OpenCloudOS-Kernel/drivers/scsi/aic94xx/aic94xx_hwi.c

1373 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Aic94xx SAS/SATA driver hardware interface.
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*/
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include "aic94xx.h"
#include "aic94xx_reg.h"
#include "aic94xx_hwi.h"
#include "aic94xx_seq.h"
#include "aic94xx_dump.h"
u32 MBAR0_SWB_SIZE;
/* ---------- Initialization ---------- */
static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
{
/* adapter came with a sas address */
if (asd_ha->hw_prof.sas_addr[0])
return 0;
return sas_request_addr(asd_ha->sas_ha.core.shost,
asd_ha->hw_prof.sas_addr);
}
static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
{
int i;
for (i = 0; i < ASD_MAX_PHYS; i++) {
if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
continue;
/* Set a phy's address only if it has none.
*/
ASD_DPRINTK("setting phy%d addr to %llx\n", i,
SAS_ADDR(asd_ha->hw_prof.sas_addr));
memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
}
}
/* ---------- PHY initialization ---------- */
static void asd_init_phy_identify(struct asd_phy *phy)
{
phy->identify_frame = phy->id_frm_tok->vaddr;
memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
phy->identify_frame->dev_type = SAS_END_DEVICE;
if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
if (phy->sas_phy.role & PHY_ROLE_TARGET)
phy->identify_frame->target_bits = phy->sas_phy.tproto;
memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
SAS_ADDR_SIZE);
phy->identify_frame->phy_id = phy->sas_phy.id;
}
static int asd_init_phy(struct asd_phy *phy)
{
struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
sas_phy->enabled = 1;
sas_phy->class = SAS;
sas_phy->iproto = SAS_PROTOCOL_ALL;
sas_phy->tproto = 0;
sas_phy->type = PHY_TYPE_PHYSICAL;
sas_phy->role = PHY_ROLE_INITIATOR;
sas_phy->oob_mode = OOB_NOT_CONNECTED;
sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
phy->id_frm_tok = asd_alloc_coherent(asd_ha,
sizeof(*phy->identify_frame),
GFP_KERNEL);
if (!phy->id_frm_tok) {
asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
return -ENOMEM;
} else
asd_init_phy_identify(phy);
memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
return 0;
}
static void asd_init_ports(struct asd_ha_struct *asd_ha)
{
int i;
spin_lock_init(&asd_ha->asd_ports_lock);
for (i = 0; i < ASD_MAX_PHYS; i++) {
struct asd_port *asd_port = &asd_ha->asd_ports[i];
memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
asd_port->phy_mask = 0;
asd_port->num_phys = 0;
}
}
static int asd_init_phys(struct asd_ha_struct *asd_ha)
{
u8 i;
u8 phy_mask = asd_ha->hw_prof.enabled_phys;
for (i = 0; i < ASD_MAX_PHYS; i++) {
struct asd_phy *phy = &asd_ha->phys[i];
phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
phy->asd_port = NULL;
phy->sas_phy.enabled = 0;
phy->sas_phy.id = i;
phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
phy->sas_phy.ha = &asd_ha->sas_ha;
phy->sas_phy.lldd_phy = phy;
}
/* Now enable and initialize only the enabled phys. */
for_each_phy(phy_mask, phy_mask, i) {
int err = asd_init_phy(&asd_ha->phys[i]);
if (err)
return err;
}
return 0;
}
/* ---------- Sliding windows ---------- */
static int asd_init_sw(struct asd_ha_struct *asd_ha)
{
struct pci_dev *pcidev = asd_ha->pcidev;
int err;
u32 v;
/* Unlock MBARs */
err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
if (err) {
asd_printk("couldn't access conf. space of %s\n",
pci_name(pcidev));
goto Err;
}
if (v)
err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
if (err) {
asd_printk("couldn't write to MBAR_KEY of %s\n",
pci_name(pcidev));
goto Err;
}
/* Set sliding windows A, B and C to point to proper internal
* memory regions.
*/
pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
REG_BASE_ADDR_CSEQCIO);
pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
if (!asd_ha->iospace) {
/* MBAR1 will point to OCM (On Chip Memory) */
pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
}
spin_lock_init(&asd_ha->iolock);
Err:
return err;
}
/* ---------- SCB initialization ---------- */
/**
* asd_init_scbs - manually allocate the first SCB.
