2187 lines
58 KiB
C
2187 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* cpu_feature_enabled() cannot be used this early */
|
|
#define USE_EARLY_PGTABLE_L5
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/io.h>
|
|
#include <linux/syscore_ops.h>
|
|
|
|
#include <asm/stackprotector.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/archrandom.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpumask.h>
|
|
#include <asm/pgtable.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/hwcap2.h>
|
|
#include <linux/numa.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/pat.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/microcode_intel.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/cpu_device_id.h>
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/uv/uv.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_AWARE_SPINLOCKS
|
|
#include <asm/qspinlock.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
u32 elf_hwcap2 __read_mostly;
|
|
|
|
/* all of these masks are initialized in setup_cpu_local_masks() */
|
|
cpumask_var_t cpu_initialized_mask;
|
|
cpumask_var_t cpu_callout_mask;
|
|
cpumask_var_t cpu_callin_mask;
|
|
|
|
/* representing cpus for which sibling maps can be computed */
|
|
cpumask_var_t cpu_sibling_setup_mask;
|
|
|
|
/* Number of siblings per CPU package */
|
|
int smp_num_siblings = 1;
|
|
EXPORT_SYMBOL(smp_num_siblings);
|
|
|
|
/* Last level cache ID of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
|
|
|
|
/* correctly size the local cpu masks */
|
|
void __init setup_cpu_local_masks(void)
|
|
{
|
|
alloc_bootmem_cpumask_var(&cpu_initialized_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_callin_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_callout_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
|
|
}
|
|
|
|
static void default_init(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
cpu_detect_cache_sizes(c);
|
|
#else
|
|
/* Not much we can do here... */
|
|
/* Check if at least it has cpuid */
|
|
if (c->cpuid_level == -1) {
|
|
/* No cpuid. It must be an ancient CPU */
|
|
if (c->x86 == 4)
|
|
strcpy(c->x86_model_id, "486");
|
|
else if (c->x86 == 3)
|
|
strcpy(c->x86_model_id, "386");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const struct cpu_dev default_cpu = {
|
|
.c_init = default_init,
|
|
.c_vendor = "Unknown",
|
|
.c_x86_vendor = X86_VENDOR_UNKNOWN,
|
|
};
|
|
|
|
static const struct cpu_dev *this_cpu = &default_cpu;
|
|
|
|
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* We need valid kernel segments for data and code in long mode too
|
|
* IRET will check the segment types kkeil 2000/10/28
|
|
* Also sysret mandates a special GDT layout
|
|
*
|
|
* TLS descriptors are currently at a different place compared to i386.
|
|
* Hopefully nobody expects them at a fixed place (Wine?)
|
|
*/
|
|
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
|
|
#else
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
|
|
/*
|
|
* Segments used for calling PnP BIOS have byte granularity.
|
|
* They code segments and data segments have fixed 64k limits,
|
|
* the transfer segment sizes are set at run time.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
|
|
/*
|
|
* The APM segments have byte granularity and their bases
|
|
* are set at run time. All have 64k limits.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
|
|
/* data */
|
|
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
|
|
|
|
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
GDT_STACK_CANARY_INIT
|
|
#endif
|
|
} };
|
|
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
|
|
|
|
static int __init x86_mpx_setup(char *s)
|
|
{
|
|
/* require an exact match without trailing characters */
|
|
if (strlen(s))
|
|
return 0;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_MPX))
|
|
return 1;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_MPX);
|
|
pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
|
|
return 1;
|
|
}
|
|
__setup("nompx", x86_mpx_setup);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static int __init x86_nopcid_setup(char *s)
|
|
{
|
|
/* nopcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_PCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
pr_info("nopcid: PCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("nopcid", x86_nopcid_setup);
|
|
#endif
|
|
|
|
static int __init x86_noinvpcid_setup(char *s)
|
|
{
|
|
/* noinvpcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_INVPCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_INVPCID);
|
|
pr_info("noinvpcid: INVPCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("noinvpcid", x86_noinvpcid_setup);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static int cachesize_override = -1;
|
|
static int disable_x86_serial_nr = 1;
|
|
|
|
static int __init cachesize_setup(char *str)
|
|
{
|
|
get_option(&str, &cachesize_override);
|
|
return 1;
|
|
}
|
|
__setup("cachesize=", cachesize_setup);
|
|
|
|
static int __init x86_sep_setup(char *s)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SEP);
|
|
return 1;
|
|
}
|
|
__setup("nosep", x86_sep_setup);
|
|
|
|
/* Standard macro to see if a specific flag is changeable */
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
u32 f1, f2;
|
|
|
|
/*
|
|
* Cyrix and IDT cpus allow disabling of CPUID
|
|
* so the code below may return different results
|
|
* when it is executed before and after enabling
|
|
* the CPUID. Add "volatile" to not allow gcc to
|
|
* optimize the subsequent calls to this function.
|
|
*/
|
|
asm volatile ("pushfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"movl %0, %1 \n\t"
|
|
"xorl %2, %0 \n\t"
|
|
"pushl %0 \n\t"
|
|
"popfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"popfl \n\t"
|
|
|
|
: "=&r" (f1), "=&r" (f2)
|
|
: "ir" (flag));
|
|
|
|
return ((f1^f2) & flag) != 0;
|
|
}
|
|
|
|
/* Probe for the CPUID instruction */
|
|
int have_cpuid_p(void)
|
|
{
|
|
return flag_is_changeable_p(X86_EFLAGS_ID);
|
|
}
|
|
|
|
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long lo, hi;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
|
|
return;
|
|
|
|
/* Disable processor serial number: */
|
|
|
|
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
lo |= 0x200000;
|
|
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
|
|
pr_notice("CPU serial number disabled.\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PN);
|
|
|
|
/* Disabling the serial number may affect the cpuid level */
|
|
c->cpuid_level = cpuid_eax(0);
|
|
}
|
|
|
|
static int __init x86_serial_nr_setup(char *s)
|
|
{
|
|
disable_x86_serial_nr = 0;
|
|
return 1;
|
|
}
|
|
__setup("serialnumber", x86_serial_nr_setup);
|
|
#else
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
return 1;
|
|
}
|
|
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static __init int setup_disable_smep(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SMEP);
|
|
/* Check for things that depend on SMEP being enabled: */
|
|
check_mpx_erratum(&boot_cpu_data);
|
|
return 1;
|
|
}
|
|
__setup("nosmep", setup_disable_smep);
|
|
|
|
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
|
|
{
|
|
if (cpu_has(c, X86_FEATURE_SMEP))
|
|
cr4_set_bits(X86_CR4_SMEP);
|
|
}
|
|
|
|
static __init int setup_disable_smap(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SMAP);
|
|
return 1;
|
|
}
|
|
__setup("nosmap", setup_disable_smap);
|
|
|
|
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long eflags = native_save_fl();
|
|
|
|
/* This should have been cleared long ago */
|
|
BUG_ON(eflags & X86_EFLAGS_AC);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SMAP)) {
|
|
#ifdef CONFIG_X86_SMAP
|
|
cr4_set_bits(X86_CR4_SMAP);
|
|
#else
|
|
cr4_clear_bits(X86_CR4_SMAP);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static __always_inline void setup_umip(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Check the boot processor, plus build option for UMIP. */
|
|
if (!cpu_feature_enabled(X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
/* Check the current processor's cpuid bits. */
|
|
if (!cpu_has(c, X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
cr4_set_bits(X86_CR4_UMIP);
|
|
|
|
pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
|
|
|
|
return;
|
|
|
|
out:
|
|
/*
|
|
* Make sure UMIP is disabled in case it was enabled in a
|
|
* previous boot (e.g., via kexec).
