OpenCloudOS-Kernel/drivers/scsi/aacraid/linit.c

2147 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc.
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000-2010 Adaptec, Inc.
* 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
* 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
*
* Module Name:
* linit.c
*
* Abstract: Linux Driver entry module for Adaptec RAID Array Controller
*/
#include <linux/compat.h>
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsicam.h>
#include <scsi/scsi_eh.h>
#include "aacraid.h"
#define AAC_DRIVER_VERSION "1.2.1"
#ifndef AAC_DRIVER_BRANCH
#define AAC_DRIVER_BRANCH ""
#endif
#define AAC_DRIVERNAME "aacraid"
#ifdef AAC_DRIVER_BUILD
#define _str(x) #x
#define str(x) _str(x)
#define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
#else
#define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH
#endif
MODULE_AUTHOR("Red Hat Inc and Adaptec");
MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
"Adaptec Advanced Raid Products, "
"HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
static DEFINE_MUTEX(aac_mutex);
static LIST_HEAD(aac_devices);
static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED;
char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
/*
* Because of the way Linux names scsi devices, the order in this table has
* become important. Check for on-board Raid first, add-in cards second.
*
* Note: The last field is used to index into aac_drivers below.
*/
static const struct pci_device_id aac_pci_tbl[] = {
{ 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
{ 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
{ 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
{ 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
{ 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
{ 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
{ 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
{ 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
{ 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
{ 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
{ 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
{ 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
{ 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
{ 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
{ 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
{ 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
{ 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
{ 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
{ 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
{ 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
{ 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
{ 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
{ 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
{ 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
{ 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
{ 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
{ 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
{ 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
{ 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
{ 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
{ 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
{ 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
{ 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
{ 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
{ 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
{ 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
{ 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
{ 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
{ 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
{ 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
{ 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
{ 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
{ 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
{ 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
{ 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
{ 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
{ 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
{ 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
{ 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
{ 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
{ 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
{ 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
{ 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
{ 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
{ 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
{ 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
{ 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
{ 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
{ 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */
{ 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */
{ 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */
{ 0,}
};
MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
/*
* dmb - For now we add the number of channels to this structure.
* In the future we should add a fib that reports the number of channels
* for the card. At that time we can remove the channels from here
*/
static struct aac_driver_ident aac_drivers[] = {
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
{ aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
{ aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
{ aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */
{ aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */
{ aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */
{ NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
{ aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */
{ aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */
{ aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
{ aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */
{ aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
{ aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
{ aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
{ aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
{ aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
{ aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
{ aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
{ aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */
{ aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */
{ aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */
{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */
{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */
};
/**
* aac_queuecommand - queue a SCSI command
* @cmd: SCSI command to queue
* @done: Function to call on command completion
*
* Queues a command for execution by the associated Host Adapter.
*
* TODO: unify with aac_scsi_cmd().
*/
static int aac_queuecommand(struct Scsi_Host *shost,
struct scsi_cmnd *cmd)
{
int r = 0;
cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
r = (aac_scsi_cmd(cmd) ? FAILED : 0);
return r;
}
/**
* aac_info - Returns the host adapter name
* @shost: Scsi host to report on
*
* Returns a static string describing the device in question
*/
static const char *aac_info(struct Scsi_Host *shost)
{
struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
return aac_drivers[dev->cardtype].name;
}
/**
* aac_get_driver_ident
* @devtype: index into lookup table
*
* Returns a pointer to the entry in the driver lookup table.
*/
struct aac_driver_ident* aac_get_driver_ident(int devtype)
{
return &aac_drivers[devtype];
}
/**
* aac_biosparm - return BIOS parameters for disk
* @sdev: The scsi device corresponding to the disk
* @bdev: the block device corresponding to the disk
* @capacity: the sector capacity of the disk
* @geom: geometry block to fill in
*
* Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
* The default disk geometry is 64 heads, 32 sectors, and the appropriate
* number of cylinders so as not to exceed drive capacity. In order for
* disks equal to or larger than 1 GB to be addressable by the BIOS
* without exceeding the BIOS limitation of 1024 cylinders, Extended
* Translation should be enabled. With Extended Translation enabled,
* drives between 1 GB inclusive and 2 GB exclusive are given a disk
* geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
* are given a disk geometry of 255 heads and 63 sectors. However, if
* the BIOS detects that the Extended Translation setting does not match
* the geometry in the partition table, then the translation inferred
* from the partition table will be used by the BIOS, and a warning may
* be displayed.
*/
static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int *geom)
{
struct diskparm *param = (struct diskparm *)geom;
unsigned char *buf;
dprintk((KERN_DEBUG "aac_biosparm.\n"));
/*
* Assuming extended translation is enabled - #REVISIT#
*/
if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
param->heads = 255;
param->sectors = 63;
} else {
param->heads = 128;
param->sectors = 32;
}
} else {
param->heads = 64;
param->sectors = 32;
}
param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
/*
* Read the first 1024 bytes from the disk device, if the boot
* sector partition table is valid, search for a partition table
* entry whose end_head matches one of the standard geometry
* translations ( 64/32, 128/32, 255/63 ).
*/
buf = scsi_bios_ptable(bdev);
if (!buf)
return 0;
if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
struct partition *first = (struct partition * )buf;
struct partition *entry = first;
int saved_cylinders = param->cylinders;
int num;
unsigned char end_head, end_sec;
for(num = 0; num < 4; num++) {
end_head = entry->end_head;
end_sec = entry->end_sector & 0x3f;
if(end_head == 63) {
param->heads = 64;
param->sectors = 32;
break;
} else if(end_head == 127) {
param->heads = 128;
param->sectors = 32;
break;
} else if(end_head == 254) {
param->heads = 255;
param->sectors = 63;
break;
}
entry++;
}
if (num == 4) {
end_head = first->end_head;
end_sec = first->end_sector & 0x3f;
}
param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
if (num < 4 && end_sec == param->sectors) {
if (param->cylinders != saved_cylinders)
dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
param->heads, param->sectors, num));
} else if (end_head > 0 || end_sec > 0) {
dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
end_head + 1, end_sec, num));
dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
param->heads, param->sectors));
}
}
kfree(buf);
return 0;
}
/**
* aac_slave_configure - compute queue depths
* @sdev: SCSI device we are considering
*
* Selects queue depths for each target device based on the host adapter's
* total capacity and the queue depth supported by the target device.
