OpenCloudOS-Kernel/block/blk-wbt.c

1735 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* buffered writeback throttling. loosely based on CoDel. We can't drop
* packets for IO scheduling, so the logic is something like this:
*
* - Monitor latencies in a defined window of time.
* - If the minimum latency in the above window exceeds some target, increment
* scaling step and scale down queue depth by a factor of 2x. The monitoring
* window is then shrunk to 100 / sqrt(scaling step + 1).
* - For any window where we don't have solid data on what the latencies
* look like, retain status quo.
* - If latencies look good, decrement scaling step.
* - If we're only doing writes, allow the scaling step to go negative. This
* will temporarily boost write performance, snapping back to a stable
* scaling step of 0 if reads show up or the heavy writers finish. Unlike
* positive scaling steps where we shrink the monitoring window, a negative
* scaling step retains the default step==0 window size.
*
* Copyright (C) 2016 Jens Axboe
*
*/
#include <linux/kernel.h>
#include <linux/blk_types.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/swap.h>
#include <linux/blk-mq.h>
#include "blk-wbt.h"
#include "blk-rq-qos.h"
#define CREATE_TRACE_POINTS
#include <trace/events/wbt.h>
#include <linux/blk-cgroup.h>
/*per device per cgroup struct*/
struct wbt_grp {
struct blkg_policy_data pd;
struct wbt_throtl_info throtl_info;
};
static inline struct wbt_grp *pd_to_wg(struct blkg_policy_data *pd)
{
return pd ? container_of(pd, struct wbt_grp, pd) : NULL;
}
static struct blkcg_policy blkcg_policy_wbt;
static inline struct wbt_grp *blkg_to_wg(struct blkcg_gq *blkg)
{
return pd_to_wg(blkg_to_pd(blkg, &blkcg_policy_wbt));
}
static inline struct blkcg_gq *wg_to_blkg(struct wbt_grp *wg)
{
return pd_to_blkg(&wg->pd);
}
static inline void wbt_clear_state(struct request *rq)
{
rq->wbt_flags = 0;
}
static inline enum wbt_flags wbt_flags(struct request *rq)
{
return rq->wbt_flags;
}
static inline bool wbt_is_tracked(struct request *rq)
{
return rq->wbt_flags & WBT_TRACKED;
}
static inline bool wbt_is_read(struct request *rq)
{
return rq->wbt_flags & WBT_READ;
}
enum {
/*
* Default setting, we'll scale up (to 75% of QD max) or down (min 1)
* from here depending on device stats
*/
RWB_DEF_DEPTH = 16,
/*
* 100msec window
*/
RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
/*
* Disregard stats, if we don't meet this minimum
*/
RWB_MIN_WRITE_SAMPLES = 3,
/*
* If we have this number of consecutive windows with not enough
* information to scale up or down, scale up.
*/
RWB_UNKNOWN_BUMP = 5,
};
static inline bool rwb_enabled(struct rq_wb *rwb)
{
return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
rwb->wb_normal != 0;
}
static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
{
if (rwb_enabled(rwb)) {
const unsigned long cur = jiffies;
if (cur != *var)
*var = cur;
}
}
/*
* If a task was rate throttled in balance_dirty_pages() within the last
* second or so, use that to indicate a higher cleaning rate.
*/
static bool wb_recent_wait(struct rq_wb *rwb)
{
struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
return time_before(jiffies, wb->dirty_sleep + HZ);
}
static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
enum wbt_flags wb_acct)
{
if (wb_acct & WBT_KSWAPD)
return &rwb->rq_wait[WBT_RWQ_KSWAPD];
else if (wb_acct & WBT_DISCARD)
return &rwb->rq_wait[WBT_RWQ_DISCARD];
return &rwb->rq_wait[WBT_RWQ_BG];
}
static void rwb_wake_all(struct rq_wb *rwb)
{
int i;
for (i = 0; i < WBT_NUM_RWQ; i++) {
struct rq_wait *rqw = &rwb->rq_wait[i];
if (wq_has_sleeper(&rqw->wait))
wake_up_all(&rqw->wait);
}
}
static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
enum wbt_flags wb_acct)
{
int inflight, limit;
inflight = atomic_dec_return(&rqw->inflight);
/*
* wbt got disabled with IO in flight. Wake up any potential
* waiters, we don't have to do more than that.
*/
if (unlikely(!rwb_enabled(rwb))) {
rwb_wake_all(rwb);
return;
}
/*
* For discards, our limit is always the background. For writes, if
* the device does write back caching, drop further down before we
* wake people up.
*/
if (wb_acct & WBT_DISCARD)
limit = rwb->wb_background;
else if (rwb->wc && !wb_recent_wait(rwb))
limit = 0;
else
limit = rwb->wb_normal;
/*
* Don't wake anyone up if we are above the normal limit.
*/
if (inflight && inflight >= limit)
return;
if (wq_has_sleeper(&rqw->wait)) {
int diff = limit - inflight;
if (!inflight || diff >= rwb->wb_background / 2)
wake_up_all(&rqw->wait);
}
}
static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
{
struct rq_wb *rwb = RQWB(rqos);
struct rq_wait *rqw;
if (!(wb_acct & WBT_TRACKED))
return;
rqw = get_rq_wait(rwb, wb_acct);
wbt_rqw_done(rwb, rqw, wb_acct);
}
/*
* Called on completion of a request. Note that it's also called when
* a request is merged, when the request gets freed.
*/
static void wbt_done(struct rq_qos *rqos, struct request *rq)
{
struct rq_wb *rwb = RQWB(rqos);
if (!wbt_is_tracked(rq)) {
if (rwb->sync_cookie == rq) {
rwb->sync_issue = 0;
rwb->sync_cookie = NULL;
}
if (wbt_is_read(rq))
wb_timestamp(rwb, &rwb->last_comp);
} else {
WARN_ON_ONCE(rq == rwb->sync_cookie);
__wbt_done(rqos, wbt_flags(rq));
}
wbt_clear_state(rq);
}
static inline bool stat_sample_valid(struct blk_rq_stat *stat)
{
/*
* We need at least one read sample, and a minimum of
* RWB_MIN_WRITE_SAMPLES. We require some write samples to know
* that it's writes impacting us, and not just some sole read on
* a device that is in a lower power state.