* @asd_ha: pointer to host adapter structure
*
* This allocates the very first SCB which would be sent to the
* sequencer for execution. Its bus address is written to
* CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
* the _next_ scb to be DMA-ed to the host adapter is read from the last
* SCB DMA-ed to the host adapter, we have to always stay one step
* ahead of the sequencer and keep one SCB already allocated.
*/
static int asd_init_scbs(struct asd_ha_struct *asd_ha)
{
struct asd_seq_data *seq = &asd_ha->seq;
int bitmap_bytes;
/* allocate the index array and bitmap */
asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
sizeof(void *),
GFP_KERNEL);
if (!asd_ha->seq.tc_index_array)
return -ENOMEM;
bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
if (!asd_ha->seq.tc_index_bitmap) {
kfree(asd_ha->seq.tc_index_array);
asd_ha->seq.tc_index_array = NULL;
return -ENOMEM;
}
spin_lock_init(&seq->tc_index_lock);
seq->next_scb.size = sizeof(struct scb);
seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
&seq->next_scb.dma_handle);
if (!seq->next_scb.vaddr) {
kfree(asd_ha->seq.tc_index_bitmap);
kfree(asd_ha->seq.tc_index_array);
asd_ha->seq.tc_index_bitmap = NULL;
asd_ha->seq.tc_index_array = NULL;
return -ENOMEM;
}
seq->pending = 0;
spin_lock_init(&seq->pend_q_lock);
INIT_LIST_HEAD(&seq->pend_q);
return 0;
}
static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
{
asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
asd_ha->hw_prof.max_scbs,
asd_ha->hw_prof.max_ddbs);
}
/* ---------- Done List initialization ---------- */
static void asd_dl_tasklet_handler(unsigned long);
static int asd_init_dl(struct asd_ha_struct *asd_ha)
{
asd_ha->seq.actual_dl
= asd_alloc_coherent(asd_ha,
ASD_DL_SIZE * sizeof(struct done_list_struct),
GFP_KERNEL);
if (!asd_ha->seq.actual_dl)
return -ENOMEM;
asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
asd_ha->seq.dl_next = 0;
tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
(unsigned long) asd_ha);
return 0;
}
/* ---------- EDB and ESCB init ---------- */
static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
{
struct asd_seq_data *seq = &asd_ha->seq;
int i;
seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
gfp_flags);
if (!seq->edb_arr)
return -ENOMEM;
for (i = 0; i < seq->num_edbs; i++) {
seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
gfp_flags);
if (!seq->edb_arr[i])
goto Err_unroll;
memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
}
ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
return 0;
Err_unroll:
for (i-- ; i >= 0; i--)
asd_free_coherent(asd_ha, seq->edb_arr[i]);
kfree(seq->edb_arr);
seq->edb_arr = NULL;
return -ENOMEM;
}
static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
gfp_t gfp_flags)
{
struct asd_seq_data *seq = &asd_ha->seq;
struct asd_ascb *escb;
int i, escbs;
seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
gfp_flags);
if (!seq->escb_arr)
return -ENOMEM;
escbs = seq->num_escbs;
escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
if (!escb) {
asd_printk("couldn't allocate list of escbs\n");
goto Err;
}
seq->num_escbs -= escbs; /* subtract what was not allocated */
ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
struct asd_ascb,
list)) {
seq->escb_arr[i] = escb;
escb->scb->header.opcode = EMPTY_SCB;
}
return 0;
Err:
kfree(seq->escb_arr);
seq->escb_arr = NULL;
return -ENOMEM;
}
static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
{
struct asd_seq_data *seq = &asd_ha->seq;
int i, k, z = 0;
for (i = 0; i < seq->num_escbs; i++) {
struct asd_ascb *ascb = seq->escb_arr[i];
struct empty_scb *escb = &ascb->scb->escb;
ascb->edb_index = z;
escb->num_valid = ASD_EDBS_PER_SCB;
for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
struct sg_el *eb = &escb->eb[k];
struct asd_dma_tok *edb = seq->edb_arr[z++];
memset(eb, 0, sizeof(*eb));
eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
eb->size = cpu_to_le32(((u32) edb->size));
}
}
}
/**
* asd_init_escbs -- allocate and initialize empty scbs
* @asd_ha: pointer to host adapter structure
*
* An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
* They transport sense data, etc.
