We always look for delalloc bytes in our io_tree so we can fill in delalloc.
This is fine in most cases, but if we're writing out the btree_inode this is
just a superfluous tree search on the io_tree, and if we have a lot of metadata
dirty this could be an expensive check. So instead check to see if our io_tree
has a ->fill_delalloc op, and if not don't even bother doing the lookup.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We have been using bytes_reserved for metadata reservations, which is wrong
since we use that to keep track of outstanding reservations from the allocator.
This resulted in us doing a lot of silly things to make sure we don't allocate a
bunch of metadata chunks since we never had a real view of how much space was
actually in use by metadata.
This passes Arne's enospc test and xfstests as well as my own enospc tests.
Hopefully this will get us moving in the right direction. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We've only been able to mount with subvol=<whatever> where whatever was a subvol
within whatever root we had as the default. This allows us to mount -o
subvol=path/to/subvol/you/want relative from the normal fs_tree root. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Currently what we do is just wrong. We either
1) Alloc a new "root" dentry with sb->s_root as it's parent which is just wrong
as we could walk into this subvol later on via another path and hilarity could
ensue. Also we don't check the return value of d_splice_alias which isn't good
either.
or
2) Do a d_find_alias() which we could have lost our dentry from cache at this
point and found nothing.
So use d_obtain_alias(). In the case that we already have the inode/dentry in
cache we will get the correct dentry. If not we will get a disconnected dentry
tree so if we walk into it later on everything will be connected up properly.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Moving things around to give us better packing in the btrfs_inode. This reduces
the size of our inode by 8 bytes. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The btrfs file defrag code will loop through the extents and
force COW on them. But there is a concurrent truncate in the middle of
the defrag, it might end up defragging the same range over and over
again.
The problem is that writepage won't go through and do anything on pages
past i_size, so the cow won't happen, so the file will appear to still
be fragmented. defrag will end up hitting the same extents again and
again.
In the worst case, the truncate can actually live lock with the defrag
because the defrag keeps creating new ordered extents which the truncate
code keeps waiting on.
The fix here is to make defrag check for i_size inside the main loop,
instead of just once before the looping starts.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Follow those steps:
# mount -o autodefrag /dev/sda7 /mnt
# dd if=/dev/urandom of=/mnt/tmp bs=200K count=1
# sync
# dd if=/dev/urandom of=/mnt/tmp bs=8K count=1 conv=notrunc
and then it'll go into a loop: writeback -> defrag -> writeback ...
It's because writeback writes [8K, 200K] and then writes [0, 8K].
I tried to make writeback know if the pages are dirtied by defrag,
but the patch was a bit intrusive. Here I simply set writeback_index
when we defrag a file.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Scrub uses a simple tree-enumeration to bring the relevant portions
of the extent- and csum-tree into the page cache before starting the
scrub-I/O. This is now replaced by using the new readahead-API.
During readahead the scrub is being accounted as paused, so it won't
hold off transaction commits.
This change raises the average disk bandwith utilisation on my test
volume from 70% to 90%. On another volume, the time for a test run
went down from 89s to 43s.
Changes v5:
- reada1/2 are now of type struct reada_control *
Signed-off-by: Arne Jansen <sensille@gmx.net>
This adds the hooks needed for readahead. In the readpage_end_io_hook,
the extent state is checked for the EXTENT_READAHEAD flag. Only in this
case the readahead hook is called, to keep the impact on non-ra as low
as possible.
Additionally, a hook for a failed IO is added, otherwise readahead would
wait indefinitely for the extent to finish.
Changes for v2:
- eliminate race condition
Signed-off-by: Arne Jansen <sensille@gmx.net>
This is the implementation for the generic read ahead framework.
To trigger a readahead, btrfs_reada_add must be called. It will start
a read ahead for the given range [start, end) on tree root. The returned
handle can either be used to wait on the readahead to finish
(btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
The read ahead works as follows:
On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
reada_start_machine will then search for extents to prefetch and trigger
some reads. When a read finishes for a node, all contained node/leaf
pointers that lie in the given range will also be enqueued. The reads will
be triggered in sequential order, thus giving a big win over a naive
enumeration. It will also make use of multi-device layouts. Each disk
will have its on read pointer and all disks will by utilized in parallel.