*/
return (stat[READ].nr_samples >= 1 &&
stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
}
static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
{
u64 now, issue = READ_ONCE(rwb->sync_issue);
if (!issue || !rwb->sync_cookie)
return 0;
now = ktime_to_ns(ktime_get());
return now - issue;
}
enum {
LAT_OK = 1,
LAT_UNKNOWN,
LAT_UNKNOWN_WRITES,
LAT_EXCEEDED,
};
static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
{
struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
struct rq_depth *rqd = &rwb->rq_depth;
u64 thislat;
/*
* If our stored sync issue exceeds the window size, or it
* exceeds our min target AND we haven't logged any entries,
* flag the latency as exceeded. wbt works off completion latencies,
* but for a flooded device, a single sync IO can take a long time
* to complete after being issued. If this time exceeds our
* monitoring window AND we didn't see any other completions in that
* window, then count that sync IO as a violation of the latency.
*/
thislat = rwb_sync_issue_lat(rwb);
if (thislat > rwb->cur_win_nsec ||
(thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
trace_wbt_lat(bdi, thislat);
return LAT_EXCEEDED;
}
/*
* No read/write mix, if stat isn't valid
*/
if (!stat_sample_valid(stat)) {
/*
* If we had writes in this stat window and the window is
* current, we're only doing writes. If a task recently
* waited or still has writes in flights, consider us doing
* just writes as well.
*/
if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
wbt_inflight(rwb))
return LAT_UNKNOWN_WRITES;
return LAT_UNKNOWN;
}
/*
* If the 'min' latency exceeds our target, step down.
*/
if (stat[READ].min > rwb->min_lat_nsec) {
trace_wbt_lat(bdi, stat[READ].min);
trace_wbt_stat(bdi, stat);
return LAT_EXCEEDED;
}
if (rqd->scale_step)
trace_wbt_stat(bdi, stat);
return LAT_OK;
}
static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
{
struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
struct rq_depth *rqd = &rwb->rq_depth;
trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
rwb->wb_background, rwb->wb_normal, rqd->max_depth);
}
static void calc_wb_limits(struct rq_wb *rwb)
{
if (rwb->min_lat_nsec == 0) {
rwb->wb_normal = rwb->wb_background = 0;
} else if (rwb->rq_depth.max_depth <= 2) {
rwb->wb_normal = rwb->rq_depth.max_depth;
rwb->wb_background = 1;
} else {
rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
}
}
static void scale_up(struct rq_wb *rwb)
{
if (!rq_depth_scale_up(&rwb->rq_depth))
return;
calc_wb_limits(rwb);
rwb->unknown_cnt = 0;
rwb_wake_all(rwb);
rwb_trace_step(rwb, "scale up");
}
static void scale_down(struct rq_wb *rwb, bool hard_throttle)
{
if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
return;
calc_wb_limits(rwb);
rwb->unknown_cnt = 0;
rwb_trace_step(rwb, "scale down");
}
static void rwb_arm_timer(struct rq_wb *rwb)
{
struct rq_depth *rqd = &rwb->rq_depth;
if (rqd->scale_step > 0) {
/*
* We should speed this up, using some variant of a fast
* integer inverse square root calculation. Since we only do
* this for every window expiration, it's not a huge deal,
* though.
*/
rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
int_sqrt((rqd->scale_step + 1) << 8));
} else {
/*
* For step < 0, we don't want to increase/decrease the
* window size.
*/
rwb->cur_win_nsec = rwb->win_nsec;
}
blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
}
static void wb_timer_fn(struct blk_stat_callback *cb)
{
struct rq_wb *rwb = cb->data;
struct rq_depth *rqd = &rwb->rq_depth;
unsigned int inflight = wbt_inflight(rwb);
int status;
status = latency_exceeded(rwb, cb->stat);
trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
inflight);
/*
* If we exceeded the latency target, step down. If we did not,
* step one level up. If we don't know enough to say either exceeded
* or ok, then don't do anything.
*/
switch (status) {
case LAT_EXCEEDED:
scale_down(rwb, true);
break;
case LAT_OK:
scale_up(rwb);
break;
case LAT_UNKNOWN_WRITES:
/*
* We started a the center step, but don't have a valid
* read/write sample, but we do have writes going on.
* Allow step to go negative, to increase write perf.
*/
scale_up(rwb);
break;
case LAT_UNKNOWN:
if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
break;
/*
* We get here when previously scaled reduced depth, and we
* currently don't have a valid read/write sample. For that
* case, slowly return to center state (step == 0).
*/
if (rqd->scale_step > 0)
scale_up(rwb);
else if (rqd->scale_step < 0)
scale_down(rwb, false);
break;
default:
break;
}
/*
* Re-arm timer, if we have IO in flight
*/
if (rqd->scale_step || inflight)
rwb_arm_timer(rwb);
}
static void __wbt_update_limits(struct rq_wb *rwb)
{
struct rq_depth *rqd = &rwb->rq_depth;
rqd->scale_step = 0;
rqd->scaled_max = false;
rq_depth_calc_max_depth(rqd);
calc_wb_limits(rwb);
rwb_wake_all(rwb);
}
void wbt_update_limits(struct request_queue *q)
{
struct rq_qos *rqos = wbt_rq_qos(q);
if (!rqos)
return;
__wbt_update_limits(RQWB(rqos));
}
u64 wbt_get_min_lat(struct request_queue *q)
{
struct rq_qos *rqos = wbt_rq_qos(q);
if (!rqos)
return 0;
return RQWB(rqos)->min_lat_nsec;
}
void wbt_set_min_lat(struct request_queue *q, u64 val)
{
struct rq_qos *rqos = wbt_rq_qos(q);
if (!rqos)
return;
RQWB(rqos)->min_lat_nsec = val;
RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
__wbt_update_limits(RQWB(rqos));
}
static bool close_io(struct rq_wb *rwb)
{
const unsigned long now = jiffies;
return time_before(now, rwb->last_issue + HZ / 10) ||
time_before(now, rwb->last_comp + HZ / 10);
}
#define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
{
unsigned int limit;
/*
* If we got disabled, just return UINT_MAX. This ensures that
* we'll properly inc a new IO, and dec+wakeup at the end.
