OpenCloudOS-Kernel/drivers/infiniband/hw/hfi1/mad.c

4945 lines
140 KiB
C

/*
* Copyright(c) 2015-2018 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/net.h>
#include <rdma/opa_addr.h>
#define OPA_NUM_PKEY_BLOCKS_PER_SMP (OPA_SMP_DR_DATA_SIZE \
/ (OPA_PARTITION_TABLE_BLK_SIZE * sizeof(u16)))
#include "hfi.h"
#include "mad.h"
#include "trace.h"
#include "qp.h"
#include "vnic.h"
/* the reset value from the FM is supposed to be 0xffff, handle both */
#define OPA_LINK_WIDTH_RESET_OLD 0x0fff
#define OPA_LINK_WIDTH_RESET 0xffff
struct trap_node {
struct list_head list;
struct opa_mad_notice_attr data;
__be64 tid;
int len;
u32 retry;
u8 in_use;
u8 repress;
};
static int smp_length_check(u32 data_size, u32 request_len)
{
if (unlikely(request_len < data_size))
return -EINVAL;
return 0;
}
static int reply(struct ib_mad_hdr *smp)
{
/*
* The verbs framework will handle the directed/LID route
* packet changes.
*/
smp->method = IB_MGMT_METHOD_GET_RESP;
if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE)
smp->status |= IB_SMP_DIRECTION;
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_REPLY;
}
static inline void clear_opa_smp_data(struct opa_smp *smp)
{
void *data = opa_get_smp_data(smp);
size_t size = opa_get_smp_data_size(smp);
memset(data, 0, size);
}
static u16 hfi1_lookup_pkey_value(struct hfi1_ibport *ibp, int pkey_idx)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
if (pkey_idx < ARRAY_SIZE(ppd->pkeys))
return ppd->pkeys[pkey_idx];
return 0;
}
void hfi1_event_pkey_change(struct hfi1_devdata *dd, u8 port)
{
struct ib_event event;
event.event = IB_EVENT_PKEY_CHANGE;
event.device = &dd->verbs_dev.rdi.ibdev;
event.element.port_num = port;
ib_dispatch_event(&event);
}
/*
* If the port is down, clean up all pending traps. We need to be careful
* with the given trap, because it may be queued.
*/
static void cleanup_traps(struct hfi1_ibport *ibp, struct trap_node *trap)
{
struct trap_node *node, *q;
unsigned long flags;
struct list_head trap_list;
int i;
for (i = 0; i < RVT_MAX_TRAP_LISTS; i++) {
spin_lock_irqsave(&ibp->rvp.lock, flags);
list_replace_init(&ibp->rvp.trap_lists[i].list, &trap_list);
ibp->rvp.trap_lists[i].list_len = 0;
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
/*
* Remove all items from the list, freeing all the non-given
* traps.
*/
list_for_each_entry_safe(node, q, &trap_list, list) {
list_del(&node->list);
if (node != trap)
kfree(node);
}
}
/*
* If this wasn't on one of the lists it would not be freed. If it
* was on the list, it is now safe to free.
*/
kfree(trap);
}
static struct trap_node *check_and_add_trap(struct hfi1_ibport *ibp,
struct trap_node *trap)
{
struct trap_node *node;
struct trap_list *trap_list;
unsigned long flags;
unsigned long timeout;
int found = 0;
unsigned int queue_id;
static int trap_count;
queue_id = trap->data.generic_type & 0x0F;
if (queue_id >= RVT_MAX_TRAP_LISTS) {
trap_count++;
pr_err_ratelimited("hfi1: Invalid trap 0x%0x dropped. Total dropped: %d\n",
trap->data.generic_type, trap_count);
kfree(trap);
return NULL;
}
/*
* Since the retry (handle timeout) does not remove a trap request
* from the list, all we have to do is compare the node.
*/
spin_lock_irqsave(&ibp->rvp.lock, flags);
trap_list = &ibp->rvp.trap_lists[queue_id];
list_for_each_entry(node, &trap_list->list, list) {
if (node == trap) {
node->retry++;
found = 1;
break;
}
}
/* If it is not on the list, add it, limited to RVT-MAX_TRAP_LEN. */
if (!found) {
if (trap_list->list_len < RVT_MAX_TRAP_LEN) {
trap_list->list_len++;
list_add_tail(&trap->list, &trap_list->list);
} else {
pr_warn_ratelimited("hfi1: Maximum trap limit reached for 0x%0x traps\n",
trap->data.generic_type);
kfree(trap);
}
}
/*
* Next check to see if there is a timer pending. If not, set it up
* and get the first trap from the list.
*/
node = NULL;
if (!timer_pending(&ibp->rvp.trap_timer)) {
/*
* o14-2
* If the time out is set we have to wait until it expires
* before the trap can be sent.
* This should be > RVT_TRAP_TIMEOUT
*/
timeout = (RVT_TRAP_TIMEOUT *
(1UL << ibp->rvp.subnet_timeout)) / 1000;
mod_timer(&ibp->rvp.trap_timer,
jiffies + usecs_to_jiffies(timeout));
node = list_first_entry(&trap_list->list, struct trap_node,
list);
node->in_use = 1;
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
return node;
}
static void subn_handle_opa_trap_repress(struct hfi1_ibport *ibp,
struct opa_smp *smp)
{
struct trap_list *trap_list;
struct trap_node *trap;
unsigned long flags;
int i;
if (smp->attr_id != IB_SMP_ATTR_NOTICE)
return;
spin_lock_irqsave(&ibp->rvp.lock, flags);
for (i = 0; i < RVT_MAX_TRAP_LISTS; i++) {
trap_list = &ibp->rvp.trap_lists[i];
trap = list_first_entry_or_null(&trap_list->list,
struct trap_node, list);
if (trap && trap->tid == smp->tid) {
if (trap->in_use) {
trap->repress = 1;
} else {
trap_list->list_len--;
list_del(&trap->list);
kfree(trap);
}
break;
}
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
}
static void hfi1_update_sm_ah_attr(struct hfi1_ibport *ibp,
struct rdma_ah_attr *attr, u32 dlid)
{
rdma_ah_set_dlid(attr, dlid);
rdma_ah_set_port_num(attr, ppd_from_ibp(ibp)->port);
if (dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) {
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
rdma_ah_set_ah_flags(attr, IB_AH_GRH);
grh->sgid_index = 0;
grh->hop_limit = 1;
grh->dgid.global.subnet_prefix =
ibp->rvp.gid_prefix;
grh->dgid.global.interface_id = OPA_MAKE_ID(dlid);
}
}
static int hfi1_modify_qp0_ah(struct hfi1_ibport *ibp,
struct rvt_ah *ah, u32 dlid)
{
struct rdma_ah_attr attr;
struct rvt_qp *qp0;
int ret = -EINVAL;
memset(&attr, 0, sizeof(attr));
attr.type = ah->ibah.type;
hfi1_update_sm_ah_attr(ibp, &attr, dlid);
rcu_read_lock();
qp0 = rcu_dereference(ibp->rvp.qp[0]);
if (qp0)
ret = rdma_modify_ah(&ah->ibah, &attr);
rcu_read_unlock();
return ret;
}
static struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u32 dlid)
{
struct rdma_ah_attr attr;
struct ib_ah *ah = ERR_PTR(-EINVAL);
struct rvt_qp *qp0;
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct hfi1_devdata *dd = dd_from_ppd(ppd);
u8 port_num = ppd->port;
memset(&attr, 0, sizeof(attr));
attr.type = rdma_ah_find_type(&dd->verbs_dev.rdi.ibdev, port_num);
hfi1_update_sm_ah_attr(ibp, &attr, dlid);
rcu_read_lock();
qp0 = rcu_dereference(ibp->rvp.qp[0]);
if (qp0)
ah = rdma_create_ah(qp0->ibqp.pd, &attr, 0);
rcu_read_unlock();
return ah;
}
static void send_trap(struct hfi1_ibport *ibp, struct trap_node *trap)
{
struct ib_mad_send_buf *send_buf;
struct ib_mad_agent *agent;
struct opa_smp *smp;
unsigned long flags;
int pkey_idx;
u32 qpn = ppd_from_ibp(ibp)->sm_trap_qp;
agent = ibp->rvp.send_agent;
if (!agent) {
cleanup_traps(ibp, trap);
return;
}
/* o14-3.2.1 */
if (driver_lstate(ppd_from_ibp(ibp)) != IB_PORT_ACTIVE) {
cleanup_traps(ibp, trap);
return;
}
/* Add the trap to the list if necessary and see if we can send it */
trap = check_and_add_trap(ibp, trap);
if (!trap)
return;
pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY);
if (pkey_idx < 0) {
pr_warn("%s: failed to find limited mgmt pkey, defaulting 0x%x\n",
__func__, hfi1_get_pkey(ibp, 1));
pkey_idx = 1;
}
send_buf = ib_create_send_mad(agent, qpn, pkey_idx, 0,
IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA,
GFP_ATOMIC, IB_MGMT_BASE_VERSION);
if (IS_ERR(send_buf))
return;
smp = send_buf->mad;
smp->base_version = OPA_MGMT_BASE_VERSION;
smp->mgmt_class = IB_MGMT_CLASS_SUBN_LID_ROUTED;
smp->class_version = OPA_SM_CLASS_VERSION;
smp->method = IB_MGMT_METHOD_TRAP;
/* Only update the transaction ID for new traps (o13-5). */
if (trap->tid == 0) {
ibp->rvp.tid++;
/* make sure that tid != 0 */
if (ibp->rvp.tid == 0)
ibp->rvp.tid++;
trap->tid = cpu_to_be64(ibp->rvp.tid);
}
smp->tid = trap->tid;
smp->attr_id = IB_SMP_ATTR_NOTICE;
/* o14-1: smp->mkey = 0; */
memcpy(smp->route.lid.data, &trap->data, trap->len);
spin_lock_irqsave(&ibp->rvp.lock, flags);
if (!ibp->rvp.sm_ah) {
if (ibp->rvp.sm_lid != be16_to_cpu(IB_LID_PERMISSIVE)) {
struct ib_ah *ah;
ah = hfi1_create_qp0_ah(ibp, ibp->rvp.sm_lid);
if (IS_ERR(ah)) {
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
return;
}
send_buf->ah = ah;
ibp->rvp.sm_ah = ibah_to_rvtah(ah);
} else {
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
return;
}
} else {
send_buf->ah = &ibp->rvp.sm_ah->ibah;
}
/*
* If the trap was repressed while things were getting set up, don't
* bother sending it. This could happen for a retry.
*/
if (trap->repress) {
list_del(&trap->list);
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
kfree(trap);
ib_free_send_mad(send_buf);
return;
}
trap->in_use = 0;
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
if (ib_post_send_mad(send_buf, NULL))
ib_free_send_mad(send_buf);
}
void hfi1_handle_trap_timer(struct timer_list *t)
{
struct hfi1_ibport *ibp = from_timer(ibp, t, rvp.trap_timer);
struct trap_node *trap = NULL;
unsigned long flags;
int i;
/* Find the trap with the highest priority */
spin_lock_irqsave(&ibp->rvp.lock, flags);
for (i = 0; !trap && i < RVT_MAX_TRAP_LISTS; i++) {
trap = list_first_entry_or_null(&ibp->rvp.trap_lists[i].list,
struct trap_node, list);
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
if (trap)
send_trap(ibp, trap);
}
static struct trap_node *create_trap_node(u8 type, __be16 trap_num, u32 lid)
{
struct trap_node *trap;
trap = kzalloc(sizeof(*trap), GFP_ATOMIC);
if (!trap)
return NULL;
INIT_LIST_HEAD(&trap->list);
trap->data.generic_type = type;
trap->data.prod_type_lsb = IB_NOTICE_PROD_CA;
trap->data.trap_num = trap_num;
trap->data.issuer_lid = cpu_to_be32(lid);
return trap;
}
/*
* Send a bad P_Key trap (ch. 14.3.8).
*/
void hfi1_bad_pkey(struct hfi1_ibport *ibp, u32 key, u32 sl,
u32 qp1, u32 qp2, u32 lid1, u32 lid2)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
ibp->rvp.n_pkt_drops++;
ibp->rvp.pkey_violations++;
trap = create_trap_node(IB_NOTICE_TYPE_SECURITY, OPA_TRAP_BAD_P_KEY,
lid);
if (!trap)
return;
/* Send violation trap */
trap->data.ntc_257_258.lid1 = cpu_to_be32(lid1);
trap->data.ntc_257_258.lid2 = cpu_to_be32(lid2);
trap->data.ntc_257_258.key = cpu_to_be32(key);
trap->data.ntc_257_258.sl = sl << 3;
trap->data.ntc_257_258.qp1 = cpu_to_be32(qp1);
trap->data.ntc_257_258.qp2 = cpu_to_be32(qp2);
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a bad M_Key trap (ch. 14.3.9).
*/
static void bad_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad,
__be64 mkey, __be32 dr_slid, u8 return_path[], u8 hop_cnt)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_SECURITY, OPA_TRAP_BAD_M_KEY,
lid);
if (!trap)
return;
/* Send violation trap */
trap->data.ntc_256.lid = trap->data.issuer_lid;
trap->data.ntc_256.method = mad->method;
trap->data.ntc_256.attr_id = mad->attr_id;
trap->data.ntc_256.attr_mod = mad->attr_mod;
trap->data.ntc_256.mkey = mkey;
if (mad->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) {
trap->data.ntc_256.dr_slid = dr_slid;
trap->data.ntc_256.dr_trunc_hop = IB_NOTICE_TRAP_DR_NOTICE;
if (hop_cnt > ARRAY_SIZE(trap->data.ntc_256.dr_rtn_path)) {
trap->data.ntc_256.dr_trunc_hop |=
IB_NOTICE_TRAP_DR_TRUNC;
hop_cnt = ARRAY_SIZE(trap->data.ntc_256.dr_rtn_path);
}
trap->data.ntc_256.dr_trunc_hop |= hop_cnt;
memcpy(trap->data.ntc_256.dr_rtn_path, return_path,
hop_cnt);
}
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a Port Capability Mask Changed trap (ch. 14.3.11).
*/
void hfi1_cap_mask_chg(struct rvt_dev_info *rdi, u8 port_num)
{
struct trap_node *trap;
struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
struct hfi1_ibport *ibp = &dd->pport[port_num - 1].ibport_data;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_INFO,
OPA_TRAP_CHANGE_CAPABILITY,
lid);
if (!trap)
return;
trap->data.ntc_144.lid = trap->data.issuer_lid;
trap->data.ntc_144.new_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags);
trap->data.ntc_144.cap_mask3 = cpu_to_be16(ibp->rvp.port_cap3_flags);
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a System Image GUID Changed trap (ch. 14.3.12).
*/
void hfi1_sys_guid_chg(struct hfi1_ibport *ibp)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_INFO, OPA_TRAP_CHANGE_SYSGUID,
lid);
if (!trap)
return;
trap->data.ntc_145.new_sys_guid = ib_hfi1_sys_image_guid;
trap->data.ntc_145.lid = trap->data.issuer_lid;
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a Node Description Changed trap (ch. 14.3.13).