Also will no two disks read both sides of a mirror simultaneously, as this
would waste seeking capacity. Instead both disks will read different parts
of the filesystem.
Any number of readaheads can be started in parallel. The read order will be
determined globally, i.e. 2 parallel readaheads will normally finish faster
than the 2 started one after another.
Changes v2:
- protect root->node by transaction instead of node_lock
- fix missed branches:
The readahead had a too simple check to determine if a branch from
a node should be checked or not. It now also records the upper bound
of each node to see if the requested RA range lies within.
- use KERN_CONT to debug output, to avoid line breaks
- defer reada_start_machine to worker to avoid deadlock
Changes v3:
- protect root->node by rcu
Changes v5:
- changed EIO-semantics of reada_tree_block_flagged
- remove spin_lock from reada_control and make elems an atomic_t
- remove unused read_total from reada_control
- kill reada_key_cmp, use btrfs_comp_cpu_keys instead
- use kref-style release functions where possible
- return struct reada_control * instead of void * from btrfs_reada_add
Signed-off-by: Arne Jansen <sensille@gmx.net>
Add state information for readahead to btrfs_fs_info and btrfs_device
Changes v2:
- don't wait in radix_trees
- add own set of workers for readahead
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Arne Jansen <sensille@gmx.net>
Add a READAHEAD extent buffer flag.
Add a function to trigger a read with this flag set.
Changes v2:
- use extent buffer flags instead of extent state flags
Changes v5:
- adapt to changed read_extent_buffer_pages interface
- don't return eb from reada_tree_block_flagged if it has CORRUPT flag set
Signed-off-by: Arne Jansen <sensille@gmx.net>
read_extent_buffer_pages currently has two modes, either trigger a read
without waiting for anything, or wait for the I/O to finish. The former
also bails when it's unable to lock the page. This patch now adds an
additional parameter to allow it to block on page lock, but don't wait
for completion.
Changes v5:
- merge the 2 wait parameters into one and define WAIT_NONE, WAIT_COMPLETE and
WAIT_PAGE_LOCK
Change v6:
- fix bug introduced in v5
Signed-off-by: Arne Jansen <sensille@gmx.net>
A user reported a problem where ceph was getting into 100% cpu usage while doing
some writing. It turns out it's because we were doing a short write on a not
uptodate page, which means we'd fall back at one page at a time and fault the
page in. The problem is our position is on the page boundary, so our fault in
logic wasn't actually reading the page, so we'd just spin forever or until the
page got read in by somebody else. This will force a readpage if we end up
doing a short copy. Alexandre could reproduce this easily with ceph and reports
it fixes his problem. I also wrote a reproducer that no longer hangs my box
with this patch. Thanks,
Reported-and-tested-by: Alexandre Oliva <aoliva@redhat.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This ties nodatasum fixup in scrub together with raid repair patches. While
both series are working fine alone, scrub will report uncorrectable errors
if they occur in a nodatasum extent *and* the page is in the page cache.
Previously, we would have triggered readpage to find good data and do the
repair. However, readpage wouldn't read anything in the case where the page
is up to date in the cache. So, we simply take that good data we have and
call repair_io_failure directly (unless the page in the cache is dirty).
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The raid-retry code in inode.c can be generalized so that it works for
metadata as well. Thus, this patch moves it to extent_io.c and makes the
raid-retry code a raid-repair code.
Repair works that way: Whenever a read error occurs and we have more
mirrors to try, note the failed mirror, and retry another. If we find a
good one, check if we did note a failure earlier and if so, do not allow
the read to complete until after the bad sector was written with the good
data we just fetched. As we have the extent locked while reading, no one
can change the data in between.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The error correction code wants to make sure that only the bad mirror is
rewritten. Thus, we need to know which mirror is the bad one. I did not
find a more apropriate field than bi_bdev. But I think using this is fine,
because it is modified by the block layer, anyway, and should not be read
after the bio returned.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The block layer modifies bio->bi_bdev and bio->bi_sector while working on
the bio, they do _not_ come back unmodified in the completion callback.