*/
if (!rwb_enabled(rwb))
return UINT_MAX;
if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
return rwb->wb_background;
/*
* At this point we know it's a buffered write. If this is
* kswapd trying to free memory, or REQ_SYNC is set, then
* it's WB_SYNC_ALL writeback, and we'll use the max limit for
* that. If the write is marked as a background write, then use
* the idle limit, or go to normal if we haven't had competing
* IO for a bit.
*/
if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
limit = rwb->rq_depth.max_depth;
else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
/*
* If less than 100ms since we completed unrelated IO,
* limit us to half the depth for background writeback.
*/
limit = rwb->wb_background;
} else
limit = rwb->wb_normal;
return limit;
}
struct wbt_wait_data {
struct rq_wb *rwb;
enum wbt_flags wb_acct;
unsigned long rw;
struct wbt_throtl_info *ti;
};
static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
{
struct wbt_wait_data *data = private_data;
return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw));
}
static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
{
struct wbt_wait_data *data = private_data;
wbt_rqw_done(data->rwb, rqw, data->wb_acct);
}
/*
* Block if we will exceed our limit, or if we are currently waiting for
* the timer to kick off queuing again.
*/
static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
unsigned long rw)
{
struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
struct wbt_wait_data data = {
.rwb = rwb,
.wb_acct = wb_acct,
.rw = rw,
};
rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
}
static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
{
switch (bio_op(bio)) {
case REQ_OP_WRITE:
/*
* Don't throttle WRITE_ODIRECT
*/
if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
(REQ_SYNC | REQ_IDLE))
return false;
/* fallthrough */
case REQ_OP_DISCARD:
return true;
default:
return false;
}
}
static inline struct wbt_grp *bio_to_wg(struct bio *bio)
{
return blkg_to_wg(bio->bi_blkg);
}
static inline u16 bio_to_cgprio(struct bio *bio)
{
struct blkcg_gq *blkg = bio->bi_blkg;
struct blkcg *blkcg = blkg->blkcg;
return cgroup_priority(&blkcg->css);
}
static u16 cgprio_to_wbt_class(u16 cgprio)
{
static int cgprio_wbt_class_map[CGROUP_PRIORITY_MAX] = {
[0] = 0,
[1 ... CGROUP_PRIORITY_MAX - 2] = 1,
[CGROUP_PRIORITY_MAX - 1] = 2,
};
if (cgprio < ARRAY_SIZE(cgprio_wbt_class_map))
return cgprio_wbt_class_map[cgprio];
return 0;
}
static inline u16 bio_to_wbt_class(struct bio *bio)
{
return cgprio_to_wbt_class(bio_to_cgprio(bio));
}
static enum wbt_flags bio_to_wbt_class_flags(struct bio *bio)
{
enum wbt_flags flags = 0;
u16 wbt_class = bio_to_wbt_class(bio);
if (bio_op(bio) == REQ_OP_READ) {
flags = WBT_READ;
} else if (wbt_should_throttle(NULL, bio)) {
if (current_is_kswapd())
flags |= WBT_KSWAPD;
if (bio_op(bio) == REQ_OP_DISCARD)
flags |= WBT_DISCARD;
flags |= WBT_CLASS_TRACKED;
}
bio_flags_set_wbt_class(&flags, wbt_class);
return flags;
}
static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
{
enum wbt_flags flags = 0;
if (!rwb_enabled(rwb))
return 0;
if (bio_op(bio) == REQ_OP_READ) {
flags = WBT_READ;
} else if (wbt_should_throttle(rwb, bio)) {
if (current_is_kswapd())
flags |= WBT_KSWAPD;
if (bio_op(bio) == REQ_OP_DISCARD)
flags |= WBT_DISCARD;
flags |= WBT_TRACKED;
}
return flags;
}
static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
{
struct rq_wb *rwb = RQWB(rqos);
enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
__wbt_done(rqos, flags);
}
static int throtl_info_alloc(struct wbt_throtl_info *ti, gfp_t gfp_mask)
{
ti->read_lat_stats = alloc_percpu_gfp(struct blk_rq_stat, gfp_mask);
if (!ti->read_lat_stats)
return -1;
return 0;
}
static void throtl_info_free(struct wbt_throtl_info *ti)
{
if (ti->read_lat_stats) {
free_percpu(ti->read_lat_stats);
ti->read_lat_stats = NULL;
}
}
static void throtl_info_calc_limit(struct wbt_throtl_info *ti)
{
if (ti->min_lat_nsec == 0) {
ti->wb_normal = ti->wb_background = 0;
} else if (ti->max_depth <= 2) {
ti->wb_normal = ti->max_depth;
ti->wb_background = 1;
} else {
ti->wb_normal = (ti->current_depth+ 1) / 2;
ti->wb_background = (ti->current_depth + 3) / 4;
}
}