* A queue depth of one automatically disables tagged queueing.
*/
static int aac_slave_configure(struct scsi_device *sdev)
{
struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
int chn, tid;
unsigned int depth = 0;
unsigned int set_timeout = 0;
bool set_qd_dev_type = false;
u8 devtype = 0;
chn = aac_logical_to_phys(sdev_channel(sdev));
tid = sdev_id(sdev);
if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) {
devtype = aac->hba_map[chn][tid].devtype;
if (devtype == AAC_DEVTYPE_NATIVE_RAW) {
depth = aac->hba_map[chn][tid].qd_limit;
set_timeout = 1;
goto common_config;
}
if (devtype == AAC_DEVTYPE_ARC_RAW) {
set_qd_dev_type = true;
set_timeout = 1;
goto common_config;
}
}
if (aac->jbod && (sdev->type == TYPE_DISK))
sdev->removable = 1;
if (sdev->type == TYPE_DISK
&& sdev_channel(sdev) != CONTAINER_CHANNEL
&& (!aac->jbod || sdev->inq_periph_qual)
&& (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
if (expose_physicals == 0)
return -ENXIO;
if (expose_physicals < 0)
sdev->no_uld_attach = 1;
}
if (sdev->tagged_supported
&& sdev->type == TYPE_DISK
&& (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
&& !sdev->no_uld_attach) {
struct scsi_device * dev;
struct Scsi_Host *host = sdev->host;
unsigned num_lsu = 0;
unsigned num_one = 0;
unsigned cid;
set_timeout = 1;
for (cid = 0; cid < aac->maximum_num_containers; ++cid)
if (aac->fsa_dev[cid].valid)
++num_lsu;
__shost_for_each_device(dev, host) {
if (dev->tagged_supported
&& dev->type == TYPE_DISK
&& (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
&& !dev->no_uld_attach) {
if ((sdev_channel(dev) != CONTAINER_CHANNEL)
|| !aac->fsa_dev[sdev_id(dev)].valid) {
++num_lsu;
}
} else {
++num_one;
}
}
if (num_lsu == 0)
++num_lsu;
depth = (host->can_queue - num_one) / num_lsu;
if (sdev_channel(sdev) != NATIVE_CHANNEL)
goto common_config;
set_qd_dev_type = true;
}
common_config:
/*
* Check if SATA drive
*/
if (set_qd_dev_type) {
if (strncmp(sdev->vendor, "ATA", 3) == 0)
depth = 32;
else
depth = 64;
}
/*
* Firmware has an individual device recovery time typically
* of 35 seconds, give us a margin.
*/
if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ))
blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
if (depth > 256)
depth = 256;
else if (depth < 1)
depth = 1;
scsi_change_queue_depth(sdev, depth);
sdev->tagged_supported = 1;
return 0;
}
/**
* aac_change_queue_depth - alter queue depths
* @sdev: SCSI device we are considering
* @depth: desired queue depth
*
* Alters queue depths for target device based on the host adapter's
* total capacity and the queue depth supported by the target device.
*/
static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
{
struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
int chn, tid, is_native_device = 0;
chn = aac_logical_to_phys(sdev_channel(sdev));
tid = sdev_id(sdev);
if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS &&
aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW)
is_native_device = 1;
if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
(sdev_channel(sdev) == CONTAINER_CHANNEL)) {
struct scsi_device * dev;
struct Scsi_Host *host = sdev->host;
unsigned num = 0;
__shost_for_each_device(dev, host) {
if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
(sdev_channel(dev) == CONTAINER_CHANNEL))
++num;
++num;
}
if (num >= host->can_queue)
num = host->can_queue - 1;
if (depth > (host->can_queue - num))
depth = host->can_queue - num;
if (depth > 256)
depth = 256;
else if (depth < 2)
depth = 2;
return scsi_change_queue_depth(sdev, depth);
} else if (is_native_device) {
scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit);
} else {
scsi_change_queue_depth(sdev, 1);
}
return sdev->queue_depth;
}
static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
if (sdev_channel(sdev) != CONTAINER_CHANNEL)
return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
? "Hidden\n" :
((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
return snprintf(buf, PAGE_SIZE, "%s\n",
get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
}
static struct device_attribute aac_raid_level_attr = {
.attr = {
.name = "level",
.mode = S_IRUGO,
},
.show = aac_show_raid_level
};
static ssize_t aac_show_unique_id(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
unsigned char sn[16];
memset(sn, 0, sizeof(sn));
if (sdev_channel(sdev) == CONTAINER_CHANNEL)
memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn));
return snprintf(buf, 16 * 2 + 2,
"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n",
sn[0], sn[1], sn[2], sn[3],
sn[4], sn[5], sn[6], sn[7],
sn[8], sn[9], sn[10], sn[11],
sn[12], sn[13], sn[14], sn[15]);
}
static struct device_attribute aac_unique_id_attr = {
.attr = {
.name = "unique_id",
.mode = 0444,
},
.show = aac_show_unique_id
};
static struct device_attribute *aac_dev_attrs[] = {
&aac_raid_level_attr,
&aac_unique_id_attr,
NULL,
};
static int aac_ioctl(struct scsi_device *sdev, unsigned int cmd,
void __user *arg)
{
struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
return aac_do_ioctl(dev, cmd, arg);
}
static int get_num_of_incomplete_fibs(struct aac_dev *aac)
{
unsigned long flags;
struct scsi_device *sdev = NULL;
struct Scsi_Host *shost = aac->scsi_host_ptr;
struct scsi_cmnd *scmnd = NULL;
struct device *ctrl_dev;
