OpenCloudOS-Kernel/drivers/crypto/mediatek/mtk-platform.c

593 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for EIP97 cryptographic accelerator.
*
* Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
*/
#include <linux/clk.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include "mtk-platform.h"
#define MTK_BURST_SIZE_MSK GENMASK(7, 4)
#define MTK_BURST_SIZE(x) ((x) << 4)
#define MTK_DESC_SIZE(x) ((x) << 0)
#define MTK_DESC_OFFSET(x) ((x) << 16)
#define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
#define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
#define MTK_DESC_OVL_IRQ_EN BIT(25)
#define MTK_DESC_ATP_PRESENT BIT(30)
#define MTK_DFSE_IDLE GENMASK(3, 0)
#define MTK_DFSE_THR_CTRL_EN BIT(30)
#define MTK_DFSE_THR_CTRL_RESET BIT(31)
#define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
#define MTK_DFSE_MIN_DATA(x) ((x) << 0)
#define MTK_DFSE_MAX_DATA(x) ((x) << 8)
#define MTK_DFE_MIN_CTRL(x) ((x) << 16)
#define MTK_DFE_MAX_CTRL(x) ((x) << 24)
#define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
#define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
#define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
#define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
#define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
#define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
#define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
#define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
#define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
#define MTK_PE_TK_LOC_AVL BIT(2)
#define MTK_PE_PROC_HELD BIT(14)
#define MTK_PE_TK_TIMEOUT_EN BIT(22)
#define MTK_PE_INPUT_DMA_ERR BIT(0)
#define MTK_PE_OUTPUT_DMA_ERR BIT(1)
#define MTK_PE_PKT_PORC_ERR BIT(2)
#define MTK_PE_PKT_TIMEOUT BIT(3)
#define MTK_PE_FATAL_ERR BIT(14)
#define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
#define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
#define MTK_PE_PKT_PORC_ERR_EN BIT(18)
#define MTK_PE_PKT_TIMEOUT_EN BIT(19)
#define MTK_PE_FATAL_ERR_EN BIT(30)
#define MTK_PE_INT_OUT_EN BIT(31)
#define MTK_HIA_SIGNATURE ((u16)0x35ca)
#define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
#define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
#define MTK_CDR_STAT_CLR GENMASK(4, 0)
#define MTK_RDR_STAT_CLR GENMASK(7, 0)
#define MTK_AIC_INT_MSK GENMASK(5, 0)
#define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
#define MTK_AIC_VER11 0x011036c9
#define MTK_AIC_VER12 0x012036c9
#define MTK_AIC_G_CLR GENMASK(30, 20)
/**
* EIP97 is an integrated security subsystem to accelerate cryptographic
* functions and protocols to offload the host processor.
* Some important hardware modules are briefly introduced below:
*
* Host Interface Adapter(HIA) - the main interface between the host
* system and the hardware subsystem. It is responsible for attaching
* processing engine to the specific host bus interface and provides a
* standardized software view for off loading tasks to the engine.
*
* Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
* CD the host has prepared in the CDR. It monitors the fill level of its
* CD-FIFO and if there's sufficient space for the next block of descriptors,
* then it fires off a DMA request to fetch a block of CDs.
*
* Data fetch engine(DFE) - It is responsible for parsing the CD and
* setting up the required control and packet data DMA transfers from
* system memory to the processing engine.
*
* Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
* but target is result descriptors, Moreover, it also handles the RD
* updates under control of the DSE. For each packet data segment
* processed, the DSE triggers the RDR Manager to write the updated RD.
* If triggered to update, the RDR Manager sets up a DMA operation to
* copy the RD from the DSE to the correct location in the RDR.
*
* Data Store Engine(DSE) - It is responsible for parsing the prepared RD
* and setting up the required control and packet data DMA transfers from
* the processing engine to system memory.
*
* Advanced Interrupt Controllers(AICs) - receive interrupt request signals
* from various sources and combine them into one interrupt output.