static void throtl_info_init(struct wbt_throtl_info *ti, struct request_queue *q)
{
struct blk_rq_stat *stat;
int j;
int cpu;
ti->max_depth = min((unsigned int)RWB_DEF_DEPTH, blk_queue_depth(q));
ti->min_depth = 1;
ti->current_depth = ti->max_depth;
ti->scale_up_percent= 50;
ti->scale_down_percent= 50;
for_each_possible_cpu(cpu) {
stat = per_cpu_ptr(ti->read_lat_stats, cpu);
blk_rq_stat_init(stat);
}
for (j = 0; j < WBT_NUM_RWQ; j++)
rq_wait_init(&ti->rq_wait[j]);
/*calc normal and background depth*/
throtl_info_calc_limit(ti);
}
static inline struct wbt_throtl_info *rwb_to_wbt_class_info(struct rq_wb *rwb, u16 wbt_class)
{
if (wbt_class < WBT_CLASS_NR)
return &rwb->class_throtl_infos[wbt_class];
return NULL;
}
static int wbt_flags_to_counter_idx(enum wbt_flags flags)
{
int i;
if (flags & WBT_KSWAPD)
i = WBT_RWQ_KSWAPD;
else if (flags & WBT_DISCARD)
i = WBT_RWQ_DISCARD;
else
i = WBT_RWQ_BG;
return i;
}
static inline struct wbt_throtl_info *bio_to_wbt_class_info(struct rq_wb *rwb, struct bio *bio)
{
u16 wbt_class = cgprio_to_wbt_class(bio_to_cgprio(bio));
return rwb_to_wbt_class_info(rwb, wbt_class);
}
static bool throtl_info_enabled(struct wbt_throtl_info *ti)
{
return ti->wb_normal != 0;
}
static inline void throtl_info_wake_all(struct wbt_throtl_info *ti)
{
int i;
for (i = 0; i < WBT_NUM_RWQ; i++) {
struct rq_wait *rqw = &ti->rq_wait[i];
if (wq_has_sleeper(&rqw->wait))
wake_up_all(&rqw->wait);
}
}
static inline struct rq_wait *throtl_info_get_rq_wait(struct wbt_throtl_info *ti,
enum wbt_flags wb_acct)
{
if (wb_acct & WBT_KSWAPD)
return &ti->rq_wait[WBT_RWQ_KSWAPD];
else if (wb_acct & WBT_DISCARD)
return &ti->rq_wait[WBT_RWQ_DISCARD];
return &ti->rq_wait[WBT_RWQ_BG];
}
static int throtl_info_inflight(struct wbt_throtl_info *ti)
{
unsigned int i, ret = 0;
for (i = 0; i < WBT_NUM_RWQ; i++)
ret += atomic_read(&ti->rq_wait[i].inflight);
return ret;
}
static bool throtl_info_scale_up(struct wbt_throtl_info *ti, bool force_max)
{
/*everything is fine*/
unsigned int scale_step;
unsigned int current_depth = ti->current_depth;
if (ti->current_depth == ti->max_depth)
return false;
if (force_max) {
ti->current_depth = ti->max_depth;
return true;
}
/*step by step*/
scale_step = current_depth * ti->scale_up_percent / 100;
current_depth += scale_step?: 1;
ti->current_depth = clamp(current_depth,
ti->min_depth,
ti->max_depth);
return true;
}
static bool throtl_info_scale_down(struct wbt_throtl_info *ti, bool hard_throttle)
{
unsigned int scale_step;
unsigned int current_depth = ti->current_depth;
if (ti->current_depth == ti->min_depth)
return false;
if (hard_throttle) {
ti->current_depth = ti->min_depth;
return true;
}
/*step by step*/
scale_step = current_depth * ti->scale_down_percent / 100;
current_depth -= scale_step ?: 1;
ti->current_depth = clamp(current_depth,
ti->min_depth,
ti->max_depth);
return true;
}
static inline unsigned int throtl_info_get_limit(struct wbt_throtl_info *ti, unsigned long rw)
{
unsigned int limit;
if (!throtl_info_enabled(ti))
return UINT_MAX;
if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
return ti->wb_background;
if (rw & REQ_HIPRIO || current_is_kswapd())
limit = ti->max_depth;
else if (rw & REQ_BACKGROUND)
limit = ti->wb_background;
else
limit = ti->wb_normal;
return limit;
}
static void throtl_info_rqw_done(struct rq_wb *rwb, struct wbt_throtl_info *ti,
struct rq_wait *rqw, enum wbt_flags wbt_acct)
{
int inflight, limit;
if (!(wbt_acct & WBT_CLASS_TRACKED))
return;
inflight = atomic_dec_return(&rqw->inflight);
if (unlikely(!throtl_info_enabled(ti)))
throtl_info_wake_all(ti);
if (wbt_acct & WBT_DISCARD)
limit = ti->wb_background;
else
limit = ti->wb_normal;
if (wq_has_sleeper(&rqw->wait)) {
int diff = limit - inflight;
if (!inflight || diff >= ti->wb_background / 2)
wake_up_nr(&rqw->wait, diff);
}
}
static void wbt_class_timer_fn(struct timer_list *t)
{
struct rq_wb *rwb = from_timer(rwb, t, wbt_class_timer);
struct wbt_throtl_info *ti;
u64 rd_expired_cnt;
int highest_class = WBT_CLASS_NR;
int i;
for (i = 0; i < WBT_CLASS_NR; i++) {
ti = rwb_to_wbt_class_info(rwb, i);
rd_expired_cnt = atomic64_read(&ti->read_expired_cnt);
atomic64_set(&ti->read_expired_cnt, 0);
if (rd_expired_cnt && highest_class == WBT_CLASS_NR)