*/
void hfi1_node_desc_chg(struct hfi1_ibport *ibp)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_INFO,
OPA_TRAP_CHANGE_CAPABILITY,
lid);
if (!trap)
return;
trap->data.ntc_144.lid = trap->data.issuer_lid;
trap->data.ntc_144.change_flags =
cpu_to_be16(OPA_NOTICE_TRAP_NODE_DESC_CHG);
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
static int __subn_get_opa_nodedesc(struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev,
u8 port, u32 *resp_len, u32 max_len)
{
struct opa_node_description *nd;
if (am || smp_length_check(sizeof(*nd), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
nd = (struct opa_node_description *)data;
memcpy(nd->data, ibdev->node_desc, sizeof(nd->data));
if (resp_len)
*resp_len += sizeof(*nd);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_nodeinfo(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct opa_node_info *ni;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */
ni = (struct opa_node_info *)data;
/* GUID 0 is illegal */
if (am || pidx >= dd->num_pports || ibdev->node_guid == 0 ||
smp_length_check(sizeof(*ni), max_len) ||
get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX) == 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ni->port_guid = get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX);
ni->base_version = OPA_MGMT_BASE_VERSION;
ni->class_version = OPA_SM_CLASS_VERSION;
ni->node_type = 1; /* channel adapter */
ni->num_ports = ibdev->phys_port_cnt;
/* This is already in network order */
ni->system_image_guid = ib_hfi1_sys_image_guid;
ni->node_guid = ibdev->node_guid;
ni->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd));
ni->device_id = cpu_to_be16(dd->pcidev->device);
ni->revision = cpu_to_be32(dd->minrev);
ni->local_port_num = port;
ni->vendor_id[0] = dd->oui1;
ni->vendor_id[1] = dd->oui2;
ni->vendor_id[2] = dd->oui3;
if (resp_len)
*resp_len += sizeof(*ni);
return reply((struct ib_mad_hdr *)smp);
}
static int subn_get_nodeinfo(struct ib_smp *smp, struct ib_device *ibdev,
u8 port)
{
struct ib_node_info *nip = (struct ib_node_info *)&smp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */
/* GUID 0 is illegal */
if (smp->attr_mod || pidx >= dd->num_pports ||
ibdev->node_guid == 0 ||
get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX) == 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
nip->port_guid = get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX);
nip->base_version = OPA_MGMT_BASE_VERSION;
nip->class_version = OPA_SM_CLASS_VERSION;
nip->node_type = 1; /* channel adapter */
nip->num_ports = ibdev->phys_port_cnt;
/* This is already in network order */
nip->sys_guid = ib_hfi1_sys_image_guid;
nip->node_guid = ibdev->node_guid;
nip->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd));
nip->device_id = cpu_to_be16(dd->pcidev->device);
nip->revision = cpu_to_be32(dd->minrev);
nip->local_port_num = port;
nip->vendor_id[0] = dd->oui1;
nip->vendor_id[1] = dd->oui2;
nip->vendor_id[2] = dd->oui3;
return reply((struct ib_mad_hdr *)smp);
}
static void set_link_width_enabled(struct hfi1_pportdata *ppd, u32 w)
{
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_ENB, w);
}
static void set_link_width_downgrade_enabled(struct hfi1_pportdata *ppd, u32 w)
{
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_DG_ENB, w);
}
static void set_link_speed_enabled(struct hfi1_pportdata *ppd, u32 s)
{
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_SPD_ENB, s);
}
static int check_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad,
int mad_flags, __be64 mkey, __be32 dr_slid,
u8 return_path[], u8 hop_cnt)
{
int valid_mkey = 0;
int ret = 0;
/* Is the mkey in the process of expiring? */
if (ibp->rvp.mkey_lease_timeout &&
time_after_eq(jiffies, ibp->rvp.mkey_lease_timeout)) {
/* Clear timeout and mkey protection field. */
ibp->rvp.mkey_lease_timeout = 0;
ibp->rvp.mkeyprot = 0;
}
if ((mad_flags & IB_MAD_IGNORE_MKEY) || ibp->rvp.mkey == 0 ||
ibp->rvp.mkey == mkey)
valid_mkey = 1;
/* Unset lease timeout on any valid Get/Set/TrapRepress */
if (valid_mkey && ibp->rvp.mkey_lease_timeout &&
(mad->method == IB_MGMT_METHOD_GET ||
mad->method == IB_MGMT_METHOD_SET ||
mad->method == IB_MGMT_METHOD_TRAP_REPRESS))
ibp->rvp.mkey_lease_timeout = 0;
if (!valid_mkey) {
switch (mad->method) {
case IB_MGMT_METHOD_GET:
/* Bad mkey not a violation below level 2 */
if (ibp->rvp.mkeyprot < 2)
break;
/* fall through */
case IB_MGMT_METHOD_SET:
case IB_MGMT_METHOD_TRAP_REPRESS:
if (ibp->rvp.mkey_violations != 0xFFFF)
++ibp->rvp.mkey_violations;
if (!ibp->rvp.mkey_lease_timeout &&
ibp->rvp.mkey_lease_period)
ibp->rvp.mkey_lease_timeout = jiffies +
ibp->rvp.mkey_lease_period * HZ;
/* Generate a trap notice. */
bad_mkey(ibp, mad, mkey, dr_slid, return_path,
hop_cnt);
ret = 1;
}
}
return ret;
}
/*
* The SMA caches reads from LCB registers in case the LCB is unavailable.
* (The LCB is unavailable in certain link states, for example.)
*/
struct lcb_datum {
u32 off;
u64 val;
};
static struct lcb_datum lcb_cache[] = {
{ DC_LCB_STS_ROUND_TRIP_LTP_CNT, 0 },
};
static int write_lcb_cache(u32 off, u64 val)
{
int i;
for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
if (lcb_cache[i].off == off) {
lcb_cache[i].val = val;
return 0;
}
}
pr_warn("%s bad offset 0x%x\n", __func__, off);
return -1;
}
static int read_lcb_cache(u32 off, u64 *val)
{
int i;
for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
if (lcb_cache[i].off == off) {
*val = lcb_cache[i].val;
return 0;
}
}
pr_warn("%s bad offset 0x%x\n", __func__, off);
return -1;
}
void read_ltp_rtt(struct hfi1_devdata *dd)
{
u64 reg;
if (read_lcb_csr(dd, DC_LCB_STS_ROUND_TRIP_LTP_CNT, &reg))
dd_dev_err(dd, "%s: unable to read LTP RTT\n", __func__);
else
write_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, reg);
}
static int __subn_get_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
int i;
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
struct opa_port_info *pi = (struct opa_port_info *)data;
u8 mtu;
u8 credit_rate;
u8 is_beaconing_active;
u32 state;
u32 num_ports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
u32 buffer_units;
u64 tmp = 0;
if (num_ports != 1 || smp_length_check(sizeof(*pi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
dd = dd_from_ibdev(ibdev);
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
ibp = &ppd->ibport_data;
if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) ||
ppd->vls_supported > ARRAY_SIZE(dd->vld)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
pi->lid = cpu_to_be32(ppd->lid);
/* Only return the mkey if the protection field allows it. */
if (!(smp->method == IB_MGMT_METHOD_GET &&
ibp->rvp.mkey != smp->mkey &&
ibp->rvp.mkeyprot == 1))
pi->mkey = ibp->rvp.mkey;
pi->subnet_prefix = ibp->rvp.gid_prefix;
pi->sm_lid = cpu_to_be32(ibp->rvp.sm_lid);
pi->ib_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags);
pi->mkey_lease_period = cpu_to_be16(ibp->rvp.mkey_lease_period);
pi->sm_trap_qp = cpu_to_be32(ppd->sm_trap_qp);
pi->sa_qp = cpu_to_be32(ppd->sa_qp);
pi->link_width.enabled = cpu_to_be16(ppd->link_width_enabled);
pi->link_width.supported = cpu_to_be16(ppd->link_width_supported);
pi->link_width.active = cpu_to_be16(ppd->link_width_active);
pi->link_width_downgrade.supported =
cpu_to_be16(ppd->link_width_downgrade_supported);
pi->link_width_downgrade.enabled =
cpu_to_be16(ppd->link_width_downgrade_enabled);
pi->link_width_downgrade.tx_active =
cpu_to_be16(ppd->link_width_downgrade_tx_active);
pi->link_width_downgrade.rx_active =
cpu_to_be16(ppd->link_width_downgrade_rx_active);
pi->link_speed.supported = cpu_to_be16(ppd->link_speed_supported);
pi->link_speed.active = cpu_to_be16(ppd->link_speed_active);
pi->link_speed.enabled = cpu_to_be16(ppd->link_speed_enabled);
state = driver_lstate(ppd);
if (start_of_sm_config && (state == IB_PORT_INIT))
ppd->is_sm_config_started = 1;
pi->port_phys_conf = (ppd->port_type & 0xf);
pi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4;
pi->port_states.ledenable_offlinereason |=
ppd->is_sm_config_started << 5;
/*
* This pairs with the memory barrier in hfi1_start_led_override to
* ensure that we read the correct state of LED beaconing represented
* by led_override_timer_active
*/
smp_rmb();
is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active);
pi->port_states.ledenable_offlinereason |= is_beaconing_active << 6;
pi->port_states.ledenable_offlinereason |=
ppd->offline_disabled_reason;
pi->port_states.portphysstate_portstate =
(driver_pstate(ppd) << 4) | state;
pi->mkeyprotect_lmc = (ibp->rvp.mkeyprot << 6) | ppd->lmc;
memset(pi->neigh_mtu.pvlx_to_mtu, 0, sizeof(pi->neigh_mtu.pvlx_to_mtu));
for (i = 0; i < ppd->vls_supported; i++) {
mtu = mtu_to_enum(dd->vld[i].mtu, HFI1_DEFAULT_ACTIVE_MTU);
if ((i % 2) == 0)
pi->neigh_mtu.pvlx_to_mtu[i / 2] |= (mtu << 4);
else
pi->neigh_mtu.pvlx_to_mtu[i / 2] |= mtu;
}
/* don't forget VL 15 */
mtu = mtu_to_enum(dd->vld[15].mtu, 2048);
pi->neigh_mtu.pvlx_to_mtu[15 / 2] |= mtu;
pi->smsl = ibp->rvp.sm_sl & OPA_PI_MASK_SMSL;
pi->operational_vls = hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS);
pi->partenforce_filterraw |=
(ppd->linkinit_reason & OPA_PI_MASK_LINKINIT_REASON);
if (ppd->part_enforce & HFI1_PART_ENFORCE_IN)
pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_IN;
if (ppd->part_enforce & HFI1_PART_ENFORCE_OUT)
pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_OUT;
pi->mkey_violations = cpu_to_be16(ibp->rvp.mkey_violations);
/* P_KeyViolations are counted by hardware. */
pi->pkey_violations = cpu_to_be16(ibp->rvp.pkey_violations);
pi->qkey_violations = cpu_to_be16(ibp->rvp.qkey_violations);
pi->vl.cap = ppd->vls_supported;
pi->vl.high_limit = cpu_to_be16(ibp->rvp.vl_high_limit);
pi->vl.arb_high_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_CAP);
pi->vl.arb_low_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_LOW_CAP);
pi->clientrereg_subnettimeout = ibp->rvp.subnet_timeout;
pi->port_link_mode = cpu_to_be16(OPA_PORT_LINK_MODE_OPA << 10 |
OPA_PORT_LINK_MODE_OPA << 5 |
OPA_PORT_LINK_MODE_OPA);
pi->port_ltp_crc_mode = cpu_to_be16(ppd->port_ltp_crc_mode);
pi->port_mode = cpu_to_be16(
ppd->is_active_optimize_enabled ?
OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE : 0);
pi->port_packet_format.supported =
cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B |
OPA_PORT_PACKET_FORMAT_16B);
pi->port_packet_format.enabled =
cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B |
OPA_PORT_PACKET_FORMAT_16B);
/* flit_control.interleave is (OPA V1, version .76):
* bits use
* ---- ---
* 2 res
* 2 DistanceSupported
* 2 DistanceEnabled
* 5 MaxNextLevelTxEnabled
* 5 MaxNestLevelRxSupported
*
* HFI supports only "distance mode 1" (see OPA V1, version .76,
* section 9.6.2), so set DistanceSupported, DistanceEnabled
* to 0x1.
*/
pi->flit_control.interleave = cpu_to_be16(0x1400);
pi->link_down_reason = ppd->local_link_down_reason.sma;
pi->neigh_link_down_reason = ppd->neigh_link_down_reason.sma;
pi->port_error_action = cpu_to_be32(ppd->port_error_action);
pi->mtucap = mtu_to_enum(hfi1_max_mtu, IB_MTU_4096);
/* 32.768 usec. response time (guessing) */
pi->resptimevalue = 3;
pi->local_port_num = port;
/* buffer info for FM */
pi->overall_buffer_space = cpu_to_be16(dd->link_credits);
pi->neigh_node_guid = cpu_to_be64(ppd->neighbor_guid);
pi->neigh_port_num = ppd->neighbor_port_number;
pi->port_neigh_mode =
(ppd->neighbor_type & OPA_PI_MASK_NEIGH_NODE_TYPE) |
(ppd->mgmt_allowed ? OPA_PI_MASK_NEIGH_MGMT_ALLOWED : 0) |
(ppd->neighbor_fm_security ?
OPA_PI_MASK_NEIGH_FW_AUTH_BYPASS : 0);
/* HFIs shall always return VL15 credits to their
* neighbor in a timely manner, without any credit return pacing.
*/
credit_rate = 0;
buffer_units = (dd->vau) & OPA_PI_MASK_BUF_UNIT_BUF_ALLOC;
buffer_units |= (dd->vcu << 3) & OPA_PI_MASK_BUF_UNIT_CREDIT_ACK;
buffer_units |= (credit_rate << 6) &
OPA_PI_MASK_BUF_UNIT_VL15_CREDIT_RATE;
buffer_units |= (dd->vl15_init << 11) & OPA_PI_MASK_BUF_UNIT_VL15_INIT;
pi->buffer_units = cpu_to_be32(buffer_units);
pi->opa_cap_mask = cpu_to_be16(ibp->rvp.port_cap3_flags);
pi->collectivemask_multicastmask = ((OPA_COLLECTIVE_NR & 0x7)
<< 3 | (OPA_MCAST_NR & 0x7));
/* HFI supports a replay buffer 128 LTPs in size */
pi->replay_depth.buffer = 0x80;
/* read the cached value of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
read_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, &tmp);
/*
* this counter is 16 bits wide, but the replay_depth.wire
* variable is only 8 bits
*/
if (tmp > 0xff)
tmp = 0xff;
pi->replay_depth.wire = tmp;
if (resp_len)
*resp_len += sizeof(struct opa_port_info);
return reply((struct ib_mad_hdr *)smp);
}
/**
* get_pkeys - return the PKEY table
* @dd: the hfi1_ib device
* @port: the IB port number
* @pkeys: the pkey table is placed here
*/
static int get_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys)
{
struct hfi1_pportdata *ppd = dd->pport + port - 1;
memcpy(pkeys, ppd->pkeys, sizeof(ppd->pkeys));
return 0;
}
static int __subn_get_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 n_blocks_req = OPA_AM_NBLK(am);
u32 start_block = am & 0x7ff;
__be16 *p;
u16 *q;
int i;
u16 n_blocks_avail;
unsigned npkeys = hfi1_get_npkeys(dd);
size_t size;
if (n_blocks_req == 0) {
pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n",
port, start_block, n_blocks_req);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1;
size = (n_blocks_req * OPA_PARTITION_TABLE_BLK_SIZE) * sizeof(u16);
if (smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (start_block + n_blocks_req > n_blocks_avail ||
n_blocks_req > OPA_NUM_PKEY_BLOCKS_PER_SMP) {
pr_warn("OPA Get PKey AM Invalid : s 0x%x; req 0x%x; "
"avail 0x%x; blk/smp 0x%lx\n",
start_block, n_blocks_req, n_blocks_avail,
OPA_NUM_PKEY_BLOCKS_PER_SMP);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
p = (__be16 *)data;
q = (u16 *)data;
/* get the real pkeys if we are requesting the first block */
if (start_block == 0) {
get_pkeys(dd, port, q);
for (i = 0; i < npkeys; i++)
p[i] = cpu_to_be16(q[i]);
if (resp_len)
*resp_len += size;
} else {
smp->status |= IB_SMP_INVALID_FIELD;
}
return reply((struct ib_mad_hdr *)smp);
}
enum {
HFI_TRANSITION_DISALLOWED,
HFI_TRANSITION_IGNORED,
HFI_TRANSITION_ALLOWED,
HFI_TRANSITION_UNDEFINED,
};
/*
* Use shortened names to improve readability of
* {logical,physical}_state_transitions
*/
enum {
__D = HFI_TRANSITION_DISALLOWED,
__I = HFI_TRANSITION_IGNORED,
__A = HFI_TRANSITION_ALLOWED,
__U = HFI_TRANSITION_UNDEFINED,
};
/*
* IB_PORTPHYSSTATE_POLLING (2) through OPA_PORTPHYSSTATE_MAX (11) are
* represented in physical_state_transitions.
*/
#define __N_PHYSTATES (OPA_PORTPHYSSTATE_MAX - IB_PORTPHYSSTATE_POLLING + 1)
/*
* Within physical_state_transitions, rows represent "old" states,
* columns "new" states, and physical_state_transitions.allowed[old][new]
* indicates if the transition from old state to new state is legal (see
* OPAg1v1, Table 6-4).
*/
static const struct {
u8 allowed[__N_PHYSTATES][__N_PHYSTATES];
} physical_state_transitions = {
{
/* 2 3 4 5 6 7 8 9 10 11 */
/* 2 */ { __A, __A, __D, __D, __D, __D, __D, __D, __D, __D },
/* 3 */ { __A, __I, __D, __D, __D, __D, __D, __D, __D, __A },
/* 4 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/* 5 */ { __A, __A, __D, __I, __D, __D, __D, __D, __D, __D },
/* 6 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/* 7 */ { __D, __A, __D, __D, __D, __I, __D, __D, __D, __D },
/* 8 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/* 9 */ { __I, __A, __D, __D, __D, __D, __D, __I, __D, __D },
/*10 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/*11 */ { __D, __A, __D, __D, __D, __D, __D, __D, __D, __I },
}
};
/*
* IB_PORT_DOWN (1) through IB_PORT_ACTIVE_DEFER (5) are represented
* logical_state_transitions
*/
#define __N_LOGICAL_STATES (IB_PORT_ACTIVE_DEFER - IB_PORT_DOWN + 1)
/*
* Within logical_state_transitions rows represent "old" states,
* columns "new" states, and logical_state_transitions.allowed[old][new]
* indicates if the transition from old state to new state is legal (see
* OPAg1v1, Table 9-12).
