchronize_rcu();
del_timer_sync(&phba->cpuhp_poll_timer);
}
static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
{
if (phba->pport->fc_flag & FC_OFFLINE_MODE)
return;
__lpfc_cpuhp_remove(phba);
}
static void lpfc_cpuhp_add(struct lpfc_hba *phba)
{
if (phba->sli_rev != LPFC_SLI_REV4)
return;
rcu_read_lock();
if (!list_empty(&phba->poll_list)) {
timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
mod_timer(&phba->cpuhp_poll_timer,
jiffies + msecs_to_jiffies(LPFC_POLL_HB));
}
rcu_read_unlock();
cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
&phba->cpuhp);
}
static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
{
if (phba->pport->load_flag & FC_UNLOADING) {
*retval = -EAGAIN;
return true;
}
if (phba->sli_rev != LPFC_SLI_REV4) {
*retval = 0;
return true;
}
/* proceed with the hotplug */
return false;
}
static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
{
struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
struct lpfc_queue *eq, *next;
LIST_HEAD(eqlist);
int retval;
if (!phba) {
WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
return 0;
}
if (__lpfc_cpuhp_checks(phba, &retval))
return retval;
lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
/* start polling on these eq's */
list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
list_del_init(&eq->_poll_list);
lpfc_sli4_start_polling(eq);
}
return 0;
}
static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
{
struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
struct lpfc_queue *eq, *next;
unsigned int n;
int retval;
if (!phba) {
WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
return 0;
}
if (__lpfc_cpuhp_checks(phba, &retval))
return retval;
list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
if (n == cpu)
lpfc_sli4_stop_polling(eq);
}
return 0;
}
/**
* lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI-X interrupt vectors to device
* with SLI-4 interface spec.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_enable_msix(struct lpfc_hba *phba)
{
int vectors, rc, index;
char *name;
/* Set up MSI-X multi-message vectors */
vectors = phba->cfg_irq_chann;
rc = pci_alloc_irq_vectors(phba->pcidev,
1,
vectors, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
if (rc < 0) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0484 PCI enable MSI-X failed (%d)\n", rc);
goto vec_fail_out;
}
vectors = rc;
/* Assign MSI-X vectors to interrupt handlers */
for (index = 0; index < vectors; index++) {
name = phba->sli4_hba.hba_eq_hdl[index].handler_name;
memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
LPFC_DRIVER_HANDLER_NAME"%d", index);
phba->sli4_hba.hba_eq_hdl[index].idx = index;
phba->sli4_hba.hba_eq_hdl[index].phba = phba;
rc = request_irq(pci_irq_vector(phba->pcidev, index),
&lpfc_sli4_hba_intr_handler, 0,
name,
&phba->sli4_hba.hba_eq_hdl[index]);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0486 MSI-X fast-path (%d) "
"request_irq failed (%d)\n", index, rc);
goto cfg_fail_out;
}
}
if (vectors != phba->cfg_irq_chann) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3238 Reducing IO channels to match number of "
"MSI-X vectors, requested %d got %d\n",
phba->cfg_irq_chann, vectors);
if (phba->cfg_irq_chann > vectors)
phba->cfg_irq_chann = vectors;
if (phba->nvmet_support && (phba->cfg_nvmet_mrq > vectors))
phba->cfg_nvmet_mrq = vectors;
}
return rc;
cfg_fail_out:
/* free the irq already requested */
for (--index; index >= 0; index--)
free_irq(pci_irq_vector(phba->pcidev, index),
&phba->sli4_hba.hba_eq_hdl[index]);
/* Unconfigure MSI-X capability structure */
pci_free_irq_vectors(phba->pcidev);
vec_fail_out:
return rc;
}
/**
* lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI interrupt mode to device with
* SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
* called to enable the MSI vector. The device driver is responsible for
* calling the request_irq() to register MSI vector with a interrupt the
* handler, which is done in this function.
*
* Return codes
* 0 - successful
* other values - error
**/
static int
lpfc_sli4_enable_msi(struct lpfc_hba *phba)
{
int rc, index;
rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
if (rc > 0)
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0487 PCI enable MSI mode success.\n");
else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0488 PCI enable MSI mode failed (%d)\n", rc);
return rc ? rc : -1;
}
rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
0, LPFC_DRIVER_NAME, phba);
if (rc) {
pci_free_irq_vectors(phba->pcidev);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0490 MSI request_irq failed (%d)\n", rc);
return rc;
}
for (index = 0; index < phba->cfg_irq_chann; index++) {
phba->sli4_hba.hba_eq_hdl[index].idx = index;
phba->sli4_hba.hba_eq_hdl[index].phba = phba;
}
return 0;
}
/**
* lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable device interrupt and associate driver's
* interrupt handler(s) to interrupt vector(s) to device with SLI-4
* interface spec. Depends on the interrupt mode configured to the driver,
* the driver will try to fallback from the configured interrupt mode to an
* interrupt mode which is supported by the platform, kernel, and device in
* the order of:
* MSI-X -> MSI -> IRQ.
*
* Return codes
* 0 - successful
* other values - error
**/
static uint32_t
lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
{
uint32_t intr_mode = LPFC_INTR_ERROR;
int retval, idx;
if (cfg_mode == 2) {
/* Preparation before conf_msi mbox cmd */
retval = 0;
if (!retval) {
/* Now, try to enable MSI-X interrupt mode */
retval = lpfc_sli4_enable_msix(phba);
if (!retval) {
/* Indicate initialization to MSI-X mode */
phba->intr_type = MSIX;
intr_mode = 2;
}
}
}
/* Fallback to MSI if MSI-X initialization failed */
if (cfg_mode >= 1 && phba->intr_type == NONE) {
retval = lpfc_sli4_enable_msi(phba);
if (!retval) {
/* Indicate initialization to MSI mode */
phba->intr_type = MSI;
intr_mode = 1;
}
}
/* Fallback to INTx if both MSI-X/MSI initalization failed */
if (phba->intr_type == NONE) {
retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
IRQF_SHARED, LPFC_DRIVER_NAME, phba);
if (!retval) {
struct lpfc_hba_eq_hdl *eqhdl;
/* Indicate initialization to INTx mode */
phba->intr_type = INTx;
intr_mode = 0;
for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
eqhdl = &phba->sli4_hba.hba_eq_hdl[idx];
eqhdl->idx = idx;
eqhdl->phba = phba;
}
}
}
return intr_mode;
}
/**
* lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable device interrupt and disassociate
* the driver's interrupt handler(s) from interrupt vector(s) to device
* with SLI-4 interface spec. Depending on the interrupt mode, the driver
* will release the interrupt vector(s) for the message signaled interrupt.
