783 lines
22 KiB
C
783 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* address space "slices" (meta-segments) support
|
|
*
|
|
* Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
|
|
*
|
|
* Based on hugetlb implementation
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/security.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/copro.h>
|
|
#include <asm/hugetlb.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
static DEFINE_SPINLOCK(slice_convert_lock);
|
|
|
|
#ifdef DEBUG
|
|
int _slice_debug = 1;
|
|
|
|
static void slice_print_mask(const char *label, const struct slice_mask *mask)
|
|
{
|
|
if (!_slice_debug)
|
|
return;
|
|
pr_devel("%s low_slice: %*pbl\n", label,
|
|
(int)SLICE_NUM_LOW, &mask->low_slices);
|
|
pr_devel("%s high_slice: %*pbl\n", label,
|
|
(int)SLICE_NUM_HIGH, mask->high_slices);
|
|
}
|
|
|
|
#define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
|
|
|
|
#else
|
|
|
|
static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
|
|
#define slice_dbg(fmt...)
|
|
|
|
#endif
|
|
|
|
static inline notrace bool slice_addr_is_low(unsigned long addr)
|
|
{
|
|
u64 tmp = (u64)addr;
|
|
|
|
return tmp < SLICE_LOW_TOP;
|
|
}
|
|
|
|
static void slice_range_to_mask(unsigned long start, unsigned long len,
|
|
struct slice_mask *ret)
|
|
{
|
|
unsigned long end = start + len - 1;
|
|
|
|
ret->low_slices = 0;
|
|
if (SLICE_NUM_HIGH)
|
|
bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
|
|
|
|
if (slice_addr_is_low(start)) {
|
|
unsigned long mend = min(end,
|
|
(unsigned long)(SLICE_LOW_TOP - 1));
|
|
|
|
ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
|
|
- (1u << GET_LOW_SLICE_INDEX(start));
|
|
}
|
|
|
|
if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
|
|
unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
|
|
unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
|
|
unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
|
|
|
|
bitmap_set(ret->high_slices, start_index, count);
|
|
}
|
|
}
|
|
|
|
static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long len)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
|
|
return 0;
|
|
vma = find_vma(mm, addr);
|
|
return (!vma || (addr + len) <= vm_start_gap(vma));
|
|
}
|
|
|
|
static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
|
|
{
|
|
return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
|
|
1ul << SLICE_LOW_SHIFT);
|
|
}
|
|
|
|
static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
|
|
{
|
|
unsigned long start = slice << SLICE_HIGH_SHIFT;
|
|
unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
|
|
|
|
/* Hack, so that each addresses is controlled by exactly one
|
|
* of the high or low area bitmaps, the first high area starts
|
|
* at 4GB, not 0 */
|
|
if (start == 0)
|
|
start = (unsigned long)SLICE_LOW_TOP;
|
|
|
|
return !slice_area_is_free(mm, start, end - start);
|
|
}
|
|
|
|
static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
|
|
unsigned long high_limit)
|
|
{
|
|
unsigned long i;
|
|
|
|
ret->low_slices = 0;
|
|
if (SLICE_NUM_HIGH)
|
|
bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
|
|
|
|
for (i = 0; i < SLICE_NUM_LOW; i++)
|
|
if (!slice_low_has_vma(mm, i))
|
|
ret->low_slices |= 1u << i;
|
|
|
|
if (slice_addr_is_low(high_limit - 1))
|
|
return;
|
|
|
|
for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
|
|
if (!slice_high_has_vma(mm, i))
|
|
__set_bit(i, ret->high_slices);
|
|
}
|
|
|
|
static bool slice_check_range_fits(struct mm_struct *mm,
|
|
const struct slice_mask *available,
|
|
unsigned long start, unsigned long len)
|
|
{
|
|
unsigned long end = start + len - 1;
|
|
u64 low_slices = 0;
|
|
|
|
if (slice_addr_is_low(start)) {
|
|
unsigned long mend = min(end,
|
|
(unsigned long)(SLICE_LOW_TOP - 1));
|
|
|
