600 lines
14 KiB
C
600 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Copyright (C) 2007 Alan Stern
|
|
* Copyright (C) 2009 IBM Corporation
|
|
* Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
|
|
*
|
|
* Authors: Alan Stern <stern@rowland.harvard.edu>
|
|
* K.Prasad <prasad@linux.vnet.ibm.com>
|
|
* Frederic Weisbecker <fweisbec@gmail.com>
|
|
*/
|
|
|
|
/*
|
|
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
|
|
* using the CPU's debug registers.
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/hw_breakpoint.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/user.h>
|
|
#include <asm/desc.h>
|
|
|
|
/* Per cpu debug control register value */
|
|
DEFINE_PER_CPU(unsigned long, cpu_dr7);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_dr7);
|
|
|
|
/* Per cpu debug address registers values */
|
|
static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
|
|
|
|
/*
|
|
* Stores the breakpoints currently in use on each breakpoint address
|
|
* register for each cpus
|
|
*/
|
|
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
|
|
|
|
|
|
static inline unsigned long
|
|
__encode_dr7(int drnum, unsigned int len, unsigned int type)
|
|
{
|
|
unsigned long bp_info;
|
|
|
|
bp_info = (len | type) & 0xf;
|
|
bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
|
|
bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
|
|
|
|
return bp_info;
|
|
}
|
|
|
|
/*
|
|
* Encode the length, type, Exact, and Enable bits for a particular breakpoint
|
|
* as stored in debug register 7.
|
|
*/
|
|
unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
|
|
{
|
|
return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
|
|
}
|
|
|
|
/*
|
|
* Decode the length and type bits for a particular breakpoint as
|
|
* stored in debug register 7. Return the "enabled" status.
|
|
*/
|
|
int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
|
|
{
|
|
int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
|
|
|
|
*len = (bp_info & 0xc) | 0x40;
|
|
*type = (bp_info & 0x3) | 0x80;
|
|
|
|
return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
|
|
}
|
|
|
|
/*
|
|
* Install a perf counter breakpoint.
|
|
*
|
|
* We seek a free debug address register and use it for this
|
|
* breakpoint. Eventually we enable it in the debug control register.
|
|
*
|
|
* Atomic: we hold the counter->ctx->lock and we only handle variables
|
|
* and registers local to this cpu.
|
|
*/
|
|
int arch_install_hw_breakpoint(struct perf_event *bp)
|
|
{
|
|
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
|
|
unsigned long *dr7;
|
|
int i;
|
|
|
|
for (i = 0; i < HBP_NUM; i++) {
|
|
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
|
|
|
|
if (!*slot) {
|
|
*slot = bp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
|
|
return -EBUSY;
|
|
|
|
set_debugreg(info->address, i);
|
|
__this_cpu_write(cpu_debugreg[i], info->address);
|
|
|
|
dr7 = this_cpu_ptr(&cpu_dr7);
|
|
*dr7 |= encode_dr7(i, info->len, info->type);
|
|
|
|
set_debugreg(*dr7, 7);
|
|
if (info->mask)
|
|
set_dr_addr_mask(info->mask, i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Uninstall the breakpoint contained in the given counter.
|
|
*
|
|
* First we search the debug address register it uses and then we disable
|
|
* it.
|
|
*
|
|
* Atomic: we hold the counter->ctx->lock and we only handle variables
|
|
* and registers local to this cpu.
|
|
*/
|
|
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
|
|
{
|
|
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
|
|
unsigned long *dr7;
|
|
int i;
|
|
|
|
for (i = 0; i < HBP_NUM; i++) {
|
|
struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
|
|
|
|
if (*slot == bp) {
|
|
*slot = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
|
|
return;
|
|
|
|
dr7 = this_cpu_ptr(&cpu_dr7);
|
|
*dr7 &= ~__encode_dr7(i, info->len, info->type);
|
|
|
|
set_debugreg(*dr7, 7);
|
|
if (info->mask)
|
|
set_dr_addr_mask(0, i);
|
|
}
|
|
|
|
static int arch_bp_generic_len(int x86_len)
|
|
{
|
|
switch (x86_len) {
|
|
case X86_BREAKPOINT_LEN_1:
|
|
return HW_BREAKPOINT_LEN_1;
|
|
case X86_BREAKPOINT_LEN_2:
|
|
return HW_BREAKPOINT_LEN_2;
|
|
case X86_BREAKPOINT_LEN_4:
|
|
return HW_BREAKPOINT_LEN_4;
|
|
#ifdef CONFIG_X86_64
|
|
case X86_BREAKPOINT_LEN_8:
|
|
return HW_BREAKPOINT_LEN_8;
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int arch_bp_generic_fields(int x86_len, int x86_type,
|
|
int *gen_len, int *gen_type)
|
|
{
|
|
int len;
|
|
|
|
/* Type */
|
|
switch (x86_type) {
|
|
case X86_BREAKPOINT_EXECUTE:
|
|
if (x86_len != X86_BREAKPOINT_LEN_X)
|
|
return -EINVAL;
|
|
|
|
*gen_type = HW_BREAKPOINT_X;
|
|
*gen_len = sizeof(long);
|
|
return 0;
|
|
case X86_BREAKPOINT_WRITE:
|
|
*gen_type = HW_BREAKPOINT_W;
|
|
break;
|
|
case X86_BREAKPOINT_RW:
|
|
*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Len */
|
|
len = arch_bp_generic_len(x86_len);
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
*gen_len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check for virtual address in kernel space.