*/
static const struct {
u8 allowed[__N_LOGICAL_STATES][__N_LOGICAL_STATES];
} logical_state_transitions = {
{
/* 1 2 3 4 5 */
/* 1 */ { __I, __D, __D, __D, __U},
/* 2 */ { __D, __I, __A, __D, __U},
/* 3 */ { __D, __D, __I, __A, __U},
/* 4 */ { __D, __D, __I, __I, __U},
/* 5 */ { __U, __U, __U, __U, __U},
}
};
static int logical_transition_allowed(int old, int new)
{
if (old < IB_PORT_NOP || old > IB_PORT_ACTIVE_DEFER ||
new < IB_PORT_NOP || new > IB_PORT_ACTIVE_DEFER) {
pr_warn("invalid logical state(s) (old %d new %d)\n",
old, new);
return HFI_TRANSITION_UNDEFINED;
}
if (new == IB_PORT_NOP)
return HFI_TRANSITION_ALLOWED; /* always allowed */
/* adjust states for indexing into logical_state_transitions */
old -= IB_PORT_DOWN;
new -= IB_PORT_DOWN;
if (old < 0 || new < 0)
return HFI_TRANSITION_UNDEFINED;
return logical_state_transitions.allowed[old][new];
}
static int physical_transition_allowed(int old, int new)
{
if (old < IB_PORTPHYSSTATE_NOP || old > OPA_PORTPHYSSTATE_MAX ||
new < IB_PORTPHYSSTATE_NOP || new > OPA_PORTPHYSSTATE_MAX) {
pr_warn("invalid physical state(s) (old %d new %d)\n",
old, new);
return HFI_TRANSITION_UNDEFINED;
}
if (new == IB_PORTPHYSSTATE_NOP)
return HFI_TRANSITION_ALLOWED; /* always allowed */
/* adjust states for indexing into physical_state_transitions */
old -= IB_PORTPHYSSTATE_POLLING;
new -= IB_PORTPHYSSTATE_POLLING;
if (old < 0 || new < 0)
return HFI_TRANSITION_UNDEFINED;
return physical_state_transitions.allowed[old][new];
}
static int port_states_transition_allowed(struct hfi1_pportdata *ppd,
u32 logical_new, u32 physical_new)
{
u32 physical_old = driver_pstate(ppd);
u32 logical_old = driver_lstate(ppd);
int ret, logical_allowed, physical_allowed;
ret = logical_transition_allowed(logical_old, logical_new);
logical_allowed = ret;
if (ret == HFI_TRANSITION_DISALLOWED ||
ret == HFI_TRANSITION_UNDEFINED) {
pr_warn("invalid logical state transition %s -> %s\n",
opa_lstate_name(logical_old),
opa_lstate_name(logical_new));
return ret;
}
ret = physical_transition_allowed(physical_old, physical_new);
physical_allowed = ret;
if (ret == HFI_TRANSITION_DISALLOWED ||
ret == HFI_TRANSITION_UNDEFINED) {
pr_warn("invalid physical state transition %s -> %s\n",
opa_pstate_name(physical_old),
opa_pstate_name(physical_new));
return ret;
}
if (logical_allowed == HFI_TRANSITION_IGNORED &&
physical_allowed == HFI_TRANSITION_IGNORED)
return HFI_TRANSITION_IGNORED;
/*
* A change request of Physical Port State from
* 'Offline' to 'Polling' should be ignored.
*/
if ((physical_old == OPA_PORTPHYSSTATE_OFFLINE) &&
(physical_new == IB_PORTPHYSSTATE_POLLING))
return HFI_TRANSITION_IGNORED;
/*
* Either physical_allowed or logical_allowed is
* HFI_TRANSITION_ALLOWED.
*/
return HFI_TRANSITION_ALLOWED;
}
static int set_port_states(struct hfi1_pportdata *ppd, struct opa_smp *smp,
u32 logical_state, u32 phys_state, int local_mad)
{
struct hfi1_devdata *dd = ppd->dd;
u32 link_state;
int ret;
ret = port_states_transition_allowed(ppd, logical_state, phys_state);
if (ret == HFI_TRANSITION_DISALLOWED ||
ret == HFI_TRANSITION_UNDEFINED) {
/* error message emitted above */
smp->status |= IB_SMP_INVALID_FIELD;
return 0;
}
if (ret == HFI_TRANSITION_IGNORED)
return 0;
if ((phys_state != IB_PORTPHYSSTATE_NOP) &&
!(logical_state == IB_PORT_DOWN ||
logical_state == IB_PORT_NOP)){
pr_warn("SubnSet(OPA_PortInfo) port state invalid: logical_state 0x%x physical_state 0x%x\n",
logical_state, phys_state);
smp->status |= IB_SMP_INVALID_FIELD;
}
/*
* Logical state changes are summarized in OPAv1g1 spec.,
* Table 9-12; physical state changes are summarized in
* OPAv1g1 spec., Table 6.4.
*/
switch (logical_state) {
case IB_PORT_NOP:
if (phys_state == IB_PORTPHYSSTATE_NOP)
break;
/* FALLTHROUGH */
case IB_PORT_DOWN:
if (phys_state == IB_PORTPHYSSTATE_NOP) {
link_state = HLS_DN_DOWNDEF;
} else if (phys_state == IB_PORTPHYSSTATE_POLLING) {
link_state = HLS_DN_POLL;
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_FM_BOUNCE,
0, OPA_LINKDOWN_REASON_FM_BOUNCE);
} else if (phys_state == IB_PORTPHYSSTATE_DISABLED) {
link_state = HLS_DN_DISABLE;
} else {
pr_warn("SubnSet(OPA_PortInfo) invalid physical state 0x%x\n",
phys_state);
smp->status |= IB_SMP_INVALID_FIELD;
break;
}
if ((link_state == HLS_DN_POLL ||
link_state == HLS_DN_DOWNDEF)) {
/*
* Going to poll. No matter what the current state,
* always move offline first, then tune and start the
* link. This correctly handles a FM link bounce and
* a link enable. Going offline is a no-op if already
* offline.
*/
set_link_state(ppd, HLS_DN_OFFLINE);
start_link(ppd);
} else {
set_link_state(ppd, link_state);
}
if (link_state == HLS_DN_DISABLE &&
(ppd->offline_disabled_reason >
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED) ||
ppd->offline_disabled_reason ==
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
ppd->offline_disabled_reason =
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
/*
* Don't send a reply if the response would be sent
* through the disabled port.
*/
if (link_state == HLS_DN_DISABLE && !local_mad)
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED;
break;
case IB_PORT_ARMED:
ret = set_link_state(ppd, HLS_UP_ARMED);
if (!ret)
send_idle_sma(dd, SMA_IDLE_ARM);
break;
case IB_PORT_ACTIVE:
if (ppd->neighbor_normal) {
ret = set_link_state(ppd, HLS_UP_ACTIVE);
if (ret == 0)
send_idle_sma(dd, SMA_IDLE_ACTIVE);
} else {
pr_warn("SubnSet(OPA_PortInfo) Cannot move to Active with NeighborNormal 0\n");
smp->status |= IB_SMP_INVALID_FIELD;
}
break;
default:
pr_warn("SubnSet(OPA_PortInfo) invalid logical state 0x%x\n",
logical_state);
smp->status |= IB_SMP_INVALID_FIELD;
}
return 0;
}
/**
* subn_set_opa_portinfo - set port information
* @smp: the incoming SM packet
* @ibdev: the infiniband device
* @port: the port on the device
*
*/
static int __subn_set_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len, int local_mad)
{
struct opa_port_info *pi = (struct opa_port_info *)data;
struct ib_event event;
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
u8 clientrereg;
unsigned long flags;
u32 smlid;
u32 lid;
u8 ls_old, ls_new, ps_new;
u8 vls;
u8 msl;
u8 crc_enabled;
u16 lse, lwe, mtu;
u32 num_ports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
int ret, i, invalid = 0, call_set_mtu = 0;
int call_link_downgrade_policy = 0;
if (num_ports != 1 ||
smp_length_check(sizeof(*pi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
lid = be32_to_cpu(pi->lid);
if (lid & 0xFF000000) {
pr_warn("OPA_PortInfo lid out of range: %X\n", lid);
smp->status |= IB_SMP_INVALID_FIELD;
goto get_only;
}
smlid = be32_to_cpu(pi->sm_lid);
if (smlid & 0xFF000000) {
pr_warn("OPA_PortInfo SM lid out of range: %X\n", smlid);
smp->status |= IB_SMP_INVALID_FIELD;
goto get_only;
}
clientrereg = (pi->clientrereg_subnettimeout &
OPA_PI_MASK_CLIENT_REREGISTER);
dd = dd_from_ibdev(ibdev);
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
ibp = &ppd->ibport_data;
event.device = ibdev;
event.element.port_num = port;
ls_old = driver_lstate(ppd);
ibp->rvp.mkey = pi->mkey;
if (ibp->rvp.gid_prefix != pi->subnet_prefix) {
ibp->rvp.gid_prefix = pi->subnet_prefix;
event.event = IB_EVENT_GID_CHANGE;
ib_dispatch_event(&event);
}
ibp->rvp.mkey_lease_period = be16_to_cpu(pi->mkey_lease_period);
/* Must be a valid unicast LID address. */
if ((lid == 0 && ls_old > IB_PORT_INIT) ||
(hfi1_is_16B_mcast(lid))) {
smp->status |= IB_SMP_INVALID_FIELD;
pr_warn("SubnSet(OPA_PortInfo) lid invalid 0x%x\n",
lid);
} else if (ppd->lid != lid ||
ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) {
if (ppd->lid != lid)
hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LID_CHANGE_BIT);
if (ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC))
hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LMC_CHANGE_BIT);
hfi1_set_lid(ppd, lid, pi->mkeyprotect_lmc & OPA_PI_MASK_LMC);
event.event = IB_EVENT_LID_CHANGE;
ib_dispatch_event(&event);
if (HFI1_PORT_GUID_INDEX + 1 < HFI1_GUIDS_PER_PORT) {
/* Manufacture GID from LID to support extended
* addresses
*/
ppd->guids[HFI1_PORT_GUID_INDEX + 1] =
be64_to_cpu(OPA_MAKE_ID(lid));
event.event = IB_EVENT_GID_CHANGE;
ib_dispatch_event(&event);
}
}
msl = pi->smsl & OPA_PI_MASK_SMSL;
if (pi->partenforce_filterraw & OPA_PI_MASK_LINKINIT_REASON)
ppd->linkinit_reason =
(pi->partenforce_filterraw &
OPA_PI_MASK_LINKINIT_REASON);
/* Must be a valid unicast LID address. */
if ((smlid == 0 && ls_old > IB_PORT_INIT) ||
(hfi1_is_16B_mcast(smlid))) {
smp->status |= IB_SMP_INVALID_FIELD;
pr_warn("SubnSet(OPA_PortInfo) smlid invalid 0x%x\n", smlid);
} else if (smlid != ibp->rvp.sm_lid || msl != ibp->rvp.sm_sl) {
pr_warn("SubnSet(OPA_PortInfo) smlid 0x%x\n", smlid);
spin_lock_irqsave(&ibp->rvp.lock, flags);
if (ibp->rvp.sm_ah) {
if (smlid != ibp->rvp.sm_lid)
hfi1_modify_qp0_ah(ibp, ibp->rvp.sm_ah, smlid);
if (msl != ibp->rvp.sm_sl)
rdma_ah_set_sl(&ibp->rvp.sm_ah->attr, msl);
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
if (smlid != ibp->rvp.sm_lid)
ibp->rvp.sm_lid = smlid;
if (msl != ibp->rvp.sm_sl)
ibp->rvp.sm_sl = msl;
event.event = IB_EVENT_SM_CHANGE;
ib_dispatch_event(&event);
}
if (pi->link_down_reason == 0) {
ppd->local_link_down_reason.sma = 0;
ppd->local_link_down_reason.latest = 0;
}
if (pi->neigh_link_down_reason == 0) {
ppd->neigh_link_down_reason.sma = 0;
ppd->neigh_link_down_reason.latest = 0;
}
ppd->sm_trap_qp = be32_to_cpu(pi->sm_trap_qp);
ppd->sa_qp = be32_to_cpu(pi->sa_qp);
ppd->port_error_action = be32_to_cpu(pi->port_error_action);
lwe = be16_to_cpu(pi->link_width.enabled);
if (lwe) {
if (lwe == OPA_LINK_WIDTH_RESET ||
lwe == OPA_LINK_WIDTH_RESET_OLD)
set_link_width_enabled(ppd, ppd->link_width_supported);
else if ((lwe & ~ppd->link_width_supported) == 0)
set_link_width_enabled(ppd, lwe);
else
smp->status |= IB_SMP_INVALID_FIELD;
}
lwe = be16_to_cpu(pi->link_width_downgrade.enabled);
/* LWD.E is always applied - 0 means "disabled" */
if (lwe == OPA_LINK_WIDTH_RESET ||
lwe == OPA_LINK_WIDTH_RESET_OLD) {
set_link_width_downgrade_enabled(ppd,
ppd->
link_width_downgrade_supported
);
} else if ((lwe & ~ppd->link_width_downgrade_supported) == 0) {
/* only set and apply if something changed */
if (lwe != ppd->link_width_downgrade_enabled) {
set_link_width_downgrade_enabled(ppd, lwe);
call_link_downgrade_policy = 1;
}
} else {
smp->status |= IB_SMP_INVALID_FIELD;
}
lse = be16_to_cpu(pi->link_speed.enabled);
if (lse) {
if (lse & be16_to_cpu(pi->link_speed.supported))
set_link_speed_enabled(ppd, lse);
else
smp->status |= IB_SMP_INVALID_FIELD;
}
ibp->rvp.mkeyprot =
(pi->mkeyprotect_lmc & OPA_PI_MASK_MKEY_PROT_BIT) >> 6;
ibp->rvp.vl_high_limit = be16_to_cpu(pi->vl.high_limit) & 0xFF;
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_LIMIT,
ibp->rvp.vl_high_limit);
if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) ||
ppd->vls_supported > ARRAY_SIZE(dd->vld)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ppd->vls_supported; i++) {
if ((i % 2) == 0)
mtu = enum_to_mtu((pi->neigh_mtu.pvlx_to_mtu[i / 2] >>
4) & 0xF);
else
mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[i / 2] &
0xF);
if (mtu == 0xffff) {
pr_warn("SubnSet(OPA_PortInfo) mtu invalid %d (0x%x)\n",
mtu,
(pi->neigh_mtu.pvlx_to_mtu[0] >> 4) & 0xF);
smp->status |= IB_SMP_INVALID_FIELD;
mtu = hfi1_max_mtu; /* use a valid MTU */
}
if (dd->vld[i].mtu != mtu) {
dd_dev_info(dd,
"MTU change on vl %d from %d to %d\n",
i, dd->vld[i].mtu, mtu);
dd->vld[i].mtu = mtu;
call_set_mtu++;
}
}
/* As per OPAV1 spec: VL15 must support and be configured
* for operation with a 2048 or larger MTU.
*/
mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[15 / 2] & 0xF);
if (mtu < 2048 || mtu == 0xffff)
mtu = 2048;
if (dd->vld[15].mtu != mtu) {
dd_dev_info(dd,
"MTU change on vl 15 from %d to %d\n",
dd->vld[15].mtu, mtu);
dd->vld[15].mtu = mtu;
call_set_mtu++;
}
if (call_set_mtu)
set_mtu(ppd);
/* Set operational VLs */
vls = pi->operational_vls & OPA_PI_MASK_OPERATIONAL_VL;
if (vls) {
if (vls > ppd->vls_supported) {
pr_warn("SubnSet(OPA_PortInfo) VL's supported invalid %d\n",
pi->operational_vls);
smp->status |= IB_SMP_INVALID_FIELD;
} else {
if (hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS,
vls) == -EINVAL)
smp->status |= IB_SMP_INVALID_FIELD;
}
}
if (pi->mkey_violations == 0)
ibp->rvp.mkey_violations = 0;
if (pi->pkey_violations == 0)
ibp->rvp.pkey_violations = 0;
if (pi->qkey_violations == 0)
ibp->rvp.qkey_violations = 0;
ibp->rvp.subnet_timeout =
pi->clientrereg_subnettimeout & OPA_PI_MASK_SUBNET_TIMEOUT;
crc_enabled = be16_to_cpu(pi->port_ltp_crc_mode);
crc_enabled >>= 4;
crc_enabled &= 0xf;
if (crc_enabled != 0)
ppd->port_crc_mode_enabled = port_ltp_to_cap(crc_enabled);
ppd->is_active_optimize_enabled =
!!(be16_to_cpu(pi->port_mode)
& OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE);
ls_new = pi->port_states.portphysstate_portstate &
OPA_PI_MASK_PORT_STATE;
ps_new = (pi->port_states.portphysstate_portstate &
OPA_PI_MASK_PORT_PHYSICAL_STATE) >> 4;
if (ls_old == IB_PORT_INIT) {
if (start_of_sm_config) {
if (ls_new == ls_old || (ls_new == IB_PORT_ARMED))
ppd->is_sm_config_started = 1;
} else if (ls_new == IB_PORT_ARMED) {
if (ppd->is_sm_config_started == 0) {
invalid = 1;
smp->status |= IB_SMP_INVALID_FIELD;
}
}
}
/* Handle CLIENT_REREGISTER event b/c SM asked us for it */
if (clientrereg) {
event.event = IB_EVENT_CLIENT_REREGISTER;
ib_dispatch_event(&event);
}
/*
* Do the port state change now that the other link parameters
* have been set.