|
|
*/
|
|
cr4_clear_bits(X86_CR4_UMIP);
|
|
}
|
|
|
|
/* These bits should not change their value after CPU init is finished. */
|
|
static const unsigned long cr4_pinned_mask =
|
|
X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
|
|
static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
|
|
static unsigned long cr4_pinned_bits __ro_after_init;
|
|
|
|
void native_write_cr0(unsigned long val)
|
|
{
|
|
unsigned long bits_missing = 0;
|
|
|
|
set_register:
|
|
asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
|
|
|
|
if (static_branch_likely(&cr_pinning)) {
|
|
if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
|
|
bits_missing = X86_CR0_WP;
|
|
val |= bits_missing;
|
|
goto set_register;
|
|
}
|
|
/* Warn after we've set the missing bits. */
|
|
WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(native_write_cr0);
|
|
|
|
void native_write_cr4(unsigned long val)
|
|
{
|
|
unsigned long bits_changed = 0;
|
|
|
|
set_register:
|
|
asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
|
|
|
|
if (static_branch_likely(&cr_pinning)) {
|
|
if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
|
|
bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
|
|
val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
|
|
goto set_register;
|
|
}
|
|
/* Warn after we've corrected the changed bits. */
|
|
WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
|
|
bits_changed);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(native_write_cr4);
|
|
|
|
void cr4_init(void)
|
|
{
|
|
unsigned long cr4 = __read_cr4();
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PCID))
|
|
cr4 |= X86_CR4_PCIDE;
|
|
if (static_branch_likely(&cr_pinning))
|
|
cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
|
|
|
|
__write_cr4(cr4);
|
|
|
|
/* Initialize cr4 shadow for this CPU. */
|
|
this_cpu_write(cpu_tlbstate.cr4, cr4);
|
|
}
|
|
|
|
/*
|
|
* Once CPU feature detection is finished (and boot params have been
|
|
* parsed), record any of the sensitive CR bits that are set, and
|
|
* enable CR pinning.
|
|
*/
|
|
static void __init setup_cr_pinning(void)
|
|
{
|
|
cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
|
|
static_key_enable(&cr_pinning.key);
|
|
}
|
|
|
|
static __init int x86_nofsgsbase_setup(char *arg)
|
|
{
|
|
/* Require an exact match without trailing characters. */
|
|
if (strlen(arg))
|
|
return 0;
|
|
|
|
/* Do not emit a message if the feature is not present. */
|
|
if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
|
|
return 1;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
|
|
pr_info("FSGSBASE disabled via kernel command line\n");
|
|
return 1;
|
|
}
|
|
__setup("nofsgsbase", x86_nofsgsbase_setup);
|
|
|
|
/*
|
|
* Protection Keys are not available in 32-bit mode.
|
|
*/
|
|
static bool pku_disabled;
|
|
|
|
static __always_inline void setup_pku(struct cpuinfo_x86 *c)
|
|
{
|
|
struct pkru_state *pk;
|
|
|
|
/* check the boot processor, plus compile options for PKU: */
|
|
if (!cpu_feature_enabled(X86_FEATURE_PKU))
|
|
return;
|
|
/* checks the actual processor's cpuid bits: */
|
|
if (!cpu_has(c, X86_FEATURE_PKU))
|
|
return;
|
|
if (pku_disabled)
|
|
return;
|
|
|
|
cr4_set_bits(X86_CR4_PKE);
|
|
pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
|
|
if (pk)
|
|
pk->pkru = init_pkru_value;
|
|
/*
|
|
* Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
|
|
* cpuid bit to be set. We need to ensure that we
|
|
* update that bit in this CPU's "cpu_info".
|
|
*/
|
|
set_cpu_cap(c, X86_FEATURE_OSPKE);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
|
static __init int setup_disable_pku(char *arg)
|
|
{
|
|
/*
|
|
* Do not clear the X86_FEATURE_PKU bit. All of the
|
|
* runtime checks are against OSPKE so clearing the
|
|
* bit does nothing.
|
|
*
|
|
* This way, we will see "pku" in cpuinfo, but not
|
|
* "ospke", which is exactly what we want. It shows
|
|
* that the CPU has PKU, but the OS has not enabled it.
|
|
* This happens to be exactly how a system would look
|
|
* if we disabled the config option.
|
|
*/
|
|
pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
|
|
pku_disabled = true;
|
|
return 1;
|
|
}
|
|
__setup("nopku", setup_disable_pku);
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Some CPU features depend on higher CPUID levels, which may not always
|
|
* be available due to CPUID level capping or broken virtualization
|
|
* software. Add those features to this table to auto-disable them.
|
|
*/
|
|
struct cpuid_dependent_feature {
|
|
u32 feature;
|
|
u32 level;
|
|
};
|
|
|
|
static const struct cpuid_dependent_feature
|
|
cpuid_dependent_features[] = {
|
|
{ X86_FEATURE_MWAIT, 0x00000005 },
|
|
{ X86_FEATURE_DCA, 0x00000009 },
|
|
{ X86_FEATURE_XSAVE, 0x0000000d },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
|
|
{
|
|
const struct cpuid_dependent_feature *df;
|
|
|
|
for (df = cpuid_dependent_features; df->feature; df++) {
|
|
|
|
if (!cpu_has(c, df->feature))
|
|
continue;
|
|
/*
|
|
* Note: cpuid_level is set to -1 if unavailable, but
|
|
* extended_extended_level is set to 0 if unavailable
|
|
* and the legitimate extended levels are all negative
|
|
* when signed; hence the weird messing around with
|
|
* signs here...
|
|
*/
|
|
if (!((s32)df->level < 0 ?