highest_class = i;
}
if (highest_class == WBT_CLASS_NR)
goto depth_scale_up;
/*expired read did happen!!! throttle from the lowest class*/
for (i = WBT_CLASS_NR - 1; i >= highest_class; i--) {
struct wbt_throtl_info *throtl_ti = rwb_to_wbt_class_info(rwb, i);
if (!throtl_info_enabled(throtl_ti))
continue;
/*skip if can't be scaled down*/
if (!throtl_info_scale_down(throtl_ti, true))
continue;
/*current_depth changed, recal wb_normal and wb_background */
throtl_info_calc_limit(throtl_ti);
if (throtl_info_inflight(throtl_ti) > throtl_ti->wb_background) {
/*
* we did throttle some buffer write,
* go and observe the effect
*/
break;
}
}
goto out;
depth_scale_up:
/*amazing!!! everything goes fine, try to scale up queue depth*/
for (i = 0; i < WBT_CLASS_NR; i++) {
struct wbt_throtl_info *ti = rwb_to_wbt_class_info(rwb, i);
if (ti->current_depth < ti->max_depth) {
if (throtl_info_scale_up(ti, false)) {
throtl_info_calc_limit(ti);
throtl_info_wake_all(ti);
goto out;
}
}
}
out:
for (i = 0; i < WBT_CLASS_NR; i++) {
ti = rwb_to_wbt_class_info(rwb, i);
if (throtl_info_inflight(ti) || ti->current_depth < ti->max_depth) {
mod_timer(t, jiffies + nsecs_to_jiffies(rwb->win_nsec));
break;
}
}
return;
}
static void wbt_class_account_bio_begin(struct rq_wb *rwb, struct bio *bio)
{
int i;
enum wbt_flags flags;
struct wbt_throtl_info *ti = bio_to_wbt_class_info(rwb, bio);
flags = bio_to_wbt_class_flags(bio);
if (bio_op(bio) == REQ_OP_READ)
atomic64_inc(&ti->read_cnt);
if (bio_op(bio)== REQ_OP_WRITE
&& (bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
atomic64_inc(&ti->direct_write_cnt);
if (bio_op(bio) == REQ_OP_WRITE
&& (bio->bi_opf & REQ_SYNC)
&& !(bio->bi_opf & REQ_IDLE))
atomic64_inc(&ti->wr_sync_cnt);
if (flags & WBT_CLASS_TRACKED) {
i = wbt_flags_to_counter_idx(flags);
atomic64_inc(&ti->tracked_cnt[i]);
}
}
static bool wbt_class_inflight_cb(struct rq_wait *rqw, void *private_data)
{
struct wbt_wait_data *data = private_data;
return rq_wait_inc_below(rqw, throtl_info_get_limit(data->ti, data->rw));
}
static void wbt_class_cleanup_cb(struct rq_wait *rqw, void *private_data)
{
struct wbt_wait_data *data = private_data;
throtl_info_rqw_done(data->rwb, data->ti, rqw, data->wb_acct);
}
static void wbt_class_wait(struct rq_wb *rwb, struct bio* bio)
{
u16 wbt_class = bio_to_wbt_class(bio);
struct wbt_throtl_info *ti = rwb_to_wbt_class_info(rwb, wbt_class);
enum wbt_flags flags = bio_to_wbt_class_flags(bio);
struct rq_wait *rqw;
struct wbt_wait_data data;
if (!throtl_info_enabled(ti))
return;
wbt_class_account_bio_begin(rwb, bio);
bio->bi_wbt_acct = flags;
if (!(flags & WBT_CLASS_TRACKED))
return;
rqw = throtl_info_get_rq_wait(ti, flags);
data.rwb = rwb;
data.wb_acct = flags;
data.rw = bio->bi_opf;
data.ti = ti;
rq_qos_wait(rqw, &data, wbt_class_inflight_cb, wbt_class_cleanup_cb);
if (!timer_pending(&rwb->wbt_class_timer))
mod_timer(&rwb->wbt_class_timer, \
jiffies + nsecs_to_jiffies(rwb->win_nsec));
}
/*
* Returns true if the IO request should be accounted, false if not.
* May sleep, if we have exceeded the writeback limits. Caller can pass
* in an irq held spinlock, if it holds one when calling this function.
* If we do sleep, we'll release and re-grab it.
*/
static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
{
struct rq_wb *rwb = RQWB(rqos);
enum wbt_flags flags;
wbt_class_wait(rwb, bio);
flags = bio_to_wbt_flags(rwb, bio);
if (!(flags & WBT_TRACKED)) {
if (flags & WBT_READ)
wb_timestamp(rwb, &rwb->last_issue);
return;
}
__wbt_wait(rwb, flags, bio->bi_opf);
if (!blk_stat_is_active(rwb->cb))
rwb_arm_timer(rwb);
}
static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
{
struct rq_wb *rwb = RQWB(rqos);
rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
}
static void wbt_issue(struct rq_qos *rqos, struct request *rq)
{
struct rq_wb *rwb = RQWB(rqos);
if (!rwb_enabled(rwb))
return;
/*
* Track sync issue, in case it takes a long time to complete. Allows us
* to react quicker, if a sync IO takes a long time to complete. Note
* that this is just a hint. The request can go away when it completes,
* so it's important we never dereference it. We only use the address to
* compare with, which is why we store the sync_issue time locally.