* The AICs are used by:
* - One for the HIA global and processing engine interrupts.
* - The others for the descriptor ring interrupts.
*/
/* Cryptographic engine capabilities */
struct mtk_sys_cap {
/* host interface adapter */
u32 hia_ver;
u32 hia_opt;
/* packet engine */
u32 pkt_eng_opt;
/* global hardware */
u32 hw_opt;
};
static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
{
/* Assign rings to DFE/DSE thread and enable it */
writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
}
static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
struct mtk_sys_cap *cap)
{
u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
MTK_DFSE_MAX_DATA(ipbuf) |
MTK_DFE_MIN_CTRL(itbuf - 1) |
MTK_DFE_MAX_CTRL(itbuf),
cryp->base + DFE_CFG);
writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
MTK_DFSE_MAX_DATA(opbuf),
cryp->base + DSE_CFG);
writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
MTK_IN_BUF_MAX_THRESH(ipbuf),
cryp->base + PE_IN_DBUF_THRESH);
writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
MTK_IN_BUF_MAX_THRESH(itbuf),
cryp->base + PE_IN_TBUF_THRESH);
writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
MTK_OUT_BUF_MAX_THRESH(opbuf),
cryp->base + PE_OUT_DBUF_THRESH);
writel(0, cryp->base + PE_OUT_TBUF_THRESH);
writel(0, cryp->base + PE_OUT_BUF_CTRL);
}
static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
{
int ret = -EINVAL;
u32 val;
/* Check for completion of all DMA transfers */
val = readl(cryp->base + DFE_THR_STAT);
if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
val = readl(cryp->base + DSE_THR_STAT);
if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
ret = 0;
}
if (!ret) {
/* Take DFE/DSE thread out of reset */
writel(0, cryp->base + DFE_THR_CTRL);
writel(0, cryp->base + DSE_THR_CTRL);
} else {
return -EBUSY;
}
return 0;
}
static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
{
int err;
/* Reset DSE/DFE and correct system priorities for all rings. */
writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
writel(0, cryp->base + DFE_PRIO_0);
writel(0, cryp->base + DFE_PRIO_1);
writel(0, cryp->base + DFE_PRIO_2);
writel(0, cryp->base + DFE_PRIO_3);
writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
writel(0, cryp->base + DSE_PRIO_0);
writel(0, cryp->base + DSE_PRIO_1);
writel(0, cryp->base + DSE_PRIO_2);
writel(0, cryp->base + DSE_PRIO_3);
err = mtk_dfe_dse_state_check(cryp);
if (err)
return err;
return 0;
}
static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
int i, struct mtk_sys_cap *cap)
{
/* Full descriptor that fits FIFO minus one */
u32 count =
((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
/* Temporarily disable external triggering */
writel(0, cryp->base + CDR_CFG(i));
/* Clear CDR count */
writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
writel(0, cryp->base + CDR_PREP_PNTR(i));
writel(0, cryp->base + CDR_PROC_PNTR(i));
writel(0, cryp->base + CDR_DMA_CFG(i));
/* Configure CDR host address space */
writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
/* Clear and disable all CDR interrupts */
writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
/*
* Set command descriptor offset and enable additional
* token present in descriptor.
*/
writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
MTK_DESC_OFFSET(MTK_DESC_OFF) |
MTK_DESC_ATP_PRESENT,
cryp->base + CDR_DESC_SIZE(i));
writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
cryp->base + CDR_CFG(i));
}
static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
int i, struct mtk_sys_cap *cap)
{
u32 rndup = 2;
u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
/* Temporarily disable external triggering */
writel(0, cryp->base + RDR_CFG(i));
/* Clear RDR count */
writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
writel(0, cryp->base + RDR_PREP_PNTR(i));
writel(0, cryp->base + RDR_PROC_PNTR(i));
writel(0, cryp->base + RDR_DMA_CFG(i));
/* Configure RDR host address space */
writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
/*
* RDR manager generates update interrupts on a per-completed-packet,
* and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
* for the RDR exceeds the number of packets.