|
|
(u32)df->level > (u32)c->extended_cpuid_level :
|
|
(s32)df->level > (s32)c->cpuid_level))
|
|
continue;
|
|
|
|
clear_cpu_cap(c, df->feature);
|
|
if (!warn)
|
|
continue;
|
|
|
|
pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
|
|
x86_cap_flag(df->feature), df->level);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Naming convention should be: <Name> [(<Codename>)]
|
|
* This table only is used unless init_<vendor>() below doesn't set it;
|
|
* in particular, if CPUID levels 0x80000002..4 are supported, this
|
|
* isn't used
|
|
*/
|
|
|
|
/* Look up CPU names by table lookup. */
|
|
static const char *table_lookup_model(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
const struct legacy_cpu_model_info *info;
|
|
|
|
if (c->x86_model >= 16)
|
|
return NULL; /* Range check */
|
|
|
|
if (!this_cpu)
|
|
return NULL;
|
|
|
|
info = this_cpu->legacy_models;
|
|
|
|
while (info->family) {
|
|
if (info->family == c->x86)
|
|
return info->model_names[c->x86_model];
|
|
info++;
|
|
}
|
|
#endif
|
|
return NULL; /* Not found */
|
|
}
|
|
|
|
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
|
|
__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
|
|
|
|
void load_percpu_segment(int cpu)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
loadsegment(fs, __KERNEL_PERCPU);
|
|
#else
|
|
__loadsegment_simple(gs, 0);
|
|
wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
|
|
#endif
|
|
load_stack_canary_segment();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* The 32-bit entry code needs to find cpu_entry_area. */
|
|
DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
|
|
#endif
|
|
|
|
/* Load the original GDT from the per-cpu structure */
|
|
void load_direct_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_direct_gdt);
|
|
|
|
/* Load a fixmap remapping of the per-cpu GDT */
|
|
void load_fixmap_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_fixmap_gdt);
|
|
|
|
/*
|
|
* Current gdt points %fs at the "master" per-cpu area: after this,
|
|
* it's on the real one.
|
|
*/
|
|
void switch_to_new_gdt(int cpu)
|
|
{
|
|
/* Load the original GDT */
|
|
load_direct_gdt(cpu);
|
|
/* Reload the per-cpu base */
|
|
load_percpu_segment(cpu);
|
|
}
|
|
|
|
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
|
|
|
|
static void get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
char *p, *q, *s;
|
|
|
|
if (c->extended_cpuid_level < 0x80000004)
|
|
return;
|
|
|
|
v = (unsigned int *)c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
|
|
/* Trim whitespace */
|
|
p = q = s = &c->x86_model_id[0];
|
|
|
|
while (*p == ' ')
|
|
p++;
|
|
|
|
while (*p) {
|
|
/* Note the last non-whitespace index */
|
|
if (!isspace(*p))
|
|
s = q;
|
|
|
|
*q++ = *p++;
|
|
}
|
|
|
|
*(s + 1) = '\0';
|
|
}
|
|
|
|
void detect_num_cpu_cores(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
c->x86_max_cores = 1;
|
|
if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
|
|
return;
|
|
|
|
cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
|
|
if (eax & 0x1f)
|
|
c->x86_max_cores = (eax >> 26) + 1;
|
|
}
|
|
|
|
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, ebx, ecx, edx, l2size;
|
|
|
|
n = c->extended_cpuid_level;
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
|
|
c->x86_cache_size = (ecx>>24) + (edx>>24);
|
|
#ifdef CONFIG_X86_64
|
|
/* On K8 L1 TLB is inclusive, so don't count it */
|
|
c->x86_tlbsize = 0;
|
|
#endif
|
|
}
|
|
|
|
if (n < 0x80000006) /* Some chips just has a large L1. */
|
|
return;
|
|
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
|
|
l2size = ecx >> 16;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
|
|
#else
|
|
/* do processor-specific cache resizing */
|
|
if (this_cpu->legacy_cache_size)
|
|
l2size = this_cpu->legacy_cache_size(c, l2size);
|
|
|
|
/* Allow user to override all this if necessary. */
|
|
if (cachesize_override != -1)
|
|
l2size = cachesize_override;
|
|
|
|
if (l2size == 0)
|
|
return; /* Again, no L2 cache is possible */
|
|
#endif
|
|
|
|
c->x86_cache_size = l2size;
|
|
}
|
|
|
|
u16 __read_mostly tlb_lli_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lli_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lli_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lld_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_1g[NR_INFO];
|
|
|
|
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
|
|
{
|
|
if (this_cpu->c_detect_tlb)
|
|
this_cpu->c_detect_tlb(c);
|
|
|
|
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
|
|
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
|
|
tlb_lli_4m[ENTRIES]);
|
|
|
|
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
|
|
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
|
|
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
|
|
}
|
|
|
|
int detect_ht_early(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HT))
|
|
return -1;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
|
|
return -1;
|
|
|
|
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
|
|
return -1;
|
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16;
|
|
if (smp_num_siblings == 1)
|
|
pr_info_once("CPU0: Hyper-Threading is disabled\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void detect_ht(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
int index_msb, core_bits;
|
|
|
|
if (detect_ht_early(c) < 0)
|
|
return;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
|
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
|
|
core_bits = get_count_order(c->x86_max_cores);
|
|
|
|
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
|
|
((1 << core_bits) - 1);
|
|
#endif
|
|
}
|
|
|
|
static void get_cpu_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
int i;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) {
|
|
if (!cpu_devs[i])
|
|
break;
|
|
|
|
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
|
|
(cpu_devs[i]->c_ident[1] &&
|
|
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
|
|
|
|
this_cpu = cpu_devs[i];
|
|
c->x86_vendor = this_cpu->c_x86_vendor;
|
|
return;
|
|
}
|
|
}
|
|
|
|
pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
|
|
"CPU: Your system may be unstable.\n", v);
|
|
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
this_cpu = &default_cpu;
|
|
}
|
|
|
|