**/
static void
lpfc_sli4_disable_intr(struct lpfc_hba *phba)
{
/* Disable the currently initialized interrupt mode */
if (phba->intr_type == MSIX) {
int index;
/* Free up MSI-X multi-message vectors */
for (index = 0; index < phba->cfg_irq_chann; index++) {
irq_set_affinity_hint(
pci_irq_vector(phba->pcidev, index),
NULL);
free_irq(pci_irq_vector(phba->pcidev, index),
&phba->sli4_hba.hba_eq_hdl[index]);
}
} else {
free_irq(phba->pcidev->irq, phba);
}
pci_free_irq_vectors(phba->pcidev);
/* Reset interrupt management states */
phba->intr_type = NONE;
phba->sli.slistat.sli_intr = 0;
}
/**
* lpfc_unset_hba - Unset SLI3 hba device initialization
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to unset the HBA device initialization steps to
* a device with SLI-3 interface spec.
**/
static void
lpfc_unset_hba(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
spin_lock_irq(shost->host_lock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(shost->host_lock);
kfree(phba->vpi_bmask);
kfree(phba->vpi_ids);
lpfc_stop_hba_timers(phba);
phba->pport->work_port_events = 0;
lpfc_sli_hba_down(phba);
lpfc_sli_brdrestart(phba);
lpfc_sli_disable_intr(phba);
return;
}
/**
* lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
* @phba: Pointer to HBA context object.
*
* This function is called in the SLI4 code path to wait for completion
* of device's XRIs exchange busy. It will check the XRI exchange busy
* on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
* that, it will check the XRI exchange busy on outstanding FCP and ELS
* I/Os every 30 seconds, log error message, and wait forever. Only when
* all XRI exchange busy complete, the driver unload shall proceed with
* invoking the function reset ioctl mailbox command to the CNA and the
* the rest of the driver unload resource release.
**/
static void
lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
{
struct lpfc_sli4_hdw_queue *qp;
int idx, ccnt;
int wait_time = 0;
int io_xri_cmpl = 1;
int nvmet_xri_cmpl = 1;
int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
/* Driver just aborted IOs during the hba_unset process. Pause
* here to give the HBA time to complete the IO and get entries
* into the abts lists.
*/
msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
/* Wait for NVME pending IO to flush back to transport. */
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
lpfc_nvme_wait_for_io_drain(phba);
ccnt = 0;
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
qp = &phba->sli4_hba.hdwq[idx];
io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
if (!io_xri_cmpl) /* if list is NOT empty */
ccnt++;
}
if (ccnt)
io_xri_cmpl = 0;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
nvmet_xri_cmpl =
list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
}
while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
if (!nvmet_xri_cmpl)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6424 NVMET XRI exchange busy "
"wait time: %d seconds.\n",
wait_time/1000);
if (!io_xri_cmpl)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6100 IO XRI exchange busy "
"wait time: %d seconds.\n",
wait_time/1000);
if (!els_xri_cmpl)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2878 ELS XRI exchange busy "
"wait time: %d seconds.\n",
wait_time/1000);
msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
} else {
msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
}
ccnt = 0;
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
qp = &phba->sli4_hba.hdwq[idx];
io_xri_cmpl = list_empty(
&qp->lpfc_abts_io_buf_list);
if (!io_xri_cmpl) /* if list is NOT empty */
ccnt++;
}
if (ccnt)
io_xri_cmpl = 0;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
nvmet_xri_cmpl = list_empty(
&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
}
els_xri_cmpl =
list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
}
}
/**
* lpfc_sli4_hba_unset - Unset the fcoe hba
* @phba: Pointer to HBA context object.
*
* This function is called in the SLI4 code path to reset the HBA's FCoE
* function. The caller is not required to hold any lock. This routine
* issues PCI function reset mailbox command to reset the FCoE function.
* At the end of the function, it calls lpfc_hba_down_post function to
* free any pending commands.
**/
static void
lpfc_sli4_hba_unset(struct lpfc_hba *phba)
{
int wait_cnt = 0;
LPFC_MBOXQ_t *mboxq;
struct pci_dev *pdev = phba->pcidev;
lpfc_stop_hba_timers(phba);
if (phba->pport)
phba->sli4_hba.intr_enable = 0;
/*
* Gracefully wait out the potential current outstanding asynchronous
* mailbox command.
*/
/* First, block any pending async mailbox command from posted */
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
spin_unlock_irq(&phba->hbalock);
/* Now, trying to wait it out if we can */
while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
msleep(10);
if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
break;
}
/* Forcefully release the outstanding mailbox command if timed out */
if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
spin_lock_irq(&phba->hbalock);
mboxq = phba->sli.mbox_active;
mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
__lpfc_mbox_cmpl_put(phba, mboxq);
phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
phba->sli.mbox_active = NULL;
spin_unlock_irq(&phba->hbalock);
}
/* Abort all iocbs associated with the hba */
lpfc_sli_hba_iocb_abort(phba);
/* Wait for completion of device XRI exchange busy */
lpfc_sli4_xri_exchange_busy_wait(phba);
/* per-phba callback de-registration for hotplug event */
if (phba->pport)
lpfc_cpuhp_remove(phba);
/* Disable PCI subsystem interrupt */
lpfc_sli4_disable_intr(phba);
/* Disable SR-IOV if enabled */
if (phba->cfg_sriov_nr_virtfn)
pci_disable_sriov(pdev);
/* Stop kthread signal shall trigger work_done one more time */
kthread_stop(phba->worker_thread);
/* Disable FW logging to host memory */
lpfc_ras_stop_fwlog(phba);
/* Unset the queues shared with the hardware then release all
* allocated resources.
*/
lpfc_sli4_queue_unset(phba);
lpfc_sli4_queue_destroy(phba);
/* Reset SLI4 HBA FCoE function */
lpfc_pci_function_reset(phba);
/* Free RAS DMA memory */
if (phba->ras_fwlog.ras_enabled)
lpfc_sli4_ras_dma_free(phba);
/* Stop the SLI4 device port */
if (phba->pport)
phba->pport->work_port_events = 0;
}
/**
* lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
* @phba: Pointer to HBA context object.
* @mboxq: Pointer to the mailboxq memory for the mailbox command response.
*
* This function is called in the SLI4 code path to read the port's
* sli4 capabilities.
*
* This function may be be called from any context that can block-wait
* for the completion. The expectation is that this routine is called
* typically from probe_one or from the online routine.
**/
int
lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
int rc;
struct lpfc_mqe *mqe = &mboxq->u.mqe;
struct lpfc_pc_sli4_params *sli4_params;
uint32_t mbox_tmo;
int length;
bool exp_wqcq_pages = true;
struct lpfc_sli4_parameters *mbx_sli4_parameters;
/*
* By default, the driver assumes the SLI4 port requires RPI
* header postings. The SLI4_PARAM response will correct this
* assumption.