|
low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
|
|
- (1u << GET_LOW_SLICE_INDEX(start));
|
|
}
|
|
if ((low_slices & available->low_slices) != low_slices)
|
|
return false;
|
|
|
|
if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
|
|
unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
|
|
unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
|
|
unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
|
|
unsigned long i;
|
|
|
|
for (i = start_index; i < start_index + count; i++) {
|
|
if (!test_bit(i, available->high_slices))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void slice_flush_segments(void *parm)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
struct mm_struct *mm = parm;
|
|
unsigned long flags;
|
|
|
|
if (mm != current->active_mm)
|
|
return;
|
|
|
|
copy_mm_to_paca(current->active_mm);
|
|
|
|
local_irq_save(flags);
|
|
slb_flush_and_restore_bolted();
|
|
local_irq_restore(flags);
|
|
#endif
|
|
}
|
|
|
|
static void slice_convert(struct mm_struct *mm,
|
|
const struct slice_mask *mask, int psize)
|
|
{
|
|
int index, mask_index;
|
|
/* Write the new slice psize bits */
|
|
unsigned char *hpsizes, *lpsizes;
|
|
struct slice_mask *psize_mask, *old_mask;
|
|
unsigned long i, flags;
|
|
int old_psize;
|
|
|
|
slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
|
|
slice_print_mask(" mask", mask);
|
|
|
|
psize_mask = slice_mask_for_size(&mm->context, psize);
|
|
|
|
/* We need to use a spinlock here to protect against
|
|
* concurrent 64k -> 4k demotion ...
|
|
*/
|
|
spin_lock_irqsave(&slice_convert_lock, flags);
|
|
|
|
lpsizes = mm_ctx_low_slices(&mm->context);
|
|
for (i = 0; i < SLICE_NUM_LOW; i++) {
|
|
if (!(mask->low_slices & (1u << i)))
|
|
continue;
|
|
|
|
mask_index = i & 0x1;
|
|
index = i >> 1;
|
|
|
|
/* Update the slice_mask */
|
|
old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
|
|
old_mask = slice_mask_for_size(&mm->context, old_psize);
|
|
old_mask->low_slices &= ~(1u << i);
|
|
psize_mask->low_slices |= 1u << i;
|
|
|
|
/* Update the sizes array */
|
|
lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
|
|
(((unsigned long)psize) << (mask_index * 4));
|
|
}
|
|
|
|
hpsizes = mm_ctx_high_slices(&mm->context);
|
|
for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
|
|
if (!test_bit(i, mask->high_slices))
|
|
continue;
|
|
|
|
mask_index = i & 0x1;
|
|
index = i >> 1;
|
|
|
|
/* Update the slice_mask */
|
|
old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
|
|
old_mask = slice_mask_for_size(&mm->context, old_psize);
|
|
__clear_bit(i, old_mask->high_slices);
|
|
__set_bit(i, psize_mask->high_slices);
|
|
|
|
/* Update the sizes array */
|
|
hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
|
|
(((unsigned long)psize) << (mask_index * 4));
|
|
}
|
|
|
|
slice_dbg(" lsps=%lx, hsps=%lx\n",
|
|
(unsigned long)mm_ctx_low_slices(&mm->context),
|
|
(unsigned long)mm_ctx_high_slices(&mm->context));
|
|
|
|
spin_unlock_irqrestore(&slice_convert_lock, flags);
|
|
|
|
copro_flush_all_slbs(mm);
|
|
}
|
|
|
|
/*
|
|
* Compute which slice addr is part of;
|
|
* set *boundary_addr to the start or end boundary of that slice
|
|
* (depending on 'end' parameter);
|
|
* return boolean indicating if the slice is marked as available in the
|
|
* 'available' slice_mark.
|
|
*/
|
|
static bool slice_scan_available(unsigned long addr,
|
|
const struct slice_mask *available,
|
|
int end, unsigned long *boundary_addr)
|
|
{
|
|
unsigned long slice;
|
|
if (slice_addr_is_low(addr)) {
|
|
slice = GET_LOW_SLICE_INDEX(addr);
|
|
*boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
|
|
return !!(available->low_slices & (1u << slice));
|
|
} else {
|
|
slice = GET_HIGH_SLICE_INDEX(addr);
|
|
*boundary_addr = (slice + end) ?