*/
static int asd_init_escbs(struct asd_ha_struct *asd_ha)
{
struct asd_seq_data *seq = &asd_ha->seq;
int err = 0;
/* Allocate two empty data buffers (edb) per sequencer. */
int edbs = 2*(1+asd_ha->hw_prof.num_phys);
seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
if (err) {
asd_printk("couldn't allocate edbs\n");
return err;
}
err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
if (err) {
asd_printk("couldn't allocate escbs\n");
return err;
}
asd_assign_edbs2escbs(asd_ha);
/* In order to insure that normal SCBs do not overfill sequencer
* memory and leave no space for escbs (halting condition),
* we increment pending here by the number of escbs. However,
* escbs are never pending.
*/
seq->pending = seq->num_escbs;
seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
return 0;
}
/* ---------- HW initialization ---------- */
/**
* asd_chip_hardrst -- hard reset the chip
* @asd_ha: pointer to host adapter structure
*
* This takes 16 cycles and is synchronous to CFCLK, which runs
* at 200 MHz, so this should take at most 80 nanoseconds.
*/
int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
{
int i;
int count = 100;
u32 reg;
for (i = 0 ; i < 4 ; i++) {
asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
}
do {
udelay(1);
reg = asd_read_reg_dword(asd_ha, CHIMINT);
if (reg & HARDRSTDET) {
asd_write_reg_dword(asd_ha, CHIMINT,
HARDRSTDET|PORRSTDET);
return 0;
}
} while (--count > 0);
return -ENODEV;
}
/**
* asd_init_chip -- initialize the chip
* @asd_ha: pointer to host adapter structure
*
* Hard resets the chip, disables HA interrupts, downloads the sequnecer
* microcode and starts the sequencers. The caller has to explicitly
* enable HA interrupts with asd_enable_ints(asd_ha).
*/
static int asd_init_chip(struct asd_ha_struct *asd_ha)
{
int err;
err = asd_chip_hardrst(asd_ha);
if (err) {
asd_printk("couldn't hard reset %s\n",
pci_name(asd_ha->pcidev));
goto out;
}
asd_disable_ints(asd_ha);
err = asd_init_seqs(asd_ha);
if (err) {
asd_printk("couldn't init seqs for %s\n",
pci_name(asd_ha->pcidev));
goto out;
}
err = asd_start_seqs(asd_ha);
if (err) {
asd_printk("couldn't start seqs for %s\n",
pci_name(asd_ha->pcidev));
goto out;
}
out:
return err;
}
#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
static int max_devs = 0;
module_param_named(max_devs, max_devs, int, S_IRUGO);
MODULE_PARM_DESC(max_devs, "\n"
"\tMaximum number of SAS devices to support (not LUs).\n"
"\tDefault: 2176, Maximum: 65663.\n");
static int max_cmnds = 0;
module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
MODULE_PARM_DESC(max_cmnds, "\n"
"\tMaximum number of commands queuable.\n"
"\tDefault: 512, Maximum: 66047.\n");
static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
{
unsigned long dma_addr = OCM_BASE_ADDR;
u32 d;
dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
d |= 4;
asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
asd_ha->hw_prof.max_ddbs += MAX_DEVS;
}
static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
{
dma_addr_t dma_handle;
unsigned long dma_addr;
u32 d;
int size;
asd_extend_devctx_ocm(asd_ha);
asd_ha->hw_prof.ddb_ext = NULL;
if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
max_devs = asd_ha->hw_prof.max_ddbs;
return 0;
}
size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
if (!asd_ha->hw_prof.ddb_ext) {
asd_printk("couldn't allocate memory for %d devices\n",
max_devs);
max_devs = asd_ha->hw_prof.max_ddbs;
return -ENOMEM;
}
dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
dma_handle = (dma_addr_t) dma_addr;
asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
d &= ~4;
asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
asd_ha->hw_prof.max_ddbs = max_devs;
return 0;
}
static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
{
dma_addr_t dma_handle;
unsigned long dma_addr;
u32 d;
int size;
asd_ha->hw_prof.scb_ext = NULL;
if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
max_cmnds = asd_ha->hw_prof.max_scbs;
return 0;
}
size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
if (!asd_ha->hw_prof.scb_ext) {
asd_printk("couldn't allocate memory for %d commands\n",
max_cmnds);
max_cmnds = asd_ha->hw_prof.max_scbs;
return -ENOMEM;
}
dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
dma_handle = (dma_addr_t) dma_addr;
asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
d &= ~1;
asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
asd_ha->hw_prof.max_scbs = max_cmnds;
return 0;
}
/**
* asd_init_ctxmem -- initialize context memory
* asd_ha: pointer to host adapter structure
*
* This function sets the maximum number of SCBs and
* DDBs which can be used by the sequencer. This is normally
* 512 and 128 respectively. If support for more SCBs or more DDBs
* is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
* initialized here to extend context memory to point to host memory,
* thus allowing unlimited support for SCBs and DDBs -- only limited
* by host memory.