*/
phba->sli4_hba.rpi_hdrs_in_use = 1;
/* Read the port's SLI4 Config Parameters */
length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
length, LPFC_SLI4_MBX_EMBED);
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
}
if (unlikely(rc))
return rc;
sli4_params = &phba->sli4_hba.pc_sli4_params;
mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
mbx_sli4_parameters);
sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
mbx_sli4_parameters);
if (bf_get(cfg_phwq, mbx_sli4_parameters))
phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
else
phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
mbx_sli4_parameters);
sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
mbx_sli4_parameters);
sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
mbx_sli4_parameters);
phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
/* Check for Extended Pre-Registered SGL support */
phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
/* Check for firmware nvme support */
rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
bf_get(cfg_xib, mbx_sli4_parameters));
if (rc) {
/* Save this to indicate the Firmware supports NVME */
sli4_params->nvme = 1;
/* Firmware NVME support, check driver FC4 NVME support */
if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
"6133 Disabling NVME support: "
"FC4 type not supported: x%x\n",
phba->cfg_enable_fc4_type);
goto fcponly;
}
} else {
/* No firmware NVME support, check driver FC4 NVME support */
sli4_params->nvme = 0;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
"6101 Disabling NVME support: Not "
"supported by firmware (%d %d) x%x\n",
bf_get(cfg_nvme, mbx_sli4_parameters),
bf_get(cfg_xib, mbx_sli4_parameters),
phba->cfg_enable_fc4_type);
fcponly:
phba->nvme_support = 0;
phba->nvmet_support = 0;
phba->cfg_nvmet_mrq = 0;
phba->cfg_nvme_seg_cnt = 0;
/* If no FC4 type support, move to just SCSI support */
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
return -ENODEV;
phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
}
}
/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
* accommodate 512K and 1M IOs in a single nvme buf and supply
* enough NVME LS iocb buffers for larger connectivity counts.
*/
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
phba->cfg_iocb_cnt = 5;
}
/* Only embed PBDE for if_type 6, PBDE support requires xib be set */
if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) !=
LPFC_SLI_INTF_IF_TYPE_6) || (!bf_get(cfg_xib, mbx_sli4_parameters)))
phba->cfg_enable_pbde = 0;
/*
* To support Suppress Response feature we must satisfy 3 conditions.
* lpfc_suppress_rsp module parameter must be set (default).
* In SLI4-Parameters Descriptor:
* Extended Inline Buffers (XIB) must be supported.
* Suppress Response IU Not Supported (SRIUNS) must NOT be supported
* (double negative).
*/
if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
!(bf_get(cfg_nosr, mbx_sli4_parameters)))
phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
else
phba->cfg_suppress_rsp = 0;
if (bf_get(cfg_eqdr, mbx_sli4_parameters))
phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
/* Make sure that sge_supp_len can be handled by the driver */
if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
/*
* Check whether the adapter supports an embedded copy of the
* FCP CMD IU within the WQE for FCP_Ixxx commands. In order
* to use this option, 128-byte WQEs must be used.
*/
if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
phba->fcp_embed_io = 1;
else
phba->fcp_embed_io = 0;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
bf_get(cfg_xib, mbx_sli4_parameters),
phba->cfg_enable_pbde,
phba->fcp_embed_io, phba->nvme_support,
phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_IF_TYPE_2) &&
(bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_FAMILY_LNCR_A0))
exp_wqcq_pages = false;
if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
(bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
exp_wqcq_pages &&
(sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
phba->enab_exp_wqcq_pages = 1;
else
phba->enab_exp_wqcq_pages = 0;
/*
* Check if the SLI port supports MDS Diagnostics
*/
if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
phba->mds_diags_support = 1;
else
phba->mds_diags_support = 0;
/*
* Check if the SLI port supports NSLER
*/
if (bf_get(cfg_nsler, mbx_sli4_parameters))
phba->nsler = 1;
else
phba->nsler = 0;
return 0;
}
/**
* lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
* @pdev: pointer to PCI device
* @pid: pointer to PCI device identifier
*
* This routine is to be called to attach a device with SLI-3 interface spec
* to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
* presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
* information of the device and driver to see if the driver state that it can
* support this kind of device. If the match is successful, the driver core
* invokes this routine. If this routine determines it can claim the HBA, it
* does all the initialization that it needs to do to handle the HBA properly.
*
* Return code
* 0 - driver can claim the device
* negative value - driver can not claim the device
**/
static int
lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
{
struct lpfc_hba *phba;
struct lpfc_vport *vport = NULL;
struct Scsi_Host *shost = NULL;
int error;
uint32_t cfg_mode, intr_mode;
/* Allocate memory for HBA structure */
phba = lpfc_hba_alloc(pdev);
if (!phba)
return -ENOMEM;
/* Perform generic PCI device enabling operation */
error = lpfc_enable_pci_dev(phba);
if (error)
goto out_free_phba;
/* Set up SLI API function jump table for PCI-device group-0 HBAs */
error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
if (error)
goto out_disable_pci_dev;
/* Set up SLI-3 specific device PCI memory space */
error = lpfc_sli_pci_mem_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1402 Failed to set up pci memory space.\n");
goto out_disable_pci_dev;
}
/* Set up SLI-3 specific device driver resources */
error = lpfc_sli_driver_resource_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1404 Failed to set up driver resource.\n");
goto out_unset_pci_mem_s3;
}
/* Initialize and populate the iocb list per host */
error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1405 Failed to initialize iocb list.\n");
goto out_unset_driver_resource_s3;
}
/* Set up common device driver resources */
error = lpfc_setup_driver_resource_phase2(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1406 Failed to set up driver resource.\n");
goto out_free_iocb_list;
}
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
/* Create SCSI host to the physical port */
error = lpfc_create_shost(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1407 Failed to create scsi host.\n");
goto out_unset_driver_resource;
}
/* Configure sysfs attributes */
vport = phba->pport;
error = lpfc_alloc_sysfs_attr(vport);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1476 Failed to allocate sysfs attr\n");
goto out_destroy_shost;
}
shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
/* Now, trying to enable interrupt and bring up the device */
cfg_mode = phba->cfg_use_msi;
while (true) {
/* Put device to a known state before enabling interrupt */
lpfc_stop_port(phba);
/* Configure and enable interrupt */
intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0431 Failed to enable interrupt.\n");
error = -ENODEV;
goto out_free_sysfs_attr;
}
/* SLI-3 HBA setup */
if (lpfc_sli_hba_setup(phba)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1477 Failed to set up hba\n");
error = -ENODEV;
goto out_remove_device;
}
/* Wait 50ms for the interrupts of previous mailbox commands */
msleep(50);
/* Check active interrupts on message signaled interrupts */
if (intr_mode == 0 ||
phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
/* Log the current active interrupt mode */
phba->intr_mode = intr_mode;
lpfc_log_intr_mode(phba, intr_mode);
break;
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0447 Configure interrupt mode (%d) "
"failed active interrupt test.\n",
intr_mode);
/* Disable the current interrupt mode */
lpfc_sli_disable_intr(phba);
/* Try next level of interrupt mode */
cfg_mode = --intr_mode;
}
}
/* Perform post initialization setup */
lpfc_post_init_setup(phba);
/* Check if there are static vports to be created. */
lpfc_create_static_vport(phba);
return 0;
out_remove_device:
lpfc_unset_hba(phba);
out_free_sysfs_attr:
lpfc_free_sysfs_attr(vport);
out_destroy_shost:
lpfc_destroy_shost(phba);
out_unset_driver_resource:
lpfc_unset_driver_resource_phase2(phba);
out_free_iocb_list:
lpfc_free_iocb_list(phba);
out_unset_driver_resource_s3:
lpfc_sli_driver_resource_unset(phba);
out_unset_pci_mem_s3:
lpfc_sli_pci_mem_unset(phba);
out_disable_pci_dev:
lpfc_disable_pci_dev(phba);
if (shost)
scsi_host_put(shost);
out_free_phba:
lpfc_hba_free(phba);
return error;
}
/**
* lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
* @pdev: pointer to PCI device
*
* This routine is to be called to disattach a device with SLI-3 interface
* spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
* removed from PCI bus, it performs all the necessary cleanup for the HBA
* device to be removed from the PCI subsystem properly.