int mlcnt = 0;
int llcnt = 0;
int ehcnt = 0;
int fwcnt = 0;
int krlcnt = 0;
__shost_for_each_device(sdev, shost) {
spin_lock_irqsave(&sdev->list_lock, flags);
list_for_each_entry(scmnd, &sdev->cmd_list, list) {
switch (scmnd->SCp.phase) {
case AAC_OWNER_FIRMWARE:
fwcnt++;
break;
case AAC_OWNER_ERROR_HANDLER:
ehcnt++;
break;
case AAC_OWNER_LOWLEVEL:
llcnt++;
break;
case AAC_OWNER_MIDLEVEL:
mlcnt++;
break;
default:
krlcnt++;
break;
}
}
spin_unlock_irqrestore(&sdev->list_lock, flags);
}
ctrl_dev = &aac->pdev->dev;
dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt);
dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt);
dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt);
dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt);
dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt);
return mlcnt + llcnt + ehcnt + fwcnt;
}
static int aac_eh_abort(struct scsi_cmnd* cmd)
{
struct scsi_device * dev = cmd->device;
struct Scsi_Host * host = dev->host;
struct aac_dev * aac = (struct aac_dev *)host->hostdata;
int count, found;
u32 bus, cid;
int ret = FAILED;
if (aac_adapter_check_health(aac))
return ret;
bus = aac_logical_to_phys(scmd_channel(cmd));
cid = scmd_id(cmd);
if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
struct fib *fib;
struct aac_hba_tm_req *tmf;
int status;
u64 address;
pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n",
AAC_DRIVERNAME,
host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun);
found = 0;
for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
fib = &aac->fibs[count];
if (*(u8 *)fib->hw_fib_va != 0 &&
(fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
(fib->callback_data == cmd)) {
found = 1;
break;
}
}
if (!found)
return ret;
/* start a HBA_TMF_ABORT_TASK TMF request */
fib = aac_fib_alloc(aac);
if (!fib)
return ret;
tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
memset(tmf, 0, sizeof(*tmf));
tmf->tmf = HBA_TMF_ABORT_TASK;
tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
tmf->lun[1] = cmd->device->lun;
address = (u64)fib->hw_error_pa;
tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
fib->hbacmd_size = sizeof(*tmf);
cmd->SCp.sent_command = 0;
status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib,
(fib_callback) aac_hba_callback,
(void *) cmd);
if (status != -EINPROGRESS) {
aac_fib_complete(fib);
aac_fib_free(fib);
return ret;
}
/* Wait up to 15 secs for completion */
for (count = 0; count < 15; ++count) {
if (cmd->SCp.sent_command) {
ret = SUCCESS;
break;
}
msleep(1000);
}
if (ret != SUCCESS)
pr_err("%s: Host adapter abort request timed out\n",
AAC_DRIVERNAME);
} else {
pr_err(
"%s: Host adapter abort request.\n"
"%s: Outstanding commands on (%d,%d,%d,%d):\n",
AAC_DRIVERNAME, AAC_DRIVERNAME,
host->host_no, sdev_channel(dev), sdev_id(dev),
(int)dev->lun);
switch (cmd->cmnd[0]) {
case SERVICE_ACTION_IN_16:
if (!(aac->raw_io_interface) ||
!(aac->raw_io_64) ||
((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
break;
/* fall through */
case INQUIRY:
case READ_CAPACITY:
/*
* Mark associated FIB to not complete,
* eh handler does this
*/
for (count = 0;
count < (host->can_queue + AAC_NUM_MGT_FIB);
++count) {
struct fib *fib = &aac->fibs[count];
if (fib->hw_fib_va->header.XferState &&
(fib->flags & FIB_CONTEXT_FLAG) &&
(fib->callback_data == cmd)) {
fib->flags |=
FIB_CONTEXT_FLAG_TIMED_OUT;
cmd->SCp.phase =
AAC_OWNER_ERROR_HANDLER;
ret = SUCCESS;
}
}
break;
case TEST_UNIT_READY:
/*
* Mark associated FIB to not complete,
* eh handler does this
*/
for (count = 0;
count < (host->can_queue + AAC_NUM_MGT_FIB);
++count) {
struct scsi_cmnd *command;
struct fib *fib = &aac->fibs[count];
command = fib->callback_data;
if ((fib->hw_fib_va->header.XferState &
cpu_to_le32
(Async | NoResponseExpected)) &&
(fib->flags & FIB_CONTEXT_FLAG) &&
((command)) &&
(command->device == cmd->device)) {
fib->flags |=
FIB_CONTEXT_FLAG_TIMED_OUT;
command->SCp.phase =
AAC_OWNER_ERROR_HANDLER;
if (command == cmd)
ret = SUCCESS;
}
}
break;
}
}
return ret;
}
static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info,
struct fib *fib, u64 tmf_lun)
{
struct aac_hba_tm_req *tmf;
u64 address;
/* start a HBA_TMF_LUN_RESET TMF request */
tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
memset(tmf, 0, sizeof(*tmf));
tmf->tmf = HBA_TMF_LUN_RESET;
tmf->it_nexus = info->rmw_nexus;
int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun);
address = (u64)fib->hw_error_pa;
tmf->error_ptr_hi = cpu_to_le32
((u32)(address >> 32));
tmf->error_ptr_lo = cpu_to_le32
((u32)(address & 0xffffffff));
tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
fib->hbacmd_size = sizeof(*tmf);
return HBA_IU_TYPE_SCSI_TM_REQ;
}
static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info,
struct fib *fib)
{
struct aac_hba_reset_req *rst;
u64 address;
/* already tried, start a hard reset now */
rst = (struct aac_hba_reset_req *)fib->hw_fib_va;
memset(rst, 0, sizeof(*rst));
rst->it_nexus = info->rmw_nexus;
address = (u64)fib->hw_error_pa;
rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
rst->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
fib->hbacmd_size = sizeof(*rst);
return HBA_IU_TYPE_SATA_REQ;
}
void aac_tmf_callback(void *context, struct fib *fibptr)
{
struct aac_hba_resp *err =
&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