|
|
*/
|
|
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
|
|
{
|
|
unsigned long va;
|
|
int len;
|
|
|
|
va = hw->address;
|
|
len = arch_bp_generic_len(hw->len);
|
|
WARN_ON_ONCE(len < 0);
|
|
|
|
/*
|
|
* We don't need to worry about va + len - 1 overflowing:
|
|
* we already require that va is aligned to a multiple of len.
|
|
*/
|
|
return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
|
|
}
|
|
|
|
/*
|
|
* Checks whether the range [addr, end], overlaps the area [base, base + size).
|
|
*/
|
|
static inline bool within_area(unsigned long addr, unsigned long end,
|
|
unsigned long base, unsigned long size)
|
|
{
|
|
return end >= base && addr < (base + size);
|
|
}
|
|
|
|
/*
|
|
* Checks whether the range from addr to end, inclusive, overlaps the fixed
|
|
* mapped CPU entry area range or other ranges used for CPU entry.
|
|
*/
|
|
static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
|
|
{
|
|
int cpu;
|
|
|
|
/* CPU entry erea is always used for CPU entry */
|
|
if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
|
|
CPU_ENTRY_AREA_TOTAL_SIZE))
|
|
return true;
|
|
|
|
/*
|
|
* When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU
|
|
* GSBASE value via __per_cpu_offset or pcpu_unit_offsets.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
if (within_area(addr, end, (unsigned long)__per_cpu_offset,
|
|
sizeof(unsigned long) * nr_cpu_ids))
|
|
return true;
|
|
#else
|
|
if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets,
|
|
sizeof(pcpu_unit_offsets)))
|
|
return true;
|
|
#endif
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
/* The original rw GDT is being used after load_direct_gdt() */
|
|
if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
|
|
GDT_SIZE))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int arch_build_bp_info(struct perf_event *bp,
|
|
const struct perf_event_attr *attr,
|
|
struct arch_hw_breakpoint *hw)
|
|
{
|
|
unsigned long bp_end;
|
|
|
|
bp_end = attr->bp_addr + attr->bp_len - 1;
|
|
if (bp_end < attr->bp_addr)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Prevent any breakpoint of any type that overlaps the CPU
|
|
* entry area and data. This protects the IST stacks and also
|
|
* reduces the chance that we ever find out what happens if
|
|
* there's a data breakpoint on the GDT, IDT, or TSS.
|
|
*/
|
|
if (within_cpu_entry(attr->bp_addr, bp_end))
|
|
return -EINVAL;
|
|
|
|
hw->address = attr->bp_addr;
|
|
hw->mask = 0;
|
|
|
|
/* Type */
|
|
switch (attr->bp_type) {
|
|
case HW_BREAKPOINT_W:
|
|
hw->type = X86_BREAKPOINT_WRITE;
|
|
break;
|
|
case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
|
|
hw->type = X86_BREAKPOINT_RW;
|
|
break;
|
|
case HW_BREAKPOINT_X:
|
|
/*
|
|
* We don't allow kernel breakpoints in places that are not
|
|
* acceptable for kprobes. On non-kprobes kernels, we don't
|
|
* allow kernel breakpoints at all.
|
|
*/
|
|
if (attr->bp_addr >= TASK_SIZE_MAX) {
|
|
if (within_kprobe_blacklist(attr->bp_addr))
|
|
return -EINVAL;
|
|
}
|
|
|
|
hw->type = X86_BREAKPOINT_EXECUTE;
|
|
/*
|
|
* x86 inst breakpoints need to have a specific undefined len.