**/
static void
lpfc_pci_remove_one_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_vport **vports;
struct lpfc_hba *phba = vport->phba;
int i;
spin_lock_irq(&phba->hbalock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(&phba->hbalock);
lpfc_free_sysfs_attr(vport);
/* Release all the vports against this physical port */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
continue;
fc_vport_terminate(vports[i]->fc_vport);
}
lpfc_destroy_vport_work_array(phba, vports);
/* Remove FC host and then SCSI host with the physical port */
fc_remove_host(shost);
scsi_remove_host(shost);
lpfc_cleanup(vport);
/*
* Bring down the SLI Layer. This step disable all interrupts,
* clears the rings, discards all mailbox commands, and resets
* the HBA.
*/
/* HBA interrupt will be disabled after this call */
lpfc_sli_hba_down(phba);
/* Stop kthread signal shall trigger work_done one more time */
kthread_stop(phba->worker_thread);
/* Final cleanup of txcmplq and reset the HBA */
lpfc_sli_brdrestart(phba);
kfree(phba->vpi_bmask);
kfree(phba->vpi_ids);
lpfc_stop_hba_timers(phba);
spin_lock_irq(&phba->port_list_lock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->port_list_lock);
lpfc_debugfs_terminate(vport);
/* Disable SR-IOV if enabled */
if (phba->cfg_sriov_nr_virtfn)
pci_disable_sriov(pdev);
/* Disable interrupt */
lpfc_sli_disable_intr(phba);
scsi_host_put(shost);
/*
* Call scsi_free before mem_free since scsi bufs are released to their
* corresponding pools here.
*/
lpfc_scsi_free(phba);
lpfc_free_iocb_list(phba);
lpfc_mem_free_all(phba);
dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
phba->hbqslimp.virt, phba->hbqslimp.phys);
/* Free resources associated with SLI2 interface */
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
/* unmap adapter SLIM and Control Registers */
iounmap(phba->ctrl_regs_memmap_p);
iounmap(phba->slim_memmap_p);
lpfc_hba_free(phba);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}
/**
* lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
* @pdev: pointer to PCI device
* @msg: power management message
*
* This routine is to be called from the kernel's PCI subsystem to support
* system Power Management (PM) to device with SLI-3 interface spec. When
* PM invokes this method, it quiesces the device by stopping the driver's
* worker thread for the device, turning off device's interrupt and DMA,
* and bring the device offline. Note that as the driver implements the
* minimum PM requirements to a power-aware driver's PM support for the
* suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
* to the suspend() method call will be treated as SUSPEND and the driver will
* fully reinitialize its device during resume() method call, the driver will
* set device to PCI_D3hot state in PCI config space instead of setting it
* according to the @msg provided by the PM.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_suspend_one_s3(struct pci_dev *pdev, pm_message_t msg)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0473 PCI device Power Management suspend.\n");
/* Bring down the device */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
kthread_stop(phba->worker_thread);
/* Disable interrupt from device */
lpfc_sli_disable_intr(phba);
/* Save device state to PCI config space */
pci_save_state(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
/**
* lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
* @pdev: pointer to PCI device
*
* This routine is to be called from the kernel's PCI subsystem to support
* system Power Management (PM) to device with SLI-3 interface spec. When PM
* invokes this method, it restores the device's PCI config space state and
* fully reinitializes the device and brings it online. Note that as the
* driver implements the minimum PM requirements to a power-aware driver's
* PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
* FREEZE) to the suspend() method call will be treated as SUSPEND and the
* driver will fully reinitialize its device during resume() method call,
* the device will be set to PCI_D0 directly in PCI config space before
* restoring the state.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_resume_one_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
uint32_t intr_mode;
int error;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0452 PCI device Power Management resume.\n");
/* Restore device state from PCI config space */
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0434 PM resume failed to start worker "
"thread: error=x%x.\n", error);
return error;
}
/* Configure and enable interrupt */
intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0430 PM resume Failed to enable interrupt\n");
return -EIO;
} else
phba->intr_mode = intr_mode;
/* Restart HBA and bring it online */
lpfc_sli_brdrestart(phba);
lpfc_online(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return 0;
}
/**
* lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI3 device for PCI slot recover. It
* aborts all the outstanding SCSI I/Os to the pci device.
**/
static void
lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2723 PCI channel I/O abort preparing for recovery\n");
/*
* There may be errored I/Os through HBA, abort all I/Os on txcmplq
* and let the SCSI mid-layer to retry them to recover.
*/
lpfc_sli_abort_fcp_rings(phba);
}
/**
* lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI3 device for PCI slot reset. It
* disables the device interrupt and pci device, and aborts the internal FCP
* pending I/Os.
**/
static void
lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2710 PCI channel disable preparing for reset\n");
/* Block any management I/Os to the device */
lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* Flush all driver's outstanding SCSI I/Os as we are to reset */
lpfc_sli_flush_io_rings(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Disable interrupt and pci device */
lpfc_sli_disable_intr(phba);
pci_disable_device(phba->pcidev);
}
/**
* lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI3 device for PCI slot permanently
* disabling. It blocks the SCSI transport layer traffic and flushes the FCP
* pending I/Os.
**/
static void
lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2711 PCI channel permanent disable for failure\n");
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Clean up all driver's outstanding SCSI I/Os */
lpfc_sli_flush_io_rings(phba);
}
/**
* lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is called from the PCI subsystem for I/O error handling to
* device with SLI-3 interface spec. This function is called by the PCI
* subsystem after a PCI bus error affecting this device has been detected.
* When this function is invoked, it will need to stop all the I/Os and
* interrupt(s) to the device. Once that is done, it will return
* PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
* as desired.
*
* Return codes
* PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (state) {
case pci_channel_io_normal:
/* Non-fatal error, prepare for recovery */
lpfc_sli_prep_dev_for_recover(phba);
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
/* Fatal error, prepare for slot reset */
lpfc_sli_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
/* Permanent failure, prepare for device down */
lpfc_sli_prep_dev_for_perm_failure(phba);
return PCI_ERS_RESULT_DISCONNECT;
default:
/* Unknown state, prepare and request slot reset */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0472 Unknown PCI error state: x%x\n", state);
lpfc_sli_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
}
}
/**
* lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
* @pdev: pointer to PCI device.
*
* This routine is called from the PCI subsystem for error handling to
* device with SLI-3 interface spec. This is called after PCI bus has been
* reset to restart the PCI card from scratch, as if from a cold-boot.