|
|
((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
|
|
return !!test_bit(slice, available->high_slices);
|
|
}
|
|
}
|
|
|
|
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
|
|
unsigned long len,
|
|
const struct slice_mask *available,
|
|
int psize, unsigned long high_limit)
|
|
{
|
|
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
|
|
unsigned long addr, found, next_end;
|
|
struct vm_unmapped_area_info info;
|
|
|
|
info.flags = 0;
|
|
info.length = len;
|
|
info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
|
|
info.align_offset = 0;
|
|
|
|
addr = TASK_UNMAPPED_BASE;
|
|
/*
|
|
* Check till the allow max value for this mmap request
|
|
*/
|
|
while (addr < high_limit) {
|
|
info.low_limit = addr;
|
|
if (!slice_scan_available(addr, available, 1, &addr))
|
|
continue;
|
|
|
|
next_slice:
|
|
/*
|
|
* At this point [info.low_limit; addr) covers
|
|
* available slices only and ends at a slice boundary.
|
|
* Check if we need to reduce the range, or if we can
|
|
* extend it to cover the next available slice.
|
|
*/
|
|
if (addr >= high_limit)
|
|
addr = high_limit;
|
|
else if (slice_scan_available(addr, available, 1, &next_end)) {
|
|
addr = next_end;
|
|
goto next_slice;
|
|
}
|
|
info.high_limit = addr;
|
|
|
|
found = vm_unmapped_area(&info);
|
|
if (!(found & ~PAGE_MASK))
|
|
return found;
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static unsigned long slice_find_area_topdown(struct mm_struct *mm,
|
|
unsigned long len,
|
|
const struct slice_mask *available,
|
|
int psize, unsigned long high_limit)
|
|
{
|
|
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
|
|
unsigned long addr, found, prev;
|
|
struct vm_unmapped_area_info info;
|
|
unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
|
|
|
|
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
|
|
info.length = len;
|
|
info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
|
|
info.align_offset = 0;
|
|
|
|
addr = mm->mmap_base;
|
|
/*
|
|
* If we are trying to allocate above DEFAULT_MAP_WINDOW
|
|
* Add the different to the mmap_base.
|
|
* Only for that request for which high_limit is above
|
|
* DEFAULT_MAP_WINDOW we should apply this.
|
|
*/
|
|
if (high_limit > DEFAULT_MAP_WINDOW)
|
|
addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
|
|
|
|
while (addr > min_addr) {
|
|
info.high_limit = addr;
|
|
if (!slice_scan_available(addr - 1, available, 0, &addr))
|
|
continue;
|
|
|
|
prev_slice:
|
|
/*
|
|
* At this point [addr; info.high_limit) covers
|
|
* available slices only and starts at a slice boundary.
|
|
* Check if we need to reduce the range, or if we can
|
|
* extend it to cover the previous available slice.
|
|
*/
|
|
if (addr < min_addr)
|
|
addr = min_addr;
|
|
else if (slice_scan_available(addr - 1, available, 0, &prev)) {
|
|
addr = prev;
|
|
goto prev_slice;
|
|
}
|
|
info.low_limit = addr;
|
|
|
|
found = vm_unmapped_area(&info);
|
|
if (!(found & ~PAGE_MASK))
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
return slice_find_area_bottomup(mm, len, available, psize, high_limit);
|
|
}
|
|
|
|
|
|
static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
|
|
const struct slice_mask *mask, int psize,
|
|
int topdown, unsigned long high_limit)
|
|
{
|
|
if (topdown)
|
|
return slice_find_area_topdown(mm, len, mask, psize, high_limit);
|
|
else
|
|
return slice_find_area_bottomup(mm, len, mask, psize, high_limit);
|
|
}
|
|
|
|
static inline void slice_copy_mask(struct slice_mask *dst,
|
|
const struct slice_mask *src)
|