*/
static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
{
int bitmap_bytes;
asd_get_max_scb_ddb(asd_ha);
asd_extend_devctx(asd_ha);
asd_extend_cmdctx(asd_ha);
/* The kernel wants bitmaps to be unsigned long sized. */
bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
if (!asd_ha->hw_prof.ddb_bitmap)
return -ENOMEM;
spin_lock_init(&asd_ha->hw_prof.ddb_lock);
return 0;
}
int asd_init_hw(struct asd_ha_struct *asd_ha)
{
int err;
u32 v;
err = asd_init_sw(asd_ha);
if (err)
return err;
err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
if (err) {
asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
pci_name(asd_ha->pcidev));
return err;
}
err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
v | SC_TMR_DIS);
if (err) {
asd_printk("couldn't disable split completion timer of %s\n",
pci_name(asd_ha->pcidev));
return err;
}
err = asd_read_ocm(asd_ha);
if (err) {
asd_printk("couldn't read ocm(%d)\n", err);
/* While suspicios, it is not an error that we
* couldn't read the OCM. */
}
err = asd_read_flash(asd_ha);
if (err) {
asd_printk("couldn't read flash(%d)\n", err);
/* While suspicios, it is not an error that we
* couldn't read FLASH memory.
*/
}
asd_init_ctxmem(asd_ha);
if (asd_get_user_sas_addr(asd_ha)) {
asd_printk("No SAS Address provided for %s\n",
pci_name(asd_ha->pcidev));
err = -ENODEV;
goto Out;
}
asd_propagate_sas_addr(asd_ha);
err = asd_init_phys(asd_ha);
if (err) {
asd_printk("couldn't initialize phys for %s\n",
pci_name(asd_ha->pcidev));
goto Out;
}
asd_init_ports(asd_ha);
err = asd_init_scbs(asd_ha);
if (err) {
asd_printk("couldn't initialize scbs for %s\n",
pci_name(asd_ha->pcidev));
goto Out;
}
err = asd_init_dl(asd_ha);
if (err) {
asd_printk("couldn't initialize the done list:%d\n",
err);
goto Out;
}
err = asd_init_escbs(asd_ha);
if (err) {
asd_printk("couldn't initialize escbs\n");
goto Out;
}
err = asd_init_chip(asd_ha);
if (err) {
asd_printk("couldn't init the chip\n");
goto Out;
}
Out:
return err;
}
/* ---------- Chip reset ---------- */
/**
* asd_chip_reset -- reset the host adapter, etc
* @asd_ha: pointer to host adapter structure of interest
*
* Called from the ISR. Hard reset the chip. Let everything
* timeout. This should be no different than hot-unplugging the
* host adapter. Once everything times out we'll init the chip with
* a call to asd_init_chip() and enable interrupts with asd_enable_ints().
* XXX finish.