* During the PCI subsystem error recovery, after driver returns
* PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
* recovery and then call this routine before calling the .resume method
* to recover the device. This function will initialize the HBA device,
* enable the interrupt, but it will just put the HBA to offline state
* without passing any I/O traffic.
*
* Return codes
* PCI_ERS_RESULT_RECOVERED - the device has been recovered
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
*/
static pci_ers_result_t
lpfc_io_slot_reset_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
struct lpfc_sli *psli = &phba->sli;
uint32_t intr_mode;
dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
if (pci_enable_device_mem(pdev)) {
printk(KERN_ERR "lpfc: Cannot re-enable "
"PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/* Configure and enable interrupt */
intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0427 Cannot re-enable interrupt after "
"slot reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
} else
phba->intr_mode = intr_mode;
/* Take device offline, it will perform cleanup */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
* @pdev: pointer to PCI device
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-3 interface spec. It is called when kernel error recovery tells
* the lpfc driver that it is ok to resume normal PCI operation after PCI bus
* error recovery. After this call, traffic can start to flow from this device
* again.
*/
static void
lpfc_io_resume_s3(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
/* Bring device online, it will be no-op for non-fatal error resume */
lpfc_online(phba);
}
/**
* lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
* @phba: pointer to lpfc hba data structure.
*
* returns the number of ELS/CT IOCBs to reserve
**/
int
lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
{
int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
if (phba->sli_rev == LPFC_SLI_REV4) {
if (max_xri <= 100)
return 10;
else if (max_xri <= 256)
return 25;
else if (max_xri <= 512)
return 50;
else if (max_xri <= 1024)
return 100;
else if (max_xri <= 1536)
return 150;
else if (max_xri <= 2048)
return 200;
else
return 250;
} else
return 0;
}
/**
* lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
* @phba: pointer to lpfc hba data structure.
*
* returns the number of ELS/CT + NVMET IOCBs to reserve
**/
int
lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
{
int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
if (phba->nvmet_support)
max_xri += LPFC_NVMET_BUF_POST;
return max_xri;
}
static void
lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
const struct firmware *fw)
{
if ((offset == ADD_STATUS_FW_NOT_SUPPORTED) ||
(phba->pcidev->device == PCI_DEVICE_ID_LANCER_G6_FC &&
magic_number != MAGIC_NUMER_G6) ||
(phba->pcidev->device == PCI_DEVICE_ID_LANCER_G7_FC &&
magic_number != MAGIC_NUMER_G7))
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3030 This firmware version is not supported on "
"this HBA model. Device:%x Magic:%x Type:%x "
"ID:%x Size %d %zd\n",
phba->pcidev->device, magic_number, ftype, fid,
fsize, fw->size);
else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3022 FW Download failed. Device:%x Magic:%x Type:%x "
"ID:%x Size %d %zd\n",
phba->pcidev->device, magic_number, ftype, fid,
fsize, fw->size);
}
/**
* lpfc_write_firmware - attempt to write a firmware image to the port
* @fw: pointer to firmware image returned from request_firmware.
* @phba: pointer to lpfc hba data structure.
*
**/
static void
lpfc_write_firmware(const struct firmware *fw, void *context)
{
struct lpfc_hba *phba = (struct lpfc_hba *)context;
char fwrev[FW_REV_STR_SIZE];
struct lpfc_grp_hdr *image;
struct list_head dma_buffer_list;
int i, rc = 0;
struct lpfc_dmabuf *dmabuf, *next;
uint32_t offset = 0, temp_offset = 0;
uint32_t magic_number, ftype, fid, fsize;
/* It can be null in no-wait mode, sanity check */
if (!fw) {
rc = -ENXIO;
goto out;
}
image = (struct lpfc_grp_hdr *)fw->data;
magic_number = be32_to_cpu(image->magic_number);
ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
fid = bf_get_be32(lpfc_grp_hdr_id, image);
fsize = be32_to_cpu(image->size);
INIT_LIST_HEAD(&dma_buffer_list);
lpfc_decode_firmware_rev(phba, fwrev, 1);
if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3023 Updating Firmware, Current Version:%s "
"New Version:%s\n",
fwrev, image->revision);
for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
GFP_KERNEL);
if (!dmabuf) {
rc = -ENOMEM;
goto release_out;
}
dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
SLI4_PAGE_SIZE,
&dmabuf->phys,
GFP_KERNEL);
if (!dmabuf->virt) {
kfree(dmabuf);
rc = -ENOMEM;
goto release_out;
}
list_add_tail(&dmabuf->list, &dma_buffer_list);
}
while (offset < fw->size) {
temp_offset = offset;
list_for_each_entry(dmabuf, &dma_buffer_list, list) {
if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
memcpy(dmabuf->virt,
fw->data + temp_offset,
fw->size - temp_offset);
temp_offset = fw->size;
break;
}
memcpy(dmabuf->virt, fw->data + temp_offset,
SLI4_PAGE_SIZE);
temp_offset += SLI4_PAGE_SIZE;
}
rc = lpfc_wr_object(phba, &dma_buffer_list,
(fw->size - offset), &offset);
if (rc) {
lpfc_log_write_firmware_error(phba, offset,
magic_number, ftype, fid, fsize, fw);
goto release_out;
}
}
rc = offset;
} else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3029 Skipped Firmware update, Current "
"Version:%s New Version:%s\n",
fwrev, image->revision);
release_out:
list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
list_del(&dmabuf->list);
dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
dmabuf->virt, dmabuf->phys);
kfree(dmabuf);
}
release_firmware(fw);
out:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3024 Firmware update done: %d.\n", rc);
return;
}
/**
* lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to perform Linux generic firmware upgrade on device
* that supports such feature.
**/
int
lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
{
uint8_t file_name[ELX_MODEL_NAME_SIZE];
int ret;
const struct firmware *fw;
/* Only supported on SLI4 interface type 2 for now */
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
LPFC_SLI_INTF_IF_TYPE_2)
return -EPERM;
snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
if (fw_upgrade == INT_FW_UPGRADE) {
ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
file_name, &phba->pcidev->dev,
GFP_KERNEL, (void *)phba,
lpfc_write_firmware);
} else if (fw_upgrade == RUN_FW_UPGRADE) {
ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
if (!ret)
lpfc_write_firmware(fw, (void *)phba);
} else {
ret = -EINVAL;
}
return ret;
}
/**
* lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
* @pdev: pointer to PCI device
* @pid: pointer to PCI device identifier
*
* This routine is called from the kernel's PCI subsystem to device with
* SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
* presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
* information of the device and driver to see if the driver state that it
* can support this kind of device. If the match is successful, the driver
* core invokes this routine. If this routine determines it can claim the HBA,
* it does all the initialization that it needs to do to handle the HBA
* properly.