* Changing the port physical state only makes sense if the link
* is down or is being set to down.
*/
if (!invalid) {
ret = set_port_states(ppd, smp, ls_new, ps_new, local_mad);
if (ret)
return ret;
}
ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len,
max_len);
/* restore re-reg bit per o14-12.2.1 */
pi->clientrereg_subnettimeout |= clientrereg;
/*
* Apply the new link downgrade policy. This may result in a link
* bounce. Do this after everything else so things are settled.
* Possible problem: if setting the port state above fails, then
* the policy change is not applied.
*/
if (call_link_downgrade_policy)
apply_link_downgrade_policy(ppd, 0);
return ret;
get_only:
return __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len,
max_len);
}
/**
* set_pkeys - set the PKEY table for ctxt 0
* @dd: the hfi1_ib device
* @port: the IB port number
* @pkeys: the PKEY table
*/
static int set_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys)
{
struct hfi1_pportdata *ppd;
int i;
int changed = 0;
int update_includes_mgmt_partition = 0;
/*
* IB port one/two always maps to context zero/one,
* always a kernel context, no locking needed
* If we get here with ppd setup, no need to check
* that rcd is valid.
*/
ppd = dd->pport + (port - 1);
/*
* If the update does not include the management pkey, don't do it.
*/
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
if (pkeys[i] == LIM_MGMT_P_KEY) {
update_includes_mgmt_partition = 1;
break;
}
}
if (!update_includes_mgmt_partition)
return 1;
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
u16 key = pkeys[i];
u16 okey = ppd->pkeys[i];
if (key == okey)
continue;
/*
* The SM gives us the complete PKey table. We have
* to ensure that we put the PKeys in the matching
* slots.
*/
ppd->pkeys[i] = key;
changed = 1;
}
if (changed) {
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
hfi1_event_pkey_change(dd, port);
}
return 0;
}
static int __subn_set_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 n_blocks_sent = OPA_AM_NBLK(am);
u32 start_block = am & 0x7ff;
u16 *p = (u16 *)data;
__be16 *q = (__be16 *)data;
int i;
u16 n_blocks_avail;
unsigned npkeys = hfi1_get_npkeys(dd);
u32 size = 0;
if (n_blocks_sent == 0) {
pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n",
port, start_block, n_blocks_sent);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1;
size = sizeof(u16) * (n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE);
if (smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (start_block + n_blocks_sent > n_blocks_avail ||
n_blocks_sent > OPA_NUM_PKEY_BLOCKS_PER_SMP) {
pr_warn("OPA Set PKey AM Invalid : s 0x%x; req 0x%x; avail 0x%x; blk/smp 0x%lx\n",
start_block, n_blocks_sent, n_blocks_avail,
OPA_NUM_PKEY_BLOCKS_PER_SMP);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE; i++)
p[i] = be16_to_cpu(q[i]);
if (start_block == 0 && set_pkeys(dd, port, p) != 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
return __subn_get_opa_pkeytable(smp, am, data, ibdev, port, resp_len,
max_len);
}
#define ILLEGAL_VL 12
/*
* filter_sc2vlt changes mappings to VL15 to ILLEGAL_VL (except
* for SC15, which must map to VL15). If we don't remap things this
* way it is possible for VL15 counters to increment when we try to
* send on a SC which is mapped to an invalid VL.
* When getting the table convert ILLEGAL_VL back to VL15.
*/
static void filter_sc2vlt(void *data, bool set)
{
int i;
u8 *pd = data;
for (i = 0; i < OPA_MAX_SCS; i++) {
if (i == 15)
continue;
if (set) {
if ((pd[i] & 0x1f) == 0xf)
pd[i] = ILLEGAL_VL;
} else {
if ((pd[i] & 0x1f) == ILLEGAL_VL)
pd[i] = 0xf;
}
}
}
static int set_sc2vlt_tables(struct hfi1_devdata *dd, void *data)
{
u64 *val = data;
filter_sc2vlt(data, true);
write_csr(dd, SEND_SC2VLT0, *val++);
write_csr(dd, SEND_SC2VLT1, *val++);
write_csr(dd, SEND_SC2VLT2, *val++);
write_csr(dd, SEND_SC2VLT3, *val++);
write_seqlock_irq(&dd->sc2vl_lock);
memcpy(dd->sc2vl, data, sizeof(dd->sc2vl));
write_sequnlock_irq(&dd->sc2vl_lock);
return 0;
}
static int get_sc2vlt_tables(struct hfi1_devdata *dd, void *data)
{
u64 *val = (u64 *)data;
*val++ = read_csr(dd, SEND_SC2VLT0);
*val++ = read_csr(dd, SEND_SC2VLT1);
*val++ = read_csr(dd, SEND_SC2VLT2);
*val++ = read_csr(dd, SEND_SC2VLT3);
filter_sc2vlt((u64 *)data, false);
return 0;
}
static int __subn_get_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *p = data;
size_t size = ARRAY_SIZE(ibp->sl_to_sc); /* == 32 */
unsigned i;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++)
*p++ = ibp->sl_to_sc[i];
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *p = data;
size_t size = ARRAY_SIZE(ibp->sl_to_sc);
int i;
u8 sc;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) {
sc = *p++;
if (ibp->sl_to_sc[i] != sc) {
ibp->sl_to_sc[i] = sc;
/* Put all stale qps into error state */
hfi1_error_port_qps(ibp, i);
}
}
return __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *p = data;
size_t size = ARRAY_SIZE(ibp->sc_to_sl); /* == 32 */
unsigned i;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++)
*p++ = ibp->sc_to_sl[i];
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
size_t size = ARRAY_SIZE(ibp->sc_to_sl);
u8 *p = data;
int i;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++)
ibp->sc_to_sl[i] = *p++;
return __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NBLK(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
void *vp = (void *)data;
size_t size = 4 * sizeof(u64);
if (n_blocks != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
get_sc2vlt_tables(dd, vp);
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NBLK(am);
int async_update = OPA_AM_ASYNC(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
void *vp = (void *)data;
struct hfi1_pportdata *ppd;
int lstate;
/*
* set_sc2vlt_tables writes the information contained in *data
* to four 64-bit registers SendSC2VLt[0-3]. We need to make
* sure *max_len is not greater than the total size of the four
* SendSC2VLt[0-3] registers.
*/
size_t size = 4 * sizeof(u64);
if (n_blocks != 1 || async_update || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
lstate = driver_lstate(ppd);
/*
* it's known that async_update is 0 by this point, but include
* the explicit check for clarity
*/
if (!async_update &&
(lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
set_sc2vlt_tables(dd, vp);
return __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
void *vp = (void *)data;
int size = sizeof(struct sc2vlnt);
if (n_blocks != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
fm_get_table(ppd, FM_TBL_SC2VLNT, vp);
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
void *vp = (void *)data;
int lstate;
int size = sizeof(struct sc2vlnt);
if (n_blocks != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
lstate = driver_lstate(ppd);
if (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
fm_set_table(ppd, FM_TBL_SC2VLNT, vp);
return __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port,
resp_len, max_len);
}
static int __subn_get_opa_psi(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 nports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
u32 lstate;
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct opa_port_state_info *psi = (struct opa_port_state_info *)data;
if (nports != 1 || smp_length_check(sizeof(*psi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ibp = to_iport(ibdev, port);
ppd = ppd_from_ibp(ibp);
lstate = driver_lstate(ppd);
if (start_of_sm_config && (lstate == IB_PORT_INIT))
ppd->is_sm_config_started = 1;
psi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4;
psi->port_states.ledenable_offlinereason |=
ppd->is_sm_config_started << 5;
psi->port_states.ledenable_offlinereason |=
ppd->offline_disabled_reason;
psi->port_states.portphysstate_portstate =
(driver_pstate(ppd) << 4) | (lstate & 0xf);
psi->link_width_downgrade_tx_active =
cpu_to_be16(ppd->link_width_downgrade_tx_active);
psi->link_width_downgrade_rx_active =
cpu_to_be16(ppd->link_width_downgrade_rx_active);
if (resp_len)
*resp_len += sizeof(struct opa_port_state_info);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_psi(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len, int local_mad)
{
u32 nports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
u32 ls_old;
u8 ls_new, ps_new;
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct opa_port_state_info *psi = (struct opa_port_state_info *)data;
int ret, invalid = 0;
if (nports != 1 || smp_length_check(sizeof(*psi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ibp = to_iport(ibdev, port);
ppd = ppd_from_ibp(ibp);
ls_old = driver_lstate(ppd);
ls_new = port_states_to_logical_state(&psi->port_states);
ps_new = port_states_to_phys_state(&psi->port_states);
if (ls_old == IB_PORT_INIT) {
if (start_of_sm_config) {
if (ls_new == ls_old || (ls_new == IB_PORT_ARMED))
ppd->is_sm_config_started = 1;
} else if (ls_new == IB_PORT_ARMED) {
if (ppd->is_sm_config_started == 0) {
invalid = 1;
smp->status |= IB_SMP_INVALID_FIELD;
}
}
}
if (!invalid) {
ret = set_port_states(ppd, smp, ls_new, ps_new, local_mad);
if (ret)
return ret;
}
return __subn_get_opa_psi(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_cable_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 addr = OPA_AM_CI_ADDR(am);
u32 len = OPA_AM_CI_LEN(am) + 1;
int ret;
if (dd->pport->port_type != PORT_TYPE_QSFP ||
smp_length_check(len, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
#define __CI_PAGE_SIZE BIT(7) /* 128 bytes */
#define __CI_PAGE_MASK ~(__CI_PAGE_SIZE - 1)
#define __CI_PAGE_NUM(a) ((a) & __CI_PAGE_MASK)
/*
* check that addr is within spec, and
* addr and (addr + len - 1) are on the same "page"
*/
if (addr >= 4096 ||
(__CI_PAGE_NUM(addr) != __CI_PAGE_NUM(addr + len - 1))) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ret = get_cable_info(dd, port, addr, len, data);
if (ret == -ENODEV) {
smp->status |= IB_SMP_UNSUP_METH_ATTR;
return reply((struct ib_mad_hdr *)smp);
}
/* The address range for the CableInfo SMA query is wider than the
* memory available on the QSFP cable. We want to return a valid
* response, albeit zeroed out, for address ranges beyond available
* memory but that are within the CableInfo query spec
*/
if (ret < 0 && ret != -ERANGE) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (resp_len)
*resp_len += len;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_bct(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port, u32 *resp_len,
u32 max_len)
{
u32 num_ports = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
struct buffer_control *p = (struct buffer_control *)data;
int size = sizeof(struct buffer_control);
if (num_ports != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
fm_get_table(ppd, FM_TBL_BUFFER_CONTROL, p);
trace_bct_get(dd, p);
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_bct(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port, u32 *resp_len,
u32 max_len)
{
u32 num_ports = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
struct buffer_control *p = (struct buffer_control *)data;
if (num_ports != 1 || smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
trace_bct_set(dd, p);
if (fm_set_table(ppd, FM_TBL_BUFFER_CONTROL, p) < 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
return __subn_get_opa_bct(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port));
u32 num_ports = OPA_AM_NPORT(am);
u8 section = (am & 0x00ff0000) >> 16;
u8 *p = data;
int size = 256;
if (num_ports != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
switch (section) {
case OPA_VLARB_LOW_ELEMENTS:
fm_get_table(ppd, FM_TBL_VL_LOW_ARB, p);
break;
case OPA_VLARB_HIGH_ELEMENTS:
fm_get_table(ppd, FM_TBL_VL_HIGH_ARB, p);
break;
case OPA_VLARB_PREEMPT_ELEMENTS:
fm_get_table(ppd, FM_TBL_VL_PREEMPT_ELEMS, p);
break;
case OPA_VLARB_PREEMPT_MATRIX:
fm_get_table(ppd, FM_TBL_VL_PREEMPT_MATRIX, p);
break;
default:
pr_warn("OPA SubnGet(VL Arb) AM Invalid : 0x%x\n",
be32_to_cpu(smp->attr_mod));
smp->status |= IB_SMP_INVALID_FIELD;
size = 0;
break;
}
if (size > 0 && resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port));
u32 num_ports = OPA_AM_NPORT(am);
u8 section = (am & 0x00ff0000) >> 16;
u8 *p = data;
int size = 256;
if (num_ports != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
switch (section) {
case OPA_VLARB_LOW_ELEMENTS:
(void)fm_set_table(ppd, FM_TBL_VL_LOW_ARB, p);
break;
case OPA_VLARB_HIGH_ELEMENTS:
(void)fm_set_table(ppd, FM_TBL_VL_HIGH_ARB, p);
break;
/*
* neither OPA_VLARB_PREEMPT_ELEMENTS, or OPA_VLARB_PREEMPT_MATRIX
* can be changed from the default values
*/
case OPA_VLARB_PREEMPT_ELEMENTS:
/* FALLTHROUGH */
case OPA_VLARB_PREEMPT_MATRIX:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
break;
default:
pr_warn("OPA SubnSet(VL Arb) AM Invalid : 0x%x\n",
be32_to_cpu(smp->attr_mod));
smp->status |= IB_SMP_INVALID_FIELD;
break;
}
return __subn_get_opa_vl_arb(smp, am, data, ibdev, port, resp_len,
max_len);
}
struct opa_pma_mad {
struct ib_mad_hdr mad_hdr;
u8 data[2024];
} __packed;
struct opa_port_status_req {
__u8 port_num;
__u8 reserved[3];
__be32 vl_select_mask;
};
#define VL_MASK_ALL 0x00000000000080ffUL
struct opa_port_status_rsp {
__u8 port_num;
__u8 reserved[3];
__be32 vl_select_mask;
/* Data counters */
__be64 port_xmit_data;
__be64 port_rcv_data;
__be64 port_xmit_pkts;
__be64 port_rcv_pkts;
__be64 port_multicast_xmit_pkts;
__be64 port_multicast_rcv_pkts;
__be64 port_xmit_wait;
__be64 sw_port_congestion;
__be64 port_rcv_fecn;
__be64 port_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_xmit_wasted_bw;
__be64 port_xmit_wait_data;
__be64 port_rcv_bubble;
__be64 port_mark_fecn;
/* Error counters */
__be64 port_rcv_constraint_errors;
__be64 port_rcv_switch_relay_errors;
__be64 port_xmit_discards;
__be64 port_xmit_constraint_errors;
__be64 port_rcv_remote_physical_errors;
__be64 local_link_integrity_errors;
__be64 port_rcv_errors;
__be64 excessive_buffer_overruns;
__be64 fm_config_errors;
__be32 link_error_recovery;
__be32 link_downed;
u8 uncorrectable_errors;
u8 link_quality_indicator; /* 5res, 3bit */
u8 res2[6];
struct _vls_pctrs {
/* per-VL Data counters */
__be64 port_vl_xmit_data;
__be64 port_vl_rcv_data;
__be64 port_vl_xmit_pkts;
__be64 port_vl_rcv_pkts;
__be64 port_vl_xmit_wait;
__be64 sw_port_vl_congestion;
__be64 port_vl_rcv_fecn;
__be64 port_vl_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_vl_xmit_wasted_bw;
__be64 port_vl_xmit_wait_data;
__be64 port_vl_rcv_bubble;
__be64 port_vl_mark_fecn;
__be64 port_vl_xmit_discards;
} vls[0]; /* real array size defined by # bits set in vl_select_mask */
};
enum counter_selects {
CS_PORT_XMIT_DATA = (1 << 31),
CS_PORT_RCV_DATA = (1 << 30),
CS_PORT_XMIT_PKTS = (1 << 29),
CS_PORT_RCV_PKTS = (1 << 28),
CS_PORT_MCAST_XMIT_PKTS = (1 << 27),
CS_PORT_MCAST_RCV_PKTS = (1 << 26),
CS_PORT_XMIT_WAIT = (1 << 25),
CS_SW_PORT_CONGESTION = (1 << 24),
CS_PORT_RCV_FECN = (1 << 23),
CS_PORT_RCV_BECN = (1 << 22),
CS_PORT_XMIT_TIME_CONG = (1 << 21),
CS_PORT_XMIT_WASTED_BW = (1 << 20),
CS_PORT_XMIT_WAIT_DATA = (1 << 19),
CS_PORT_RCV_BUBBLE = (1 << 18),
CS_PORT_MARK_FECN = (1 << 17),
CS_PORT_RCV_CONSTRAINT_ERRORS = (1 << 16),
CS_PORT_RCV_SWITCH_RELAY_ERRORS = (1 << 15),
CS_PORT_XMIT_DISCARDS = (1 << 14),
CS_PORT_XMIT_CONSTRAINT_ERRORS = (1 << 13),
CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS = (1 << 12),
CS_LOCAL_LINK_INTEGRITY_ERRORS = (1 << 11),
CS_PORT_RCV_ERRORS = (1 << 10),
CS_EXCESSIVE_BUFFER_OVERRUNS = (1 << 9),
CS_FM_CONFIG_ERRORS = (1 << 8),
CS_LINK_ERROR_RECOVERY = (1 << 7),