To call add_page, we need at least some bi_bdev set, which is why the code
was working, previously. With this patch, we use the latest_bdev from
fsinfo instead of the leftover in the bio. This gives us the possibility to
use the bi_bdev field for another purpose.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
btrfs_bio is a bio abstraction able to split and not complete after the last
bio has returned (like the old btrfs_multi_bio). Additionally, btrfs_bio
tracks the mirror_num used to read data which can be used for error
correction purposes.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
these ioctls make use of the new functions initially added for scrub. they
return all inodes belonging to a logical address (BTRFS_IOC_LOGICAL_INO) and
all paths belonging to an inode (BTRFS_IOC_INO_PATHS).
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This removes a FIXME comment and introduces the first part of nodatasum
fixup: It gets the corresponding inode for a logical address and triggers a
regular readpage for the corrupted sector.
Once we have on-the-fly error correction our error will be automatically
corrected. The correction code is expected to clear the newly introduced
EXTENT_DAMAGED flag, making scrub report that error as "corrected" instead
of "uncorrectable" eventually.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Currently, extent_read_full_page always assumes we are trying to read mirror
0, which generally is the best we can do. To add flexibility, pass it as a
parameter. This will be needed by scrub fixup code.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Fix the mirror_num determination in scrub_stripe. The rest of the scrub code
did not use mirror_num for anything important and that error went unnoticed.
The nodatasum fixup patch of this set depends on a correct mirror_num.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
While scrubbing, we may encounter various errors. Previously, a logical
address was printed to the log only. Now, all paths belonging to that
address are resolved and printed separately. That should work for hardlinks
as well as reflinks.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
In normal operation, scrub is reading data sequentially in large portions.
In case of an i/o error, we try to find the corrupted area(s) by issuing
page sized read requests. With this commit we increment the
unverified_errors counter if all of the small size requests succeed.
Userland patches carrying such conspicous events to the administrator should
already be around.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
These helper functions iterate back references and call a function for each
backref. There is also a function to resolve an inode to a path in the
file system.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Fix a crash/BUG_ON in the clone ioctl due to insufficient reservation. We
need to reserve space for:
- adjusting the old extent (possibly splitting it)
- adding the new extent
- updating the inode
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can race with readdir and the RCU path walking stuff. This is because we
clear the need lookup flag before actually instantiating the inode. This will
lead the RCU path walk stuff to find a dentry it thinks is valid without a
d_inode attached. So instead unhash the dentry when we first start the lookup,
and then clear the flag after we've instantiated the dentry so we're garunteed
to either try the slow lookup, or have the d_inode set properly.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The recent reworking of btrfs' lseek lead to incorrect
values being returned. This adds checks for seeking
beyond EOF in SEEK_HOLE and makes sure the error
values come back correct.
Andi Kleen also sent in similar patches.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The dst file will have the same inode flags with dst file after
file clone, and I think it's unexpected.
For example, the dst file will suddenly become immutable after
getting some share of data with src file, if the src is immutable.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
To reproduce the bug:
# mount /dev/sda7 /mnt
# dd if=/dev/zero of=/mnt/src bs=4K count=1
# umount /mnt
# mount -o nodatasum /dev/sda7 /mnt
# dd if=/dev/zero of=/mnt/dst bs=4K count=1
# clone_range -s 4K -l 4K /mnt/src /mnt/dst
# echo 3 > /proc/sys/vm/drop_caches
# cat /mnt/dst
# dmesg
...
btrfs no csum found for inode 258 start 0
btrfs csum failed ino 258 off 0 csum 2566472073 private 0
It's because part of the file is checksummed and the other part is not,
and then btrfs will complain checksum is not found when we read the file.
Disallow file clone if src and dst file have different checksum flag,
so we ensure a file is completely checksummed or unchecksummed.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It's a bug in commit f81c9cdc56
(Btrfs: truncate pages from clone ioctl target range)
We should pass the dest range to the truncate function, but not the
src range.
Also move the function before locking extent state.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Since the d_off in the first dirent for "." (that originates from
the 4th argument "offset" of filldir() for the 2nd dirent for "..")
is wrongly assigned in btrfs_real_readdir(), telldir returns same
offset for different locations.
| # mkfs.btrfs /dev/sdb1
| # mount /dev/sdb1 fs0
| # cd fs0
| # touch file0 file1
| # ../test
| telldir: 0
| readdir: d_off = 2, d_name = "."
| telldir: 2
| readdir: d_off = 2, d_name = ".."