|
{
|
|
dst->low_slices = src->low_slices;
|
|
if (!SLICE_NUM_HIGH)
|
|
return;
|
|
bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
|
|
}
|
|
|
|
static inline void slice_or_mask(struct slice_mask *dst,
|
|
const struct slice_mask *src1,
|
|
const struct slice_mask *src2)
|
|
{
|
|
dst->low_slices = src1->low_slices | src2->low_slices;
|
|
if (!SLICE_NUM_HIGH)
|
|
return;
|
|
bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
|
|
}
|
|
|
|
static inline void slice_andnot_mask(struct slice_mask *dst,
|
|
const struct slice_mask *src1,
|
|
const struct slice_mask *src2)
|
|
{
|
|
dst->low_slices = src1->low_slices & ~src2->low_slices;
|
|
if (!SLICE_NUM_HIGH)
|
|
return;
|
|
bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
#define MMU_PAGE_BASE MMU_PAGE_64K
|
|
#else
|
|
#define MMU_PAGE_BASE MMU_PAGE_4K
|
|
#endif
|
|
|
|
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
|
|
unsigned long flags, unsigned int psize,
|
|
int topdown)
|
|
{
|
|
struct slice_mask good_mask;
|
|
struct slice_mask potential_mask;
|
|
const struct slice_mask *maskp;
|
|
const struct slice_mask *compat_maskp = NULL;
|
|
int fixed = (flags & MAP_FIXED);
|
|
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
|
|
unsigned long page_size = 1UL << pshift;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long newaddr;
|
|
unsigned long high_limit;
|
|
|
|
high_limit = DEFAULT_MAP_WINDOW;
|
|
if (addr >= high_limit || (fixed && (addr + len > high_limit)))
|
|
high_limit = TASK_SIZE;
|
|
|
|
if (len > high_limit)
|
|
return -ENOMEM;
|
|
if (len & (page_size - 1))
|
|
return -EINVAL;
|
|
if (fixed) {
|
|
if (addr & (page_size - 1))
|
|
return -EINVAL;
|
|
if (addr > high_limit - len)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
|
|
/*
|
|
* Increasing the slb_addr_limit does not require
|
|
* slice mask cache to be recalculated because it should
|
|
* be already initialised beyond the old address limit.
|
|
*/
|
|
mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
|
|
|
|
on_each_cpu(slice_flush_segments, mm, 1);
|
|
}
|
|
|
|
/* Sanity checks */
|
|
BUG_ON(mm->task_size == 0);
|
|
BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
|
|
VM_BUG_ON(radix_enabled());
|
|
|
|
slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
|
|
slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
|
|
addr, len, flags, topdown);
|
|
|
|
/* If hint, make sure it matches our alignment restrictions */
|
|
if (!fixed && addr) {
|
|
addr = _ALIGN_UP(addr, page_size);
|
|
slice_dbg(" aligned addr=%lx\n", addr);
|
|
/* Ignore hint if it's too large or overlaps a VMA */
|
|
if (addr > high_limit - len || addr < mmap_min_addr ||
|
|
!slice_area_is_free(mm, addr, len))
|
|
addr = 0;
|
|
}
|
|
|
|
/* First make up a "good" mask of slices that have the right size
|
|
* already
|
|
*/
|
|
maskp = slice_mask_for_size(&mm->context, psize);
|
|
|
|
/*
|
|
* Here "good" means slices that are already the right page size,
|
|
* "compat" means slices that have a compatible page size (i.e.
|
|
* 4k in a 64k pagesize kernel), and "free" means slices without
|
|
* any VMAs.
|
|
*
|
|
* If MAP_FIXED:
|
|
* check if fits in good | compat => OK
|
|
* check if fits in good | compat | free => convert free
|
|
* else bad
|
|
* If have hint:
|
|
* check if hint fits in good => OK
|
|
* check if hint fits in good | free => convert free
|
|
* Otherwise:
|
|
* search in good, found => OK
|
|
* search in good | free, found => convert free
|
|
* search in good | compat | free, found => convert free.