void cpu_detect(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
|
|
(unsigned int *)&c->x86_vendor_id[0],
|
|
(unsigned int *)&c->x86_vendor_id[8],
|
|
(unsigned int *)&c->x86_vendor_id[4]);
|
|
|
|
c->x86 = 4;
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 junk, tfms, cap0, misc;
|
|
|
|
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
|
|
c->x86 = x86_family(tfms);
|
|
c->x86_model = x86_model(tfms);
|
|
c->x86_stepping = x86_stepping(tfms);
|
|
|
|
if (cap0 & (1<<19)) {
|
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void apply_forced_caps(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
|
|
c->x86_capability[i] &= ~cpu_caps_cleared[i];
|
|
c->x86_capability[i] |= cpu_caps_set[i];
|
|
}
|
|
}
|
|
|
|
static void init_speculation_control(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
|
|
* and they also have a different bit for STIBP support. Also,
|
|
* a hypervisor might have set the individual AMD bits even on
|
|
* Intel CPUs, for finer-grained selection of what's available.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
|
|
cpu_has(c, X86_FEATURE_VIRT_SSBD))
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBPB))
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
|
|
}
|
|
}
|
|
|
|
static void init_cqm(struct cpuinfo_x86 *c)
|
|
{
|
|
if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
|
|
c->x86_cache_max_rmid = -1;
|
|
c->x86_cache_occ_scale = -1;
|
|
return;
|
|
}
|
|
|
|
/* will be overridden if occupancy monitoring exists */
|
|
c->x86_cache_max_rmid = cpuid_ebx(0xf);
|
|
|
|
if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
|
|
cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
|
|
cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
/* QoS sub-leaf, EAX=0Fh, ECX=1 */
|
|
cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_cache_max_rmid = ecx;
|
|
c->x86_cache_occ_scale = ebx;
|
|
}
|
|
}
|
|
|
|
void get_cpu_cap(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_1_ECX] = ecx;
|
|
c->x86_capability[CPUID_1_EDX] = edx;
|
|
}
|
|
|
|
/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
|
|
if (c->cpuid_level >= 0x00000006)
|
|
c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
|
|
|
|
/* Additional Intel-defined flags: level 0x00000007 */
|
|
if (c->cpuid_level >= 0x00000007) {
|
|
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_7_0_EBX] = ebx;
|
|
c->x86_capability[CPUID_7_ECX] = ecx;
|
|
c->x86_capability[CPUID_7_EDX] = edx;
|
|
|
|
/* Check valid sub-leaf index before accessing it */
|
|
if (eax >= 1) {
|
|
cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_7_1_EAX] = eax;
|
|
}
|
|
}
|
|
|
|
/* Extended state features: level 0x0000000d */
|
|
if (c->cpuid_level >= 0x0000000d) {
|
|
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_D_1_EAX] = eax;
|
|
}
|
|
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
eax = cpuid_eax(0x80000000);
|
|
c->extended_cpuid_level = eax;
|
|
|
|
if ((eax & 0xffff0000) == 0x80000000) {
|
|
if (eax >= 0x80000001) {
|
|
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0001_ECX] = ecx;
|
|
c->x86_capability[CPUID_8000_0001_EDX] = edx;
|
|
}
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000007) {
|
|
cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0007_EBX] = ebx;
|
|
c->x86_power = edx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_8000_0008_EBX] = ebx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x8000000a)
|
|
c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
|
|
|
|
init_scattered_cpuid_features(c);
|
|
init_speculation_control(c);
|
|
init_cqm(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, after probe.
|
|
* This needs to happen each time we re-probe, which may happen
|
|
* several times during CPU initialization.
|
|
*/
|
|
apply_forced_caps(c);
|
|
}
|
|
|
|
void get_cpu_address_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
}
|
|
#ifdef CONFIG_X86_32
|
|
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
|
|
c->x86_phys_bits = 36;
|
|
#endif
|
|
c->x86_cache_bits = c->x86_phys_bits;
|
|
}
|
|
|
|
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
int i;
|
|
|
|
/*
|
|
* First of all, decide if this is a 486 or higher
|
|
* It's a 486 if we can modify the AC flag
|
|
*/
|
|
if (flag_is_changeable_p(X86_EFLAGS_AC))
|
|
c->x86 = 4;
|
|
else
|
|
c->x86 = 3;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++)
|
|
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
|
|
c->x86_vendor_id[0] = 0;
|
|
cpu_devs[i]->c_identify(c);
|
|
if (c->x86_vendor_id[0]) {
|
|
get_cpu_vendor(c);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define NO_SPECULATION BIT(0)
|
|
#define NO_MELTDOWN BIT(1)
|
|
#define NO_SSB BIT(2)
|
|
#define NO_L1TF BIT(3)
|
|
#define NO_MDS BIT(4)
|
|
#define MSBDS_ONLY BIT(5)
|
|
#define NO_SWAPGS BIT(6)
|
|
#define NO_ITLB_MULTIHIT BIT(7)
|
|
#define NO_SPECTRE_V2 BIT(8)
|
|
#define NO_EIBRS_PBRSB BIT(9)
|
|
#define NO_MMIO BIT(10)
|
|
|
|
#define VULNWL(_vendor, _family, _model, _whitelist) \
|
|
{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
|
|
|
|
#define VULNWL_INTEL(model, whitelist) \
|
|
VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
|
|
|
|
#define VULNWL_AMD(family, whitelist) \
|
|
VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
|
|
|
|
#define VULNWL_HYGON(family, whitelist) \
|
|
VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
|
|
|
|
static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
|
|
VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
|
|
|
|
/* Intel Family 6 */
|
|
VULNWL_INTEL(TIGERLAKE, NO_MMIO),
|
|
VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
|
|
VULNWL_INTEL(ALDERLAKE, NO_MMIO),
|
|
VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
|
|
|
|
VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(CORE_YONAH, NO_SSB),
|
|
|
|
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
|
|
|
|
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
|
|
|
|
/*
|
|
* Technically, swapgs isn't serializing on AMD (despite it previously
|
|
* being documented as such in the APM). But according to AMD, %gs is
|
|
* updated non-speculatively, and the issuing of %gs-relative memory
|
|
* operands will be blocked until the %gs update completes, which is
|
|
* good enough for our purposes.