*/
static void asd_chip_reset(struct asd_ha_struct *asd_ha)
{
ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
asd_chip_hardrst(asd_ha);
}
/* ---------- Done List Routines ---------- */
static void asd_dl_tasklet_handler(unsigned long data)
{
struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
struct asd_seq_data *seq = &asd_ha->seq;
unsigned long flags;
while (1) {
struct done_list_struct *dl = &seq->dl[seq->dl_next];
struct asd_ascb *ascb;
if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
break;
/* find the aSCB */
spin_lock_irqsave(&seq->tc_index_lock, flags);
ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
spin_unlock_irqrestore(&seq->tc_index_lock, flags);
if (unlikely(!ascb)) {
ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
goto next_1;
} else if (ascb->scb->header.opcode == EMPTY_SCB) {
goto out;
} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
goto next_1;
}
spin_lock_irqsave(&seq->pend_q_lock, flags);
list_del_init(&ascb->list);
seq->pending--;
spin_unlock_irqrestore(&seq->pend_q_lock, flags);
out:
ascb->tasklet_complete(ascb, dl);
next_1:
seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
if (!seq->dl_next)
seq->dl_toggle ^= DL_TOGGLE_MASK;
}
}
/* ---------- Interrupt Service Routines ---------- */
/**
* asd_process_donelist_isr -- schedule processing of done list entries
* @asd_ha: pointer to host adapter structure
*/
static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
{
tasklet_schedule(&asd_ha->seq.dl_tasklet);
}
/**
* asd_com_sas_isr -- process device communication interrupt (COMINT)
* @asd_ha: pointer to host adapter structure
*/
static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
{
u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
/* clear COMSTAT int */
asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
if (comstat & CSBUFPERR) {
asd_printk("%s: command/status buffer dma parity error\n",
pci_name(asd_ha->pcidev));
} else if (comstat & CSERR) {
int i;
u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
dmaerr &= 0xFF;
asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
"CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
pci_name(asd_ha->pcidev),
dmaerr,
asd_read_reg_dword(asd_ha, CSDMAADR),
asd_read_reg_dword(asd_ha, CSDMAADR+4));
asd_printk("CSBUFFER:\n");
for (i = 0; i < 8; i++) {
asd_printk("%08x %08x %08x %08x\n",
asd_read_reg_dword(asd_ha, CSBUFFER),
asd_read_reg_dword(asd_ha, CSBUFFER+4),
asd_read_reg_dword(asd_ha, CSBUFFER+8),
asd_read_reg_dword(asd_ha, CSBUFFER+12));
}
asd_dump_seq_state(asd_ha, 0);
} else if (comstat & OVLYERR) {
u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
dmaerr = (dmaerr >> 8) & 0xFF;
asd_printk("%s: overlay dma error:0x%x\n",
pci_name(asd_ha->pcidev),
dmaerr);
}
asd_chip_reset(asd_ha);
}
static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
{
static const char *halt_code[256] = {
"UNEXPECTED_INTERRUPT0",
"UNEXPECTED_INTERRUPT1",
"UNEXPECTED_INTERRUPT2",
"UNEXPECTED_INTERRUPT3",
"UNEXPECTED_INTERRUPT4",
"UNEXPECTED_INTERRUPT5",
"UNEXPECTED_INTERRUPT6",
"UNEXPECTED_INTERRUPT7",
"UNEXPECTED_INTERRUPT8",
"UNEXPECTED_INTERRUPT9",
"UNEXPECTED_INTERRUPT10",
[11 ... 19] = "unknown[11,19]",
"NO_FREE_SCB_AVAILABLE",
"INVALID_SCB_OPCODE",
"INVALID_MBX_OPCODE",
"INVALID_ATA_STATE",
"ATA_QUEUE_FULL",
"ATA_TAG_TABLE_FAULT",
"ATA_TAG_MASK_FAULT",
"BAD_LINK_QUEUE_STATE",
"DMA2CHIM_QUEUE_ERROR",
"EMPTY_SCB_LIST_FULL",
"unknown[30]",
"IN_USE_SCB_ON_FREE_LIST",
"BAD_OPEN_WAIT_STATE",
"INVALID_STP_AFFILIATION",
"unknown[34]",
"EXEC_QUEUE_ERROR",
"TOO_MANY_EMPTIES_NEEDED",
"EMPTY_REQ_QUEUE_ERROR",
"Q_MONIRTT_MGMT_ERROR",
"TARGET_MODE_FLOW_ERROR",
"DEVICE_QUEUE_NOT_FOUND",
"START_IRTT_TIMER_ERROR",
"ABORT_TASK_ILLEGAL_REQ",
[43 ... 255] = "unknown[43,255]"
};
if (dchstatus & CSEQINT) {
u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
asd_printk("%s: CSEQ arp2int:0x%x\n",
pci_name(asd_ha->pcidev),