*/
if (wbt_is_read(rq) && !rwb->sync_issue) {
rwb->sync_cookie = rq;
rwb->sync_issue = rq->io_start_time_ns;
}
}
static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
{
struct rq_wb *rwb = RQWB(rqos);
if (!rwb_enabled(rwb))
return;
if (rq == rwb->sync_cookie) {
rwb->sync_issue = 0;
rwb->sync_cookie = NULL;
}
}
void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
{
struct rq_qos *rqos = wbt_rq_qos(q);
if (rqos)
RQWB(rqos)->wc = write_cache_on;
}
static u64 bio_latency_nsec(struct bio *bio)
{
u64 start = bio_issue_time(&bio->bi_issue);
u64 now = ktime_get_ns();
u64 latency_ns;
now = __bio_issue_time(now);
if (now <= start)
return 0;
latency_ns = now - start;
return latency_ns;
}
static void wbt_class_account_bio_end(struct rq_wb *rwb, struct bio *bio)
{
int i;
enum wbt_flags flags = bio->bi_wbt_acct;
u16 wbt_class = bio_flags_to_wbt_class(bio->bi_wbt_acct);
struct wbt_throtl_info *ti = rwb_to_wbt_class_info(rwb, wbt_class);
struct wbt_grp *wg = bio_to_wg(bio);
u64 latency_ns;
struct blk_rq_stat *stat;
if (flags & WBT_CLASS_TRACKED) {
i = wbt_flags_to_counter_idx(flags);
atomic64_inc(&ti->finished_cnt[i]);
}
if (throtl_info_enabled(ti) && (flags & WBT_READ)) {
latency_ns = bio_latency_nsec(bio);
ti->recent_rd_latency_us = (latency_ns / 1000);
if (latency_ns > ti->min_lat_nsec)
atomic64_inc(&ti->read_expired_cnt);
ti->last_comp = jiffies;
stat = get_cpu_ptr(ti->read_lat_stats);
blk_rq_stat_add(stat, latency_ns / 1000);
put_cpu_ptr(stat);
stat = get_cpu_ptr(wg->throtl_info.read_lat_stats);
blk_rq_stat_add(stat, latency_ns / 1000);
put_cpu_ptr(stat);
}
}
static void wbt_class_done_bio(struct rq_wb *rwb, struct bio* bio)
{
u16 wbt_class = bio_flags_to_wbt_class(bio->bi_wbt_acct);
struct wbt_throtl_info *ti = rwb_to_wbt_class_info(rwb, wbt_class);
enum wbt_flags wbt_acct = bio->bi_wbt_acct;
struct rq_wait *rqw = throtl_info_get_rq_wait(ti, wbt_acct);
throtl_info_rqw_done(rwb, ti, rqw, wbt_acct);
}
static void wbt_done_bio(struct rq_qos *rqos, struct bio *bio)
{
wbt_class_account_bio_end(RQWB(rqos), bio);
if (bio->bi_wbt_acct & WBT_CLASS_TRACKED)
wbt_class_done_bio(RQWB(rqos), bio);
bio->bi_wbt_acct = 0;
}
static void wbt_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
{
struct wbt_throtl_info *ti = bio_to_wbt_class_info(RQWB(rqos), bio);
if (!throtl_info_enabled(ti))
return;
if (wbt_should_throttle(NULL, bio))
atomic64_inc(&ti->escaped_merge_cnt);
}
/*
* Enable wbt if defaults are configured that way
*/
void wbt_enable_default(struct request_queue *q)
{
struct rq_qos *rqos = wbt_rq_qos(q);
/* Throttling already enabled? */
if (rqos) {
if (RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
return;
}
/* Queue not registered? Maybe shutting down... */
if (!blk_queue_registered(q))
return;
if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ))
wbt_init(q);
}
EXPORT_SYMBOL_GPL(wbt_enable_default);
u64 wbt_default_latency_nsec(struct request_queue *q)
{
/*
* We default to 2msec for non-rotational storage, and 75msec
* for rotational storage.
*/
if (blk_queue_nonrot(q))
return 2000000ULL;
else
return 75000000ULL;
}
static int wbt_data_dir(const struct request *rq)
{
const int op = req_op(rq);
if (op == REQ_OP_READ)
return READ;
else if (op_is_write(op))
return WRITE;
/* don't account */
return -1;
}
static void wbt_queue_depth_changed(struct rq_qos *rqos)
{
RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q);
__wbt_update_limits(RQWB(rqos));
}
static void wbt_exit(struct rq_qos *rqos)
{
struct rq_wb *rwb = RQWB(rqos);
struct request_queue *q = rqos->q;
struct wbt_throtl_info *ti;
int i;
blk_stat_remove_callback(q, rwb->cb);
blk_stat_free_callback(rwb->cb);
del_timer_sync(&rwb->wbt_class_timer);
for (i = 0; i < WBT_CLASS_NR; i++) {
ti = rwb_to_wbt_class_info(rwb, i);
throtl_info_free(ti);
}
kfree(rwb);
}
/*
* Disable wbt, if enabled by default.
*/
void wbt_disable_default(struct request_queue *q)
{
struct rq_qos *rqos = wbt_rq_qos(q);
struct rq_wb *rwb;
if (!rqos)
return;
rwb = RQWB(rqos);
if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
blk_stat_deactivate(rwb->cb);
rwb->enable_state = WBT_STATE_OFF_DEFAULT;
}
}
EXPORT_SYMBOL_GPL(wbt_disable_default);
#ifdef CONFIG_BLK_DEBUG_FS
static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
seq_printf(m, "%llu\n", rwb->cur_win_nsec);
return 0;
}
static int wbt_enabled_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
seq_printf(m, "%d\n", rwb->enable_state);
return 0;
}
static int wbt_id_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
seq_printf(m, "%u\n", rqos->id);
return 0;
}
static int wbt_inflight_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
int i;
for (i = 0; i < WBT_NUM_RWQ; i++)
seq_printf(m, "%d: inflight %d\n", i,
atomic_read(&rwb->rq_wait[i].inflight));
return 0;
}
static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
seq_printf(m, "%lu\n", rwb->min_lat_nsec);