|
|
*/
|
|
|
|
VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
|
|
VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
|
|
VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
|
|
|
|
/* AMD Family 0xf - 0x12 */
|
|
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
|
|
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
|
|
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
|
|
|
|
/* Zhaoxin Family 7 */
|
|
VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
|
|
VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
|
|
{}
|
|
};
|
|
|
|
#define VULNBL(vendor, family, model, blacklist) \
|
|
X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
|
|
|
|
#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
|
|
X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
|
|
INTEL_FAM6_##model, steppings, \
|
|
X86_FEATURE_ANY, issues)
|
|
|
|
#define VULNBL_AMD(family, blacklist) \
|
|
VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
|
|
|
|
#define VULNBL_HYGON(family, blacklist) \
|
|
VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
|
|
|
|
#define SRBDS BIT(0)
|
|
/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
|
|
#define MMIO BIT(1)
|
|
/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
|
|
#define MMIO_SBDS BIT(2)
|
|
/* CPU is affected by RETbleed, speculating where you would not expect it */
|
|
#define RETBLEED BIT(3)
|
|
|
|
static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
|
|
VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
|
|
VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED),
|
|
VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
|
|
VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
|
|
VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
|
|
|
|
VULNBL_AMD(0x15, RETBLEED),
|
|
VULNBL_AMD(0x16, RETBLEED),
|
|
VULNBL_AMD(0x17, RETBLEED),
|
|
VULNBL_HYGON(0x18, RETBLEED),
|
|
{}
|
|
};
|
|
|
|
static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
|
|
{
|
|
const struct x86_cpu_id *m = x86_match_cpu(table);
|
|
|
|
return m && !!(m->driver_data & which);
|
|
}
|
|
|
|
u64 x86_read_arch_cap_msr(void)
|
|
{
|
|
u64 ia32_cap = 0;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
|
|
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
|
|
|
|
return ia32_cap;
|
|
}
|
|
|
|
static bool arch_cap_mmio_immune(u64 ia32_cap)
|
|
{
|
|
return (ia32_cap & ARCH_CAP_FBSDP_NO &&
|
|
ia32_cap & ARCH_CAP_PSDP_NO &&
|
|
ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
|
|
}
|
|
|
|
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 ia32_cap = x86_read_arch_cap_msr();
|
|
|
|
/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
|
|
!(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
|
|
setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
|
|
|
|
if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
|
|
!(ia32_cap & ARCH_CAP_SSB_NO) &&
|
|
!cpu_has(c, X86_FEATURE_AMD_SSB_NO))
|
|
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
|
|
|
|
if (ia32_cap & ARCH_CAP_IBRS_ALL)
|
|
setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
|
|
!(ia32_cap & ARCH_CAP_MDS_NO)) {
|
|
setup_force_cpu_bug(X86_BUG_MDS);
|
|
if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
|
|
setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
|
|
}
|
|
|
|
if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
|
|
setup_force_cpu_bug(X86_BUG_SWAPGS);
|
|
|
|
/*
|
|
* When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
|
|
* - TSX is supported or
|
|
* - TSX_CTRL is present
|
|
*
|
|
* TSX_CTRL check is needed for cases when TSX could be disabled before
|
|
* the kernel boot e.g. kexec.
|
|
* TSX_CTRL check alone is not sufficient for cases when the microcode
|
|
* update is not present or running as guest that don't get TSX_CTRL.
|
|
*/
|
|
if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
|
|
(cpu_has(c, X86_FEATURE_RTM) ||
|
|
(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
|
|
setup_force_cpu_bug(X86_BUG_TAA);
|
|
|
|
/*
|
|
* SRBDS affects CPUs which support RDRAND or RDSEED and are listed
|
|
* in the vulnerability blacklist.
|
|
*
|
|
* Some of the implications and mitigation of Shared Buffers Data
|
|
* Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
|
|
* SRBDS.
|
|
*/
|
|
if ((cpu_has(c, X86_FEATURE_RDRAND) ||
|
|
cpu_has(c, X86_FEATURE_RDSEED)) &&
|
|
cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
|
|
setup_force_cpu_bug(X86_BUG_SRBDS);
|
|
|
|
/*
|
|
* Processor MMIO Stale Data bug enumeration
|
|
*
|
|
* Affected CPU list is generally enough to enumerate the vulnerability,
|
|
* but for virtualization case check for ARCH_CAP MSR bits also, VMM may
|
|
* not want the guest to enumerate the bug.
|
|
*
|
|
* Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
|
|
* nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
|
|
*/
|
|
if (!arch_cap_mmio_immune(ia32_cap)) {
|
|
if (cpu_matches(cpu_vuln_blacklist, MMIO))
|
|
setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
|
|
else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
|
|
setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
|
|
}
|
|
|
|
if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
|
|
if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
|
|
setup_force_cpu_bug(X86_BUG_RETBLEED);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
|
|
!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
|
|
!(ia32_cap & ARCH_CAP_PBRSB_NO))
|
|
setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
|
|
|
|
if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
|
|
return;
|
|
|
|
/* Rogue Data Cache Load? No! */
|
|
if (ia32_cap & ARCH_CAP_RDCL_NO)
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
|
|
|
|
if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_L1TF);
|
|
}
|
|
|
|
/*
|
|
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
|
|
* unfortunately, that's not true in practice because of early VIA
|
|
* chips and (more importantly) broken virtualizers that are not easy
|
|
* to detect. In the latter case it doesn't even *fail* reliably, so
|
|
* probing for it doesn't even work. Disable it completely on 32-bit
|
|
* unless we can find a reliable way to detect all the broken cases.
|
|
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
|
|
*/
|
|
static void detect_nopl(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
setup_clear_cpu_cap(X86_FEATURE_NOPL);
|
|
#else
|
|
setup_force_cpu_cap(X86_FEATURE_NOPL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Do minimum CPU detection early.
|
|
* Fields really needed: vendor, cpuid_level, family, model, mask,
|
|
* cache alignment.
|
|
* The others are not touched to avoid unwanted side effects.
|
|
*
|
|
* WARNING: this function is only called on the boot CPU. Don't add code
|
|
* here that is supposed to run on all CPUs.
|
|
*/
|
|
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
#else
|
|
c->x86_clflush_size = 32;
|
|
c->x86_phys_bits = 32;
|
|
c->x86_virt_bits = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
|
|
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (have_cpuid_p()) {
|
|
cpu_detect(c);
|
|
get_cpu_vendor(c);
|
|
get_cpu_cap(c);
|
|
get_cpu_address_sizes(c);
|
|
setup_force_cpu_cap(X86_FEATURE_CPUID);
|
|
|
|
if (this_cpu->c_early_init)
|
|
this_cpu->c_early_init(c);
|
|
|
|
c->cpu_index = 0;
|
|
filter_cpuid_features(c, false);
|
|
|
|
if (this_cpu->c_bsp_init)
|
|
this_cpu->c_bsp_init(c);
|
|
} else {
|
|
setup_clear_cpu_cap(X86_FEATURE_CPUID);
|
|
}
|
|
|
|
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
|
|
|
|
cpu_set_bug_bits(c);
|
|
|
|
fpu__init_system(c);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Regardless of whether PCID is enumerated, the SDM says
|
|
* that it can't be enabled in 32-bit mode.
|
|
*/
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
#endif
|
|
|
|
/*
|
|
* Later in the boot process pgtable_l5_enabled() relies on
|
|
* cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
|
|
* enabled by this point we need to clear the feature bit to avoid
|
|
* false-positives at the later stage.
|
|
*
|
|
* pgtable_l5_enabled() can be false here for several reasons:
|
|
* - 5-level paging is disabled compile-time;
|
|
* - it's 32-bit kernel;
|
|
* - machine doesn't support 5-level paging;
|
|
* - user specified 'no5lvl' in kernel command line.