|
|
*/
|
|
|
|
/*
|
|
* If we support combo pages, we can allow 64k pages in 4k slices
|
|
* The mask copies could be avoided in most cases here if we had
|
|
* a pointer to good mask for the next code to use.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
|
|
compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
|
|
if (fixed)
|
|
slice_or_mask(&good_mask, maskp, compat_maskp);
|
|
else
|
|
slice_copy_mask(&good_mask, maskp);
|
|
} else {
|
|
slice_copy_mask(&good_mask, maskp);
|
|
}
|
|
|
|
slice_print_mask(" good_mask", &good_mask);
|
|
if (compat_maskp)
|
|
slice_print_mask(" compat_mask", compat_maskp);
|
|
|
|
/* First check hint if it's valid or if we have MAP_FIXED */
|
|
if (addr != 0 || fixed) {
|
|
/* Check if we fit in the good mask. If we do, we just return,
|
|
* nothing else to do
|
|
*/
|
|
if (slice_check_range_fits(mm, &good_mask, addr, len)) {
|
|
slice_dbg(" fits good !\n");
|
|
newaddr = addr;
|
|
goto return_addr;
|
|
}
|
|
} else {
|
|
/* Now let's see if we can find something in the existing
|
|
* slices for that size
|
|
*/
|
|
newaddr = slice_find_area(mm, len, &good_mask,
|
|
psize, topdown, high_limit);
|
|
if (newaddr != -ENOMEM) {
|
|
/* Found within the good mask, we don't have to setup,
|
|
* we thus return directly
|
|
*/
|
|
slice_dbg(" found area at 0x%lx\n", newaddr);
|
|
goto return_addr;
|
|
}
|
|
}
|
|
/*
|
|
* We don't fit in the good mask, check what other slices are
|
|
* empty and thus can be converted
|
|
*/
|
|
slice_mask_for_free(mm, &potential_mask, high_limit);
|
|
slice_or_mask(&potential_mask, &potential_mask, &good_mask);
|
|
slice_print_mask(" potential", &potential_mask);
|
|
|
|
if (addr != 0 || fixed) {
|
|
if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
|
|
slice_dbg(" fits potential !\n");
|
|
newaddr = addr;
|
|
goto convert;
|
|
}
|
|
}
|
|
|
|
/* If we have MAP_FIXED and failed the above steps, then error out */
|
|
if (fixed)
|
|
return -EBUSY;
|
|
|
|
slice_dbg(" search...\n");
|
|
|
|
/* If we had a hint that didn't work out, see if we can fit
|
|
* anywhere in the good area.
|
|
*/
|
|
if (addr) {
|
|
newaddr = slice_find_area(mm, len, &good_mask,
|
|
psize, topdown, high_limit);
|
|
if (newaddr != -ENOMEM) {
|
|
slice_dbg(" found area at 0x%lx\n", newaddr);
|
|
goto return_addr;
|
|
}
|
|
}
|
|
|
|
/* Now let's see if we can find something in the existing slices
|
|
* for that size plus free slices
|
|
*/
|
|
newaddr = slice_find_area(mm, len, &potential_mask,
|
|
psize, topdown, high_limit);
|
|
|
|
if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM &&
|
|
psize == MMU_PAGE_64K) {
|
|
/* retry the search with 4k-page slices included */
|
|
slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
|
|
newaddr = slice_find_area(mm, len, &potential_mask,
|
|
psize, topdown, high_limit);
|
|
}
|
|
|
|
if (newaddr == -ENOMEM)
|
|
return -ENOMEM;
|
|
|
|
slice_range_to_mask(newaddr, len, &potential_mask);
|
|
slice_dbg(" found potential area at 0x%lx\n", newaddr);
|
|
slice_print_mask(" mask", &potential_mask);
|
|
|
|
convert:
|
|
/*
|
|
* Try to allocate the context before we do slice convert
|
|
* so that we handle the context allocation failure gracefully.