CS_LINK_DOWNED = (1 << 6),
CS_UNCORRECTABLE_ERRORS = (1 << 5),
};
struct opa_clear_port_status {
__be64 port_select_mask[4];
__be32 counter_select_mask;
};
struct opa_aggregate {
__be16 attr_id;
__be16 err_reqlength; /* 1 bit, 8 res, 7 bit */
__be32 attr_mod;
u8 data[0];
};
#define MSK_LLI 0x000000f0
#define MSK_LLI_SFT 4
#define MSK_LER 0x0000000f
#define MSK_LER_SFT 0
#define ADD_LLI 8
#define ADD_LER 2
/* Request contains first three fields, response contains those plus the rest */
struct opa_port_data_counters_msg {
__be64 port_select_mask[4];
__be32 vl_select_mask;
__be32 resolution;
/* Response fields follow */
struct _port_dctrs {
u8 port_number;
u8 reserved2[3];
__be32 link_quality_indicator; /* 29res, 3bit */
/* Data counters */
__be64 port_xmit_data;
__be64 port_rcv_data;
__be64 port_xmit_pkts;
__be64 port_rcv_pkts;
__be64 port_multicast_xmit_pkts;
__be64 port_multicast_rcv_pkts;
__be64 port_xmit_wait;
__be64 sw_port_congestion;
__be64 port_rcv_fecn;
__be64 port_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_xmit_wasted_bw;
__be64 port_xmit_wait_data;
__be64 port_rcv_bubble;
__be64 port_mark_fecn;
__be64 port_error_counter_summary;
/* Sum of error counts/port */
struct _vls_dctrs {
/* per-VL Data counters */
__be64 port_vl_xmit_data;
__be64 port_vl_rcv_data;
__be64 port_vl_xmit_pkts;
__be64 port_vl_rcv_pkts;
__be64 port_vl_xmit_wait;
__be64 sw_port_vl_congestion;
__be64 port_vl_rcv_fecn;
__be64 port_vl_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_vl_xmit_wasted_bw;
__be64 port_vl_xmit_wait_data;
__be64 port_vl_rcv_bubble;
__be64 port_vl_mark_fecn;
} vls[0];
/* array size defined by #bits set in vl_select_mask*/
} port[1]; /* array size defined by #ports in attribute modifier */
};
struct opa_port_error_counters64_msg {
/*
* Request contains first two fields, response contains the
* whole magilla
*/
__be64 port_select_mask[4];
__be32 vl_select_mask;
/* Response-only fields follow */
__be32 reserved1;
struct _port_ectrs {
u8 port_number;
u8 reserved2[7];
__be64 port_rcv_constraint_errors;
__be64 port_rcv_switch_relay_errors;
__be64 port_xmit_discards;
__be64 port_xmit_constraint_errors;
__be64 port_rcv_remote_physical_errors;
__be64 local_link_integrity_errors;
__be64 port_rcv_errors;
__be64 excessive_buffer_overruns;
__be64 fm_config_errors;
__be32 link_error_recovery;
__be32 link_downed;
u8 uncorrectable_errors;
u8 reserved3[7];
struct _vls_ectrs {
__be64 port_vl_xmit_discards;
} vls[0];
/* array size defined by #bits set in vl_select_mask */
} port[1]; /* array size defined by #ports in attribute modifier */
};
struct opa_port_error_info_msg {
__be64 port_select_mask[4];
__be32 error_info_select_mask;
__be32 reserved1;
struct _port_ei {
u8 port_number;
u8 reserved2[7];
/* PortRcvErrorInfo */
struct {
u8 status_and_code;
union {
u8 raw[17];
struct {
/* EI1to12 format */
u8 packet_flit1[8];
u8 packet_flit2[8];
u8 remaining_flit_bits12;
} ei1to12;
struct {
u8 packet_bytes[8];
u8 remaining_flit_bits;
} ei13;
} ei;
u8 reserved3[6];
} __packed port_rcv_ei;
/* ExcessiveBufferOverrunInfo */
struct {
u8 status_and_sc;
u8 reserved4[7];
} __packed excessive_buffer_overrun_ei;
/* PortXmitConstraintErrorInfo */
struct {
u8 status;
u8 reserved5;
__be16 pkey;
__be32 slid;
} __packed port_xmit_constraint_ei;
/* PortRcvConstraintErrorInfo */
struct {
u8 status;
u8 reserved6;
__be16 pkey;
__be32 slid;
} __packed port_rcv_constraint_ei;
/* PortRcvSwitchRelayErrorInfo */
struct {
u8 status_and_code;
u8 reserved7[3];
__u32 error_info;
} __packed port_rcv_switch_relay_ei;
/* UncorrectableErrorInfo */
struct {
u8 status_and_code;
u8 reserved8;
} __packed uncorrectable_ei;
/* FMConfigErrorInfo */
struct {
u8 status_and_code;
u8 error_info;
} __packed fm_config_ei;
__u32 reserved9;
} port[1]; /* actual array size defined by #ports in attr modifier */
};
/* opa_port_error_info_msg error_info_select_mask bit definitions */
enum error_info_selects {
ES_PORT_RCV_ERROR_INFO = (1 << 31),
ES_EXCESSIVE_BUFFER_OVERRUN_INFO = (1 << 30),
ES_PORT_XMIT_CONSTRAINT_ERROR_INFO = (1 << 29),
ES_PORT_RCV_CONSTRAINT_ERROR_INFO = (1 << 28),
ES_PORT_RCV_SWITCH_RELAY_ERROR_INFO = (1 << 27),
ES_UNCORRECTABLE_ERROR_INFO = (1 << 26),
ES_FM_CONFIG_ERROR_INFO = (1 << 25)
};
static int pma_get_opa_classportinfo(struct opa_pma_mad *pmp,
struct ib_device *ibdev, u32 *resp_len)
{
struct opa_class_port_info *p =
(struct opa_class_port_info *)pmp->data;
memset(pmp->data, 0, sizeof(pmp->data));
if (pmp->mad_hdr.attr_mod != 0)
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
p->base_version = OPA_MGMT_BASE_VERSION;
p->class_version = OPA_SM_CLASS_VERSION;
/*
* Expected response time is 4.096 usec. * 2^18 == 1.073741824 sec.
*/
p->cap_mask2_resp_time = cpu_to_be32(18);
if (resp_len)
*resp_len += sizeof(*p);
return reply((struct ib_mad_hdr *)pmp);
}
static void a0_portstatus(struct hfi1_pportdata *ppd,
struct opa_port_status_rsp *rsp)
{
if (!is_bx(ppd->dd)) {
unsigned long vl;
u64 sum_vl_xmit_wait = 0;
unsigned long vl_all_mask = VL_MASK_ALL;
for_each_set_bit(vl, &vl_all_mask, BITS_PER_LONG) {
u64 tmp = sum_vl_xmit_wait +
read_port_cntr(ppd, C_TX_WAIT_VL,
idx_from_vl(vl));
if (tmp < sum_vl_xmit_wait) {
/* we wrapped */
sum_vl_xmit_wait = (u64)~0;
break;
}
sum_vl_xmit_wait = tmp;
}
if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait)
rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait);
}
}
/**
* tx_link_width - convert link width bitmask to integer
* value representing actual link width.
* @link_width: width of active link
* @return: return index of the bit set in link_width var
*
* The function convert and return the index of bit set
* that indicate the current link width.
*/
u16 tx_link_width(u16 link_width)
{
int n = LINK_WIDTH_DEFAULT;
u16 tx_width = n;
while (link_width && n) {
if (link_width & (1 << (n - 1))) {
tx_width = n;
break;
}
n--;
}
return tx_width;
}
/**
* get_xmit_wait_counters - Convert HFI 's SendWaitCnt/SendWaitVlCnt
* counter in unit of TXE cycle times to flit times.
* @ppd: info of physical Hfi port
* @link_width: width of active link
* @link_speed: speed of active link
* @vl: represent VL0-VL7, VL15 for PortVLXmitWait counters request
* and if vl value is C_VL_COUNT, it represent SendWaitCnt
* counter request
* @return: return SendWaitCnt/SendWaitVlCnt counter value per vl.
*
* Convert SendWaitCnt/SendWaitVlCnt counter from TXE cycle times to
* flit times. Call this function to samples these counters. This
* function will calculate for previous state transition and update
* current state at end of function using ppd->prev_link_width and
* ppd->port_vl_xmit_wait_last to port_vl_xmit_wait_curr and link_width.
*/
u64 get_xmit_wait_counters(struct hfi1_pportdata *ppd,
u16 link_width, u16 link_speed, int vl)
{
u64 port_vl_xmit_wait_curr;
u64 delta_vl_xmit_wait;
u64 xmit_wait_val;
if (vl > C_VL_COUNT)
return 0;
if (vl < C_VL_COUNT)
port_vl_xmit_wait_curr =
read_port_cntr(ppd, C_TX_WAIT_VL, vl);
else
port_vl_xmit_wait_curr =
read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL);
xmit_wait_val =
port_vl_xmit_wait_curr -
ppd->port_vl_xmit_wait_last[vl];
delta_vl_xmit_wait =
convert_xmit_counter(xmit_wait_val,
ppd->prev_link_width,
link_speed);
ppd->vl_xmit_flit_cnt[vl] += delta_vl_xmit_wait;
ppd->port_vl_xmit_wait_last[vl] = port_vl_xmit_wait_curr;
ppd->prev_link_width = link_width;
return ppd->vl_xmit_flit_cnt[vl];
}
static int pma_get_opa_portstatus(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct opa_port_status_req *req =
(struct opa_port_status_req *)pmp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct opa_port_status_rsp *rsp;
unsigned long vl_select_mask = be32_to_cpu(req->vl_select_mask);
unsigned long vl;
size_t response_data_size;
u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
u8 port_num = req->port_num;
u8 num_vls = hweight64(vl_select_mask);
struct _vls_pctrs *vlinfo;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
int vfi;
u64 tmp, tmp2;
u16 link_width;
u16 link_speed;
response_data_size = struct_size(rsp, vls, num_vls);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= OPA_PM_STATUS_REQUEST_TOO_LARGE;
return reply((struct ib_mad_hdr *)pmp);
}
if (nports != 1 || (port_num && port_num != port) ||
num_vls > OPA_MAX_VLS || (vl_select_mask & ~VL_MASK_ALL)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
memset(pmp->data, 0, sizeof(pmp->data));
rsp = (struct opa_port_status_rsp *)pmp->data;
if (port_num)
rsp->port_num = port_num;
else
rsp->port_num = port;
rsp->port_rcv_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR,
CNTR_INVALID_VL));
hfi1_read_link_quality(dd, &rsp->link_quality_indicator);
rsp->vl_select_mask = cpu_to_be32((u32)vl_select_mask);
rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS,
CNTR_INVALID_VL));
rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS,
CNTR_INVALID_VL));
rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_xmit_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS,
CNTR_INVALID_VL));
/*
* Convert PortXmitWait counter from TXE cycle times
* to flit times.
*/
link_width =
tx_link_width(ppd->link_width_downgrade_tx_active);
link_speed = get_link_speed(ppd->link_speed_active);
rsp->port_xmit_wait =
cpu_to_be64(get_xmit_wait_counters(ppd, link_width,
link_speed, C_VL_COUNT));
rsp->port_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL));
rsp->port_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL));
rsp->port_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD,
CNTR_INVALID_VL));
rsp->port_xmit_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR,
CNTR_INVALID_VL));
rsp->port_rcv_remote_physical_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL));
rsp->local_link_integrity_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY,
CNTR_INVALID_VL));
tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL);
tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT,
CNTR_INVALID_VL);
if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) {
/* overflow/wrapped */
rsp->link_error_recovery = cpu_to_be32(~0);
} else {
rsp->link_error_recovery = cpu_to_be32(tmp2);
}
rsp->port_rcv_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL));
rsp->excessive_buffer_overruns =
cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL));
rsp->fm_config_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR,
CNTR_INVALID_VL));
rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN,
CNTR_INVALID_VL));
/* rsp->uncorrectable_errors is 8 bits wide, and it pegs at 0xff */
tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL);
rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff;
vlinfo = &rsp->vls[0];
vfi = 0;
/* The vl_select_mask has been checked above, and we know
* that it contains only entries which represent valid VLs.
* So in the for_each_set_bit() loop below, we don't need
* any additional checks for vl.
*/
for_each_set_bit(vl, &vl_select_mask, BITS_PER_LONG) {
memset(vlinfo, 0, sizeof(*vlinfo));
tmp = read_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl));
rsp->vls[vfi].port_vl_rcv_data = cpu_to_be64(tmp);
rsp->vls[vfi].port_vl_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_data =
cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_pkts =
cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL,
idx_from_vl(vl)));
/*
* Convert PortVlXmitWait counter from TXE cycle
* times to flit times.
*/
rsp->vls[vfi].port_vl_xmit_wait =
cpu_to_be64(get_xmit_wait_counters(ppd, link_width,
link_speed,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL,
idx_from_vl(vl)));
vlinfo++;
vfi++;
}
a0_portstatus(ppd, rsp);
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static u64 get_error_counter_summary(struct ib_device *ibdev, u8 port,
u8 res_lli, u8 res_ler)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u64 error_counter_summary = 0, tmp;
error_counter_summary += read_port_cntr(ppd, C_SW_RCV_CSTR_ERR,
CNTR_INVALID_VL);
/* port_rcv_switch_relay_errors is 0 for HFIs */
error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_DSCD,
CNTR_INVALID_VL);
error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR,
CNTR_INVALID_VL);
error_counter_summary += read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL);
/* local link integrity must be right-shifted by the lli resolution */
error_counter_summary += (read_dev_cntr(dd, C_DC_RX_REPLAY,
CNTR_INVALID_VL) >> res_lli);
/* link error recovery must b right-shifted by the ler resolution */
tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL);
tmp += read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL);
error_counter_summary += (tmp >> res_ler);
error_counter_summary += read_dev_cntr(dd, C_DC_RCV_ERR,
CNTR_INVALID_VL);
error_counter_summary += read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
error_counter_summary += read_dev_cntr(dd, C_DC_FM_CFG_ERR,
CNTR_INVALID_VL);
/* ppd->link_downed is a 32-bit value */
error_counter_summary += read_port_cntr(ppd, C_SW_LINK_DOWN,
CNTR_INVALID_VL);
tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL);
/* this is an 8-bit quantity */
error_counter_summary += tmp < 0x100 ? (tmp & 0xff) : 0xff;
return error_counter_summary;
}
static void a0_datacounters(struct hfi1_pportdata *ppd, struct _port_dctrs *rsp)
{
if (!is_bx(ppd->dd)) {
unsigned long vl;
u64 sum_vl_xmit_wait = 0;
unsigned long vl_all_mask = VL_MASK_ALL;
for_each_set_bit(vl, &vl_all_mask, BITS_PER_LONG) {
u64 tmp = sum_vl_xmit_wait +
read_port_cntr(ppd, C_TX_WAIT_VL,
idx_from_vl(vl));
if (tmp < sum_vl_xmit_wait) {
/* we wrapped */
sum_vl_xmit_wait = (u64)~0;
break;
}
sum_vl_xmit_wait = tmp;
}
if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait)
rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait);
}
}
static void pma_get_opa_port_dctrs(struct ib_device *ibdev,
struct _port_dctrs *rsp)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS,
CNTR_INVALID_VL));
rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS,
CNTR_INVALID_VL));
rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_xmit_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS,
CNTR_INVALID_VL));
}
static int pma_get_opa_datacounters(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct opa_port_data_counters_msg *req =
(struct opa_port_data_counters_msg *)pmp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct _port_dctrs *rsp;
struct _vls_dctrs *vlinfo;
size_t response_data_size;
u32 num_ports;
u8 lq, num_vls;
u8 res_lli, res_ler;
u64 port_mask;
u8 port_num;
unsigned long vl;
unsigned long vl_select_mask;
int vfi;
u16 link_width;
u16 link_speed;
num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
num_vls = hweight32(be32_to_cpu(req->vl_select_mask));
vl_select_mask = be32_to_cpu(req->vl_select_mask);
res_lli = (u8)(be32_to_cpu(req->resolution) & MSK_LLI) >> MSK_LLI_SFT;
res_lli = res_lli ? res_lli + ADD_LLI : 0;
res_ler = (u8)(be32_to_cpu(req->resolution) & MSK_LER) >> MSK_LER_SFT;
res_ler = res_ler ? res_ler + ADD_LER : 0;
if (num_ports != 1 || (vl_select_mask & ~VL_MASK_ALL)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/* Sanity check */
response_data_size = struct_size(req, port[0].vls, num_vls);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the
* port the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
rsp = &req->port[0];
memset(rsp, 0, sizeof(*rsp));
rsp->port_number = port;
/*
* Note that link_quality_indicator is a 32 bit quantity in
* 'datacounters' queries (as opposed to 'portinfo' queries,
* where it's a byte).