|
|
*/
|
|
if (!pgtable_l5_enabled())
|
|
setup_clear_cpu_cap(X86_FEATURE_LA57);
|
|
|
|
detect_nopl();
|
|
}
|
|
|
|
void __init early_cpu_init(void)
|
|
{
|
|
const struct cpu_dev *const *cdev;
|
|
int count = 0;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
pr_info("KERNEL supported cpus:\n");
|
|
#endif
|
|
|
|
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
|
|
const struct cpu_dev *cpudev = *cdev;
|
|
|
|
if (count >= X86_VENDOR_NUM)
|
|
break;
|
|
cpu_devs[count] = cpudev;
|
|
count++;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
{
|
|
unsigned int j;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
if (!cpudev->c_ident[j])
|
|
continue;
|
|
pr_info(" %s %s\n", cpudev->c_vendor,
|
|
cpudev->c_ident[j]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
early_identify_cpu(&boot_cpu_data);
|
|
}
|
|
|
|
static bool detect_null_seg_behavior(void)
|
|
{
|
|
/*
|
|
* Empirically, writing zero to a segment selector on AMD does
|
|
* not clear the base, whereas writing zero to a segment
|
|
* selector on Intel does clear the base. Intel's behavior
|
|
* allows slightly faster context switches in the common case
|
|
* where GS is unused by the prev and next threads.
|
|
*
|
|
* Since neither vendor documents this anywhere that I can see,
|
|
* detect it directly instead of hardcoding the choice by
|
|
* vendor.
|
|
*
|
|
* I've designated AMD's behavior as the "bug" because it's
|
|
* counterintuitive and less friendly.
|
|
*/
|
|
|
|
unsigned long old_base, tmp;
|
|
rdmsrl(MSR_FS_BASE, old_base);
|
|
wrmsrl(MSR_FS_BASE, 1);
|
|
loadsegment(fs, 0);
|
|
rdmsrl(MSR_FS_BASE, tmp);
|
|
wrmsrl(MSR_FS_BASE, old_base);
|
|
return tmp == 0;
|
|
}
|
|
|
|
void check_null_seg_clears_base(struct cpuinfo_x86 *c)
|
|
{
|
|
/* BUG_NULL_SEG is only relevant with 64bit userspace */
|
|
if (!IS_ENABLED(CONFIG_X86_64))
|
|
return;
|
|
|
|
/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
|
|
if (c->extended_cpuid_level >= 0x80000021 &&
|
|
cpuid_eax(0x80000021) & BIT(6))
|
|
return;
|
|
|
|
/*
|
|
* CPUID bit above wasn't set. If this kernel is still running
|
|
* as a HV guest, then the HV has decided not to advertize
|
|
* that CPUID bit for whatever reason. For example, one
|
|
* member of the migration pool might be vulnerable. Which
|
|
* means, the bug is present: set the BUG flag and return.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
|
|
set_cpu_bug(c, X86_BUG_NULL_SEG);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Zen2 CPUs also have this behaviour, but no CPUID bit.
|
|
* 0x18 is the respective family for Hygon.
|
|
*/
|
|
if ((c->x86 == 0x17 || c->x86 == 0x18) &&
|
|
detect_null_seg_behavior())
|
|
return;
|
|
|
|
/* All the remaining ones are affected */
|
|
set_cpu_bug(c, X86_BUG_NULL_SEG);
|
|
}
|
|
|
|
static void generic_identify(struct cpuinfo_x86 *c)
|
|
{
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (!have_cpuid_p())
|
|
return;
|
|
|
|
cpu_detect(c);
|
|
|
|
get_cpu_vendor(c);
|
|
|
|
get_cpu_cap(c);
|
|
|
|
get_cpu_address_sizes(c);
|
|
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_SMP
|
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
|
|
# else
|
|
c->apicid = c->initial_apicid;
|
|
# endif
|
|
#endif
|
|
c->phys_proc_id = c->initial_apicid;
|
|
}
|
|
|
|
get_model_name(c); /* Default name */
|
|
|
|
/*
|
|
* ESPFIX is a strange bug. All real CPUs have it. Paravirt
|
|
* systems that run Linux at CPL > 0 may or may not have the
|
|
* issue, but, even if they have the issue, there's absolutely
|
|
* nothing we can do about it because we can't use the real IRET
|
|
* instruction.
|
|
*
|
|
* NB: For the time being, only 32-bit kernels support
|
|
* X86_BUG_ESPFIX as such. 64-bit kernels directly choose
|
|
* whether to apply espfix using paravirt hooks. If any
|
|
* non-paravirt system ever shows up that does *not* have the
|
|
* ESPFIX issue, we can change this.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_PARAVIRT_XXL
|
|
do {
|
|
extern void native_iret(void);
|
|
if (pv_ops.cpu.iret == native_iret)
|
|
set_cpu_bug(c, X86_BUG_ESPFIX);
|
|
} while (0);
|
|
# else
|
|
set_cpu_bug(c, X86_BUG_ESPFIX);
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
static void x86_init_cache_qos(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* The heavy lifting of max_rmid and cache_occ_scale are handled
|
|
* in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
|
|
* in case CQM bits really aren't there in this CPU.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
boot_cpu_data.x86_cache_max_rmid =
|
|
min(boot_cpu_data.x86_cache_max_rmid,
|
|
c->x86_cache_max_rmid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Validate that ACPI/mptables have the same information about the
|
|
* effective APIC id and update the package map.
|
|
*/
|
|
static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned int apicid, cpu = smp_processor_id();
|
|
|
|
apicid = apic->cpu_present_to_apicid(cpu);
|
|
|
|
if (apicid != c->apicid) {
|
|
pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
|
|
cpu, apicid, c->initial_apicid);
|
|
}
|
|
BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
|
|
BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
|
|
#else
|
|
c->logical_proc_id = 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
static void identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = 0;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->x86_model = c->x86_stepping = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
c->x86_max_cores = 1;
|
|
c->x86_coreid_bits = 0;
|
|
c->cu_id = 0xff;
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
#else
|
|
c->cpuid_level = -1; /* CPUID not detected */
|
|
c->x86_clflush_size = 32;
|
|
c->x86_phys_bits = 32;
|
|
c->x86_virt_bits = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
|
|
|
|
generic_identify(c);
|
|
|
|
if (this_cpu->c_identify)
|
|
this_cpu->c_identify(c);
|
|
|
|
/* Clear/Set all flags overridden by options, after probe */
|
|
apply_forced_caps(c);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
if (this_cpu->c_init)
|
|
this_cpu->c_init(c);
|
|
|
|
#ifdef CONFIG_NUMA_AWARE_SPINLOCKS
|
|
cna_set_llc_id_per_cpu(smp_processor_id());
|
|
#endif
|
|
|
|
/* Disable the PN if appropriate */
|
|
squash_the_stupid_serial_number(c);
|
|
|
|
/* Set up SMEP/SMAP/UMIP */
|
|
setup_smep(c);
|
|
setup_smap(c);
|
|
setup_umip(c);
|
|
|
|
/* Enable FSGSBASE instructions if available. */
|
|
if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
|
|
cr4_set_bits(X86_CR4_FSGSBASE);
|
|
elf_hwcap2 |= HWCAP2_FSGSBASE;
|
|
}
|
|
|
|
/*
|
|
* The vendor-specific functions might have changed features.