return 0;
}
static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
seq_printf(m, "%u\n", rwb->unknown_cnt);
return 0;
}
static int wbt_normal_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
seq_printf(m, "%u\n", rwb->wb_normal);
return 0;
}
static int wbt_background_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
seq_printf(m, "%u\n", rwb->wb_background);
return 0;
}
static int wbt_class_rd_expired_cnt_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
u64 lat_cnt;
int i;
seq_printf(m, "class\tcnt\n");
for (i = 0; i < WBT_CLASS_NR; i++) {
lat_cnt = atomic64_read(&rwb->class_throtl_infos[i].read_expired_cnt);
seq_printf(m, "%d\t%llu\n", i, lat_cnt);
}
return 0;
}
static int wbt_class_lat_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
struct blk_rq_stat stat;
int cpu;
int i;
struct wbt_throtl_info *ti;
for (i = 0; i < WBT_CLASS_NR; i++) {
ti = rwb_to_wbt_class_info(rwb, i);
blk_rq_stat_init(&stat);
for_each_online_cpu(cpu) {
struct blk_rq_stat *s;
s = per_cpu_ptr(ti->read_lat_stats, cpu);
blk_rq_stat_sum(&stat, s);
blk_rq_stat_init(s);
}
seq_printf(m, "%d mean_lat_usec=%llu total_io=%u\n", i, stat.mean, stat.nr_samples);
}
return 0;
}
static int wbt_debug_show(void *data, struct seq_file *m)
{
struct rq_qos *rqos = data;
struct rq_wb *rwb = RQWB(rqos);
int i;
struct wbt_throtl_info *ti;
for (i = 0; i < WBT_CLASS_NR; i++) {
ti = rwb_to_wbt_class_info(rwb, i);
seq_printf(m, "%d inflight=%d ", i, throtl_info_inflight(ti));
seq_printf(m, "track_bg=%llu track_kswp=%llu track_disc=%llu finished_bg=%llu finished_kswp=%llu finished_disc=%llu "
"untrack_read=%llu untrack_direct_wr=%llu escape_merg=%llu sync_write=%llu rd_expired=%llu ",
atomic64_read(&ti->tracked_cnt[WBT_RWQ_BG]),
atomic64_read(&ti->tracked_cnt[WBT_RWQ_KSWAPD]),
atomic64_read(&ti->tracked_cnt[WBT_RWQ_DISCARD]),
atomic64_read(&ti->finished_cnt[WBT_RWQ_BG]),
atomic64_read(&ti->finished_cnt[WBT_RWQ_KSWAPD]),
atomic64_read(&ti->finished_cnt[WBT_RWQ_DISCARD]),
atomic64_read(&ti->read_cnt),
atomic64_read(&ti->direct_write_cnt),
atomic64_read(&ti->escaped_merge_cnt),
atomic64_read(&ti->wr_sync_cnt),
atomic64_read(&ti->read_expired_cnt)
);
seq_printf(m, "rd_issue=%lu rd_compl=%lu rd_recent_latency_us=%llu\n",
ti->last_issue, ti->last_comp, ti->recent_rd_latency_us);
}
return 0;
}
static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
{"enabled", 0400, wbt_enabled_show},
{"id", 0400, wbt_id_show},
{"inflight", 0400, wbt_inflight_show},
{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
{"unknown_cnt", 0400, wbt_unknown_cnt_show},
{"wb_normal", 0400, wbt_normal_show},
{"wb_background", 0400, wbt_background_show},
{"wbt_class_rd_expired_cnt", 0400, wbt_class_rd_expired_cnt_show},
{"wbt_class_lat", 0400, wbt_class_lat_show},
{"wbt_debug", 0400, wbt_debug_show},
{},
};
#endif
static struct rq_qos_ops wbt_rqos_ops = {
.throttle = wbt_wait,
.issue = wbt_issue,
.merge = wbt_merge,
.track = wbt_track,
.requeue = wbt_requeue,
.done = wbt_done,
.done_bio = wbt_done_bio,
.cleanup = wbt_cleanup,
.queue_depth_changed = wbt_queue_depth_changed,
.exit = wbt_exit,
#ifdef CONFIG_BLK_DEBUG_FS
.debugfs_attrs = wbt_debugfs_attrs,
#endif
};
int wbt_init(struct request_queue *q)
{
struct rq_wb *rwb;
int i;
rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
if (!rwb)
return -ENOMEM;
rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
if (!rwb->cb) {
kfree(rwb);
return -ENOMEM;
}
for (i = 0; i < WBT_NUM_RWQ; i++)
rq_wait_init(&rwb->rq_wait[i]);
rwb->rqos.id = RQ_QOS_WBT;
rwb->rqos.ops = &wbt_rqos_ops;
rwb->rqos.q = q;
rwb->last_comp = rwb->last_issue = jiffies;
rwb->win_nsec = RWB_WINDOW_NSEC;
rwb->enable_state = WBT_STATE_ON_DEFAULT;
rwb->wc = 1;
rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
__wbt_update_limits(rwb);
/*
* Assign rwb and add the stats callback.
*/
rq_qos_add(q, &rwb->rqos);
blk_stat_add_callback(q, rwb->cb);
rwb->min_lat_nsec = wbt_default_latency_nsec(q);
wbt_queue_depth_changed(&rwb->rqos);
wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
for (i = 0; i < WBT_CLASS_NR; i++) {
struct wbt_throtl_info *ti;
ti= rwb_to_wbt_class_info(rwb, i);
if(throtl_info_alloc(ti, GFP_KERNEL))
goto fail_no_mem;
throtl_info_init(ti, q);
}
timer_setup(&rwb->wbt_class_timer, wbt_class_timer_fn, 0);
return 0;
fail_no_mem:
for (i = 0; i < WBT_CLASS_NR; i++) {
struct wbt_throtl_info *ti;
ti= rwb_to_wbt_class_info(rwb, i);
throtl_info_free(ti);
}
blk_stat_free_callback(rwb->cb);
kfree(rwb);
return -ENOMEM;
}
int blk_wbt_init(struct request_queue *q)
{
/*create wbt policy structure for each blkg*/
return blkcg_activate_policy(q, &blkcg_policy_wbt);
}
static struct blkg_policy_data *wbt_pd_alloc(gfp_t gfp,
struct request_queue *q,
struct blkcg *blkcg)
{
struct wbt_grp *wg;
wg = kzalloc_node(sizeof(*wg), gfp, q->node);
if (!wg)
return NULL;
