OpenCloudOS-Kernel/drivers/scsi/fnic/vnic_dev.c

956 lines
21 KiB
C

/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/if_ether.h>
#include <linux/slab.h>
#include "vnic_resource.h"
#include "vnic_devcmd.h"
#include "vnic_dev.h"
#include "vnic_stats.h"
#include "vnic_wq.h"
struct devcmd2_controller {
struct vnic_wq_ctrl *wq_ctrl;
struct vnic_dev_ring results_ring;
struct vnic_wq wq;
struct vnic_devcmd2 *cmd_ring;
struct devcmd2_result *result;
u16 next_result;
u16 result_size;
int color;
};
enum vnic_proxy_type {
PROXY_NONE,
PROXY_BY_BDF,
PROXY_BY_INDEX,
};
struct vnic_res {
void __iomem *vaddr;
unsigned int count;
};
struct vnic_dev {
void *priv;
struct pci_dev *pdev;
struct vnic_res res[RES_TYPE_MAX];
enum vnic_dev_intr_mode intr_mode;
struct vnic_devcmd __iomem *devcmd;
struct vnic_devcmd_notify *notify;
struct vnic_devcmd_notify notify_copy;
dma_addr_t notify_pa;
u32 *linkstatus;
dma_addr_t linkstatus_pa;
struct vnic_stats *stats;
dma_addr_t stats_pa;
struct vnic_devcmd_fw_info *fw_info;
dma_addr_t fw_info_pa;
enum vnic_proxy_type proxy;
u32 proxy_index;
u64 args[VNIC_DEVCMD_NARGS];
struct devcmd2_controller *devcmd2;
int (*devcmd_rtn)(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
int wait);
};
#define VNIC_MAX_RES_HDR_SIZE \
(sizeof(struct vnic_resource_header) + \
sizeof(struct vnic_resource) * RES_TYPE_MAX)
#define VNIC_RES_STRIDE 128
void *vnic_dev_priv(struct vnic_dev *vdev)
{
return vdev->priv;
}
static int vnic_dev_discover_res(struct vnic_dev *vdev,
struct vnic_dev_bar *bar)
{
struct vnic_resource_header __iomem *rh;
struct vnic_resource __iomem *r;
u8 type;
if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
printk(KERN_ERR "vNIC BAR0 res hdr length error\n");
return -EINVAL;
}
rh = bar->vaddr;
if (!rh) {
printk(KERN_ERR "vNIC BAR0 res hdr not mem-mapped\n");
return -EINVAL;
}
if (ioread32(&rh->magic) != VNIC_RES_MAGIC ||
ioread32(&rh->version) != VNIC_RES_VERSION) {
printk(KERN_ERR "vNIC BAR0 res magic/version error "
"exp (%lx/%lx) curr (%x/%x)\n",
VNIC_RES_MAGIC, VNIC_RES_VERSION,
ioread32(&rh->magic), ioread32(&rh->version));
return -EINVAL;
}
r = (struct vnic_resource __iomem *)(rh + 1);
while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
u8 bar_num = ioread8(&r->bar);
u32 bar_offset = ioread32(&r->bar_offset);
u32 count = ioread32(&r->count);
u32 len;
r++;
if (bar_num != 0) /* only mapping in BAR0 resources */
continue;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
/* each count is stride bytes long */
len = count * VNIC_RES_STRIDE;
if (len + bar_offset > bar->len) {
printk(KERN_ERR "vNIC BAR0 resource %d "
"out-of-bounds, offset 0x%x + "
"size 0x%x > bar len 0x%lx\n",
type, bar_offset,
len,
bar->len);
return -EINVAL;
}
break;
case RES_TYPE_INTR_PBA_LEGACY:
case RES_TYPE_DEVCMD2:
case RES_TYPE_DEVCMD:
len = count;
break;
default:
continue;
}
vdev->res[type].count = count;
vdev->res[type].vaddr = (char __iomem *)bar->vaddr + bar_offset;
}
return 0;
}
unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
enum vnic_res_type type)
{
return vdev->res[type].count;
}
void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
unsigned int index)
{
if (!vdev->res[type].vaddr)
return NULL;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
return (char __iomem *)vdev->res[type].vaddr +
index * VNIC_RES_STRIDE;
default:
return (char __iomem *)vdev->res[type].vaddr;
}
}
unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
unsigned int desc_count,
unsigned int desc_size)
{
/* The base address of the desc rings must be 512 byte aligned.