arp2int);
} else if (arp2int & ARP2HALTC)
asd_printk("%s: CSEQ halted: %s\n",
pci_name(asd_ha->pcidev),
halt_code[(arp2int>>16)&0xFF]);
else
asd_printk("%s: CARP2INT:0x%x\n",
pci_name(asd_ha->pcidev),
arp2int);
}
if (dchstatus & LSEQINT_MASK) {
int lseq;
u8 lseq_mask = dchstatus & LSEQINT_MASK;
for_each_sequencer(lseq_mask, lseq_mask, lseq) {
u32 arp2int = asd_read_reg_dword(asd_ha,
LmARP2INT(lseq));
if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
| ARP2CIOPERR)) {
asd_printk("%s: LSEQ%d arp2int:0x%x\n",
pci_name(asd_ha->pcidev),
lseq, arp2int);
/* XXX we should only do lseq reset */
} else if (arp2int & ARP2HALTC)
asd_printk("%s: LSEQ%d halted: %s\n",
pci_name(asd_ha->pcidev),
lseq,halt_code[(arp2int>>16)&0xFF]);
else
asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
pci_name(asd_ha->pcidev), lseq,
arp2int);
}
}
asd_chip_reset(asd_ha);
}
/**
* asd_dch_sas_isr -- process device channel interrupt (DEVINT)
* @asd_ha: pointer to host adapter structure
*/
static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
{
u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
if (dchstatus & CFIFTOERR) {
asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
asd_chip_reset(asd_ha);
} else
asd_arp2_err(asd_ha, dchstatus);
}
/**
* ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
* @asd_ha: pointer to host adapter structure
*/
static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
{
u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
if (!(stat0r & ASIERR)) {
asd_printk("hmm, EXSI interrupted but no error?\n");
return;
}
if (stat0r & ASIFMTERR) {
asd_printk("ASI SEEPROM format error for %s\n",
pci_name(asd_ha->pcidev));
} else if (stat0r & ASISEECHKERR) {
u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
stat1r & CHECKSUM_MASK,
pci_name(asd_ha->pcidev));
} else {
u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
if (!(statr & CPI2ASIMSTERR_MASK)) {
ASD_DPRINTK("hmm, ASIERR?\n");
return;
} else {
u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
"count: 0x%x, byteen: 0x%x, targerr: 0x%x "
"master id: 0x%x, master err: 0x%x\n",
pci_name(asd_ha->pcidev),
addr, data,
(statr & CPI2ASIBYTECNT_MASK) >> 16,
(statr & CPI2ASIBYTEEN_MASK) >> 12,
(statr & CPI2ASITARGERR_MASK) >> 8,
(statr & CPI2ASITARGMID_MASK) >> 4,
(statr & CPI2ASIMSTERR_MASK));
}
}
asd_chip_reset(asd_ha);
}
/**
* asd_hst_pcix_isr -- process host interface interrupts
* @asd_ha: pointer to host adapter structure
*
* Asserted on PCIX errors: target abort, etc.
*/
static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
{
u16 status;
u32 pcix_status;
u32 ecc_status;
pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
if (status & PCI_STATUS_DETECTED_PARITY)
asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
else if (status & PCI_STATUS_REC_MASTER_ABORT)
asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
else if (status & PCI_STATUS_REC_TARGET_ABORT)
asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
else if (status & PCI_STATUS_PARITY)
asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
else if (pcix_status & RCV_SCE) {
asd_printk("received split completion error for %s\n",
pci_name(asd_ha->pcidev));
pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
/* XXX: Abort task? */
return;
} else if (pcix_status & UNEXP_SC) {
asd_printk("unexpected split completion for %s\n",
pci_name(asd_ha->pcidev));
pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
/* ignore */
return;
} else if (pcix_status & SC_DISCARD)
asd_printk("split completion discarded for %s\n",
pci_name(asd_ha->pcidev));
else if (ecc_status & UNCOR_ECCERR)
asd_printk("uncorrectable ECC error for %s\n",
pci_name(asd_ha->pcidev));
asd_chip_reset(asd_ha);
}
/**
* asd_hw_isr -- host adapter interrupt service routine
* @irq: ignored
* @dev_id: pointer to host adapter structure
*
* The ISR processes done list entries and level 3 error handling.