|
|
* Now we do "generic changes."
|
|
*/
|
|
|
|
/* Filter out anything that depends on CPUID levels we don't have */
|
|
filter_cpuid_features(c, true);
|
|
|
|
/* If the model name is still unset, do table lookup. */
|
|
if (!c->x86_model_id[0]) {
|
|
const char *p;
|
|
p = table_lookup_model(c);
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
else
|
|
/* Last resort... */
|
|
sprintf(c->x86_model_id, "%02x/%02x",
|
|
c->x86, c->x86_model);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
detect_ht(c);
|
|
#endif
|
|
|
|
x86_init_rdrand(c);
|
|
x86_init_cache_qos(c);
|
|
setup_pku(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, need do it
|
|
* before following smp all cpus cap AND.
|
|
*/
|
|
apply_forced_caps(c);
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
/* AND the already accumulated flags with these */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
|
|
/* OR, i.e. replicate the bug flags */
|
|
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
|
|
c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
|
|
}
|
|
|
|
/* Init Machine Check Exception if available. */
|
|
mcheck_cpu_init(c);
|
|
|
|
select_idle_routine(c);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
numa_add_cpu(smp_processor_id());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
|
|
* on 32-bit kernels:
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
void enable_sep_cpu(void)
|
|
{
|
|
struct tss_struct *tss;
|
|
int cpu;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_SEP))
|
|
return;
|
|
|
|
cpu = get_cpu();
|
|
tss = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
/*
|
|
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
|
|
* see the big comment in struct x86_hw_tss's definition.
|
|
*/
|
|
|
|
tss->x86_tss.ss1 = __KERNEL_CS;
|
|
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
|
|
wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
|
|
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
|
|
|
|
put_cpu();
|
|
}
|
|
#endif
|
|
|
|
void __init identify_boot_cpu(void)
|
|
{
|
|
identify_cpu(&boot_cpu_data);
|
|
#ifdef CONFIG_X86_32
|
|
sysenter_setup();
|
|
enable_sep_cpu();
|
|
#endif
|
|
cpu_detect_tlb(&boot_cpu_data);
|
|
setup_cr_pinning();
|
|
|
|
tsx_init();
|
|
}
|
|
|
|
void identify_secondary_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
BUG_ON(c == &boot_cpu_data);
|
|
identify_cpu(c);
|
|
#ifdef CONFIG_X86_32
|
|
enable_sep_cpu();
|
|
#endif
|
|
mtrr_ap_init();
|
|
validate_apic_and_package_id(c);
|
|
x86_spec_ctrl_setup_ap();
|
|
update_srbds_msr();
|
|
}
|
|
|
|
static __init int setup_noclflush(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
|
|
return 1;
|
|
}
|
|
__setup("noclflush", setup_noclflush);
|
|
|
|
void print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
const char *vendor = NULL;
|
|
|
|
if (c->x86_vendor < X86_VENDOR_NUM) {
|
|
vendor = this_cpu->c_vendor;
|
|
} else {
|
|
if (c->cpuid_level >= 0)
|
|
vendor = c->x86_vendor_id;
|
|
}
|
|
|
|
if (vendor && !strstr(c->x86_model_id, vendor))
|
|
pr_cont("%s ", vendor);
|
|
|
|
if (c->x86_model_id[0])
|
|
pr_cont("%s", c->x86_model_id);
|
|
else
|
|
pr_cont("%d86", c->x86);
|
|
|
|
pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
|
|
|
|
if (c->x86_stepping || c->cpuid_level >= 0)
|
|
pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
|
|
else
|
|
pr_cont(")\n");
|
|
}
|
|
|
|
/*
|
|
* clearcpuid= was already parsed in fpu__init_parse_early_param.
|
|
* But we need to keep a dummy __setup around otherwise it would
|
|
* show up as an environment variable for init.
|
|
*/
|
|
static __init int setup_clearcpuid(char *arg)
|
|
{
|
|
return 1;
|
|
}
|
|
__setup("clearcpuid=", setup_clearcpuid);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
|
|
fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
|
|
EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
|
|
|
|
/*
|
|
* The following percpu variables are hot. Align current_task to
|
|
* cacheline size such that they fall in the same cacheline.
|
|
*/
|
|
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
|
|
&init_task;
|
|
EXPORT_PER_CPU_SYMBOL(current_task);
|
|
|
|
DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
|
|
DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
|
|
|
|
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
|
|
EXPORT_PER_CPU_SYMBOL(__preempt_count);
|
|
|
|
/* May not be marked __init: used by software suspend */
|
|
void syscall_init(void)
|
|
{
|
|
wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
|
|
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
|
|
/*
|
|
* This only works on Intel CPUs.
|
|
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
|
|
* This does not cause SYSENTER to jump to the wrong location, because
|
|
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
|
|
*/
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
|
|
(unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
|
|
#else
|
|
wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
|
|
#endif
|
|
|
|
/* Flags to clear on syscall */
|
|
wrmsrl(MSR_SYSCALL_MASK,
|
|
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
|
|
X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
|
|
}
|
|
|
|
DEFINE_PER_CPU(int, debug_stack_usage);
|
|
DEFINE_PER_CPU(u32, debug_idt_ctr);
|
|
|
|
void debug_stack_set_zero(void)
|
|
{
|
|
this_cpu_inc(debug_idt_ctr);
|
|
load_current_idt();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_stack_set_zero);
|
|
|
|
void debug_stack_reset(void)
|
|
{
|
|
if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
|
|
return;
|
|
if (this_cpu_dec_return(debug_idt_ctr) == 0)
|
|
load_current_idt();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_stack_reset);
|
|
|
|
#else /* CONFIG_X86_64 */
|
|
|
|
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
|
|
EXPORT_PER_CPU_SYMBOL(current_task);
|
|
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
|
|
EXPORT_PER_CPU_SYMBOL(__preempt_count);
|
|
|
|
/*
|
|
* On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
|
|
* the top of the kernel stack. Use an extra percpu variable to track the
|
|
* top of the kernel stack directly.
|
|
*/
|
|
DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
|
|
(unsigned long)&init_thread_union + THREAD_SIZE;
|
|
EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
|
|
#endif
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Clear all 6 debug registers:
|
|
*/
|
|
static void clear_all_debug_regs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
/* Ignore db4, db5 */
|
|
if ((i == 4) || (i == 5))
|
|
continue;
|
|
|
|
set_debugreg(0, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB
|
|
/*
|
|
* Restore debug regs if using kgdbwait and you have a kernel debugger
|
|
* connection established.