struct aac_hba_map_info *info = context;
int res;
switch (err->service_response) {
case HBA_RESP_SVCRES_TMF_REJECTED:
res = -1;
break;
case HBA_RESP_SVCRES_TMF_LUN_INVALID:
res = 0;
break;
case HBA_RESP_SVCRES_TMF_COMPLETE:
case HBA_RESP_SVCRES_TMF_SUCCEEDED:
res = 0;
break;
default:
res = -2;
break;
}
aac_fib_complete(fibptr);
info->reset_state = res;
}
/*
* aac_eh_dev_reset - Device reset command handling
* @scsi_cmd: SCSI command block causing the reset
*
*/
static int aac_eh_dev_reset(struct scsi_cmnd *cmd)
{
struct scsi_device * dev = cmd->device;
struct Scsi_Host * host = dev->host;
struct aac_dev * aac = (struct aac_dev *)host->hostdata;
struct aac_hba_map_info *info;
int count;
u32 bus, cid;
struct fib *fib;
int ret = FAILED;
int status;
u8 command;
bus = aac_logical_to_phys(scmd_channel(cmd));
cid = scmd_id(cmd);
if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
return FAILED;
info = &aac->hba_map[bus][cid];
if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW &&
!(info->reset_state > 0)))
return FAILED;
pr_err("%s: Host device reset request. SCSI hang ?\n",
AAC_DRIVERNAME);
fib = aac_fib_alloc(aac);
if (!fib)
return ret;
/* start a HBA_TMF_LUN_RESET TMF request */
command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun);
info->reset_state = 1;
status = aac_hba_send(command, fib,
(fib_callback) aac_tmf_callback,
(void *) info);
if (status != -EINPROGRESS) {
info->reset_state = 0;
aac_fib_complete(fib);
aac_fib_free(fib);
return ret;
}
/* Wait up to 15 seconds for completion */
for (count = 0; count < 15; ++count) {
if (info->reset_state == 0) {
ret = info->reset_state == 0 ? SUCCESS : FAILED;
break;
}
msleep(1000);
}
return ret;
}
/*
* aac_eh_target_reset - Target reset command handling
* @scsi_cmd: SCSI command block causing the reset
*
*/
static int aac_eh_target_reset(struct scsi_cmnd *cmd)
{
struct scsi_device * dev = cmd->device;
struct Scsi_Host * host = dev->host;
struct aac_dev * aac = (struct aac_dev *)host->hostdata;
struct aac_hba_map_info *info;
int count;
u32 bus, cid;
int ret = FAILED;
struct fib *fib;
int status;
u8 command;
bus = aac_logical_to_phys(scmd_channel(cmd));
cid = scmd_id(cmd);
if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
return FAILED;
info = &aac->hba_map[bus][cid];
if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW &&
!(info->reset_state > 0)))
return FAILED;
pr_err("%s: Host target reset request. SCSI hang ?\n",
AAC_DRIVERNAME);
fib = aac_fib_alloc(aac);
if (!fib)
return ret;
/* already tried, start a hard reset now */
command = aac_eh_tmf_hard_reset_fib(info, fib);
info->reset_state = 2;
status = aac_hba_send(command, fib,
(fib_callback) aac_tmf_callback,
(void *) info);
if (status != -EINPROGRESS) {
info->reset_state = 0;
aac_fib_complete(fib);
aac_fib_free(fib);
return ret;
}
/* Wait up to 15 seconds for completion */
for (count = 0; count < 15; ++count) {
if (info->reset_state <= 0) {
ret = info->reset_state == 0 ? SUCCESS : FAILED;
break;
}
msleep(1000);
}
return ret;
}
/*
* aac_eh_bus_reset - Bus reset command handling
* @scsi_cmd: SCSI command block causing the reset
*
*/
static int aac_eh_bus_reset(struct scsi_cmnd* cmd)
{
struct scsi_device * dev = cmd->device;
struct Scsi_Host * host = dev->host;
struct aac_dev * aac = (struct aac_dev *)host->hostdata;
int count;
u32 cmd_bus;
int status = 0;
cmd_bus = aac_logical_to_phys(scmd_channel(cmd));
/* Mark the assoc. FIB to not complete, eh handler does this */
for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
struct fib *fib = &aac->fibs[count];
if (fib->hw_fib_va->header.XferState &&
(fib->flags & FIB_CONTEXT_FLAG) &&
(fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) {
struct aac_hba_map_info *info;
u32 bus, cid;
cmd = (struct scsi_cmnd *)fib->callback_data;
bus = aac_logical_to_phys(scmd_channel(cmd));
if (bus != cmd_bus)
continue;
cid = scmd_id(cmd);
info = &aac->hba_map[bus][cid];
if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS ||
info->devtype != AAC_DEVTYPE_NATIVE_RAW) {
fib->flags |= FIB_CONTEXT_FLAG_EH_RESET;
cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
}
}
}
pr_err("%s: Host bus reset request. SCSI hang ?\n", AAC_DRIVERNAME);
/*
* Check the health of the controller
*/
status = aac_adapter_check_health(aac);
if (status)
dev_err(&aac->pdev->dev, "Adapter health - %d\n", status);
count = get_num_of_incomplete_fibs(aac);
return (count == 0) ? SUCCESS : FAILED;
}
/*
* aac_eh_host_reset - Host reset command handling
* @scsi_cmd: SCSI command block causing the reset
*
*/
int aac_eh_host_reset(struct scsi_cmnd *cmd)
{
struct scsi_device * dev = cmd->device;
struct Scsi_Host * host = dev->host;
struct aac_dev * aac = (struct aac_dev *)host->hostdata;
int ret = FAILED;
__le32 supported_options2 = 0;
bool is_mu_reset;
bool is_ignore_reset;
bool is_doorbell_reset;
/*
* Check if reset is supported by the firmware
*/
supported_options2 = aac->supplement_adapter_info.supported_options2;
is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET;
is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET;
is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET;
/*
* This adapter needs a blind reset, only do so for
* Adapters that support a register, instead of a commanded,
* reset.