*/
irqreturn_t asd_hw_isr(int irq, void *dev_id)
{
struct asd_ha_struct *asd_ha = dev_id;
u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
if (!chimint)
return IRQ_NONE;
asd_write_reg_dword(asd_ha, CHIMINT, chimint);
(void) asd_read_reg_dword(asd_ha, CHIMINT);
if (chimint & DLAVAIL)
asd_process_donelist_isr(asd_ha);
if (chimint & COMINT)
asd_com_sas_isr(asd_ha);
if (chimint & DEVINT)
asd_dch_sas_isr(asd_ha);
if (chimint & INITERR)
asd_rbi_exsi_isr(asd_ha);
if (chimint & HOSTERR)
asd_hst_pcix_isr(asd_ha);
return IRQ_HANDLED;
}
/* ---------- SCB handling ---------- */
static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
gfp_t gfp_flags)
{
extern struct kmem_cache *asd_ascb_cache;
struct asd_seq_data *seq = &asd_ha->seq;
struct asd_ascb *ascb;
unsigned long flags;
ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
if (ascb) {
ascb->dma_scb.size = sizeof(struct scb);
ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool,
gfp_flags,
&ascb->dma_scb.dma_handle);
if (!ascb->dma_scb.vaddr) {
kmem_cache_free(asd_ascb_cache, ascb);
return NULL;
}
asd_init_ascb(asd_ha, ascb);
spin_lock_irqsave(&seq->tc_index_lock, flags);
ascb->tc_index = asd_tc_index_get(seq, ascb);
spin_unlock_irqrestore(&seq->tc_index_lock, flags);
if (ascb->tc_index == -1)
goto undo;
ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
}
return ascb;
undo:
dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
ascb->dma_scb.dma_handle);
kmem_cache_free(asd_ascb_cache, ascb);
ASD_DPRINTK("no index for ascb\n");
return NULL;
}
/**
* asd_ascb_alloc_list -- allocate a list of aSCBs
* @asd_ha: pointer to host adapter structure
* @num: pointer to integer number of aSCBs
* @gfp_flags: GFP_ flags.
*
* This is the only function which is used to allocate aSCBs.
* It can allocate one or many. If more than one, then they form
* a linked list in two ways: by their list field of the ascb struct
* and by the next_scb field of the scb_header.
*
* Returns NULL if no memory was available, else pointer to a list
* of ascbs. When this function returns, @num would be the number
* of SCBs which were not able to be allocated, 0 if all requested
* were able to be allocated.
*/
struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
*asd_ha, int *num,
gfp_t gfp_flags)
{
struct asd_ascb *first = NULL;
for ( ; *num > 0; --*num) {
struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
if (!ascb)
break;
else if (!first)
first = ascb;
else {
struct asd_ascb *last = list_entry(first->list.prev,
struct asd_ascb,
list);
list_add_tail(&ascb->list, &first->list);
last->scb->header.next_scb =
cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
}
}
return first;
}
/**
* asd_swap_head_scb -- swap the head scb
* @asd_ha: pointer to host adapter structure
* @ascb: pointer to the head of an ascb list
*
* The sequencer knows the DMA address of the next SCB to be DMAed to
* the host adapter, from initialization or from the last list DMAed.
* seq->next_scb keeps the address of this SCB. The sequencer will
* DMA to the host adapter this list of SCBs. But the head (first
* element) of this list is not known to the sequencer. Here we swap
* the head of the list with the known SCB (memcpy()).
* Only one memcpy() is required per list so it is in our interest
* to keep the list of SCB as long as possible so that the ratio
* of number of memcpy calls to the number of SCB DMA-ed is as small
* as possible.
*
* LOCKING: called with the pending list lock held.
*/
static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
struct asd_ascb *ascb)
{
struct asd_seq_data *seq = &asd_ha->seq;
struct asd_ascb *last = list_entry(ascb->list.prev,
struct asd_ascb,
list);
struct asd_dma_tok t = ascb->dma_scb;
memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
ascb->dma_scb = seq->next_scb;
ascb->scb = ascb->dma_scb.vaddr;
seq->next_scb = t;
last->scb->header.next_scb =
cpu_to_le64(((u64)seq->next_scb.dma_handle));
}
/**
* asd_start_timers -- (add and) start timers of SCBs
* @list: pointer to struct list_head of the scbs
* @to: timeout in jiffies
*
* If an SCB in the @list has no timer function, assign the default
* one, then start the timer of the SCB. This function is
* intended to be called from asd_post_ascb_list(), just prior to
* posting the SCBs to the sequencer.
*/
static void asd_start_scb_timers(struct list_head *list)
{
struct asd_ascb *ascb;
list_for_each_entry(ascb, list, list) {
if (!ascb->uldd_timer) {
ascb->timer.function = asd_ascb_timedout;
ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
add_timer(&ascb->timer);
}
}
}
/**
* asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
* @asd_ha: pointer to a host adapter structure
* @ascb: pointer to the first aSCB in the list
* @num: number of aSCBs in the list (to be posted)
*
* See queueing comment in asd_post_escb_list().
*
* Additional note on queuing: In order to minimize the ratio of memcpy()
* to the number of ascbs sent, we try to batch-send as many ascbs as possible
* in one go.
* Two cases are possible:
* A) can_queue >= num,
* B) can_queue < num.