|
|
* But we still need to check userspace is not trying to setup
|
|
* an unsupported length, to get a range breakpoint for example.
|
|
*/
|
|
if (attr->bp_len == sizeof(long)) {
|
|
hw->len = X86_BREAKPOINT_LEN_X;
|
|
return 0;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Len */
|
|
switch (attr->bp_len) {
|
|
case HW_BREAKPOINT_LEN_1:
|
|
hw->len = X86_BREAKPOINT_LEN_1;
|
|
break;
|
|
case HW_BREAKPOINT_LEN_2:
|
|
hw->len = X86_BREAKPOINT_LEN_2;
|
|
break;
|
|
case HW_BREAKPOINT_LEN_4:
|
|
hw->len = X86_BREAKPOINT_LEN_4;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case HW_BREAKPOINT_LEN_8:
|
|
hw->len = X86_BREAKPOINT_LEN_8;
|
|
break;
|
|
#endif
|
|
default:
|
|
/* AMD range breakpoint */
|
|
if (!is_power_of_2(attr->bp_len))
|
|
return -EINVAL;
|
|
if (attr->bp_addr & (attr->bp_len - 1))
|
|
return -EINVAL;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_BPEXT))
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* It's impossible to use a range breakpoint to fake out
|
|
* user vs kernel detection because bp_len - 1 can't
|
|
* have the high bit set. If we ever allow range instruction
|
|
* breakpoints, then we'll have to check for kprobe-blacklisted
|
|
* addresses anywhere in the range.
|
|
*/
|
|
hw->mask = attr->bp_len - 1;
|
|
hw->len = X86_BREAKPOINT_LEN_1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Validate the arch-specific HW Breakpoint register settings
|
|
*/
|
|
int hw_breakpoint_arch_parse(struct perf_event *bp,
|
|
const struct perf_event_attr *attr,
|
|
struct arch_hw_breakpoint *hw)
|
|
{
|
|
unsigned int align;
|
|
int ret;
|
|
|
|
|
|
ret = arch_build_bp_info(bp, attr, hw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (hw->len) {
|
|
case X86_BREAKPOINT_LEN_1:
|
|
align = 0;
|
|
if (hw->mask)
|
|
align = hw->mask;
|
|
break;
|
|
case X86_BREAKPOINT_LEN_2:
|
|
align = 1;
|
|
break;
|
|
case X86_BREAKPOINT_LEN_4:
|
|
align = 3;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case X86_BREAKPOINT_LEN_8:
|
|
align = 7;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Check that the low-order bits of the address are appropriate
|
|
* for the alignment implied by len.
|
|
*/
|
|
if (hw->address & align)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dump the debug register contents to the user.
|
|
* We can't dump our per cpu values because it
|
|
* may contain cpu wide breakpoint, something that
|
|
* doesn't belong to the current task.
|
|
*
|
|
* TODO: include non-ptrace user breakpoints (perf)
|
|
*/
|
|
void aout_dump_debugregs(struct user *dump)
|
|
{
|
|
int i;
|
|
int dr7 = 0;
|
|
struct perf_event *bp;
|
|
struct arch_hw_breakpoint *info;
|
|
struct thread_struct *thread = ¤t->thread;
|
|
|
|
for (i = 0; i < HBP_NUM; i++) {
|
|
bp = thread->ptrace_bps[i];
|
|
|
|
if (bp && !bp->attr.disabled) {
|
|
dump->u_debugreg[i] = bp->attr.bp_addr;
|
|
info = counter_arch_bp(bp);
|
|
dr7 |= encode_dr7(i, info->len, info->type);
|
|
} else {
|
|
dump->u_debugreg[i] = 0;
|
|
}
|
|
}
|
|
|
|
dump->u_debugreg[4] = 0;
|
|
dump->u_debugreg[5] = 0;
|
|
dump->u_debugreg[6] = current->thread.debugreg6;
|
|
|
|
dump->u_debugreg[7] = dr7;
|
|
}
|
|
EXPORT_SYMBOL_GPL(aout_dump_debugregs);
|
|
|
|
/*
|
|
* Release the user breakpoints used by ptrace
|
|
*/
|
|
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
|
|
{
|
|
int i;
|
|
struct thread_struct *t = &tsk->thread;
|
|
|
|
for (i = 0; i < HBP_NUM; i++) {
|
|
unregister_hw_breakpoint(t->ptrace_bps[i]);
|
|
t->ptrace_bps[i] = NULL;
|
|
}
|
|
|
|
t->debugreg6 = 0;
|
|
t->ptrace_dr7 = 0;
|
|
}
|
|
|
|
void hw_breakpoint_restore(void)
|
|
{
|
|
set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
|
|
set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
|
|
set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
|
|
set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
|
|
set_debugreg(current->thread.debugreg6, 6);
|
|
set_debugreg(__this_cpu_read(cpu_dr7), 7);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
|
|
|
|
/*
|
|
* Handle debug exception notifications.