if (throtl_info_alloc(&wg->throtl_info, gfp)) {
kfree(wg);
return NULL;
}
return wg ? &wg->pd : NULL;
}
static void wbt_pd_init(struct blkg_policy_data *pd)
{
struct request_queue *q = pd->blkg->q;
struct wbt_grp *wg;
struct wbt_throtl_info *ti;
wg = pd_to_wg(pd);
ti = &wg->throtl_info;
throtl_info_init(ti, q);
}
/*sysfs interface*/
ssize_t queue_wbt_class_lat_show(struct request_queue *q, char *page)
{
struct wbt_throtl_info *ti;
struct rq_qos *rqos = wbt_rq_qos(q);
struct rq_wb *rwb;
int i;
int p = 0;
if (!rqos)
return 0;
rwb = RQWB(rqos);
for (i = 0; i < WBT_CLASS_NR; i++) {
ti = rwb_to_wbt_class_info(rwb, i);
p += snprintf(page + p, PAGE_SIZE - p, "%d %llu(usec)\n", i, ti->min_lat_nsec / 1000);
}
return p;
}
ssize_t queue_wbt_class_lat_store(struct request_queue *q, const char *page, size_t count)
{
u16 wbt_class;
u64 latency_us;
struct wbt_throtl_info *ti;
struct rq_qos *rqos = wbt_rq_qos(q);
struct rq_wb *rwb;
if (!sysctl_io_qos_enabled)
return -EPERM;
if (!rqos)
return 0;
rwb = RQWB(rqos);
if (sscanf(page, "%hu %llu", &wbt_class, &latency_us) != 2)
return -EINVAL;
ti = rwb_to_wbt_class_info(rwb, wbt_class);
if (ti == NULL)
return -EINVAL;
blk_mq_freeze_queue(q);
blk_mq_quiesce_queue(q);
ti->min_lat_nsec = latency_us * 1000;
throtl_info_calc_limit(ti);
blk_mq_unquiesce_queue(q);
blk_mq_unfreeze_queue(q);
return count;
}
ssize_t queue_wbt_class_conf_show(struct request_queue *q, char *page)
{
struct wbt_throtl_info *ti;
struct rq_qos *rqos = wbt_rq_qos(q);
struct rq_wb *rwb;
int i;
int p = 0;
if (!rqos)
return 0;
rwb = RQWB(rqos);
for (i = 0; i < WBT_CLASS_NR; i++) {
ti = rwb_to_wbt_class_info(rwb, i);
p += snprintf(page + p, PAGE_SIZE,
"%d max_depth=%u min_depth=%u cur_depth=%u normal=%u bg=%u\n",
i, ti->max_depth, ti->min_depth, ti->current_depth,
ti->wb_normal, ti->wb_background);
}
return p;
}
ssize_t queue_wbt_class_conf_store(struct request_queue *q, const char *page, size_t count)
{
struct wbt_throtl_info *ti;
struct rq_qos *rqos = wbt_rq_qos(q);
struct rq_wb *rwb;
u16 wbt_class;
u64 val;
char tok[64];
int ret;
char *p;
if (!sysctl_io_qos_enabled)
return -EPERM;
if (!rqos)
return 0;
rwb = RQWB(rqos);
if (sscanf(page, "%hu %s", &wbt_class, tok) != 2)
return -EINVAL;
if (tok[0] == '\0')
return -EINVAL;
p = tok;
strsep(&p, "=");
if (!p || (sscanf(p, "%llu", &val) != 1))
return -EINVAL;
ti = rwb_to_wbt_class_info(rwb, wbt_class);
blk_mq_freeze_queue(q);
blk_mq_quiesce_queue(q);
ret = -EINVAL;
if (!strcmp(tok, "max_depth")) {
if (val == 0 || val < ti->min_depth)
goto out_finish;
ti->max_depth = min(val, (u64)1024);
ti->current_depth = ti->max_depth;
} else if (!strcmp(tok, "min_depth")) {
if (val > ti->max_depth || val == 0)
goto out_finish;
ti->min_depth = (unsigned int)val;
} else if (!strcmp(tok, "scale_up_pct")) {
if (val > 100 || val == 0)
goto out_finish;
ti->scale_up_percent = val;
}else if (!strcmp(tok, "scale_down_pct")) {
if (val > 100 || val == 0)
goto out_finish;
ti->scale_down_percent = val;
} else
goto out_finish;
ret = 0;
ti->current_depth = ti->max_depth;
throtl_info_calc_limit(ti);
throtl_info_wake_all(ti);
out_finish:
blk_mq_unquiesce_queue(q);
blk_mq_unfreeze_queue(q);
return ret ?: count;
}
static void wbt_pd_free(struct blkg_policy_data *pd)
{
struct wbt_grp *wg = pd_to_wg(pd);
throtl_info_free(&wg->throtl_info);
kfree(wg);
}
static inline u16 wg_to_cgprio(struct wbt_grp *wg)
{
struct blkcg_gq *blkg;
blkg = wg_to_blkg(wg);
return cgroup_priority(&blkg->blkcg->css);
}
static inline u16 wg_to_wbt_class(struct wbt_grp *wg)
{
u16 cgprio;
cgprio = wg_to_cgprio(wg);
return cgprio_to_wbt_class(cgprio);
}
static u64 wg_prfill_stat(struct seq_file *sf, struct blkg_policy_data *pd, int off)
{
struct wbt_grp *wg = pd_to_wg(pd);
const char *dname = blkg_dev_name(pd->blkg);
struct blk_rq_stat stat;
int cpu;
blk_rq_stat_init(&stat);
for_each_online_cpu(cpu) {
struct blk_rq_stat *s;
s = per_cpu_ptr(wg->throtl_info.read_lat_stats, cpu);
blk_rq_stat_sum(&stat, s);
blk_rq_stat_init(s);
}
seq_printf(sf, "%s wbt_class=%d read_mean_lat_usec=%llu\n", dname, wg_to_wbt_class(wg), stat.mean);
return 0;
}
static int wg_stat_show(struct seq_file *sf, void *v)
{
blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), wg_prfill_stat,
&blkcg_policy_wbt, 0, false);
return 0;
}
static struct cftype wbt_grp_files[] = {
{
.name = "wbt.stat",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = wg_stat_show,
},
{}
};
static struct blkcg_policy blkcg_policy_wbt = {
.pd_alloc_fn = wbt_pd_alloc,
.pd_init_fn = wbt_pd_init,
.pd_free_fn = wbt_pd_free,
.dfl_cftypes = wbt_grp_files,
};
static int __init wbt_policy_init(void)
{
/*create for wbt structure for each blkcg */
return blkcg_policy_register(&blkcg_policy_wbt);
}
static void __exit wbt_policy_exit(void)
{
return blkcg_policy_unregister(&blkcg_policy_wbt);
}
module_init(wbt_policy_init);
module_exit(wbt_policy_exit);