| telldir: 2
| readdir: d_off = 3, d_name = "file0"
| telldir: 3
| readdir: d_off = 2147483647, d_name = "file1"
| telldir: 2147483647
To fix this problem, pass filp->f_pos (which is loff_t) instead.
| # ../test
| telldir: 0
| readdir: d_off = 1, d_name = "."
| telldir: 1
| readdir: d_off = 2, d_name = ".."
| telldir: 2
| readdir: d_off = 3, d_name = "file0"
:
At the moment the "offset" for "." is unused because there is no
preceding dirent, however it is better to pass filp->f_pos to follow
grammatical usage.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://github.com/chrismason/linux:
Btrfs: add dummy extent if dst offset excceeds file end in
Btrfs: calc file extent num_bytes correctly in file clone
btrfs: xattr: fix attribute removal
Btrfs: fix wrong nbytes information of the inode
Btrfs: fix the file extent gap when doing direct IO
Btrfs: fix unclosed transaction handle in btrfs_cont_expand
Btrfs: fix misuse of trans block rsv
Btrfs: reset to appropriate block rsv after orphan operations
Btrfs: skip locking if searching the commit root in csum lookup
btrfs: fix warning in iput for bad-inode
Btrfs: fix an oops when deleting snapshots
You can see there's no file extent with range [0, 4096]. Check this by
btrfsck:
# btrfsck /dev/sda7
root 5 inode 258 errors 100
...
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
An attribute is not removed by 'setfattr -x attr file' and remains
visible in attr list. This makes xfstests/062 pass again.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If we write some data into the data hole of the file(no preallocation for this
hole), Btrfs will allocate some disk space, and update nbytes of the inode, but
the other element--disk_i_size needn't be updated. At this condition, we must
update inode metadata though disk_i_size is not changed(btrfs_ordered_update_i_size()
return 1).
# mkfs.btrfs /dev/sdb1
# mount /dev/sdb1 /mnt
# touch /mnt/a
# truncate -s 856002 /mnt/a
# dd if=/dev/zero of=/mnt/a bs=4K count=1 conv=nocreat,notrunc
# umount /mnt
# btrfsck /dev/sdb1
root 5 inode 257 errors 400
found 32768 bytes used err is 1
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we write some data to the place that is beyond the end of the file
in direct I/O mode, a data hole will be created. And Btrfs should insert
a file extent item that point to this hole into the fs tree. But unfortunately
Btrfs forgets doing it.
The following is a simple way to reproduce it:
# mkfs.btrfs /dev/sdc2
# mount /dev/sdc2 /test4
# touch /test4/a
# dd if=/dev/zero of=/test4/a seek=8 count=1 bs=4K oflag=direct conv=nocreat,notrunc
# umount /test4
# btrfsck /dev/sdc2
root 5 inode 257 errors 100
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The function - btrfs_cont_expand() forgot to close the transaction handle before
it jump out the while loop. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
At the beginning of create_pending_snapshot, trans->block_rsv is set
to pending->block_rsv and is used for snapshot things, however, when
it is done, we do not recover it as will.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
While truncating free space cache, we forget to change trans->block_rsv
back to the original one, but leave it with the orphan_block_rsv, and
then with option inode_cache enable, it leads to countless warnings of
btrfs_alloc_free_block and btrfs_orphan_commit_root:
WARNING: at fs/btrfs/extent-tree.c:5711 btrfs_alloc_free_block+0x180/0x350 [btrfs]()
...
WARNING: at fs/btrfs/inode.c:2193 btrfs_orphan_commit_root+0xb0/0xc0 [btrfs]()
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It's not enough to just search the commit root, since we could be cow'ing the
very block we need to search through, which would mean that its locked and we'll
still deadlock. So use path->skip_locking as well. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
iput() shouldn't be called for inodes in I_NEW state.
We need to mark inode as constructed first.