*/
writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
cryp->base + RDR_THRESH(i));
/*
* Configure a threshold and time-out value for the processed
* result descriptors (or complete packets) that are written to
* the RDR.
*/
writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
cryp->base + RDR_DESC_SIZE(i));
/*
* Configure HIA fetch size and fetch threshold that are used to
* fetch blocks of multiple descriptors.
*/
writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
MTK_DESC_FETCH_THRESH(count * rndup) |
MTK_DESC_OVL_IRQ_EN,
cryp->base + RDR_CFG(i));
}
static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
{
struct mtk_sys_cap cap;
int i, err;
u32 val;
cap.hia_ver = readl(cryp->base + HIA_VERSION);
cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
return -EINVAL;
/* Configure endianness conversion method for master (DMA) interface */
writel(0, cryp->base + EIP97_MST_CTRL);
/* Set HIA burst size */
val = readl(cryp->base + HIA_MST_CTRL);
val &= ~MTK_BURST_SIZE_MSK;
val |= MTK_BURST_SIZE(5);
writel(val, cryp->base + HIA_MST_CTRL);
err = mtk_dfe_dse_reset(cryp);
if (err) {
dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
return err;
}
mtk_dfe_dse_buf_setup(cryp, &cap);
/* Enable the 4 rings for the packet engines. */
mtk_desc_ring_link(cryp, 0xf);
for (i = 0; i < MTK_RING_MAX; i++) {
mtk_cmd_desc_ring_setup(cryp, i, &cap);
mtk_res_desc_ring_setup(cryp, i, &cap);
}
writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
cryp->base + PE_TOKEN_CTRL_STAT);
/* Clear all pending interrupts */
writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
MTK_PE_INT_OUT_EN,
cryp->base + PE_INTERRUPT_CTRL_STAT);
return 0;
}
static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
{
u32 val;
if (hw == MTK_RING_MAX)
val = readl(cryp->base + AIC_G_VERSION);
else
val = readl(cryp->base + AIC_VERSION(hw));
val &= MTK_AIC_VER_MSK;
if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
return -ENXIO;
if (hw == MTK_RING_MAX)
val = readl(cryp->base + AIC_G_OPTIONS);
else
val = readl(cryp->base + AIC_OPTIONS(hw));
val &= MTK_AIC_INT_MSK;
if (!val || val > 32)
return -ENXIO;
return 0;
}
static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
{
int err;
err = mtk_aic_cap_check(cryp, hw);
if (err)
return err;
/* Disable all interrupts and set initial configuration */
if (hw == MTK_RING_MAX) {
writel(0, cryp->base + AIC_G_ENABLE_CTRL);
writel(0, cryp->base + AIC_G_POL_CTRL);
writel(0, cryp->base + AIC_G_TYPE_CTRL);
writel(0, cryp->base + AIC_G_ENABLE_SET);
} else {
writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
writel(0, cryp->base + AIC_POL_CTRL(hw));
writel(0, cryp->base + AIC_TYPE_CTRL(hw));
writel(0, cryp->base + AIC_ENABLE_SET(hw));
}
return 0;
}
static int mtk_accelerator_init(struct mtk_cryp *cryp)
{
int i, err;
/* Initialize advanced interrupt controller(AIC) */
for (i = 0; i < MTK_IRQ_NUM; i++) {
err = mtk_aic_init(cryp, i);
if (err) {
dev_err(cryp->dev, "Failed to initialize AIC.\n");
return err;
}
}
/* Initialize packet engine */
err = mtk_packet_engine_setup(cryp);
if (err) {
dev_err(cryp->dev, "Failed to configure packet engine.\n");
return err;
}
return 0;
}
static void mtk_desc_dma_free(struct mtk_cryp *cryp)
{
int i;
for (i = 0; i < MTK_RING_MAX; i++) {
dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