*
* Return code
* 0 - driver can claim the device
* negative value - driver can not claim the device
**/
static int
lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
{
struct lpfc_hba *phba;
struct lpfc_vport *vport = NULL;
struct Scsi_Host *shost = NULL;
int error;
uint32_t cfg_mode, intr_mode;
/* Allocate memory for HBA structure */
phba = lpfc_hba_alloc(pdev);
if (!phba)
return -ENOMEM;
/* Perform generic PCI device enabling operation */
error = lpfc_enable_pci_dev(phba);
if (error)
goto out_free_phba;
/* Set up SLI API function jump table for PCI-device group-1 HBAs */
error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
if (error)
goto out_disable_pci_dev;
/* Set up SLI-4 specific device PCI memory space */
error = lpfc_sli4_pci_mem_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1410 Failed to set up pci memory space.\n");
goto out_disable_pci_dev;
}
/* Set up SLI-4 Specific device driver resources */
error = lpfc_sli4_driver_resource_setup(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1412 Failed to set up driver resource.\n");
goto out_unset_pci_mem_s4;
}
INIT_LIST_HEAD(&phba->active_rrq_list);
INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
/* Set up common device driver resources */
error = lpfc_setup_driver_resource_phase2(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1414 Failed to set up driver resource.\n");
goto out_unset_driver_resource_s4;
}
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
/* Now, trying to enable interrupt and bring up the device */
cfg_mode = phba->cfg_use_msi;
/* Put device to a known state before enabling interrupt */
phba->pport = NULL;
lpfc_stop_port(phba);
/* Configure and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0426 Failed to enable interrupt.\n");
error = -ENODEV;
goto out_unset_driver_resource;
}
/* Default to single EQ for non-MSI-X */
if (phba->intr_type != MSIX) {
phba->cfg_irq_chann = 1;
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
if (phba->nvmet_support)
phba->cfg_nvmet_mrq = 1;
}
}
lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
/* Create SCSI host to the physical port */
error = lpfc_create_shost(phba);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1415 Failed to create scsi host.\n");
goto out_disable_intr;
}
vport = phba->pport;
shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
/* Configure sysfs attributes */
error = lpfc_alloc_sysfs_attr(vport);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1416 Failed to allocate sysfs attr\n");
goto out_destroy_shost;
}
/* Set up SLI-4 HBA */
if (lpfc_sli4_hba_setup(phba)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1421 Failed to set up hba\n");
error = -ENODEV;
goto out_free_sysfs_attr;
}
/* Log the current active interrupt mode */
phba->intr_mode = intr_mode;
lpfc_log_intr_mode(phba, intr_mode);
/* Perform post initialization setup */
lpfc_post_init_setup(phba);
/* NVME support in FW earlier in the driver load corrects the
* FC4 type making a check for nvme_support unnecessary.
*/
if (phba->nvmet_support == 0) {
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Create NVME binding with nvme_fc_transport. This
* ensures the vport is initialized. If the localport
* create fails, it should not unload the driver to
* support field issues.
*/
error = lpfc_nvme_create_localport(vport);
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"6004 NVME registration "
"failed, error x%x\n",
error);
}
}
}
/* check for firmware upgrade or downgrade */
if (phba->cfg_request_firmware_upgrade)
lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
/* Check if there are static vports to be created. */
lpfc_create_static_vport(phba);
/* Enable RAS FW log support */
lpfc_sli4_ras_setup(phba);
INIT_LIST_HEAD(&phba->poll_list);
cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
return 0;
out_free_sysfs_attr:
lpfc_free_sysfs_attr(vport);
out_destroy_shost:
lpfc_destroy_shost(phba);
out_disable_intr:
lpfc_sli4_disable_intr(phba);
out_unset_driver_resource:
lpfc_unset_driver_resource_phase2(phba);
out_unset_driver_resource_s4:
lpfc_sli4_driver_resource_unset(phba);
out_unset_pci_mem_s4:
lpfc_sli4_pci_mem_unset(phba);
out_disable_pci_dev:
lpfc_disable_pci_dev(phba);
if (shost)
scsi_host_put(shost);
out_free_phba:
lpfc_hba_free(phba);
return error;
}
/**
* lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
* @pdev: pointer to PCI device
*
* This routine is called from the kernel's PCI subsystem to device with
* SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
* removed from PCI bus, it performs all the necessary cleanup for the HBA
* device to be removed from the PCI subsystem properly.
**/
static void
lpfc_pci_remove_one_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_vport **vports;
struct lpfc_hba *phba = vport->phba;
int i;
/* Mark the device unloading flag */
spin_lock_irq(&phba->hbalock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(&phba->hbalock);
/* Free the HBA sysfs attributes */
lpfc_free_sysfs_attr(vport);
/* Release all the vports against this physical port */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
continue;
fc_vport_terminate(vports[i]->fc_vport);
}
lpfc_destroy_vport_work_array(phba, vports);
/* Remove FC host and then SCSI host with the physical port */
fc_remove_host(shost);
scsi_remove_host(shost);
/* Perform ndlp cleanup on the physical port. The nvme and nvmet
* localports are destroyed after to cleanup all transport memory.
*/
lpfc_cleanup(vport);
lpfc_nvmet_destroy_targetport(phba);
lpfc_nvme_destroy_localport(vport);
/* De-allocate multi-XRI pools */
if (phba->cfg_xri_rebalancing)
lpfc_destroy_multixri_pools(phba);
/*
* Bring down the SLI Layer. This step disables all interrupts,
* clears the rings, discards all mailbox commands, and resets
* the HBA FCoE function.
*/
lpfc_debugfs_terminate(vport);
lpfc_stop_hba_timers(phba);
spin_lock_irq(&phba->port_list_lock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->port_list_lock);
/* Perform scsi free before driver resource_unset since scsi
* buffers are released to their corresponding pools here.
*/
lpfc_io_free(phba);
lpfc_free_iocb_list(phba);
lpfc_sli4_hba_unset(phba);
lpfc_unset_driver_resource_phase2(phba);
lpfc_sli4_driver_resource_unset(phba);
/* Unmap adapter Control and Doorbell registers */
lpfc_sli4_pci_mem_unset(phba);
/* Release PCI resources and disable device's PCI function */
scsi_host_put(shost);
lpfc_disable_pci_dev(phba);
/* Finally, free the driver's device data structure */
lpfc_hba_free(phba);
return;
}
/**
* lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
* @pdev: pointer to PCI device
* @msg: power management message
*
* This routine is called from the kernel's PCI subsystem to support system
* Power Management (PM) to device with SLI-4 interface spec. When PM invokes
* this method, it quiesces the device by stopping the driver's worker
* thread for the device, turning off device's interrupt and DMA, and bring
* the device offline. Note that as the driver implements the minimum PM
* requirements to a power-aware driver's PM support for suspend/resume -- all
* the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
* method call will be treated as SUSPEND and the driver will fully
* reinitialize its device during resume() method call, the driver will set
* device to PCI_D3hot state in PCI config space instead of setting it
* according to the @msg provided by the PM.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_suspend_one_s4(struct pci_dev *pdev, pm_message_t msg)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2843 PCI device Power Management suspend.\n");
/* Bring down the device */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
kthread_stop(phba->worker_thread);
/* Disable interrupt from device */
lpfc_sli4_disable_intr(phba);
lpfc_sli4_queue_destroy(phba);
/* Save device state to PCI config space */
pci_save_state(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
/**
* lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
* @pdev: pointer to PCI device
*
* This routine is called from the kernel's PCI subsystem to support system
* Power Management (PM) to device with SLI-4 interface spac. When PM invokes
* this method, it restores the device's PCI config space state and fully
* reinitializes the device and brings it online. Note that as the driver
* implements the minimum PM requirements to a power-aware driver's PM for
* suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
* to the suspend() method call will be treated as SUSPEND and the driver
* will fully reinitialize its device during resume() method call, the device
* will be set to PCI_D0 directly in PCI config space before restoring the
* state.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_resume_one_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
uint32_t intr_mode;
int error;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0292 PCI device Power Management resume.\n");
/* Restore device state from PCI config space */
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0293 PM resume failed to start worker "
"thread: error=x%x.\n", error);
return error;
}
/* Configure and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0294 PM resume Failed to enable interrupt\n");
return -EIO;
} else
phba->intr_mode = intr_mode;
/* Restart HBA and bring it online */
lpfc_sli_brdrestart(phba);
lpfc_online(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return 0;
}
/**
* lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI4 device for PCI slot recover. It
* aborts all the outstanding SCSI I/Os to the pci device.