WARNING: at fs/inode.c:1309 iput+0x20b/0x210()
Call Trace:
[<ffffffff8103e7ba>] warn_slowpath_common+0x7a/0xb0
[<ffffffff8103e805>] warn_slowpath_null+0x15/0x20
[<ffffffff810eaf0b>] iput+0x20b/0x210
[<ffffffff811b96fb>] btrfs_iget+0x1eb/0x4a0
[<ffffffff811c3ad6>] btrfs_run_defrag_inodes+0x136/0x210
[<ffffffff811ad55f>] cleaner_kthread+0x17f/0x1a0
[<ffffffff81035b7d>] ? sub_preempt_count+0x9d/0xd0
[<ffffffff811ad3e0>] ? transaction_kthread+0x280/0x280
[<ffffffff8105af86>] kthread+0x96/0xa0
[<ffffffff814336d4>] kernel_thread_helper+0x4/0x10
[<ffffffff8105aef0>] ? kthread_worker_fn+0x190/0x190
[<ffffffff814336d0>] ? gs_change+0xb/0xb
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
CC: Konstantin Khlebnikov <khlebnikov@openvz.org>
Tested-by: David Sterba <dsterba@suse.cz>
CC: Josef Bacik <josef@redhat.com>
CC: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can reproduce this oops via the following steps:
$ mkfs.btrfs /dev/sdb7
$ mount /dev/sdb7 /mnt/btrfs
$ for ((i=0; i<3; i++)); do btrfs sub snap /mnt/btrfs /mnt/btrfs/s_$i; done
$ rm -fr /mnt/btrfs/*
$ rm -fr /mnt/btrfs/*
then we'll get
------------[ cut here ]------------
kernel BUG at fs/btrfs/inode.c:2264!
[...]
Call Trace:
[<ffffffffa05578c7>] btrfs_rmdir+0xf7/0x1b0 [btrfs]
[<ffffffff81150b95>] vfs_rmdir+0xa5/0xf0
[<ffffffff81153cc3>] do_rmdir+0x123/0x140
[<ffffffff81145ac7>] ? fput+0x197/0x260
[<ffffffff810aecff>] ? audit_syscall_entry+0x1bf/0x1f0
[<ffffffff81153d0d>] sys_unlinkat+0x2d/0x40
[<ffffffff8147896b>] system_call_fastpath+0x16/0x1b
RIP [<ffffffffa054f7b9>] btrfs_orphan_add+0x179/0x1a0 [btrfs]
When it comes to btrfs_lookup_dentry, we may set a snapshot's inode->i_ino
to BTRFS_EMPTY_SUBVOL_DIR_OBJECTID instead of BTRFS_FIRST_FREE_OBJECTID,
while the snapshot's location.objectid remains unchanged.
However, btrfs_ino() does not take this into account, and returns a wrong ino,
and causes the oops.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This fixes a regression introduced by commit cdcb725c05 ("Btrfs: check
if there is enough space for balancing smarter"). We can't do 64-bit
divides on 32-bit architectures.
In cases where we need to divide/multiply by 2 we should just left/right
shift respectively, and in cases where theres N number of devices use
do_div. Also make the counters u64 to match up with rw_devices.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Acked-and-tested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfstests exposed a problem with preallocate when it fallocates a range that
already has an extent. We don't set the new i_size properly because we see that
we already have an extent. This isn't right and we should update i_size if the
space already exists. With this patch we now pass xfstests 075. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There were some unlocks on error missing in a recent patch to
btrfs_file_llseek().
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch tightens the read-only access checks in btrfs_permission to
match the constraints in inode_permission. Currently, even though the
device node itself will be unmodified, read-write access to device nodes
is denied to when the device node resides on a read-only subvolume or a
is a file that has been marked read-only by the btrfs conversion utility.
With this patch applied, the check only affects regular files,
directories, and symlinks. It also restructures the code a bit so that
we don't duplicate the MAY_WRITE check for both tests.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We need to truncate page cache pages for the clone ioctl target range or
else we'll confuse ourselves to no end. If the old data was cached, we
used to still see it (until remount). If the page was partially updated
we used to get a mix of old and new data.
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
sync_pending is uninitialized before it be used, fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs subtracted the size of the allocated space twice when it allocated
the space from the bitmap in the cluster, it broke the free space information
and led to oops finally.
And this patch also fixes the bug that ctl->free_space was subtracted
without lock.
Reported-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The filesystem turns readonly instead of returning the error to the
caller when detected error in btrfs_drop_snapshot().
and, because the caller doesn't check the error, the function type is
changed to 'void'.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When checking if there is enough space for balancing a block group,
since we do not take raid types into consideration, we do not account
corrent amounts of space that we needed. This makes us do some extra
work before we get ENOSPC.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When balancing, we'll first try to shrink devices for some space,
but if it is working on a full multi-disk partition with raid protection,
we may encounter a bug, that is, while shrinking, total_bytes may be less
than bytes_used, and btrfs may allocate a dev extent that accesses out of
device's bounds.