* Descriptor count is aligned to groups of 32 descriptors. A
* count of 0 means the maximum 4096 descriptors. Descriptor
* size is aligned to 16 bytes.
*/
unsigned int count_align = 32;
unsigned int desc_align = 16;
ring->base_align = 512;
if (desc_count == 0)
desc_count = 4096;
ring->desc_count = ALIGN(desc_count, count_align);
ring->desc_size = ALIGN(desc_size, desc_align);
ring->size = ring->desc_count * ring->desc_size;
ring->size_unaligned = ring->size + ring->base_align;
return ring->size_unaligned;
}
void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
{
memset(ring->descs, 0, ring->size);
}
int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size)
{
vnic_dev_desc_ring_size(ring, desc_count, desc_size);
ring->descs_unaligned = dma_alloc_coherent(&vdev->pdev->dev,
ring->size_unaligned,
&ring->base_addr_unaligned, GFP_KERNEL);
if (!ring->descs_unaligned) {
printk(KERN_ERR
"Failed to allocate ring (size=%d), aborting\n",
(int)ring->size);
return -ENOMEM;
}
ring->base_addr = ALIGN(ring->base_addr_unaligned,
ring->base_align);
ring->descs = (u8 *)ring->descs_unaligned +
(ring->base_addr - ring->base_addr_unaligned);
vnic_dev_clear_desc_ring(ring);
ring->desc_avail = ring->desc_count - 1;
return 0;
}
void vnic_dev_free_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring)
{
if (ring->descs) {
dma_free_coherent(&vdev->pdev->dev,
ring->size_unaligned,
ring->descs_unaligned,
ring->base_addr_unaligned);
ring->descs = NULL;
}
}
int vnic_dev_cmd1(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, int wait)
{
struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
int delay;
u32 status;
int dev_cmd_err[] = {
/* convert from fw's version of error.h to host's version */
0, /* ERR_SUCCESS */
EINVAL, /* ERR_EINVAL */
EFAULT, /* ERR_EFAULT */
EPERM, /* ERR_EPERM */
EBUSY, /* ERR_EBUSY */
};
int err;
u64 *a0 = &vdev->args[0];
u64 *a1 = &vdev->args[1];
status = ioread32(&devcmd->status);
if (status & STAT_BUSY) {
printk(KERN_ERR "Busy devcmd %d\n", _CMD_N(cmd));
return -EBUSY;
}
if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
writeq(*a0, &devcmd->args[0]);
writeq(*a1, &devcmd->args[1]);
wmb();
}
iowrite32(cmd, &devcmd->cmd);
if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
return 0;
for (delay = 0; delay < wait; delay++) {
udelay(100);
status = ioread32(&devcmd->status);
if (!(status & STAT_BUSY)) {
if (status & STAT_ERROR) {
err = dev_cmd_err[(int)readq(&devcmd->args[0])];
printk(KERN_ERR "Error %d devcmd %d\n",
err, _CMD_N(cmd));
return -err;
}
if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
rmb();
*a0 = readq(&devcmd->args[0]);
*a1 = readq(&devcmd->args[1]);
}
return 0;
}
}
printk(KERN_ERR "Timedout devcmd %d\n", _CMD_N(cmd));
return -ETIMEDOUT;
}
int vnic_dev_cmd2(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
int wait)
{
struct devcmd2_controller *dc2c = vdev->devcmd2;
struct devcmd2_result *result;
u8 color;
unsigned int i;
int delay;
int err;
u32 fetch_index;
u32 posted;
u32 new_posted;
posted = ioread32(&dc2c->wq_ctrl->posted_index);
fetch_index = ioread32(&dc2c->wq_ctrl->fetch_index);
if (posted == 0xFFFFFFFF || fetch_index == 0xFFFFFFFF) {
/* Hardware surprise removal: return error */
pr_err("%s: devcmd2 invalid posted or fetch index on cmd %d\n",
pci_name(vdev->pdev), _CMD_N(cmd));
pr_err("%s: fetch index: %u, posted index: %u\n",
pci_name(vdev->pdev), fetch_index, posted);
return -ENODEV;
}
new_posted = (posted + 1) % DEVCMD2_RING_SIZE;
if (new_posted == fetch_index) {
pr_err("%s: devcmd2 wq full while issuing cmd %d\n",
pci_name(vdev->pdev), _CMD_N(cmd));
pr_err("%s: fetch index: %u, posted index: %u\n",
pci_name(vdev->pdev), fetch_index, posted);
return -EBUSY;
}
dc2c->cmd_ring[posted].cmd = cmd;
dc2c->cmd_ring[posted].flags = 0;
if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
dc2c->cmd_ring[posted].flags |= DEVCMD2_FNORESULT;
if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
dc2c->cmd_ring[posted].args[i] = vdev->args[i];
}
/* Adding write memory barrier prevents compiler and/or CPU
* reordering, thus avoiding descriptor posting before
* descriptor is initialized. Otherwise, hardware can read
* stale descriptor fields.