*/
if ((is_mu_reset || is_doorbell_reset)
&& aac_check_reset
&& (aac_check_reset != -1 || !is_ignore_reset)) {
/* Bypass wait for command quiesce */
if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0)
ret = SUCCESS;
}
/*
* Reset EH state
*/
if (ret == SUCCESS) {
int bus, cid;
struct aac_hba_map_info *info;
for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
for (cid = 0; cid < AAC_MAX_TARGETS; cid++) {
info = &aac->hba_map[bus][cid];
if (info->devtype == AAC_DEVTYPE_NATIVE_RAW)
info->reset_state = 0;
}
}
}
return ret;
}
/**
* aac_cfg_open - open a configuration file
* @inode: inode being opened
* @file: file handle attached
*
* Called when the configuration device is opened. Does the needed
* set up on the handle and then returns
*
* Bugs: This needs extending to check a given adapter is present
* so we can support hot plugging, and to ref count adapters.
*/
static int aac_cfg_open(struct inode *inode, struct file *file)
{
struct aac_dev *aac;
unsigned minor_number = iminor(inode);
int err = -ENODEV;
mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */
list_for_each_entry(aac, &aac_devices, entry) {
if (aac->id == minor_number) {
file->private_data = aac;
err = 0;
break;
}
}
mutex_unlock(&aac_mutex);
return err;
}
/**
* aac_cfg_ioctl - AAC configuration request
* @inode: inode of device
* @file: file handle
* @cmd: ioctl command code
* @arg: argument
*
* Handles a configuration ioctl. Currently this involves wrapping it
* up and feeding it into the nasty windowsalike glue layer.
*
* Bugs: Needs locking against parallel ioctls lower down
* Bugs: Needs to handle hot plugging
*/
static long aac_cfg_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct aac_dev *aac = (struct aac_dev *)file->private_data;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
return aac_do_ioctl(aac, cmd, (void __user *)arg);
}
#ifdef CONFIG_COMPAT
static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
{
long ret;
switch (cmd) {
case FSACTL_MINIPORT_REV_CHECK:
case FSACTL_SENDFIB:
case FSACTL_OPEN_GET_ADAPTER_FIB:
case FSACTL_CLOSE_GET_ADAPTER_FIB:
case FSACTL_SEND_RAW_SRB:
case FSACTL_GET_PCI_INFO:
case FSACTL_QUERY_DISK:
case FSACTL_DELETE_DISK:
case FSACTL_FORCE_DELETE_DISK:
case FSACTL_GET_CONTAINERS:
case FSACTL_SEND_LARGE_FIB:
ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
break;
case FSACTL_GET_NEXT_ADAPTER_FIB: {
struct fib_ioctl __user *f;
f = compat_alloc_user_space(sizeof(*f));
ret = 0;
if (clear_user(f, sizeof(*f)))
ret = -EFAULT;
if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
ret = -EFAULT;
if (!ret)
ret = aac_do_ioctl(dev, cmd, f);
break;
}
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
static int aac_compat_ioctl(struct scsi_device *sdev, unsigned int cmd,
void __user *arg)
{
struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
}
static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
return aac_compat_do_ioctl(file->private_data, cmd, arg);
}
#endif
static ssize_t aac_show_model(struct device *device,
struct device_attribute *attr, char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
int len;
if (dev->supplement_adapter_info.adapter_type_text[0]) {
char *cp = dev->supplement_adapter_info.adapter_type_text;
while (*cp && *cp != ' ')
++cp;
while (*cp == ' ')
++cp;
len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
} else
len = snprintf(buf, PAGE_SIZE, "%s\n",
aac_drivers[dev->cardtype].model);
return len;
}
static ssize_t aac_show_vendor(struct device *device,
struct device_attribute *attr, char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
struct aac_supplement_adapter_info *sup_adap_info;
int len;
sup_adap_info = &dev->supplement_adapter_info;
if (sup_adap_info->adapter_type_text[0]) {
char *cp = sup_adap_info->adapter_type_text;
while (*cp && *cp != ' ')
++cp;
len = snprintf(buf, PAGE_SIZE, "%.*s\n",
(int)(cp - (char *)sup_adap_info->adapter_type_text),
sup_adap_info->adapter_type_text);
} else
len = snprintf(buf, PAGE_SIZE, "%s\n",
aac_drivers[dev->cardtype].vname);
return len;
}
static ssize_t aac_show_flags(struct device *cdev,
struct device_attribute *attr, char *buf)
{
int len = 0;
struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
if (nblank(dprintk(x)))
len = snprintf(buf, PAGE_SIZE, "dprintk\n");
#ifdef AAC_DETAILED_STATUS_INFO
len += snprintf(buf + len, PAGE_SIZE - len,
"AAC_DETAILED_STATUS_INFO\n");
#endif
if (dev->raw_io_interface && dev->raw_io_64)
len += snprintf(buf + len, PAGE_SIZE - len,
"SAI_READ_CAPACITY_16\n");
if (dev->jbod)
len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
if (dev->supplement_adapter_info.supported_options2 &
AAC_OPTION_POWER_MANAGEMENT)
len += snprintf(buf + len, PAGE_SIZE - len,
"SUPPORTED_POWER_MANAGEMENT\n");
if (dev->msi)
len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
return len;
}
static ssize_t aac_show_kernel_version(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
int len, tmp;
tmp = le32_to_cpu(dev->adapter_info.kernelrev);
len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
le32_to_cpu(dev->adapter_info.kernelbuild));
return len;
}
static ssize_t aac_show_monitor_version(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
int len, tmp;
tmp = le32_to_cpu(dev->adapter_info.monitorrev);
len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
le32_to_cpu(dev->adapter_info.monitorbuild));
return len;
}
static ssize_t aac_show_bios_version(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
int len, tmp;
tmp = le32_to_cpu(dev->adapter_info.biosrev);
len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
le32_to_cpu(dev->adapter_info.biosbuild));
return len;
}
static ssize_t aac_show_driver_version(struct device *device,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version);
}
static ssize_t aac_show_serial_number(struct device *device,