**/
static void
lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2828 PCI channel I/O abort preparing for recovery\n");
/*
* There may be errored I/Os through HBA, abort all I/Os on txcmplq
* and let the SCSI mid-layer to retry them to recover.
*/
lpfc_sli_abort_fcp_rings(phba);
}
/**
* lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI4 device for PCI slot reset. It
* disables the device interrupt and pci device, and aborts the internal FCP
* pending I/Os.
**/
static void
lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2826 PCI channel disable preparing for reset\n");
/* Block any management I/Os to the device */
lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* Flush all driver's outstanding I/Os as we are to reset */
lpfc_sli_flush_io_rings(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Disable interrupt and pci device */
lpfc_sli4_disable_intr(phba);
lpfc_sli4_queue_destroy(phba);
pci_disable_device(phba->pcidev);
}
/**
* lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to prepare the SLI4 device for PCI slot permanently
* disabling. It blocks the SCSI transport layer traffic and flushes the FCP
* pending I/Os.
**/
static void
lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
{
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2827 PCI channel permanent disable for failure\n");
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* stop all timers */
lpfc_stop_hba_timers(phba);
/* Clean up all driver's outstanding I/Os */
lpfc_sli_flush_io_rings(phba);
}
/**
* lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-4 interface spec. This function is called by the PCI subsystem
* after a PCI bus error affecting this device has been detected. When this
* function is invoked, it will need to stop all the I/Os and interrupt(s)
* to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
* for the PCI subsystem to perform proper recovery as desired.
*
* Return codes
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (state) {
case pci_channel_io_normal:
/* Non-fatal error, prepare for recovery */
lpfc_sli4_prep_dev_for_recover(phba);
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
/* Fatal error, prepare for slot reset */
lpfc_sli4_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
/* Permanent failure, prepare for device down */
lpfc_sli4_prep_dev_for_perm_failure(phba);
return PCI_ERS_RESULT_DISCONNECT;
default:
/* Unknown state, prepare and request slot reset */
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2825 Unknown PCI error state: x%x\n", state);
lpfc_sli4_prep_dev_for_reset(phba);
return PCI_ERS_RESULT_NEED_RESET;
}
}
/**
* lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
* @pdev: pointer to PCI device.
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-4 interface spec. It is called after PCI bus has been reset to
* restart the PCI card from scratch, as if from a cold-boot. During the
* PCI subsystem error recovery, after the driver returns
* PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
* recovery and then call this routine before calling the .resume method to
* recover the device. This function will initialize the HBA device, enable
* the interrupt, but it will just put the HBA to offline state without
* passing any I/O traffic.
*
* Return codes
* PCI_ERS_RESULT_RECOVERED - the device has been recovered
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
*/
static pci_ers_result_t
lpfc_io_slot_reset_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
struct lpfc_sli *psli = &phba->sli;
uint32_t intr_mode;
dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
if (pci_enable_device_mem(pdev)) {
printk(KERN_ERR "lpfc: Cannot re-enable "
"PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_restore_state(pdev);
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/* Configure and enable interrupt */
intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2824 Cannot re-enable interrupt after "
"slot reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
} else
phba->intr_mode = intr_mode;
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
* @pdev: pointer to PCI device
*
* This routine is called from the PCI subsystem for error handling to device
* with SLI-4 interface spec. It is called when kernel error recovery tells
* the lpfc driver that it is ok to resume normal PCI operation after PCI bus
* error recovery. After this call, traffic can start to flow from this device
* again.
**/
static void
lpfc_io_resume_s4(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
/*
* In case of slot reset, as function reset is performed through
* mailbox command which needs DMA to be enabled, this operation
* has to be moved to the io resume phase. Taking device offline
* will perform the necessary cleanup.
*/
if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
/* Perform device reset */
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
/* Bring the device back online */
lpfc_online(phba);
}
}
/**
* lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
* @pdev: pointer to PCI device
* @pid: pointer to PCI device identifier
*
* This routine is to be registered to the kernel's PCI subsystem. When an
* Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
* at PCI device-specific information of the device and driver to see if the
* driver state that it can support this kind of device. If the match is
* successful, the driver core invokes this routine. This routine dispatches
* the action to the proper SLI-3 or SLI-4 device probing routine, which will
* do all the initialization that it needs to do to handle the HBA device
* properly.
*
* Return code
* 0 - driver can claim the device
* negative value - driver can not claim the device
**/
static int
lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
{
int rc;
struct lpfc_sli_intf intf;
if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
return -ENODEV;
if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
(bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
rc = lpfc_pci_probe_one_s4(pdev, pid);
else
rc = lpfc_pci_probe_one_s3(pdev, pid);
return rc;
}
/**
* lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
* @pdev: pointer to PCI device
*
* This routine is to be registered to the kernel's PCI subsystem. When an
* Emulex HBA is removed from PCI bus, the driver core invokes this routine.
* This routine dispatches the action to the proper SLI-3 or SLI-4 device
* remove routine, which will perform all the necessary cleanup for the
* device to be removed from the PCI subsystem properly.
**/
static void
lpfc_pci_remove_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
lpfc_pci_remove_one_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
lpfc_pci_remove_one_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1424 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return;
}
/**
* lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
* @pdev: pointer to PCI device
* @msg: power management message
*
* This routine is to be registered to the kernel's PCI subsystem to support
* system Power Management (PM). When PM invokes this method, it dispatches
* the action to the proper SLI-3 or SLI-4 device suspend routine, which will
* suspend the device.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_suspend_one(struct pci_dev *pdev, pm_message_t msg)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
int rc = -ENODEV;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_pci_suspend_one_s3(pdev, msg);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_pci_suspend_one_s4(pdev, msg);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1425 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
* @pdev: pointer to PCI device
*
* This routine is to be registered to the kernel's PCI subsystem to support
* system Power Management (PM). When PM invokes this method, it dispatches
* the action to the proper SLI-3 or SLI-4 device resume routine, which will
* resume the device.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_resume_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
int rc = -ENODEV;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_pci_resume_one_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_pci_resume_one_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1426 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_io_error_detected - lpfc method for handling PCI I/O error
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is registered to the PCI subsystem for error handling. This
* function is called by the PCI subsystem after a PCI bus error affecting
* this device has been detected. When this routine is invoked, it dispatches
* the action to the proper SLI-3 or SLI-4 device error detected handling
* routine, which will perform the proper error detected operation.