* Case A: we can send the whole batch at once. Increment "pending"
* in the beginning of this function, when it is checked, in order to
* eliminate races when this function is called by multiple processes.
* Case B: should never happen.
*/
int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
int num)
{
unsigned long flags;
LIST_HEAD(list);
int can_queue;
spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
if (can_queue >= num)
asd_ha->seq.pending += num;
else
can_queue = 0;
if (!can_queue) {
spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
return -SAS_QUEUE_FULL;
}
asd_swap_head_scb(asd_ha, ascb);
__list_add(&list, ascb->list.prev, &ascb->list);
asd_start_scb_timers(&list);
asd_ha->seq.scbpro += num;
list_splice_init(&list, asd_ha->seq.pend_q.prev);
asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
return 0;
}
/**
* asd_post_escb_list -- post a list of 1 or more empty scb
* @asd_ha: pointer to a host adapter structure
* @ascb: pointer to the first empty SCB in the list
* @num: number of aSCBs in the list (to be posted)
*
* This is essentially the same as asd_post_ascb_list, but we do not
* increment pending, add those to the pending list or get indexes.
* See asd_init_escbs() and asd_init_post_escbs().
*
* Since sending a list of ascbs is a superset of sending a single
* ascb, this function exists to generalize this. More specifically,
* when sending a list of those, we want to do only a _single_
* memcpy() at swap head, as opposed to for each ascb sent (in the
* case of sending them one by one). That is, we want to minimize the
* ratio of memcpy() operations to the number of ascbs sent. The same
* logic applies to asd_post_ascb_list().
*/
int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
int num)
{
unsigned long flags;
spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
asd_swap_head_scb(asd_ha, ascb);
asd_ha->seq.scbpro += num;
asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
return 0;
}
/* ---------- LED ---------- */
/**
* asd_turn_led -- turn on/off an LED
* @asd_ha: pointer to host adapter structure
* @phy_id: the PHY id whose LED we want to manupulate
* @op: 1 to turn on, 0 to turn off
*/
void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
{
if (phy_id < ASD_MAX_PHYS) {
u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
if (op)
v |= LEDPOL;
else
v &= ~LEDPOL;
asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
}
}
/**
* asd_control_led -- enable/disable an LED on the board
* @asd_ha: pointer to host adapter structure
* @phy_id: integer, the phy id
* @op: integer, 1 to enable, 0 to disable the LED
*
* First we output enable the LED, then we set the source
* to be an external module.
*/
void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
{
if (phy_id < ASD_MAX_PHYS) {
u32 v;
v = asd_read_reg_dword(asd_ha, GPIOOER);
if (op)
v |= (1 << phy_id);
else
v &= ~(1 << phy_id);
asd_write_reg_dword(asd_ha, GPIOOER, v);
v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
if (op)
v |= (1 << phy_id);
else
v &= ~(1 << phy_id);
asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
}
}
/* ---------- PHY enable ---------- */
static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
{
struct asd_phy *phy = &asd_ha->phys[phy_id];
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
HOTPLUG_DELAY_TIMEOUT);
/* Get defaults from manuf. sector */
/* XXX we need defaults for those in case MS is broken. */
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
phy->phy_desc->phy_control_0);
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
phy->phy_desc->phy_control_1);
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
phy->phy_desc->phy_control_2);
asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
phy->phy_desc->phy_control_3);
asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
ASD_COMINIT_TIMEOUT);
asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
phy->id_frm_tok->dma_handle);
asd_control_led(asd_ha, phy_id, 1);
return 0;
}
int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
{
u8 phy_m;
u8 i;
int num = 0, k;
struct asd_ascb *ascb;
struct asd_ascb *ascb_list;
if (!phy_mask) {
asd_printk("%s called with phy_mask of 0!?\n", __func__);
return 0;
}
for_each_phy(phy_mask, phy_m, i) {
num++;
asd_enable_phy(asd_ha, i);
}
k = num;
ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
if (!ascb_list) {
asd_printk("no memory for control phy ascb list\n");
return -ENOMEM;
}
num -= k;
ascb = ascb_list;
for_each_phy(phy_mask, phy_m, i) {
asd_build_control_phy(ascb, i, ENABLE_PHY);
ascb = list_entry(ascb->list.next, struct asd_ascb, list);
}
ASD_DPRINTK("posting %d control phy scbs\n", num);
k = asd_post_ascb_list(asd_ha, ascb_list, num);
if (k)
asd_ascb_free_list(ascb_list);
return k;
}