*/
wmb();
iowrite32(new_posted, &dc2c->wq_ctrl->posted_index);
if (dc2c->cmd_ring[posted].flags & DEVCMD2_FNORESULT)
return 0;
result = dc2c->result + dc2c->next_result;
color = dc2c->color;
dc2c->next_result++;
if (dc2c->next_result == dc2c->result_size) {
dc2c->next_result = 0;
dc2c->color = dc2c->color ? 0 : 1;
}
for (delay = 0; delay < wait; delay++) {
udelay(100);
if (result->color == color) {
if (result->error) {
err = -(int) result->error;
if (err != ERR_ECMDUNKNOWN ||
cmd != CMD_CAPABILITY)
pr_err("%s:Error %d devcmd %d\n",
pci_name(vdev->pdev),
err, _CMD_N(cmd));
return err;
}
if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
rmb(); /*prevent reorder while reding result*/
for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
vdev->args[i] = result->results[i];
}
return 0;
}
}
pr_err("%s:Timed out devcmd %d\n", pci_name(vdev->pdev), _CMD_N(cmd));
return -ETIMEDOUT;
}
int vnic_dev_init_devcmd1(struct vnic_dev *vdev)
{
vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
if (!vdev->devcmd)
return -ENODEV;
vdev->devcmd_rtn = &vnic_dev_cmd1;
return 0;
}
int vnic_dev_init_devcmd2(struct vnic_dev *vdev)
{
int err;
unsigned int fetch_index;
if (vdev->devcmd2)
return 0;
vdev->devcmd2 = kzalloc(sizeof(*vdev->devcmd2), GFP_ATOMIC);
if (!vdev->devcmd2)
return -ENOMEM;
vdev->devcmd2->color = 1;
vdev->devcmd2->result_size = DEVCMD2_RING_SIZE;
err = vnic_wq_devcmd2_alloc(vdev, &vdev->devcmd2->wq,
DEVCMD2_RING_SIZE, DEVCMD2_DESC_SIZE);
if (err)
goto err_free_devcmd2;
fetch_index = ioread32(&vdev->devcmd2->wq.ctrl->fetch_index);
if (fetch_index == 0xFFFFFFFF) { /* check for hardware gone */
pr_err("error in devcmd2 init");
err = -ENODEV;
goto err_free_wq;
}
/*
* Don't change fetch_index ever and
* set posted_index same as fetch_index
* when setting up the WQ for devcmd2.