|
|
*/
|
|
static void dbg_restore_debug_regs(void)
|
|
{
|
|
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
|
|
arch_kgdb_ops.correct_hw_break();
|
|
}
|
|
#else /* ! CONFIG_KGDB */
|
|
#define dbg_restore_debug_regs()
|
|
#endif /* ! CONFIG_KGDB */
|
|
|
|
static void wait_for_master_cpu(int cpu)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* wait for ACK from master CPU before continuing
|
|
* with AP initialization
|
|
*/
|
|
WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
|
|
while (!cpumask_test_cpu(cpu, cpu_callout_mask))
|
|
cpu_relax();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void setup_getcpu(int cpu)
|
|
{
|
|
unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
|
|
struct desc_struct d = { };
|
|
|
|
if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
|
|
write_rdtscp_aux(cpudata);
|
|
|
|
/* Store CPU and node number in limit. */
|
|
d.limit0 = cpudata;
|
|
d.limit1 = cpudata >> 16;
|
|
|
|
d.type = 5; /* RO data, expand down, accessed */
|
|
d.dpl = 3; /* Visible to user code */
|
|
d.s = 1; /* Not a system segment */
|
|
d.p = 1; /* Present */
|
|
d.d = 1; /* 32-bit */
|
|
|
|
write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* cpu_init() initializes state that is per-CPU. Some data is already
|
|
* initialized (naturally) in the bootstrap process, such as the GDT
|
|
* and IDT. We reload them nevertheless, this function acts as a
|
|
* 'CPU state barrier', nothing should get across.
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
|
|
void cpu_init(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct task_struct *me;
|
|
struct tss_struct *t;
|
|
int i;
|
|
|
|
wait_for_master_cpu(cpu);
|
|
|
|
if (cpu)
|
|
load_ucode_ap();
|
|
|
|
t = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
if (this_cpu_read(numa_node) == 0 &&
|
|
early_cpu_to_node(cpu) != NUMA_NO_NODE)
|
|
set_numa_node(early_cpu_to_node(cpu));
|
|
#endif
|
|
setup_getcpu(cpu);
|
|
|
|
me = current;
|
|
|
|
pr_debug("Initializing CPU#%d\n", cpu);
|
|
|
|
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
/*
|
|
* Initialize the per-CPU GDT with the boot GDT,
|
|
* and set up the GDT descriptor:
|
|
*/
|
|
|
|
switch_to_new_gdt(cpu);
|
|
loadsegment(fs, 0);
|
|
|
|
load_current_idt();
|
|
|
|
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
|
|
syscall_init();
|
|
|
|
wrmsrl(MSR_FS_BASE, 0);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, 0);
|
|
barrier();
|
|
|
|
x86_configure_nx();
|
|
x2apic_setup();
|
|
|
|
/*
|
|
* set up and load the per-CPU TSS
|
|
*/
|
|
if (!t->x86_tss.ist[0]) {
|
|
t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
|
|
t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
|
|
t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
|
|
t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
|
|
}
|
|
|
|
t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
|
|
|
|
/*
|
|
* <= is required because the CPU will access up to
|
|
* 8 bits beyond the end of the IO permission bitmap.
|
|
*/
|
|
for (i = 0; i <= IO_BITMAP_LONGS; i++)
|
|
t->io_bitmap[i] = ~0UL;
|
|
|
|
mmgrab(&init_mm);
|
|
me->active_mm = &init_mm;
|
|
BUG_ON(me->mm);
|
|
initialize_tlbstate_and_flush();
|
|
enter_lazy_tlb(&init_mm, me);
|
|
|
|
/*
|
|
* Initialize the TSS. sp0 points to the entry trampoline stack
|
|
* regardless of what task is running.
|
|
*/
|
|
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
|
|
load_TR_desc();
|
|
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
|
|
load_mm_ldt(&init_mm);
|
|
|
|
clear_all_debug_regs();
|
|
dbg_restore_debug_regs();
|
|
|
|
fpu__init_cpu();
|
|
|
|
if (is_uv_system())
|
|
uv_cpu_init();
|
|
|
|
load_fixmap_gdt(cpu);
|
|
}
|
|
|
|
#else
|
|
|
|
void cpu_init(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct task_struct *curr = current;
|
|
struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
wait_for_master_cpu(cpu);
|
|
|
|
show_ucode_info_early();
|
|
|
|
pr_info("Initializing CPU#%d\n", cpu);
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_VME) ||
|
|
boot_cpu_has(X86_FEATURE_TSC) ||
|
|
boot_cpu_has(X86_FEATURE_DE))
|
|
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
load_current_idt();
|
|
switch_to_new_gdt(cpu);
|
|
|
|
/*
|
|
* Set up and load the per-CPU TSS and LDT
|
|
*/
|
|
mmgrab(&init_mm);
|
|
curr->active_mm = &init_mm;
|
|
BUG_ON(curr->mm);
|
|
initialize_tlbstate_and_flush();
|
|
enter_lazy_tlb(&init_mm, curr);
|
|
|
|
/*
|
|
* Initialize the TSS. sp0 points to the entry trampoline stack
|
|
* regardless of what task is running.
|
|
*/
|
|
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
|
|
load_TR_desc();
|
|
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
|
|
load_mm_ldt(&init_mm);
|
|
|
|
t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
|
|
|
|
#ifdef CONFIG_DOUBLEFAULT
|
|
/* Set up doublefault TSS pointer in the GDT */
|
|
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
|
|
#endif
|
|
|
|
clear_all_debug_regs();
|
|
dbg_restore_debug_regs();
|
|
|
|
fpu__init_cpu();
|
|
|
|
load_fixmap_gdt(cpu);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The microcode loader calls this upon late microcode load to recheck features,
|
|
* only when microcode has been updated. Caller holds microcode_mutex and CPU
|
|
* hotplug lock.
|
|
*/
|
|
void microcode_check(void)
|
|
{
|
|
struct cpuinfo_x86 info;
|
|
|
|
perf_check_microcode();
|
|
|
|
/* Reload CPUID max function as it might've changed. */
|
|
info.cpuid_level = cpuid_eax(0);
|
|
|
|
/*
|
|
* Copy all capability leafs to pick up the synthetic ones so that
|
|
* memcmp() below doesn't fail on that. The ones coming from CPUID will
|
|
* get overwritten in get_cpu_cap().
|
|
*/
|
|
memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
|
|
|
|
get_cpu_cap(&info);
|
|
|
|
if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
|
|
return;
|
|
|
|
pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
|
|
pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
|
|
}
|
|
|
|
/*
|
|
* Invoked from core CPU hotplug code after hotplug operations
|
|
*/
|
|
void arch_smt_update(void)
|
|
{
|
|
/* Handle the speculative execution misfeatures */
|
|
cpu_bugs_smt_update();
|
|
/* Check whether IPI broadcasting can be enabled */
|
|
apic_smt_update();
|
|
}
|