cryp->ring[i]->res_base,
cryp->ring[i]->res_dma);
dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
cryp->ring[i]->cmd_base,
cryp->ring[i]->cmd_dma);
kfree(cryp->ring[i]);
}
}
static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
{
struct mtk_ring **ring = cryp->ring;
int i;
for (i = 0; i < MTK_RING_MAX; i++) {
ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
if (!ring[i])
goto err_cleanup;
ring[i]->cmd_base = dma_alloc_coherent(cryp->dev,
MTK_DESC_RING_SZ,
&ring[i]->cmd_dma,
GFP_KERNEL);
if (!ring[i]->cmd_base)
goto err_cleanup;
ring[i]->res_base = dma_alloc_coherent(cryp->dev,
MTK_DESC_RING_SZ,
&ring[i]->res_dma,
GFP_KERNEL);
if (!ring[i]->res_base)
goto err_cleanup;
ring[i]->cmd_next = ring[i]->cmd_base;
ring[i]->res_next = ring[i]->res_base;
}
return 0;
err_cleanup:
do {
dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
ring[i]->res_base, ring[i]->res_dma);
dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
ring[i]->cmd_base, ring[i]->cmd_dma);
kfree(ring[i]);
} while (i--);
return -ENOMEM;
}
static int mtk_crypto_probe(struct platform_device *pdev)
{
struct mtk_cryp *cryp;
int i, err;
cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
if (!cryp)
return -ENOMEM;
cryp->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(cryp->base))
return PTR_ERR(cryp->base);
for (i = 0; i < MTK_IRQ_NUM; i++) {
cryp->irq[i] = platform_get_irq(pdev, i);
if (cryp->irq[i] < 0)
return cryp->irq[i];
}
cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
if (IS_ERR(cryp->clk_cryp))
return -EPROBE_DEFER;
cryp->dev = &pdev->dev;
pm_runtime_enable(cryp->dev);
pm_runtime_get_sync(cryp->dev);
err = clk_prepare_enable(cryp->clk_cryp);
if (err)
goto err_clk_cryp;
/* Allocate four command/result descriptor rings */
err = mtk_desc_ring_alloc(cryp);
if (err) {
dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
goto err_resource;
}
/* Initialize hardware modules */
err = mtk_accelerator_init(cryp);
if (err) {
dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
goto err_engine;
}
err = mtk_cipher_alg_register(cryp);
if (err) {
dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
goto err_cipher;
}
err = mtk_hash_alg_register(cryp);
if (err) {
dev_err(cryp->dev, "Unable to register hash algorithm.\n");
goto err_hash;
}
platform_set_drvdata(pdev, cryp);
return 0;
err_hash:
mtk_cipher_alg_release(cryp);
err_cipher:
mtk_dfe_dse_reset(cryp);
err_engine:
mtk_desc_dma_free(cryp);
err_resource:
clk_disable_unprepare(cryp->clk_cryp);
err_clk_cryp:
pm_runtime_put_sync(cryp->dev);
pm_runtime_disable(cryp->dev);
return err;
}
static int mtk_crypto_remove(struct platform_device *pdev)
{
struct mtk_cryp *cryp = platform_get_drvdata(pdev);
mtk_hash_alg_release(cryp);
mtk_cipher_alg_release(cryp);
mtk_desc_dma_free(cryp);
clk_disable_unprepare(cryp->clk_cryp);
pm_runtime_put_sync(cryp->dev);
pm_runtime_disable(cryp->dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static const struct of_device_id of_crypto_id[] = {
{ .compatible = "mediatek,eip97-crypto" },
{},
};
MODULE_DEVICE_TABLE(of, of_crypto_id);
static struct platform_driver mtk_crypto_driver = {
.probe = mtk_crypto_probe,
.remove = mtk_crypto_remove,
.driver = {
.name = "mtk-crypto",
.of_match_table = of_crypto_id,
},
};
module_platform_driver(mtk_crypto_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");