|
|
*/
|
|
if (need_extra_context(mm, newaddr)) {
|
|
if (alloc_extended_context(mm, newaddr) < 0)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
|
|
if (compat_maskp && !fixed)
|
|
slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
|
|
if (potential_mask.low_slices ||
|
|
(SLICE_NUM_HIGH &&
|
|
!bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
|
|
slice_convert(mm, &potential_mask, psize);
|
|
if (psize > MMU_PAGE_BASE)
|
|
on_each_cpu(slice_flush_segments, mm, 1);
|
|
}
|
|
return newaddr;
|
|
|
|
return_addr:
|
|
if (need_extra_context(mm, newaddr)) {
|
|
if (alloc_extended_context(mm, newaddr) < 0)
|
|
return -ENOMEM;
|
|
}
|
|
return newaddr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
|
|
|
|
unsigned long arch_get_unmapped_area(struct file *filp,
|
|
unsigned long addr,
|
|
unsigned long len,
|
|
unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
return slice_get_unmapped_area(addr, len, flags,
|
|
mm_ctx_user_psize(¤t->mm->context), 0);
|
|
}
|
|
|
|
unsigned long arch_get_unmapped_area_topdown(struct file *filp,
|
|
const unsigned long addr0,
|
|
const unsigned long len,
|
|
const unsigned long pgoff,
|
|
const unsigned long flags)
|
|
{
|
|
return slice_get_unmapped_area(addr0, len, flags,
|
|
mm_ctx_user_psize(¤t->mm->context), 1);
|
|
}
|
|
|
|
unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
unsigned char *psizes;
|
|
int index, mask_index;
|
|
|
|
VM_BUG_ON(radix_enabled());
|
|
|
|
if (slice_addr_is_low(addr)) {
|
|
psizes = mm_ctx_low_slices(&mm->context);
|
|
index = GET_LOW_SLICE_INDEX(addr);
|
|
} else {
|
|
psizes = mm_ctx_high_slices(&mm->context);
|
|
index = GET_HIGH_SLICE_INDEX(addr);
|
|
}
|
|
mask_index = index & 0x1;
|
|
return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_slice_psize);
|
|
|
|
void slice_init_new_context_exec(struct mm_struct *mm)
|
|
{
|
|
unsigned char *hpsizes, *lpsizes;
|
|
struct slice_mask *mask;
|
|
unsigned int psize = mmu_virtual_psize;
|
|
|
|
slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
|
|
|
|
/*
|
|
* In the case of exec, use the default limit. In the
|
|
* case of fork it is just inherited from the mm being
|
|
* duplicated.
|
|
*/
|
|
mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT);
|
|
mm_ctx_set_user_psize(&mm->context, psize);
|
|
|
|
/*
|
|
* Set all slice psizes to the default.
|
|
*/
|
|
lpsizes = mm_ctx_low_slices(&mm->context);
|
|
memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
|
|
|
|
hpsizes = mm_ctx_high_slices(&mm->context);
|
|
memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
|
|
|
|
/*
|
|
* Slice mask cache starts zeroed, fill the default size cache.
|
|
*/
|
|
mask = slice_mask_for_size(&mm->context, psize);
|
|
mask->low_slices = ~0UL;
|
|
if (SLICE_NUM_HIGH)
|
|
bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
void slice_setup_new_exec(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);
|
|
|
|
if (!is_32bit_task())
|
|
return;
|
|
|
|
mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
|
|
}
|
|
#endif
|
|
|
|
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
|
|
unsigned long len, unsigned int psize)
|
|
{
|
|
struct slice_mask mask;
|
|
|
|
VM_BUG_ON(radix_enabled());
|
|
|
|
slice_range_to_mask(start, len, &mask);
|
|
slice_convert(mm, &mask, psize);
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* is_hugepage_only_range() is used by generic code to verify whether
|
|
* a normal mmap mapping (non hugetlbfs) is valid on a given area.
|
|
*
|
|
* until the generic code provides a more generic hook and/or starts
|
|
* calling arch get_unmapped_area for MAP_FIXED (which our implementation
|
|
* here knows how to deal with), we hijack it to keep standard mappings
|
|
* away from us.
|
|
*
|
|
* because of that generic code limitation, MAP_FIXED mapping cannot
|
|
* "convert" back a slice with no VMAs to the standard page size, only
|
|
* get_unmapped_area() can. It would be possible to fix it here but I
|
|
* prefer working on fixing the generic code instead.
|
|
*
|
|
* WARNING: This will not work if hugetlbfs isn't enabled since the
|
|
* generic code will redefine that function as 0 in that. This is ok
|
|
* for now as we only use slices with hugetlbfs enabled. This should
|
|
* be fixed as the generic code gets fixed.
|
|
*/
|
|
int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long len)
|
|
{
|
|
const struct slice_mask *maskp;
|
|
unsigned int psize = mm_ctx_user_psize(&mm->context);
|
|
|
|
VM_BUG_ON(radix_enabled());
|
|
|
|
maskp = slice_mask_for_size(&mm->context, psize);
|
|
|
|
/* We need to account for 4k slices too */
|
|
if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
|
|
const struct slice_mask *compat_maskp;
|
|
struct slice_mask available;
|
|
|
|
compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
|
|
slice_or_mask(&available, maskp, compat_maskp);
|
|
return !slice_check_range_fits(mm, &available, addr, len);
|
|
}
|
|
|
|
return !slice_check_range_fits(mm, maskp, addr, len);
|
|
}
|
|
#endif
|