Then we will not be able to write or read the data which stores at the end
of the device, and get the followings:
device fsid 0939f071-7ea3-46c8-95df-f176d773bfb6 devid 1 transid 10 /dev/sdb5
Btrfs detected SSD devices, enabling SSD mode
btrfs: relocating block group 476315648 flags 9
btrfs: found 4 extents
attempt to access beyond end of device
sdb5: rw=145, want=546176, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546304, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546432, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546560, limit=546147
attempt to access beyond end of device
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs recovers from a crash, it may hit the oops below:
------------[ cut here ]------------
kernel BUG at fs/btrfs/inode.c:4580!
[...]
RIP: 0010:[<ffffffffa03df251>] [<ffffffffa03df251>] btrfs_add_link+0x161/0x1c0 [btrfs]
[...]
Call Trace:
[<ffffffffa03e7b31>] ? btrfs_inode_ref_index+0x31/0x80 [btrfs]
[<ffffffffa04054e9>] add_inode_ref+0x319/0x3f0 [btrfs]
[<ffffffffa0407087>] replay_one_buffer+0x2c7/0x390 [btrfs]
[<ffffffffa040444a>] walk_down_log_tree+0x32a/0x480 [btrfs]
[<ffffffffa0404695>] walk_log_tree+0xf5/0x240 [btrfs]
[<ffffffffa0406cc0>] btrfs_recover_log_trees+0x250/0x350 [btrfs]
[<ffffffffa0406dc0>] ? btrfs_recover_log_trees+0x350/0x350 [btrfs]
[<ffffffffa03d18b2>] open_ctree+0x1442/0x17d0 [btrfs]
[...]
This comes from that while replaying an inode ref item, we forget to
check those old conflicting DIR_ITEM and DIR_INDEX items in fs/file tree,
then we will come to conflict corners which lead to BUG_ON().
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Tested-by: Andy Lutomirski <luto@mit.edu>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We have a problem where if a user specifies discard but doesn't actually support
it we will return EOPNOTSUPP from btrfs_discard_extent. This is a problem
because this gets called (in a fashion) from the tree log recovery code, which
has a nice little BUG_ON(ret) after it, which causes us to fail the tree log
replay. So instead detect wether our devices support discard when we're adding
them and then don't issue discards if we know that the device doesn't support
it. And just for good measure set ret = 0 in btrfs_issue_discard just in case
we still get EOPNOTSUPP so we don't screw anybody up like this again. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs does bio submissions from a worker thread, and each device
has a list of high priority bios and regular priority bios.
Synchronous writes go to the high priority thread while async writes
go to regular list. This commit brings back an explicit unplug
any time we switch from high to regular priority, which makes it
easier for the block layer to give us low latencies.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (31 commits)
Btrfs: don't call writepages from within write_full_page
Btrfs: Remove unused variable 'last_index' in file.c
Btrfs: clean up for find_first_extent_bit()
Btrfs: clean up for wait_extent_bit()
Btrfs: clean up for insert_state()
Btrfs: remove unused members from struct extent_state
Btrfs: clean up code for merging extent maps
Btrfs: clean up code for extent_map lookup
Btrfs: clean up search_extent_mapping()
Btrfs: remove redundant code for dir item lookup
Btrfs: make acl functions really no-op if acl is not enabled
Btrfs: remove remaining ref-cache code
Btrfs: remove a BUG_ON() in btrfs_commit_transaction()
Btrfs: use wait_event()
Btrfs: check the nodatasum flag when writing compressed files
Btrfs: copy string correctly in INO_LOOKUP ioctl
Btrfs: don't print the leaf if we had an error
btrfs: make btrfs_set_root_node void
Btrfs: fix oops while writing data to SSD partitions
Btrfs: Protect the readonly flag of block group
...