*/
hfi1_read_link_quality(dd, &lq);
rsp->link_quality_indicator = cpu_to_be32((u32)lq);
pma_get_opa_port_dctrs(ibdev, rsp);
/*
* Convert PortXmitWait counter from TXE
* cycle times to flit times.
*/
link_width =
tx_link_width(ppd->link_width_downgrade_tx_active);
link_speed = get_link_speed(ppd->link_speed_active);
rsp->port_xmit_wait =
cpu_to_be64(get_xmit_wait_counters(ppd, link_width,
link_speed, C_VL_COUNT));
rsp->port_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL));
rsp->port_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL));
rsp->port_error_counter_summary =
cpu_to_be64(get_error_counter_summary(ibdev, port,
res_lli, res_ler));
vlinfo = &rsp->vls[0];
vfi = 0;
/* The vl_select_mask has been checked above, and we know
* that it contains only entries which represent valid VLs.
* So in the for_each_set_bit() loop below, we don't need
* any additional checks for vl.
*/
for_each_set_bit(vl, &vl_select_mask, BITS_PER_LONG) {
memset(vlinfo, 0, sizeof(*vlinfo));
rsp->vls[vfi].port_vl_xmit_data =
cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_data =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_FLIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_pkts =
cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL,
idx_from_vl(vl)));
/*
* Convert PortVlXmitWait counter from TXE
* cycle times to flit times.
*/
rsp->vls[vfi].port_vl_xmit_wait =
cpu_to_be64(get_xmit_wait_counters(ppd, link_width,
link_speed,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL,
idx_from_vl(vl)));
/* rsp->port_vl_xmit_time_cong is 0 for HFIs */
/* rsp->port_vl_xmit_wasted_bw ??? */
/* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ???
* does this differ from rsp->vls[vfi].port_vl_xmit_wait
*/
/*rsp->vls[vfi].port_vl_mark_fecn =
* cpu_to_be64(read_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT
* + offset));
*/
vlinfo++;
vfi++;
}
a0_datacounters(ppd, rsp);
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_get_ib_portcounters_ext(struct ib_pma_mad *pmp,
struct ib_device *ibdev, u8 port)
{
struct ib_pma_portcounters_ext *p = (struct ib_pma_portcounters_ext *)
pmp->data;
struct _port_dctrs rsp;
if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
goto bail;
}
memset(&rsp, 0, sizeof(rsp));
pma_get_opa_port_dctrs(ibdev, &rsp);
p->port_xmit_data = rsp.port_xmit_data;
p->port_rcv_data = rsp.port_rcv_data;
p->port_xmit_packets = rsp.port_xmit_pkts;
p->port_rcv_packets = rsp.port_rcv_pkts;
p->port_unicast_xmit_packets = 0;
p->port_unicast_rcv_packets = 0;
p->port_multicast_xmit_packets = rsp.port_multicast_xmit_pkts;
p->port_multicast_rcv_packets = rsp.port_multicast_rcv_pkts;
bail:
return reply((struct ib_mad_hdr *)pmp);
}
static void pma_get_opa_port_ectrs(struct ib_device *ibdev,
struct _port_ectrs *rsp, u8 port)
{
u64 tmp, tmp2;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL);
tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT,
CNTR_INVALID_VL);
if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) {
/* overflow/wrapped */
rsp->link_error_recovery = cpu_to_be32(~0);
} else {
rsp->link_error_recovery = cpu_to_be32(tmp2);
}
rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN,
CNTR_INVALID_VL));
rsp->port_rcv_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL));
rsp->port_rcv_remote_physical_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL));
rsp->port_rcv_switch_relay_errors = 0;
rsp->port_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD,
CNTR_INVALID_VL));
rsp->port_xmit_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR,
CNTR_INVALID_VL));
rsp->port_rcv_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR,
CNTR_INVALID_VL));
rsp->local_link_integrity_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY,
CNTR_INVALID_VL));
rsp->excessive_buffer_overruns =
cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL));
}
static int pma_get_opa_porterrors(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
size_t response_data_size;
struct _port_ectrs *rsp;
u8 port_num;
struct opa_port_error_counters64_msg *req;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 num_ports;
u8 num_pslm;
u8 num_vls;
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct _vls_ectrs *vlinfo;
unsigned long vl;
u64 port_mask, tmp;
unsigned long vl_select_mask;
int vfi;
req = (struct opa_port_error_counters64_msg *)pmp->data;
num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3]));
num_vls = hweight32(be32_to_cpu(req->vl_select_mask));
if (num_ports != 1 || num_ports != num_pslm) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
response_data_size = struct_size(req, port[0].vls, num_vls);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the
* port the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
rsp = &req->port[0];
ibp = to_iport(ibdev, port_num);
ppd = ppd_from_ibp(ibp);
memset(rsp, 0, sizeof(*rsp));
rsp->port_number = port_num;
pma_get_opa_port_ectrs(ibdev, rsp, port_num);
rsp->port_rcv_remote_physical_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL));
rsp->fm_config_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR,
CNTR_INVALID_VL));
tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL);
rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff;
rsp->port_rcv_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL));
vlinfo = &rsp->vls[0];
vfi = 0;
vl_select_mask = be32_to_cpu(req->vl_select_mask);
for_each_set_bit(vl, &vl_select_mask, BITS_PER_LONG) {
memset(vlinfo, 0, sizeof(*vlinfo));
rsp->vls[vfi].port_vl_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL,
idx_from_vl(vl)));
vlinfo += 1;
vfi++;
}
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_get_ib_portcounters(struct ib_pma_mad *pmp,
struct ib_device *ibdev, u8 port)
{
struct ib_pma_portcounters *p = (struct ib_pma_portcounters *)
pmp->data;
struct _port_ectrs rsp;
u64 temp_link_overrun_errors;
u64 temp_64;
u32 temp_32;
memset(&rsp, 0, sizeof(rsp));
pma_get_opa_port_ectrs(ibdev, &rsp, port);
if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
goto bail;
}
p->symbol_error_counter = 0; /* N/A for OPA */
temp_32 = be32_to_cpu(rsp.link_error_recovery);
if (temp_32 > 0xFFUL)
p->link_error_recovery_counter = 0xFF;
else
p->link_error_recovery_counter = (u8)temp_32;
temp_32 = be32_to_cpu(rsp.link_downed);
if (temp_32 > 0xFFUL)
p->link_downed_counter = 0xFF;
else
p->link_downed_counter = (u8)temp_32;
temp_64 = be64_to_cpu(rsp.port_rcv_errors);
if (temp_64 > 0xFFFFUL)
p->port_rcv_errors = cpu_to_be16(0xFFFF);
else
p->port_rcv_errors = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_rcv_remote_physical_errors);
if (temp_64 > 0xFFFFUL)
p->port_rcv_remphys_errors = cpu_to_be16(0xFFFF);
else
p->port_rcv_remphys_errors = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_rcv_switch_relay_errors);
p->port_rcv_switch_relay_errors = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_xmit_discards);
if (temp_64 > 0xFFFFUL)
p->port_xmit_discards = cpu_to_be16(0xFFFF);
else
p->port_xmit_discards = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_xmit_constraint_errors);
if (temp_64 > 0xFFUL)
p->port_xmit_constraint_errors = 0xFF;
else
p->port_xmit_constraint_errors = (u8)temp_64;
temp_64 = be64_to_cpu(rsp.port_rcv_constraint_errors);
if (temp_64 > 0xFFUL)
p->port_rcv_constraint_errors = 0xFFUL;
else
p->port_rcv_constraint_errors = (u8)temp_64;
/* LocalLink: 7:4, BufferOverrun: 3:0 */
temp_64 = be64_to_cpu(rsp.local_link_integrity_errors);
if (temp_64 > 0xFUL)
temp_64 = 0xFUL;
temp_link_overrun_errors = temp_64 << 4;
temp_64 = be64_to_cpu(rsp.excessive_buffer_overruns);
if (temp_64 > 0xFUL)
temp_64 = 0xFUL;
temp_link_overrun_errors |= temp_64;
p->link_overrun_errors = (u8)temp_link_overrun_errors;
p->vl15_dropped = 0; /* N/A for OPA */
bail:
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_get_opa_errorinfo(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
size_t response_data_size;
struct _port_ei *rsp;
struct opa_port_error_info_msg *req;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u64 port_mask;
u32 num_ports;
u8 port_num;
u8 num_pslm;
u64 reg;
req = (struct opa_port_error_info_msg *)pmp->data;
rsp = &req->port[0];
num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod));
num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3]));
memset(rsp, 0, sizeof(*rsp));
if (num_ports != 1 || num_ports != num_pslm) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/* Sanity check */
response_data_size = sizeof(struct opa_port_error_info_msg);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the port
* the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
rsp->port_number = port;
/* PortRcvErrorInfo */
rsp->port_rcv_ei.status_and_code =
dd->err_info_rcvport.status_and_code;
memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit1,
&dd->err_info_rcvport.packet_flit1, sizeof(u64));
memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit2,
&dd->err_info_rcvport.packet_flit2, sizeof(u64));
/* ExcessiverBufferOverrunInfo */
reg = read_csr(dd, RCV_ERR_INFO);
if (reg & RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK) {
/*
* if the RcvExcessBufferOverrun bit is set, save SC of
* first pkt that encountered an excess buffer overrun
*/
u8 tmp = (u8)reg;
tmp &= RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SC_SMASK;
tmp <<= 2;
rsp->excessive_buffer_overrun_ei.status_and_sc = tmp;
/* set the status bit */
rsp->excessive_buffer_overrun_ei.status_and_sc |= 0x80;
}
rsp->port_xmit_constraint_ei.status =
dd->err_info_xmit_constraint.status;
rsp->port_xmit_constraint_ei.pkey =
cpu_to_be16(dd->err_info_xmit_constraint.pkey);
rsp->port_xmit_constraint_ei.slid =
cpu_to_be32(dd->err_info_xmit_constraint.slid);
rsp->port_rcv_constraint_ei.status =
dd->err_info_rcv_constraint.status;
rsp->port_rcv_constraint_ei.pkey =
cpu_to_be16(dd->err_info_rcv_constraint.pkey);
rsp->port_rcv_constraint_ei.slid =
cpu_to_be32(dd->err_info_rcv_constraint.slid);
/* UncorrectableErrorInfo */
rsp->uncorrectable_ei.status_and_code = dd->err_info_uncorrectable;
/* FMConfigErrorInfo */
rsp->fm_config_ei.status_and_code = dd->err_info_fmconfig;
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_set_opa_portstatus(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct opa_clear_port_status *req =
(struct opa_clear_port_status *)pmp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
u64 portn = be64_to_cpu(req->port_select_mask[3]);
u32 counter_select = be32_to_cpu(req->counter_select_mask);
unsigned long vl_select_mask = VL_MASK_ALL; /* clear all per-vl cnts */
unsigned long vl;
if ((nports != 1) || (portn != 1 << port)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* only counters returned by pma_get_opa_portstatus() are
* handled, so when pma_get_opa_portstatus() gets a fix,
* the corresponding change should be made here as well.
*/
if (counter_select & CS_PORT_XMIT_DATA)
write_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_DATA)
write_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_XMIT_PKTS)
write_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_PKTS)
write_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_MCAST_XMIT_PKTS)
write_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_MCAST_RCV_PKTS)
write_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_XMIT_WAIT) {
write_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL, 0);
ppd->port_vl_xmit_wait_last[C_VL_COUNT] = 0;
ppd->vl_xmit_flit_cnt[C_VL_COUNT] = 0;
}
/* ignore cs_sw_portCongestion for HFIs */
if (counter_select & CS_PORT_RCV_FECN)
write_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_BECN)
write_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL, 0);
/* ignore cs_port_xmit_time_cong for HFIs */
/* ignore cs_port_xmit_wasted_bw for now */
/* ignore cs_port_xmit_wait_data for now */
if (counter_select & CS_PORT_RCV_BUBBLE)
write_dev_cntr(dd, C_DC_RCV_BBL, CNTR_INVALID_VL, 0);
/* Only applicable for switch */
/* if (counter_select & CS_PORT_MARK_FECN)
* write_csr(dd, DCC_PRF_PORT_MARK_FECN_CNT, 0);
*/
if (counter_select & CS_PORT_RCV_CONSTRAINT_ERRORS)
write_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL, 0);
/* ignore cs_port_rcv_switch_relay_errors for HFIs */
if (counter_select & CS_PORT_XMIT_DISCARDS)
write_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_XMIT_CONSTRAINT_ERRORS)
write_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS)
write_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_LOCAL_LINK_INTEGRITY_ERRORS)
write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0);
if (counter_select & CS_LINK_ERROR_RECOVERY) {
write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0);
write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT,
CNTR_INVALID_VL, 0);
}
if (counter_select & CS_PORT_RCV_ERRORS)
write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_EXCESSIVE_BUFFER_OVERRUNS) {
write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0);
dd->rcv_ovfl_cnt = 0;
}
if (counter_select & CS_FM_CONFIG_ERRORS)
write_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_LINK_DOWNED)
write_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL, 0);
if (counter_select & CS_UNCORRECTABLE_ERRORS)
write_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL, 0);
for_each_set_bit(vl, &vl_select_mask, BITS_PER_LONG) {
if (counter_select & CS_PORT_XMIT_DATA)
write_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_RCV_DATA)
write_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_XMIT_PKTS)
write_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_RCV_PKTS)
write_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_XMIT_WAIT) {
write_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl), 0);
ppd->port_vl_xmit_wait_last[idx_from_vl(vl)] = 0;
ppd->vl_xmit_flit_cnt[idx_from_vl(vl)] = 0;
}
/* sw_port_vl_congestion is 0 for HFIs */
if (counter_select & CS_PORT_RCV_FECN)
write_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_RCV_BECN)
write_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl), 0);
/* port_vl_xmit_time_cong is 0 for HFIs */
/* port_vl_xmit_wasted_bw ??? */
/* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? */
if (counter_select & CS_PORT_RCV_BUBBLE)
write_dev_cntr(dd, C_DC_RCV_BBL_VL, idx_from_vl(vl), 0);
/* if (counter_select & CS_PORT_MARK_FECN)
* write_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT + offset, 0);
*/
if (counter_select & C_SW_XMIT_DSCD_VL)
write_port_cntr(ppd, C_SW_XMIT_DSCD_VL,
idx_from_vl(vl), 0);
}
if (resp_len)
*resp_len += sizeof(*req);
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_set_opa_errorinfo(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct _port_ei *rsp;
struct opa_port_error_info_msg *req;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u64 port_mask;
u32 num_ports;
u8 port_num;
u8 num_pslm;
u32 error_info_select;
req = (struct opa_port_error_info_msg *)pmp->data;
rsp = &req->port[0];
num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod));
num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3]));
memset(rsp, 0, sizeof(*rsp));
if (num_ports != 1 || num_ports != num_pslm) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the port
* the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
error_info_select = be32_to_cpu(req->error_info_select_mask);
/* PortRcvErrorInfo */
if (error_info_select & ES_PORT_RCV_ERROR_INFO)
/* turn off status bit */
dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK;
/* ExcessiverBufferOverrunInfo */
if (error_info_select & ES_EXCESSIVE_BUFFER_OVERRUN_INFO)
/*
* status bit is essentially kept in the h/w - bit 5 of
* RCV_ERR_INFO
*/
write_csr(dd, RCV_ERR_INFO,
RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
if (error_info_select & ES_PORT_XMIT_CONSTRAINT_ERROR_INFO)
dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK;
if (error_info_select & ES_PORT_RCV_CONSTRAINT_ERROR_INFO)
dd->err_info_rcv_constraint.status &= ~OPA_EI_STATUS_SMASK;
/* UncorrectableErrorInfo */
if (error_info_select & ES_UNCORRECTABLE_ERROR_INFO)
/* turn off status bit */
dd->err_info_uncorrectable &= ~OPA_EI_STATUS_SMASK;
/* FMConfigErrorInfo */
if (error_info_select & ES_FM_CONFIG_ERROR_INFO)
/* turn off status bit */
dd->err_info_fmconfig &= ~OPA_EI_STATUS_SMASK;
if (resp_len)
*resp_len += sizeof(*req);
return reply((struct ib_mad_hdr *)pmp);
}
struct opa_congestion_info_attr {
__be16 congestion_info;
u8 control_table_cap; /* Multiple of 64 entry unit CCTs */
u8 congestion_log_length;
} __packed;
static int __subn_get_opa_cong_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct opa_congestion_info_attr *p =
(struct opa_congestion_info_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
if (smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
p->congestion_info = 0;
p->control_table_cap = ppd->cc_max_table_entries;
p->congestion_log_length = OPA_CONG_LOG_ELEMS;
if (resp_len)
*resp_len += sizeof(*p);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_cong_setting(struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev,
u8 port, u32 *resp_len, u32 max_len)
{
int i;
struct opa_congestion_setting_attr *p =
(struct opa_congestion_setting_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct opa_congestion_setting_entry_shadow *entries;
struct cc_state *cc_state;
if (smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
rcu_read_lock();
cc_state = get_cc_state(ppd);
if (!cc_state) {
rcu_read_unlock();
return reply((struct ib_mad_hdr *)smp);
}
entries = cc_state->cong_setting.entries;
p->port_control = cpu_to_be16(cc_state->cong_setting.port_control);
p->control_map = cpu_to_be32(cc_state->cong_setting.control_map);
for (i = 0; i < OPA_MAX_SLS; i++) {
p->entries[i].ccti_increase = entries[i].ccti_increase;
p->entries[i].ccti_timer = cpu_to_be16(entries[i].ccti_timer);
p->entries[i].trigger_threshold =
entries[i].trigger_threshold;
p->entries[i].ccti_min = entries[i].ccti_min;
}
rcu_read_unlock();
if (resp_len)
*resp_len += sizeof(*p);
return reply((struct ib_mad_hdr *)smp);
}
/*
* Apply congestion control information stored in the ppd to the
* active structure.