*/
vnic_wq_init_start(&vdev->devcmd2->wq, 0, fetch_index,
fetch_index, 0, 0);
vnic_wq_enable(&vdev->devcmd2->wq);
err = vnic_dev_alloc_desc_ring(vdev, &vdev->devcmd2->results_ring,
DEVCMD2_RING_SIZE, DEVCMD2_DESC_SIZE);
if (err)
goto err_disable_wq;
vdev->devcmd2->result =
(struct devcmd2_result *) vdev->devcmd2->results_ring.descs;
vdev->devcmd2->cmd_ring =
(struct vnic_devcmd2 *) vdev->devcmd2->wq.ring.descs;
vdev->devcmd2->wq_ctrl = vdev->devcmd2->wq.ctrl;
vdev->args[0] = (u64) vdev->devcmd2->results_ring.base_addr |
VNIC_PADDR_TARGET;
vdev->args[1] = DEVCMD2_RING_SIZE;
err = vnic_dev_cmd2(vdev, CMD_INITIALIZE_DEVCMD2, 1000);
if (err)
goto err_free_desc_ring;
vdev->devcmd_rtn = &vnic_dev_cmd2;
return 0;
err_free_desc_ring:
vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
err_disable_wq:
vnic_wq_disable(&vdev->devcmd2->wq);
err_free_wq:
vnic_wq_free(&vdev->devcmd2->wq);
err_free_devcmd2:
kfree(vdev->devcmd2);
vdev->devcmd2 = NULL;
return err;
}
void vnic_dev_deinit_devcmd2(struct vnic_dev *vdev)
{
vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
vnic_wq_disable(&vdev->devcmd2->wq);
vnic_wq_free(&vdev->devcmd2->wq);
kfree(vdev->devcmd2);
vdev->devcmd2 = NULL;
vdev->devcmd_rtn = &vnic_dev_cmd1;
}
int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
enum vnic_devcmd_cmd cmd, u64 *a0, u64 *a1, int wait)
{
int err;
vdev->args[0] = *a0;
vdev->args[1] = *a1;
err = (*vdev->devcmd_rtn)(vdev, cmd, wait);
*a0 = vdev->args[0];
*a1 = vdev->args[1];
return err;
}
int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
u64 *a0, u64 *a1, int wait)
{
memset(vdev->args, 0, sizeof(vdev->args));
switch (vdev->proxy) {
case PROXY_NONE:
default:
return vnic_dev_cmd_no_proxy(vdev, cmd, a0, a1, wait);
}
}
int vnic_dev_fw_info(struct vnic_dev *vdev,
struct vnic_devcmd_fw_info **fw_info)
{
u64 a0, a1 = 0;
int wait = 1000;
int err = 0;
if (!vdev->fw_info) {
vdev->fw_info = dma_alloc_coherent(&vdev->pdev->dev,
sizeof(struct vnic_devcmd_fw_info),
&vdev->fw_info_pa, GFP_KERNEL);
if (!vdev->fw_info)
return -ENOMEM;
a0 = vdev->fw_info_pa;
/* only get fw_info once and cache it */
err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO, &a0, &a1, wait);
}
*fw_info = vdev->fw_info;
return err;
}
int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, unsigned int size,
void *value)
{
u64 a0, a1;
int wait = 1000;
int err;
a0 = offset;
a1 = size;
err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
switch (size) {
case 1:
*(u8 *)value = (u8)a0;
break;
case 2:
*(u16 *)value = (u16)a0;
break;
case 4:
*(u32 *)value = (u32)a0;
break;
case 8:
*(u64 *)value = a0;
break;
default:
BUG();
break;
}
return err;
}
int vnic_dev_stats_clear(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait);
}
int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
{
u64 a0, a1;
int wait = 1000;
if (!vdev->stats) {
vdev->stats = dma_alloc_coherent(&vdev->pdev->dev,
sizeof(struct vnic_stats), &vdev->stats_pa, GFP_KERNEL);
if (!vdev->stats)
return -ENOMEM;
}
*stats = vdev->stats;
a0 = vdev->stats_pa;
a1 = sizeof(struct vnic_stats);
return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
}
int vnic_dev_close(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
}
int vnic_dev_enable(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
}
int vnic_dev_disable(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
}
int vnic_dev_open(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
}
int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_soft_reset(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_SOFT_RESET, &a0, &a1, wait);
}
int vnic_dev_soft_reset_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_SOFT_RESET_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_hang_notify(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_HANG_NOTIFY, &a0, &a1, wait);
}
int vnic_dev_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
{
u64 a[2] = {};
int wait = 1000;
int err, i;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = 0;
err = vnic_dev_cmd(vdev, CMD_MAC_ADDR, &a[0], &a[1], wait);
if (err)
return err;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = ((u8 *)&a)[i];
return 0;
}
void vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
int broadcast, int promisc, int allmulti)