struct device_attribute *attr, char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
int len = 0;
if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
len = snprintf(buf, 16, "%06X\n",
le32_to_cpu(dev->adapter_info.serial[0]));
if (len &&
!memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[
sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len],
buf, len-1))
len = snprintf(buf, 16, "%.*s\n",
(int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no),
dev->supplement_adapter_info.mfg_pcba_serial_no);
return min(len, 16);
}
static ssize_t aac_show_max_channel(struct device *device,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
class_to_shost(device)->max_channel);
}
static ssize_t aac_show_max_id(struct device *device,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
class_to_shost(device)->max_id);
}
static ssize_t aac_store_reset_adapter(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
int retval = -EACCES;
if (!capable(CAP_SYS_ADMIN))
return retval;
retval = aac_reset_adapter(shost_priv(class_to_shost(device)),
buf[0] == '!', IOP_HWSOFT_RESET);
if (retval >= 0)
retval = count;
return retval;
}
static ssize_t aac_show_reset_adapter(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
int len, tmp;
tmp = aac_adapter_check_health(dev);
if ((tmp == 0) && dev->in_reset)
tmp = -EBUSY;
len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
return len;
}
static struct device_attribute aac_model = {
.attr = {
.name = "model",
.mode = S_IRUGO,
},
.show = aac_show_model,
};
static struct device_attribute aac_vendor = {
.attr = {
.name = "vendor",
.mode = S_IRUGO,
},
.show = aac_show_vendor,
};
static struct device_attribute aac_flags = {
.attr = {
.name = "flags",
.mode = S_IRUGO,
},
.show = aac_show_flags,
};
static struct device_attribute aac_kernel_version = {
.attr = {
.name = "hba_kernel_version",
.mode = S_IRUGO,
},
.show = aac_show_kernel_version,
};
static struct device_attribute aac_monitor_version = {
.attr = {
.name = "hba_monitor_version",
.mode = S_IRUGO,
},
.show = aac_show_monitor_version,
};
static struct device_attribute aac_bios_version = {
.attr = {
.name = "hba_bios_version",
.mode = S_IRUGO,
},
.show = aac_show_bios_version,
};
static struct device_attribute aac_lld_version = {
.attr = {
.name = "driver_version",
.mode = 0444,
},
.show = aac_show_driver_version,
};
static struct device_attribute aac_serial_number = {
.attr = {
.name = "serial_number",
.mode = S_IRUGO,
},
.show = aac_show_serial_number,
};
static struct device_attribute aac_max_channel = {
.attr = {
.name = "max_channel",
.mode = S_IRUGO,
},
.show = aac_show_max_channel,
};
static struct device_attribute aac_max_id = {
.attr = {
.name = "max_id",
.mode = S_IRUGO,
},
.show = aac_show_max_id,
};
static struct device_attribute aac_reset = {
.attr = {
.name = "reset_host",
.mode = S_IWUSR|S_IRUGO,
},
.store = aac_store_reset_adapter,
.show = aac_show_reset_adapter,
};
static struct device_attribute *aac_attrs[] = {
&aac_model,
&aac_vendor,
&aac_flags,
&aac_kernel_version,
&aac_monitor_version,
&aac_bios_version,
&aac_lld_version,
&aac_serial_number,
&aac_max_channel,
&aac_max_id,
&aac_reset,
NULL
};
ssize_t aac_get_serial_number(struct device *device, char *buf)
{
return aac_show_serial_number(device, &aac_serial_number, buf);
}
static const struct file_operations aac_cfg_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = aac_cfg_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = aac_compat_cfg_ioctl,
#endif
.open = aac_cfg_open,
.llseek = noop_llseek,
};
static struct scsi_host_template aac_driver_template = {
.module = THIS_MODULE,
.name = "AAC",
.proc_name = AAC_DRIVERNAME,
.info = aac_info,
.ioctl = aac_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = aac_compat_ioctl,
#endif
.queuecommand = aac_queuecommand,
.bios_param = aac_biosparm,
.shost_attrs = aac_attrs,
.slave_configure = aac_slave_configure,
.change_queue_depth = aac_change_queue_depth,
.sdev_attrs = aac_dev_attrs,
.eh_abort_handler = aac_eh_abort,
.eh_device_reset_handler = aac_eh_dev_reset,
.eh_target_reset_handler = aac_eh_target_reset,
.eh_bus_reset_handler = aac_eh_bus_reset,
.eh_host_reset_handler = aac_eh_host_reset,
.can_queue = AAC_NUM_IO_FIB,
.this_id = MAXIMUM_NUM_CONTAINERS,
.sg_tablesize = 16,
.max_sectors = 128,
#if (AAC_NUM_IO_FIB > 256)
.cmd_per_lun = 256,
#else
.cmd_per_lun = AAC_NUM_IO_FIB,
#endif
.emulated = 1,
.no_write_same = 1,
};
static void __aac_shutdown(struct aac_dev * aac)
{
int i;
mutex_lock(&aac->ioctl_mutex);
aac->adapter_shutdown = 1;
mutex_unlock(&aac->ioctl_mutex);
if (aac->aif_thread) {
int i;
/* Clear out events first */
for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) {
struct fib *fib = &aac->fibs[i];
if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
(fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected)))
complete(&fib->event_wait);
}
kthread_stop(aac->thread);
aac->thread = NULL;
}
aac_send_shutdown(aac);
aac_adapter_disable_int(aac);
if (aac_is_src(aac)) {
if (aac->max_msix > 1) {
for (i = 0; i < aac->max_msix; i++) {
free_irq(pci_irq_vector(aac->pdev, i),
&(aac->aac_msix[i]));
}
} else {
free_irq(aac->pdev->irq,
&(aac->aac_msix[0]));
}
} else {
free_irq(aac->pdev->irq, aac);
}
if (aac->msi)
pci_disable_msi(aac->pdev);
else if (aac->max_msix > 1)
pci_disable_msix(aac->pdev);
}
static void aac_init_char(void)
{
aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops);
if (aac_cfg_major < 0) {
pr_err("aacraid: unable to register \"aac\" device.\n");
}
}
static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
unsigned index = id->driver_data;
struct Scsi_Host *shost;
struct aac_dev *aac;
struct list_head *insert = &aac_devices;
int error;
int unique_id = 0;
u64 dmamask;
int mask_bits = 0;
extern int aac_sync_mode;
/*
* Only series 7 needs freset.