*/
static void apply_cc_state(struct hfi1_pportdata *ppd)
{
struct cc_state *old_cc_state, *new_cc_state;
new_cc_state = kzalloc(sizeof(*new_cc_state), GFP_KERNEL);
if (!new_cc_state)
return;
/*
* Hold the lock for updating *and* to prevent ppd information
* from changing during the update.
*/
spin_lock(&ppd->cc_state_lock);
old_cc_state = get_cc_state_protected(ppd);
if (!old_cc_state) {
/* never active, or shutting down */
spin_unlock(&ppd->cc_state_lock);
kfree(new_cc_state);
return;
}
*new_cc_state = *old_cc_state;
if (ppd->total_cct_entry)
new_cc_state->cct.ccti_limit = ppd->total_cct_entry - 1;
else
new_cc_state->cct.ccti_limit = 0;
memcpy(new_cc_state->cct.entries, ppd->ccti_entries,
ppd->total_cct_entry * sizeof(struct ib_cc_table_entry));
new_cc_state->cong_setting.port_control = IB_CC_CCS_PC_SL_BASED;
new_cc_state->cong_setting.control_map = ppd->cc_sl_control_map;
memcpy(new_cc_state->cong_setting.entries, ppd->congestion_entries,
OPA_MAX_SLS * sizeof(struct opa_congestion_setting_entry));
rcu_assign_pointer(ppd->cc_state, new_cc_state);
spin_unlock(&ppd->cc_state_lock);
kfree_rcu(old_cc_state, rcu);
}
static int __subn_set_opa_cong_setting(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct opa_congestion_setting_attr *p =
(struct opa_congestion_setting_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct opa_congestion_setting_entry_shadow *entries;
int i;
if (smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/*
* Save details from packet into the ppd. Hold the cc_state_lock so
* our information is consistent with anyone trying to apply the state.
*/
spin_lock(&ppd->cc_state_lock);
ppd->cc_sl_control_map = be32_to_cpu(p->control_map);
entries = ppd->congestion_entries;
for (i = 0; i < OPA_MAX_SLS; i++) {
entries[i].ccti_increase = p->entries[i].ccti_increase;
entries[i].ccti_timer = be16_to_cpu(p->entries[i].ccti_timer);
entries[i].trigger_threshold =
p->entries[i].trigger_threshold;
entries[i].ccti_min = p->entries[i].ccti_min;
}
spin_unlock(&ppd->cc_state_lock);
/* now apply the information */
apply_cc_state(ppd);
return __subn_get_opa_cong_setting(smp, am, data, ibdev, port,
resp_len, max_len);
}
static int __subn_get_opa_hfi1_cong_log(struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev,
u8 port, u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct opa_hfi1_cong_log *cong_log = (struct opa_hfi1_cong_log *)data;
u64 ts;
int i;
if (am || smp_length_check(sizeof(*cong_log), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
spin_lock_irq(&ppd->cc_log_lock);
cong_log->log_type = OPA_CC_LOG_TYPE_HFI;
cong_log->congestion_flags = 0;
cong_log->threshold_event_counter =
cpu_to_be16(ppd->threshold_event_counter);
memcpy(cong_log->threshold_cong_event_map,
ppd->threshold_cong_event_map,
sizeof(cong_log->threshold_cong_event_map));
/* keep timestamp in units of 1.024 usec */
ts = ktime_get_ns() / 1024;
cong_log->current_time_stamp = cpu_to_be32(ts);
for (i = 0; i < OPA_CONG_LOG_ELEMS; i++) {
struct opa_hfi1_cong_log_event_internal *cce =
&ppd->cc_events[ppd->cc_mad_idx++];
if (ppd->cc_mad_idx == OPA_CONG_LOG_ELEMS)
ppd->cc_mad_idx = 0;
/*
* Entries which are older than twice the time
* required to wrap the counter are supposed to
* be zeroed (CA10-49 IBTA, release 1.2.1, V1).
*/
if ((ts - cce->timestamp) / 2 > U32_MAX)
continue;
memcpy(cong_log->events[i].local_qp_cn_entry, &cce->lqpn, 3);
memcpy(cong_log->events[i].remote_qp_number_cn_entry,
&cce->rqpn, 3);
cong_log->events[i].sl_svc_type_cn_entry =
((cce->sl & 0x1f) << 3) | (cce->svc_type & 0x7);
cong_log->events[i].remote_lid_cn_entry =
cpu_to_be32(cce->rlid);
cong_log->events[i].timestamp_cn_entry =
cpu_to_be32(cce->timestamp);
}
/*
* Reset threshold_cong_event_map, and threshold_event_counter
* to 0 when log is read.
*/
memset(ppd->threshold_cong_event_map, 0x0,
sizeof(ppd->threshold_cong_event_map));
ppd->threshold_event_counter = 0;
spin_unlock_irq(&ppd->cc_log_lock);
if (resp_len)
*resp_len += sizeof(struct opa_hfi1_cong_log);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct ib_cc_table_attr *cc_table_attr =
(struct ib_cc_table_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 start_block = OPA_AM_START_BLK(am);
u32 n_blocks = OPA_AM_NBLK(am);
struct ib_cc_table_entry_shadow *entries;
int i, j;
u32 sentry, eentry;
struct cc_state *cc_state;
u32 size = sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1);
/* sanity check n_blocks, start_block */
if (n_blocks == 0 || smp_length_check(size, max_len) ||
start_block + n_blocks > ppd->cc_max_table_entries) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
rcu_read_lock();
cc_state = get_cc_state(ppd);
if (!cc_state) {
rcu_read_unlock();
return reply((struct ib_mad_hdr *)smp);
}
sentry = start_block * IB_CCT_ENTRIES;
eentry = sentry + (IB_CCT_ENTRIES * n_blocks);
cc_table_attr->ccti_limit = cpu_to_be16(cc_state->cct.ccti_limit);
entries = cc_state->cct.entries;
/* return n_blocks, though the last block may not be full */
for (j = 0, i = sentry; i < eentry; j++, i++)
cc_table_attr->ccti_entries[j].entry =
cpu_to_be16(entries[i].entry);
rcu_read_unlock();
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct ib_cc_table_attr *p = (struct ib_cc_table_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 start_block = OPA_AM_START_BLK(am);
u32 n_blocks = OPA_AM_NBLK(am);
struct ib_cc_table_entry_shadow *entries;
int i, j;
u32 sentry, eentry;
u16 ccti_limit;
u32 size = sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1);
/* sanity check n_blocks, start_block */
if (n_blocks == 0 || smp_length_check(size, max_len) ||
start_block + n_blocks > ppd->cc_max_table_entries) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
sentry = start_block * IB_CCT_ENTRIES;
eentry = sentry + ((n_blocks - 1) * IB_CCT_ENTRIES) +
(be16_to_cpu(p->ccti_limit)) % IB_CCT_ENTRIES + 1;
/* sanity check ccti_limit */
ccti_limit = be16_to_cpu(p->ccti_limit);
if (ccti_limit + 1 > eentry) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/*
* Save details from packet into the ppd. Hold the cc_state_lock so
* our information is consistent with anyone trying to apply the state.
*/
spin_lock(&ppd->cc_state_lock);
ppd->total_cct_entry = ccti_limit + 1;
entries = ppd->ccti_entries;
for (j = 0, i = sentry; i < eentry; j++, i++)
entries[i].entry = be16_to_cpu(p->ccti_entries[j].entry);
spin_unlock(&ppd->cc_state_lock);
/* now apply the information */
apply_cc_state(ppd);
return __subn_get_opa_cc_table(smp, am, data, ibdev, port, resp_len,
max_len);
}
struct opa_led_info {
__be32 rsvd_led_mask;
__be32 rsvd;
};
#define OPA_LED_SHIFT 31
#define OPA_LED_MASK BIT(OPA_LED_SHIFT)
static int __subn_get_opa_led_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd = dd->pport;
struct opa_led_info *p = (struct opa_led_info *)data;
u32 nport = OPA_AM_NPORT(am);
u32 is_beaconing_active;
if (nport != 1 || smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/*
* This pairs with the memory barrier in hfi1_start_led_override to
* ensure that we read the correct state of LED beaconing represented
* by led_override_timer_active
*/
smp_rmb();
is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active);
p->rsvd_led_mask = cpu_to_be32(is_beaconing_active << OPA_LED_SHIFT);
if (resp_len)
*resp_len += sizeof(struct opa_led_info);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_led_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct opa_led_info *p = (struct opa_led_info *)data;
u32 nport = OPA_AM_NPORT(am);
int on = !!(be32_to_cpu(p->rsvd_led_mask) & OPA_LED_MASK);
if (nport != 1 || smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (on)
hfi1_start_led_override(dd->pport, 2000, 1500);
else
shutdown_led_override(dd->pport);
return __subn_get_opa_led_info(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int subn_get_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
int ret;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
switch (attr_id) {
case IB_SMP_ATTR_NODE_DESC:
ret = __subn_get_opa_nodedesc(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_NODE_INFO:
ret = __subn_get_opa_nodeinfo(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_PORT_INFO:
ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_PKEY_TABLE:
ret = __subn_get_opa_pkeytable(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SL_TO_SC_MAP:
ret = __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_SL_MAP:
ret = __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLT_MAP:
ret = __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLNT_MAP:
ret = __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_PORT_STATE_INFO:
ret = __subn_get_opa_psi(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE:
ret = __subn_get_opa_bct(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_CABLE_INFO:
ret = __subn_get_opa_cable_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_VL_ARB_TABLE:
ret = __subn_get_opa_vl_arb(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_CONGESTION_INFO:
ret = __subn_get_opa_cong_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING:
ret = __subn_get_opa_cong_setting(smp, am, data, ibdev,
port, resp_len, max_len);
break;
case OPA_ATTRIB_ID_HFI_CONGESTION_LOG:
ret = __subn_get_opa_hfi1_cong_log(smp, am, data, ibdev,
port, resp_len, max_len);
break;
case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE:
ret = __subn_get_opa_cc_table(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_LED_INFO:
ret = __subn_get_opa_led_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_SM_INFO:
if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED)
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED;
if (ibp->rvp.port_cap_flags & IB_PORT_SM)
return IB_MAD_RESULT_SUCCESS;
/* FALLTHROUGH */
default:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
return ret;
}
static int subn_set_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len, int local_mad)
{
int ret;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
switch (attr_id) {
case IB_SMP_ATTR_PORT_INFO:
ret = __subn_set_opa_portinfo(smp, am, data, ibdev, port,
resp_len, max_len, local_mad);
break;
case IB_SMP_ATTR_PKEY_TABLE:
ret = __subn_set_opa_pkeytable(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SL_TO_SC_MAP:
ret = __subn_set_opa_sl_to_sc(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_SL_MAP:
ret = __subn_set_opa_sc_to_sl(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLT_MAP:
ret = __subn_set_opa_sc_to_vlt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLNT_MAP:
ret = __subn_set_opa_sc_to_vlnt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_PORT_STATE_INFO:
ret = __subn_set_opa_psi(smp, am, data, ibdev, port,
resp_len, max_len, local_mad);
break;
case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE:
ret = __subn_set_opa_bct(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_VL_ARB_TABLE:
ret = __subn_set_opa_vl_arb(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING:
ret = __subn_set_opa_cong_setting(smp, am, data, ibdev,
port, resp_len, max_len);
break;
case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE:
ret = __subn_set_opa_cc_table(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_LED_INFO:
ret = __subn_set_opa_led_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_SM_INFO:
if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED)
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED;
if (ibp->rvp.port_cap_flags & IB_PORT_SM)
return IB_MAD_RESULT_SUCCESS;
/* FALLTHROUGH */
default:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
return ret;
}
static inline void set_aggr_error(struct opa_aggregate *ag)
{
ag->err_reqlength |= cpu_to_be16(0x8000);
}
static int subn_get_opa_aggregate(struct opa_smp *smp,
struct ib_device *ibdev, u8 port,
u32 *resp_len)
{
int i;
u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff;
u8 *next_smp = opa_get_smp_data(smp);
if (num_attr < 1 || num_attr > 117) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < num_attr; i++) {
struct opa_aggregate *agg;
size_t agg_data_len;
size_t agg_size;
u32 am;
agg = (struct opa_aggregate *)next_smp;
agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8;
agg_size = sizeof(*agg) + agg_data_len;
am = be32_to_cpu(agg->attr_mod);
*resp_len += agg_size;
if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/* zero the payload for this segment */
memset(next_smp + sizeof(*agg), 0, agg_data_len);
(void)subn_get_opa_sma(agg->attr_id, smp, am, agg->data,
ibdev, port, NULL, (u32)agg_data_len);
if (smp->status & IB_SMP_INVALID_FIELD)
break;
if (smp->status & ~IB_SMP_DIRECTION) {
set_aggr_error(agg);
return reply((struct ib_mad_hdr *)smp);
}
next_smp += agg_size;
}
return reply((struct ib_mad_hdr *)smp);
}
static int subn_set_opa_aggregate(struct opa_smp *smp,
struct ib_device *ibdev, u8 port,
u32 *resp_len, int local_mad)
{
int i;
u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff;
u8 *next_smp = opa_get_smp_data(smp);
if (num_attr < 1 || num_attr > 117) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < num_attr; i++) {
struct opa_aggregate *agg;
size_t agg_data_len;
size_t agg_size;
u32 am;
agg = (struct opa_aggregate *)next_smp;
agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8;
agg_size = sizeof(*agg) + agg_data_len;
am = be32_to_cpu(agg->attr_mod);
*resp_len += agg_size;
if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
(void)subn_set_opa_sma(agg->attr_id, smp, am, agg->data,
ibdev, port, NULL, (u32)agg_data_len,
local_mad);
if (smp->status & IB_SMP_INVALID_FIELD)
break;
if (smp->status & ~IB_SMP_DIRECTION) {
set_aggr_error(agg);
return reply((struct ib_mad_hdr *)smp);
}
next_smp += agg_size;
}
return reply((struct ib_mad_hdr *)smp);
}
/*
* OPAv1 specifies that, on the transition to link up, these counters
* are cleared:
* PortRcvErrors [*]
* LinkErrorRecovery
* LocalLinkIntegrityErrors
* ExcessiveBufferOverruns [*]
*
* [*] Error info associated with these counters is retained, but the
* error info status is reset to 0.
*/
void clear_linkup_counters(struct hfi1_devdata *dd)
{
/* PortRcvErrors */
write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0);
dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK;
/* LinkErrorRecovery */
write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0);
write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL, 0);
/* LocalLinkIntegrityErrors */
write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0);
/* ExcessiveBufferOverruns */
write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0);
dd->rcv_ovfl_cnt = 0;
dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK;
}
static int is_full_mgmt_pkey_in_table(struct hfi1_ibport *ibp)
{
unsigned int i;
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i)
if (ppd->pkeys[i] == FULL_MGMT_P_KEY)
return 1;
return 0;
}
/*
* is_local_mad() returns 1 if 'mad' is sent from, and destined to the
* local node, 0 otherwise.