|
|
*
|
|
* Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
|
|
*
|
|
* NOTIFY_DONE returned if one of the following conditions is true.
|
|
* i) When the causative address is from user-space and the exception
|
|
* is a valid one, i.e. not triggered as a result of lazy debug register
|
|
* switching
|
|
* ii) When there are more bits than trap<n> set in DR6 register (such
|
|
* as BD, BS or BT) indicating that more than one debug condition is
|
|
* met and requires some more action in do_debug().
|
|
*
|
|
* NOTIFY_STOP returned for all other cases
|
|
*
|
|
*/
|
|
static int hw_breakpoint_handler(struct die_args *args)
|
|
{
|
|
int i, cpu, rc = NOTIFY_STOP;
|
|
struct perf_event *bp;
|
|
unsigned long dr7, dr6;
|
|
unsigned long *dr6_p;
|
|
|
|
/* The DR6 value is pointed by args->err */
|
|
dr6_p = (unsigned long *)ERR_PTR(args->err);
|
|
dr6 = *dr6_p;
|
|
|
|
/* If it's a single step, TRAP bits are random */
|
|
if (dr6 & DR_STEP)
|
|
return NOTIFY_DONE;
|
|
|
|
/* Do an early return if no trap bits are set in DR6 */
|
|
if ((dr6 & DR_TRAP_BITS) == 0)
|
|
return NOTIFY_DONE;
|
|
|
|
get_debugreg(dr7, 7);
|
|
/* Disable breakpoints during exception handling */
|
|
set_debugreg(0UL, 7);
|
|
/*
|
|
* Assert that local interrupts are disabled
|
|
* Reset the DRn bits in the virtualized register value.
|
|
* The ptrace trigger routine will add in whatever is needed.
|
|
*/
|
|
current->thread.debugreg6 &= ~DR_TRAP_BITS;
|
|
cpu = get_cpu();
|
|
|
|
/* Handle all the breakpoints that were triggered */
|
|
for (i = 0; i < HBP_NUM; ++i) {
|
|
if (likely(!(dr6 & (DR_TRAP0 << i))))
|
|
continue;
|
|
|
|
/*
|
|
* The counter may be concurrently released but that can only
|
|
* occur from a call_rcu() path. We can then safely fetch
|
|
* the breakpoint, use its callback, touch its counter
|
|
* while we are in an rcu_read_lock() path.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
bp = per_cpu(bp_per_reg[i], cpu);
|
|
/*
|
|
* Reset the 'i'th TRAP bit in dr6 to denote completion of
|
|
* exception handling
|
|
*/
|
|
(*dr6_p) &= ~(DR_TRAP0 << i);
|
|
/*
|
|
* bp can be NULL due to lazy debug register switching
|
|
* or due to concurrent perf counter removing.
|
|
*/
|
|
if (!bp) {
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
|
|
perf_bp_event(bp, args->regs);
|
|
|
|
/*
|
|
* Set up resume flag to avoid breakpoint recursion when
|
|
* returning back to origin.
|
|
*/
|
|
if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
|
|
args->regs->flags |= X86_EFLAGS_RF;
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
/*
|
|
* Further processing in do_debug() is needed for a) user-space
|
|
* breakpoints (to generate signals) and b) when the system has
|
|
* taken exception due to multiple causes
|
|
*/
|
|
if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
|
|
(dr6 & (~DR_TRAP_BITS)))
|
|
rc = NOTIFY_DONE;
|
|
|
|
set_debugreg(dr7, 7);
|
|
put_cpu();
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Handle debug exception notifications.
|
|
*/
|
|
int hw_breakpoint_exceptions_notify(
|
|
struct notifier_block *unused, unsigned long val, void *data)
|
|
{
|
|
if (val != DIE_DEBUG)
|
|
return NOTIFY_DONE;
|
|
|
|
return hw_breakpoint_handler(data);
|
|
}
|
|
|
|
void hw_breakpoint_pmu_read(struct perf_event *bp)
|
|
{
|
|
/* TODO */
|
|
}
|