*/
if (pdev->device == PMC_DEVICE_S7)
pdev->needs_freset = 1;
list_for_each_entry(aac, &aac_devices, entry) {
if (aac->id > unique_id)
break;
insert = &aac->entry;
unique_id++;
}
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
PCIE_LINK_STATE_CLKPM);
error = pci_enable_device(pdev);
if (error)
goto out;
if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) {
error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (error) {
dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed");
goto out_disable_pdev;
}
}
/*
* If the quirk31 bit is set, the adapter needs adapter
* to driver communication memory to be allocated below 2gig
*/
if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) {
dmamask = DMA_BIT_MASK(31);
mask_bits = 31;
} else {
dmamask = DMA_BIT_MASK(32);
mask_bits = 32;
}
error = pci_set_consistent_dma_mask(pdev, dmamask);
if (error) {
dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n"
, mask_bits);
goto out_disable_pdev;
}
pci_set_master(pdev);
shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
if (!shost) {
error = -ENOMEM;
goto out_disable_pdev;
}
shost->irq = pdev->irq;
shost->unique_id = unique_id;
shost->max_cmd_len = 16;
shost->use_cmd_list = 1;
if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT)
aac_init_char();
aac = (struct aac_dev *)shost->hostdata;
aac->base_start = pci_resource_start(pdev, 0);
aac->scsi_host_ptr = shost;
aac->pdev = pdev;
aac->name = aac_driver_template.name;
aac->id = shost->unique_id;
aac->cardtype = index;
INIT_LIST_HEAD(&aac->entry);
if (aac_reset_devices || reset_devices)
aac->init_reset = true;
aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB,
sizeof(struct fib),
GFP_KERNEL);
if (!aac->fibs) {
error = -ENOMEM;
goto out_free_host;
}
spin_lock_init(&aac->fib_lock);
mutex_init(&aac->ioctl_mutex);
mutex_init(&aac->scan_mutex);
INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker);
/*
* Map in the registers from the adapter.
*/
aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
if ((*aac_drivers[index].init)(aac)) {
error = -ENODEV;
goto out_unmap;
}
if (aac->sync_mode) {
if (aac_sync_mode)
printk(KERN_INFO "%s%d: Sync. mode enforced "
"by driver parameter. This will cause "
"a significant performance decrease!\n",
aac->name,
aac->id);
else
printk(KERN_INFO "%s%d: Async. mode not supported "
"by current driver, sync. mode enforced."
"\nPlease update driver to get full performance.\n",
aac->name,
aac->id);
}
/*
* Start any kernel threads needed
*/
aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
if (IS_ERR(aac->thread)) {
printk(KERN_ERR "aacraid: Unable to create command thread.\n");
error = PTR_ERR(aac->thread);
aac->thread = NULL;
goto out_deinit;
}
aac->maximum_num_channels = aac_drivers[index].channels;
error = aac_get_adapter_info(aac);
if (error < 0)
goto out_deinit;
/*
* Lets override negotiations and drop the maximum SG limit to 34
*/
if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
(shost->sg_tablesize > 34)) {
shost->sg_tablesize = 34;
shost->max_sectors = (shost->sg_tablesize * 8) + 112;
}
if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
(shost->sg_tablesize > 17)) {
shost->sg_tablesize = 17;
shost->max_sectors = (shost->sg_tablesize * 8) + 112;
}
if (aac->adapter_info.options & AAC_OPT_NEW_COMM)
shost->max_segment_size = shost->max_sectors << 9;
else
shost->max_segment_size = 65536;
/*
* Firmware printf works only with older firmware.
*/
if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
aac->printf_enabled = 1;
else
aac->printf_enabled = 0;
/*
* max channel will be the physical channels plus 1 virtual channel
* all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
* physical channels are address by their actual physical number+1
*/
if (aac->nondasd_support || expose_physicals || aac->jbod)
shost->max_channel = aac->maximum_num_channels;
else
shost->max_channel = 0;
aac_get_config_status(aac, 0);
aac_get_containers(aac);
list_add(&aac->entry, insert);
shost->max_id = aac->maximum_num_containers;
if (shost->max_id < aac->maximum_num_physicals)
shost->max_id = aac->maximum_num_physicals;
if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
shost->max_id = MAXIMUM_NUM_CONTAINERS;
else
shost->this_id = shost->max_id;
if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC)
aac_intr_normal(aac, 0, 2, 0, NULL);
/*
* dmb - we may need to move the setting of these parms somewhere else once
* we get a fib that can report the actual numbers
*/
shost->max_lun = AAC_MAX_LUN;
pci_set_drvdata(pdev, shost);
error = scsi_add_host(shost, &pdev->dev);
if (error)
goto out_deinit;
aac_scan_host(aac);
pci_enable_pcie_error_reporting(pdev);
pci_save_state(pdev);
return 0;
out_deinit:
__aac_shutdown(aac);
out_unmap:
aac_fib_map_free(aac);
if (aac->comm_addr)
dma_free_coherent(&aac->pdev->dev, aac->comm_size,
aac->comm_addr, aac->comm_phys);
kfree(aac->queues);
aac_adapter_ioremap(aac, 0);
kfree(aac->fibs);
kfree(aac->fsa_dev);
out_free_host:
scsi_host_put(shost);
out_disable_pdev:
pci_disable_device(pdev);
out:
return error;
}
static void aac_release_resources(struct aac_dev *aac)
{
aac_adapter_disable_int(aac);
aac_free_irq(aac);
}
static int aac_acquire_resources(struct aac_dev *dev)
{
unsigned long status;
/*
* First clear out all interrupts. Then enable the one's that we
* can handle.