Fix up trivial conflicts (due to acl and writeback cleanups) in
- fs/btrfs/acl.c
- fs/btrfs/ctree.h
- fs/btrfs/extent_io.c
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
xfs: Fix build breakage in xfs_iops.c when CONFIG_FS_POSIX_ACL is not set
VFS: Reorganise shrink_dcache_for_umount_subtree() after demise of dcache_lock
VFS: Remove dentry->d_lock locking from shrink_dcache_for_umount_subtree()
VFS: Remove detached-dentry counter from shrink_dcache_for_umount_subtree()
switch posix_acl_chmod() to umode_t
switch posix_acl_from_mode() to umode_t
switch posix_acl_equiv_mode() to umode_t *
switch posix_acl_create() to umode_t *
block: initialise bd_super in bdget()
vfs: avoid call to inode_lru_list_del() if possible
vfs: avoid taking inode_hash_lock on pipes and sockets
vfs: conditionally call inode_wb_list_del()
VFS: Fix automount for negative autofs dentries
Btrfs: load the key from the dir item in readdir into a fake dentry
devtmpfs: missing initialialization in never-hit case
hppfs: missing include
When doing a writepage we call writepages to try and write out any other dirty
pages in the area. This could cause problems where we commit a transaction and
then have somebody else dirtying metadata in the area as we could end up writing
out a lot more than we care about, which could cause latency on anybody who is
waiting for the transaction to completely finish committing. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The variable 'last_index' is calculated in the __btrfs_buffered_write
function and passed as a parameter to the prepare_pages function,
but is not used anywhere in the prepare_pages function.
Remove instances of 'last_index' in these functions.
Signed-off-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
find_first_extent_bit() and find_first_extent_bit_state() share
most of the code, and we can just make the former call the latter.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can just use cond_resched_lock().
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These members are not used at all.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
unpin_extent_cache() and add_extent_mapping() shares the same code
that merges extent maps.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
lookup_extent_map() and search_extent_map() can share most of code.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
rb_node returned by __tree_search() can be a valid pointer or NULL,
but won't be some errno.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we search a dir item with a specific hash code, we can
just return NULL without further checking if btrfs_search_slot()
returns 1.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Since commit f2a97a9dbd
("btrfs: remove all unused functions"), there's no extern functions
at all in ref-cache.c, so just remove the remaining dead code.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Use wait_event() when possible to avoid code duplication.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If mounting with nodatasum option, we won't csum file data for
general write or direct-io write, and this rule should also be
applied when writing compressed files.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Memory areas [ptr, ptr+total_len] and [name, name+total_len]
may overlap, so it's wrong to use memcpy().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In __btrfs_free_extent we will print the leaf if we fail to find the extent we
wanted, but the problem is if we get an error we won't have a leaf so often this
leads to a NULL pointer dereference and we lose the error that actually
occurred. So only print the leaf if ret > 0, which means we didn't find the
item we were looking for but we didn't error either. This way the error is
preserved.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This is fairly trivial - btrfs_set_root_node() - always returns zero so we
can just make it void. All callers ignore the return code now anyway. I
also made sure to check that none of the functions that
btrfs_set_root_node() calls returns an error that we might have needed to
catch and pass back.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Here I have a two SSD-partitions btrfs, and they are defaultly set to
"data=raid0, metadata=raid1", then I try to fill my btrfs partition
till "No space left on device", via "dd if=/dev/zero of=/mnt/btrfs/tmp".
I get an oops panic from kernel BUG at fs/btrfs/extent-tree.c:5199!, which
refers to find_free_extent's
BUG_ON(index != get_block_group_index(block_group));
In SSD mode, in order to find enough space to alloc, we may check the
block_group cache which has been checked sometime before, but the index is not
updated, where it hits the BUG_ON.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Acked-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The access for ro in btrfs_block_group_cache should be protected
because of the racy lock in relocation.
Signed-off-by: Wu Bo <wu.bo@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The set/clear bit and the extent split/merge hooks only ever return 0.
Changing them to return void simplifies the error handling cases later.
This patch changes the hook prototypes, the single implementation of each,
and the functions that call them to return void instead.
Since all four of these hooks execute under a spinlock, they're necessarily
simple.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We passed the wrong value to btrfs_force_ra(). Fix this by changing
the argument of btrfs_force_ra() from last_index to nr_page.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs_unlink_inode() and btrfs_orphan_add() in btrfs_unlink()
are error, the error code is returned to the caller instead of
BUG_ON().
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Don't need to check the return value of __btrfs_add_inode_defrag(),
since it will always return 0.