*/
static int is_local_mad(struct hfi1_ibport *ibp, const struct opa_mad *mad,
const struct ib_wc *in_wc)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
const struct opa_smp *smp = (const struct opa_smp *)mad;
if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) {
return (smp->hop_cnt == 0 &&
smp->route.dr.dr_slid == OPA_LID_PERMISSIVE &&
smp->route.dr.dr_dlid == OPA_LID_PERMISSIVE);
}
return (in_wc->slid == ppd->lid);
}
/*
* opa_local_smp_check() should only be called on MADs for which
* is_local_mad() returns true. It applies the SMP checks that are
* specific to SMPs which are sent from, and destined to this node.
* opa_local_smp_check() returns 0 if the SMP passes its checks, 1
* otherwise.
*
* SMPs which arrive from other nodes are instead checked by
* opa_smp_check().
*/
static int opa_local_smp_check(struct hfi1_ibport *ibp,
const struct ib_wc *in_wc)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u16 pkey;
if (in_wc->pkey_index >= ARRAY_SIZE(ppd->pkeys))
return 1;
pkey = ppd->pkeys[in_wc->pkey_index];
/*
* We need to do the "node-local" checks specified in OPAv1,
* rev 0.90, section 9.10.26, which are:
* - pkey is 0x7fff, or 0xffff
* - Source QPN == 0 || Destination QPN == 0
* - the MAD header's management class is either
* IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE or
* IB_MGMT_CLASS_SUBN_LID_ROUTED
* - SLID != 0
*
* However, we know (and so don't need to check again) that,
* for local SMPs, the MAD stack passes MADs with:
* - Source QPN of 0
* - MAD mgmt_class is IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE
* - SLID is either: OPA_LID_PERMISSIVE (0xFFFFFFFF), or
* our own port's lid
*
*/
if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
return 0;
ingress_pkey_table_fail(ppd, pkey, in_wc->slid);
return 1;
}
/**
* hfi1_pkey_validation_pma - It validates PKEYs for incoming PMA MAD packets.
* @ibp: IB port data
* @in_mad: MAD packet with header and data
* @in_wc: Work completion data such as source LID, port number, etc.
*
* These are all the possible logic rules for validating a pkey:
*
* a) If pkey neither FULL_MGMT_P_KEY nor LIM_MGMT_P_KEY,
* and NOT self-originated packet:
* Drop MAD packet as it should always be part of the
* management partition unless it's a self-originated packet.
*
* b) If pkey_index -> FULL_MGMT_P_KEY, and LIM_MGMT_P_KEY in pkey table:
* The packet is coming from a management node and the receiving node
* is also a management node, so it is safe for the packet to go through.
*
* c) If pkey_index -> FULL_MGMT_P_KEY, and LIM_MGMT_P_KEY is NOT in pkey table:
* Drop the packet as LIM_MGMT_P_KEY should always be in the pkey table.
* It could be an FM misconfiguration.
*
* d) If pkey_index -> LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is NOT in pkey table:
* It is safe for the packet to go through since a non-management node is
* talking to another non-management node.
*
* e) If pkey_index -> LIM_MGMT_P_KEY and FULL_MGMT_P_KEY in pkey table:
* Drop the packet because a non-management node is talking to a
* management node, and it could be an attack.
*
* For the implementation, these rules can be simplied to only checking
* for (a) and (e). There's no need to check for rule (b) as
* the packet doesn't need to be dropped. Rule (c) is not possible in
* the driver as LIM_MGMT_P_KEY is always in the pkey table.
*
* Return:
* 0 - pkey is okay, -EINVAL it's a bad pkey
*/
static int hfi1_pkey_validation_pma(struct hfi1_ibport *ibp,
const struct opa_mad *in_mad,
const struct ib_wc *in_wc)
{
u16 pkey_value = hfi1_lookup_pkey_value(ibp, in_wc->pkey_index);
/* Rule (a) from above */
if (!is_local_mad(ibp, in_mad, in_wc) &&
pkey_value != LIM_MGMT_P_KEY &&
pkey_value != FULL_MGMT_P_KEY)
return -EINVAL;
/* Rule (e) from above */
if (pkey_value == LIM_MGMT_P_KEY &&
is_full_mgmt_pkey_in_table(ibp))
return -EINVAL;
return 0;
}
static int process_subn_opa(struct ib_device *ibdev, int mad_flags,
u8 port, const struct opa_mad *in_mad,
struct opa_mad *out_mad,
u32 *resp_len, int local_mad)
{
struct opa_smp *smp = (struct opa_smp *)out_mad;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *data;
u32 am, data_size;
__be16 attr_id;
int ret;
*out_mad = *in_mad;
data = opa_get_smp_data(smp);
data_size = (u32)opa_get_smp_data_size(smp);
am = be32_to_cpu(smp->attr_mod);
attr_id = smp->attr_id;
if (smp->class_version != OPA_SM_CLASS_VERSION) {
smp->status |= IB_SMP_UNSUP_VERSION;
ret = reply((struct ib_mad_hdr *)smp);
return ret;
}
ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, smp->mkey,
smp->route.dr.dr_slid, smp->route.dr.return_path,
smp->hop_cnt);
if (ret) {
u32 port_num = be32_to_cpu(smp->attr_mod);
/*
* If this is a get/set portinfo, we already check the
* M_Key if the MAD is for another port and the M_Key
* is OK on the receiving port. This check is needed
* to increment the error counters when the M_Key
* fails to match on *both* ports.
*/
if (attr_id == IB_SMP_ATTR_PORT_INFO &&
(smp->method == IB_MGMT_METHOD_GET ||
smp->method == IB_MGMT_METHOD_SET) &&
port_num && port_num <= ibdev->phys_port_cnt &&
port != port_num)
(void)check_mkey(to_iport(ibdev, port_num),
(struct ib_mad_hdr *)smp, 0,
smp->mkey, smp->route.dr.dr_slid,
smp->route.dr.return_path,
smp->hop_cnt);
ret = IB_MAD_RESULT_FAILURE;
return ret;
}
*resp_len = opa_get_smp_header_size(smp);
switch (smp->method) {
case IB_MGMT_METHOD_GET:
switch (attr_id) {
default:
clear_opa_smp_data(smp);
ret = subn_get_opa_sma(attr_id, smp, am, data,
ibdev, port, resp_len,
data_size);
break;
case OPA_ATTRIB_ID_AGGREGATE:
ret = subn_get_opa_aggregate(smp, ibdev, port,
resp_len);
break;
}
break;
case IB_MGMT_METHOD_SET:
switch (attr_id) {
default:
ret = subn_set_opa_sma(attr_id, smp, am, data,
ibdev, port, resp_len,
data_size, local_mad);
break;
case OPA_ATTRIB_ID_AGGREGATE:
ret = subn_set_opa_aggregate(smp, ibdev, port,
resp_len, local_mad);
break;
}
break;
case IB_MGMT_METHOD_TRAP:
case IB_MGMT_METHOD_REPORT:
case IB_MGMT_METHOD_REPORT_RESP:
case IB_MGMT_METHOD_GET_RESP:
/*
* The ib_mad module will call us to process responses
* before checking for other consumers.
* Just tell the caller to process it normally.
*/
ret = IB_MAD_RESULT_SUCCESS;
break;
case IB_MGMT_METHOD_TRAP_REPRESS:
subn_handle_opa_trap_repress(ibp, smp);
/* Always successful */
ret = IB_MAD_RESULT_SUCCESS;
break;
default:
smp->status |= IB_SMP_UNSUP_METHOD;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
return ret;
}
static int process_subn(struct ib_device *ibdev, int mad_flags,
u8 port, const struct ib_mad *in_mad,
struct ib_mad *out_mad)
{
struct ib_smp *smp = (struct ib_smp *)out_mad;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
int ret;
*out_mad = *in_mad;
if (smp->class_version != 1) {
smp->status |= IB_SMP_UNSUP_VERSION;
ret = reply((struct ib_mad_hdr *)smp);
return ret;
}
ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags,
smp->mkey, (__force __be32)smp->dr_slid,
smp->return_path, smp->hop_cnt);
if (ret) {
u32 port_num = be32_to_cpu(smp->attr_mod);
/*
* If this is a get/set portinfo, we already check the
* M_Key if the MAD is for another port and the M_Key
* is OK on the receiving port. This check is needed
* to increment the error counters when the M_Key
* fails to match on *both* ports.
*/
if (in_mad->mad_hdr.attr_id == IB_SMP_ATTR_PORT_INFO &&
(smp->method == IB_MGMT_METHOD_GET ||
smp->method == IB_MGMT_METHOD_SET) &&
port_num && port_num <= ibdev->phys_port_cnt &&
port != port_num)
(void)check_mkey(to_iport(ibdev, port_num),
(struct ib_mad_hdr *)smp, 0,
smp->mkey,
(__force __be32)smp->dr_slid,
smp->return_path, smp->hop_cnt);
ret = IB_MAD_RESULT_FAILURE;
return ret;
}
switch (smp->method) {
case IB_MGMT_METHOD_GET:
switch (smp->attr_id) {
case IB_SMP_ATTR_NODE_INFO:
ret = subn_get_nodeinfo(smp, ibdev, port);
break;
default:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
break;
}
return ret;
}
static int process_perf(struct ib_device *ibdev, u8 port,
const struct ib_mad *in_mad,
struct ib_mad *out_mad)
{
struct ib_pma_mad *pmp = (struct ib_pma_mad *)out_mad;
struct ib_class_port_info *cpi = (struct ib_class_port_info *)
&pmp->data;
int ret = IB_MAD_RESULT_FAILURE;
*out_mad = *in_mad;
if (pmp->mad_hdr.class_version != 1) {
pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION;
ret = reply((struct ib_mad_hdr *)pmp);
return ret;
}
switch (pmp->mad_hdr.method) {
case IB_MGMT_METHOD_GET:
switch (pmp->mad_hdr.attr_id) {
case IB_PMA_PORT_COUNTERS:
ret = pma_get_ib_portcounters(pmp, ibdev, port);
break;
case IB_PMA_PORT_COUNTERS_EXT:
ret = pma_get_ib_portcounters_ext(pmp, ibdev, port);
break;
case IB_PMA_CLASS_PORT_INFO:
cpi->capability_mask = IB_PMA_CLASS_CAP_EXT_WIDTH;
ret = reply((struct ib_mad_hdr *)pmp);
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
break;
case IB_MGMT_METHOD_SET:
if (pmp->mad_hdr.attr_id) {
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
}
break;
case IB_MGMT_METHOD_TRAP:
case IB_MGMT_METHOD_GET_RESP:
/*
* The ib_mad module will call us to process responses
* before checking for other consumers.
* Just tell the caller to process it normally.
*/
ret = IB_MAD_RESULT_SUCCESS;
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
return ret;
}
static int process_perf_opa(struct ib_device *ibdev, u8 port,
const struct opa_mad *in_mad,
struct opa_mad *out_mad, u32 *resp_len)
{
struct opa_pma_mad *pmp = (struct opa_pma_mad *)out_mad;
int ret;
*out_mad = *in_mad;
if (pmp->mad_hdr.class_version != OPA_SM_CLASS_VERSION) {
pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION;
return reply((struct ib_mad_hdr *)pmp);
}
*resp_len = sizeof(pmp->mad_hdr);
switch (pmp->mad_hdr.method) {
case IB_MGMT_METHOD_GET:
switch (pmp->mad_hdr.attr_id) {
case IB_PMA_CLASS_PORT_INFO:
ret = pma_get_opa_classportinfo(pmp, ibdev, resp_len);
break;
case OPA_PM_ATTRIB_ID_PORT_STATUS:
ret = pma_get_opa_portstatus(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_DATA_PORT_COUNTERS:
ret = pma_get_opa_datacounters(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_ERROR_PORT_COUNTERS:
ret = pma_get_opa_porterrors(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_ERROR_INFO:
ret = pma_get_opa_errorinfo(pmp, ibdev, port,
resp_len);
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
break;
case IB_MGMT_METHOD_SET:
switch (pmp->mad_hdr.attr_id) {
case OPA_PM_ATTRIB_ID_CLEAR_PORT_STATUS:
ret = pma_set_opa_portstatus(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_ERROR_INFO:
ret = pma_set_opa_errorinfo(pmp, ibdev, port,
resp_len);
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
break;
case IB_MGMT_METHOD_TRAP:
case IB_MGMT_METHOD_GET_RESP:
/*
* The ib_mad module will call us to process responses
* before checking for other consumers.
* Just tell the caller to process it normally.
*/
ret = IB_MAD_RESULT_SUCCESS;
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
return ret;
}
static int hfi1_process_opa_mad(struct ib_device *ibdev, int mad_flags,
u8 port, const struct ib_wc *in_wc,
const struct ib_grh *in_grh,
const struct opa_mad *in_mad,
struct opa_mad *out_mad, size_t *out_mad_size,
u16 *out_mad_pkey_index)
{
int ret;
int pkey_idx;
int local_mad = 0;
u32 resp_len = in_wc->byte_len - sizeof(*in_grh);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY);
if (pkey_idx < 0) {
pr_warn("failed to find limited mgmt pkey, defaulting 0x%x\n",
hfi1_get_pkey(ibp, 1));
pkey_idx = 1;
}
*out_mad_pkey_index = (u16)pkey_idx;
switch (in_mad->mad_hdr.mgmt_class) {
case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE:
case IB_MGMT_CLASS_SUBN_LID_ROUTED:
local_mad = is_local_mad(ibp, in_mad, in_wc);
if (local_mad) {
ret = opa_local_smp_check(ibp, in_wc);
if (ret)
return IB_MAD_RESULT_FAILURE;
}
ret = process_subn_opa(ibdev, mad_flags, port, in_mad,
out_mad, &resp_len, local_mad);
goto bail;
case IB_MGMT_CLASS_PERF_MGMT:
ret = hfi1_pkey_validation_pma(ibp, in_mad, in_wc);
if (ret)
return IB_MAD_RESULT_FAILURE;
ret = process_perf_opa(ibdev, port, in_mad, out_mad, &resp_len);
goto bail;
default:
ret = IB_MAD_RESULT_SUCCESS;
}
bail:
if (ret & IB_MAD_RESULT_REPLY)
*out_mad_size = round_up(resp_len, 8);
else if (ret & IB_MAD_RESULT_SUCCESS)
*out_mad_size = in_wc->byte_len - sizeof(struct ib_grh);
return ret;
}
static int hfi1_process_ib_mad(struct ib_device *ibdev, int mad_flags, u8 port,
const struct ib_wc *in_wc,
const struct ib_grh *in_grh,
const struct ib_mad *in_mad,
struct ib_mad *out_mad)
{
int ret;
switch (in_mad->mad_hdr.mgmt_class) {
case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE:
case IB_MGMT_CLASS_SUBN_LID_ROUTED:
ret = process_subn(ibdev, mad_flags, port, in_mad, out_mad);
break;
case IB_MGMT_CLASS_PERF_MGMT:
ret = process_perf(ibdev, port, in_mad, out_mad);
break;
default:
ret = IB_MAD_RESULT_SUCCESS;
break;
}
return ret;
}
/**
* hfi1_process_mad - process an incoming MAD packet
* @ibdev: the infiniband device this packet came in on
* @mad_flags: MAD flags
* @port: the port number this packet came in on
* @in_wc: the work completion entry for this packet
* @in_grh: the global route header for this packet
* @in_mad: the incoming MAD
* @out_mad: any outgoing MAD reply
*
* Returns IB_MAD_RESULT_SUCCESS if this is a MAD that we are not
* interested in processing.
*
* Note that the verbs framework has already done the MAD sanity checks,
* and hop count/pointer updating for IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE
* MADs.
*
* This is called by the ib_mad module.
*/
int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port,
const struct ib_wc *in_wc, const struct ib_grh *in_grh,
const struct ib_mad_hdr *in_mad, size_t in_mad_size,
struct ib_mad_hdr *out_mad, size_t *out_mad_size,
u16 *out_mad_pkey_index)
{
switch (in_mad->base_version) {
case OPA_MGMT_BASE_VERSION:
if (unlikely(in_mad_size != sizeof(struct opa_mad))) {
dev_err(ibdev->dev.parent, "invalid in_mad_size\n");
return IB_MAD_RESULT_FAILURE;
}
return hfi1_process_opa_mad(ibdev, mad_flags, port,
in_wc, in_grh,
(struct opa_mad *)in_mad,
(struct opa_mad *)out_mad,
out_mad_size,
out_mad_pkey_index);
case IB_MGMT_BASE_VERSION:
return hfi1_process_ib_mad(ibdev, mad_flags, port,
in_wc, in_grh,
(const struct ib_mad *)in_mad,
(struct ib_mad *)out_mad);
default:
break;
}
return IB_MAD_RESULT_FAILURE;
}