*/
while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)
|| status == 0xffffffff)
msleep(20);
aac_adapter_disable_int(dev);
aac_adapter_enable_int(dev);
if (aac_is_src(dev))
aac_define_int_mode(dev);
if (dev->msi_enabled)
aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
if (aac_acquire_irq(dev))
goto error_iounmap;
aac_adapter_enable_int(dev);
/*max msix may change after EEH
* Re-assign vectors to fibs
*/
aac_fib_vector_assign(dev);
if (!dev->sync_mode) {
/* After EEH recovery or suspend resume, max_msix count
* may change, therefore updating in init as well.
*/
dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix);
aac_adapter_start(dev);
}
return 0;
error_iounmap:
return -1;
}
#if (defined(CONFIG_PM))
static int aac_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
scsi_block_requests(shost);
aac_cancel_safw_rescan_worker(aac);
aac_send_shutdown(aac);
aac_release_resources(aac);
pci_set_drvdata(pdev, shost);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int aac_resume(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
int r;
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake(pdev, PCI_D0, 0);
pci_restore_state(pdev);
r = pci_enable_device(pdev);
if (r)
goto fail_device;
pci_set_master(pdev);
if (aac_acquire_resources(aac))
goto fail_device;
/*
* reset this flag to unblock ioctl() as it was set at
* aac_send_shutdown() to block ioctls from upperlayer
*/
aac->adapter_shutdown = 0;
scsi_unblock_requests(shost);
return 0;
fail_device:
printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id);
scsi_host_put(shost);
pci_disable_device(pdev);
return -ENODEV;
}
#endif
static void aac_shutdown(struct pci_dev *dev)
{
struct Scsi_Host *shost = pci_get_drvdata(dev);
scsi_block_requests(shost);
__aac_shutdown((struct aac_dev *)shost->hostdata);
}
static void aac_remove_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
aac_cancel_safw_rescan_worker(aac);
scsi_remove_host(shost);
__aac_shutdown(aac);
aac_fib_map_free(aac);
dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
aac->comm_phys);
kfree(aac->queues);
aac_adapter_ioremap(aac, 0);
kfree(aac->fibs);
kfree(aac->fsa_dev);
list_del(&aac->entry);
scsi_host_put(shost);
pci_disable_device(pdev);
if (list_empty(&aac_devices)) {
unregister_chrdev(aac_cfg_major, "aac");
aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT;
}
}
static void aac_flush_ios(struct aac_dev *aac)
{
int i;
struct scsi_cmnd *cmd;
for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) {
cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data;
if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) {
scsi_dma_unmap(cmd);
if (aac->handle_pci_error)
cmd->result = DID_NO_CONNECT << 16;
else
cmd->result = DID_RESET << 16;
cmd->scsi_done(cmd);
}
}
}
static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev,
enum pci_channel_state error)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct aac_dev *aac = shost_priv(shost);
dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error);
switch (error) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
aac->handle_pci_error = 1;
scsi_block_requests(aac->scsi_host_ptr);
aac_cancel_safw_rescan_worker(aac);
aac_flush_ios(aac);
aac_release_resources(aac);
pci_disable_pcie_error_reporting(pdev);
aac_adapter_ioremap(aac, 0);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
aac->handle_pci_error = 1;
aac_flush_ios(aac);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev)
{
dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n");
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev)
{
dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n");
pci_restore_state(pdev);
if (pci_enable_device(pdev)) {
dev_warn(&pdev->dev,
"aacraid: failed to enable slave\n");
goto fail_device;
}
pci_set_master(pdev);
if (pci_enable_device_mem(pdev)) {
dev_err(&pdev->dev, "pci_enable_device_mem failed\n");
goto fail_device;
}
return PCI_ERS_RESULT_RECOVERED;
fail_device:
dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n");
return PCI_ERS_RESULT_DISCONNECT;
}
static void aac_pci_resume(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct scsi_device *sdev = NULL;
struct aac_dev *aac = (struct aac_dev *)shost_priv(shost);
if (aac_adapter_ioremap(aac, aac->base_size)) {
dev_err(&pdev->dev, "aacraid: ioremap failed\n");
/* remap failed, go back ... */
aac->comm_interface = AAC_COMM_PRODUCER;
if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) {
dev_warn(&pdev->dev,
"aacraid: unable to map adapter.\n");
return;
}
}
msleep(10000);
aac_acquire_resources(aac);
/*
* reset this flag to unblock ioctl() as it was set
* at aac_send_shutdown() to block ioctls from upperlayer
*/
aac->adapter_shutdown = 0;
aac->handle_pci_error = 0;
shost_for_each_device(sdev, shost)
if (sdev->sdev_state == SDEV_OFFLINE)
sdev->sdev_state = SDEV_RUNNING;
scsi_unblock_requests(aac->scsi_host_ptr);
aac_scan_host(aac);
pci_save_state(pdev);
dev_err(&pdev->dev, "aacraid: PCI error - resume\n");
}
static struct pci_error_handlers aac_pci_err_handler = {
.error_detected = aac_pci_error_detected,
.mmio_enabled = aac_pci_mmio_enabled,
.slot_reset = aac_pci_slot_reset,
.resume = aac_pci_resume,
};
static struct pci_driver aac_pci_driver = {
.name = AAC_DRIVERNAME,
.id_table = aac_pci_tbl,
.probe = aac_probe_one,
.remove = aac_remove_one,
#if (defined(CONFIG_PM))
.suspend = aac_suspend,
.resume = aac_resume,
#endif
.shutdown = aac_shutdown,
.err_handler = &aac_pci_err_handler,
};
static int __init aac_init(void)
{
int error;
printk(KERN_INFO "Adaptec %s driver %s\n",
AAC_DRIVERNAME, aac_driver_version);
error = pci_register_driver(&aac_pci_driver);
if (error < 0)
return error;
aac_init_char();
return 0;
}
static void __exit aac_exit(void)
{
if (aac_cfg_major > -1)
unregister_chrdev(aac_cfg_major, "aac");
pci_unregister_driver(&aac_pci_driver);
}
module_init(aac_init);
module_exit(aac_exit);