*
* Return codes
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_io_error_detected_s3(pdev, state);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_io_error_detected_s4(pdev, state);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1427 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
* @pdev: pointer to PCI device.
*
* This routine is registered to the PCI subsystem for error handling. This
* function is called after PCI bus has been reset to restart the PCI card
* from scratch, as if from a cold-boot. When this routine is invoked, it
* dispatches the action to the proper SLI-3 or SLI-4 device reset handling
* routine, which will perform the proper device reset.
*
* Return codes
* PCI_ERS_RESULT_RECOVERED - the device has been recovered
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t
lpfc_io_slot_reset(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
rc = lpfc_io_slot_reset_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
rc = lpfc_io_slot_reset_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1428 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return rc;
}
/**
* lpfc_io_resume - lpfc method for resuming PCI I/O operation
* @pdev: pointer to PCI device
*
* This routine is registered to the PCI subsystem for error handling. It
* is called when kernel error recovery tells the lpfc driver that it is
* OK to resume normal PCI operation after PCI bus error recovery. When
* this routine is invoked, it dispatches the action to the proper SLI-3
* or SLI-4 device io_resume routine, which will resume the device operation.
**/
static void
lpfc_io_resume(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
switch (phba->pci_dev_grp) {
case LPFC_PCI_DEV_LP:
lpfc_io_resume_s3(pdev);
break;
case LPFC_PCI_DEV_OC:
lpfc_io_resume_s4(pdev);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1429 Invalid PCI device group: 0x%x\n",
phba->pci_dev_grp);
break;
}
return;
}
/**
* lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
* @phba: pointer to lpfc hba data structure.
*
* This routine checks to see if OAS is supported for this adapter. If
* supported, the configure Flash Optimized Fabric flag is set. Otherwise,
* the enable oas flag is cleared and the pool created for OAS device data
* is destroyed.
*
**/
static void
lpfc_sli4_oas_verify(struct lpfc_hba *phba)
{
if (!phba->cfg_EnableXLane)
return;
if (phba->sli4_hba.pc_sli4_params.oas_supported) {
phba->cfg_fof = 1;
} else {
phba->cfg_fof = 0;
if (phba->device_data_mem_pool)
mempool_destroy(phba->device_data_mem_pool);
phba->device_data_mem_pool = NULL;
}
return;
}
/**
* lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
* @phba: pointer to lpfc hba data structure.
*
* This routine checks to see if RAS is supported by the adapter. Check the
* function through which RAS support enablement is to be done.
**/
void
lpfc_sli4_ras_init(struct lpfc_hba *phba)
{
switch (phba->pcidev->device) {
case PCI_DEVICE_ID_LANCER_G6_FC:
case PCI_DEVICE_ID_LANCER_G7_FC:
phba->ras_fwlog.ras_hwsupport = true;
if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
phba->cfg_ras_fwlog_buffsize)
phba->ras_fwlog.ras_enabled = true;
else
phba->ras_fwlog.ras_enabled = false;
break;
default:
phba->ras_fwlog.ras_hwsupport = false;
}
}
MODULE_DEVICE_TABLE(pci, lpfc_id_table);
static const struct pci_error_handlers lpfc_err_handler = {
.error_detected = lpfc_io_error_detected,
.slot_reset = lpfc_io_slot_reset,
.resume = lpfc_io_resume,
};
static struct pci_driver lpfc_driver = {
.name = LPFC_DRIVER_NAME,
.id_table = lpfc_id_table,
.probe = lpfc_pci_probe_one,
.remove = lpfc_pci_remove_one,
.shutdown = lpfc_pci_remove_one,
.suspend = lpfc_pci_suspend_one,
.resume = lpfc_pci_resume_one,
.err_handler = &lpfc_err_handler,
};
static const struct file_operations lpfc_mgmt_fop = {
.owner = THIS_MODULE,
};
static struct miscdevice lpfc_mgmt_dev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "lpfcmgmt",
.fops = &lpfc_mgmt_fop,
};
/**
* lpfc_init - lpfc module initialization routine
*
* This routine is to be invoked when the lpfc module is loaded into the
* kernel. The special kernel macro module_init() is used to indicate the
* role of this routine to the kernel as lpfc module entry point.
*
* Return codes
* 0 - successful
* -ENOMEM - FC attach transport failed
* all others - failed
*/
static int __init
lpfc_init(void)
{
int error = 0;
printk(LPFC_MODULE_DESC "\n");
printk(LPFC_COPYRIGHT "\n");
error = misc_register(&lpfc_mgmt_dev);
if (error)
printk(KERN_ERR "Could not register lpfcmgmt device, "
"misc_register returned with status %d", error);
lpfc_transport_functions.vport_create = lpfc_vport_create;
lpfc_transport_functions.vport_delete = lpfc_vport_delete;
lpfc_transport_template =
fc_attach_transport(&lpfc_transport_functions);
if (lpfc_transport_template == NULL)
return -ENOMEM;
lpfc_vport_transport_template =
fc_attach_transport(&lpfc_vport_transport_functions);
if (lpfc_vport_transport_template == NULL) {
fc_release_transport(lpfc_transport_template);
return -ENOMEM;
}
lpfc_nvme_cmd_template();
lpfc_nvmet_cmd_template();
/* Initialize in case vector mapping is needed */
lpfc_present_cpu = num_present_cpus();
error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
"lpfc/sli4:online",
lpfc_cpu_online, lpfc_cpu_offline);
if (error < 0)
goto cpuhp_failure;
lpfc_cpuhp_state = error;
error = pci_register_driver(&lpfc_driver);
if (error)
goto unwind;
return error;
unwind:
cpuhp_remove_multi_state(lpfc_cpuhp_state);
cpuhp_failure:
fc_release_transport(lpfc_transport_template);
fc_release_transport(lpfc_vport_transport_template);
return error;
}
/**
* lpfc_exit - lpfc module removal routine
*
* This routine is invoked when the lpfc module is removed from the kernel.
* The special kernel macro module_exit() is used to indicate the role of
* this routine to the kernel as lpfc module exit point.
*/
static void __exit
lpfc_exit(void)
{
misc_deregister(&lpfc_mgmt_dev);
pci_unregister_driver(&lpfc_driver);
cpuhp_remove_multi_state(lpfc_cpuhp_state);
fc_release_transport(lpfc_transport_template);
fc_release_transport(lpfc_vport_transport_template);
idr_destroy(&lpfc_hba_index);
}
module_init(lpfc_init);
module_exit(lpfc_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(LPFC_MODULE_DESC);
MODULE_AUTHOR("Broadcom");
MODULE_VERSION("0:" LPFC_DRIVER_VERSION);