{
u64 a0, a1 = 0;
int wait = 1000;
int err;
a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
(multicast ? CMD_PFILTER_MULTICAST : 0) |
(broadcast ? CMD_PFILTER_BROADCAST : 0) |
(promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
(allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
if (err)
printk(KERN_ERR "Can't set packet filter\n");
}
void vnic_dev_add_addr(struct vnic_dev *vdev, u8 *addr)
{
u64 a[2] = {};
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a[0], &a[1], wait);
if (err)
pr_err("Can't add addr [%pM], %d\n", addr, err);
}
void vnic_dev_del_addr(struct vnic_dev *vdev, u8 *addr)
{
u64 a[2] = {};
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a[0], &a[1], wait);
if (err)
pr_err("Can't del addr [%pM], %d\n", addr, err);
}
int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr)
{
u64 a0, a1;
int wait = 1000;
if (!vdev->notify) {
vdev->notify = dma_alloc_coherent(&vdev->pdev->dev,
sizeof(struct vnic_devcmd_notify),
&vdev->notify_pa, GFP_KERNEL);
if (!vdev->notify)
return -ENOMEM;
}
a0 = vdev->notify_pa;
a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL;
a1 += sizeof(struct vnic_devcmd_notify);
return vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
}
void vnic_dev_notify_unset(struct vnic_dev *vdev)
{
u64 a0, a1;
int wait = 1000;
a0 = 0; /* paddr = 0 to unset notify buffer */
a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
a1 += sizeof(struct vnic_devcmd_notify);
vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
}
static int vnic_dev_notify_ready(struct vnic_dev *vdev)
{
u32 *words;
unsigned int nwords = sizeof(struct vnic_devcmd_notify) / 4;
unsigned int i;
u32 csum;
if (!vdev->notify)
return 0;
do {
csum = 0;
memcpy(&vdev->notify_copy, vdev->notify,
sizeof(struct vnic_devcmd_notify));
words = (u32 *)&vdev->notify_copy;
for (i = 1; i < nwords; i++)
csum += words[i];
} while (csum != words[0]);
return 1;
}
int vnic_dev_init(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
}
u16 vnic_dev_set_default_vlan(struct vnic_dev *vdev, u16 new_default_vlan)
{
u64 a0 = new_default_vlan, a1 = 0;
int wait = 1000;
int old_vlan = 0;
old_vlan = vnic_dev_cmd(vdev, CMD_SET_DEFAULT_VLAN, &a0, &a1, wait);
return (u16)old_vlan;
}
int vnic_dev_link_status(struct vnic_dev *vdev)
{
if (vdev->linkstatus)
return *vdev->linkstatus;
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.link_state;
}
u32 vnic_dev_port_speed(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.port_speed;
}
u32 vnic_dev_msg_lvl(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.msglvl;
}
u32 vnic_dev_mtu(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.mtu;
}
u32 vnic_dev_link_down_cnt(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.link_down_cnt;
}
void vnic_dev_set_intr_mode(struct vnic_dev *vdev,
enum vnic_dev_intr_mode intr_mode)
{
vdev->intr_mode = intr_mode;
}
enum vnic_dev_intr_mode vnic_dev_get_intr_mode(
struct vnic_dev *vdev)
{
return vdev->intr_mode;
}
void vnic_dev_unregister(struct vnic_dev *vdev)
{
if (vdev) {
if (vdev->notify)
dma_free_coherent(&vdev->pdev->dev,
sizeof(struct vnic_devcmd_notify),
vdev->notify,
vdev->notify_pa);
if (vdev->linkstatus)
dma_free_coherent(&vdev->pdev->dev,
sizeof(u32),
vdev->linkstatus,
vdev->linkstatus_pa);
if (vdev->stats)
dma_free_coherent(&vdev->pdev->dev,
sizeof(struct vnic_stats),
vdev->stats, vdev->stats_pa);
if (vdev->fw_info)
dma_free_coherent(&vdev->pdev->dev,
sizeof(struct vnic_devcmd_fw_info),
vdev->fw_info, vdev->fw_info_pa);
if (vdev->devcmd2)
vnic_dev_deinit_devcmd2(vdev);
kfree(vdev);
}
}
struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
void *priv, struct pci_dev *pdev, struct vnic_dev_bar *bar)
{
if (!vdev) {
vdev = kzalloc(sizeof(struct vnic_dev), GFP_KERNEL);
if (!vdev)
return NULL;
}
vdev->priv = priv;
vdev->pdev = pdev;
if (vnic_dev_discover_res(vdev, bar))
goto err_out;
return vdev;
err_out:
vnic_dev_unregister(vdev);
return NULL;
}
int vnic_dev_cmd_init(struct vnic_dev *vdev)
{
int err;
void *p;
p = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD2, 0);
if (p) {
pr_err("fnic: DEVCMD2 resource found!\n");
err = vnic_dev_init_devcmd2(vdev);
} else {
pr_err("fnic: DEVCMD2 not found, fall back to Devcmd\n");
err = vnic_dev_init_devcmd1(vdev);
}
return err;
}