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In btrfs we have 2 indexes for inodes. One is for readdir, it's in this nice
sequential order and works out brilliantly for readdir. However if you use ls,
it usually stat's each file it gets from readdir. This is where the second
index comes in, which is based on a hash of the name of the file. So then the
lookup has to lookup this index, and then lookup the inode. The index lookup is
going to be in random order (since its based on the name hash), which gives us
less than stellar performance. Since we know the inode location from the
readdir index, I create a dummy dentry and copy the location key into
dentry->d_fsdata. Then on lookup if we have d_fsdata we use that location to
lookup the inode, avoiding looking up the other directory index. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: make sure reserve_metadata_bytes doesn't leak out strange errors
Btrfs: use the commit_root for reading free_space_inode crcs
Btrfs: reduce extent_state lock contention for metadata
Btrfs: remove lockdep magic from btrfs_next_leaf
Btrfs: make a lockdep class for each root
Btrfs: switch the btrfs tree locks to reader/writer
Btrfs: fix deadlock when throttling transactions
Btrfs: stop using highmem for extent_buffers
Btrfs: fix BUG_ON() caused by ENOSPC when relocating space
Btrfs: tag pages for writeback in sync
Btrfs: fix enospc problems with delalloc
Btrfs: don't flush delalloc arbitrarily
Btrfs: use find_or_create_page instead of grab_cache_page
Btrfs: use a worker thread to do caching
Btrfs: fix how we merge extent states and deal with cached states
Btrfs: use the normal checksumming infrastructure for free space cache
Btrfs: serialize flushers in reserve_metadata_bytes
Btrfs: do transaction space reservation before joining the transaction
Btrfs: try to only do one btrfs_search_slot in do_setxattr
The btrfs transaction code will return any errors that come from
reserve_metadata_bytes. We need to make sure we don't return funny
things like 1 or EAGAIN.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Now that we are using regular file crcs for the free space cache,
we can deadlock if we try to read the free_space_inode while we are
updating the crc tree.
This commit fixes things by using the commit_root to read the crcs. This is
safe because we the free space cache file would already be loaded if
that block group had been changed in the current transaction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
For metadata buffers that don't straddle pages (all of them), btrfs
can safely use the page uptodate bits and extent_buffer uptodate bit
instead of needing to use the extent_state tree.
This greatly reduces contention on the state tree lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before the reader/writer locks, btrfs_next_leaf needed to keep
the path blocking to avoid making lockdep upset.
Now that btrfs_next_leaf only takes read locks, this isn't required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch was originally from Tejun Heo. lockdep complains about the btrfs
locking because we sometimes take btree locks from two different trees at the
same time. The current classes are based only on level in the btree, which
isn't enough information for lockdep to figure out if the lock is safe.
This patch makes a class for each type of tree, and lumps all the FS trees that
actually have files and directories into the same class.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs metadata btree is the source of significant
lock contention, especially in the root node. This
commit changes our locking to use a reader/writer
lock.
The lock is built on top of rw spinlocks, and it
extends the lock tracking to remember if we have a
read lock or a write lock when we go to blocking. Atomics
count the number of blocking readers or writers at any
given time.
It removes all of the adaptive spinning from the old code
and uses only the spinning/blocking hints inside of btrfs
to decide when it should continue spinning.
In read heavy workloads this is dramatically faster. In write
heavy workloads we're still faster because of less contention
on the root node lock.
We suffer slightly in dbench because we schedule more often
during write locks, but all other benchmarks so far are improved.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Hit this nice little deadlock. What happens is this
__btrfs_end_transaction with throttle set, --use_count so it equals 0
btrfs_commit_transaction
<somebody else actually manages to start the commit>
btrfs_end_transaction --use_count so now its -1 <== BAD
we just return and wait on the transaction
This is bad because we just return after our use_count is -1 and don't let go
of our num_writer count on the transaction, so the guy committing the
transaction just sits there forever. Fix this by inc'ing our use_count if we're
going to call commit_transaction so that if we call btrfs_end_transaction it's
valid. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The extent_buffers have a very complex interface where
we use HIGHMEM for metadata and try to cache a kmap mapping
to access the memory.
The next commit adds reader/writer locks, and concurrent use
of this kmap cache would make it even more complex.
This commit drops the ability to use HIGHMEM with extent buffers,
and rips out all of the related code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we balanced the chunks across the devices, BUG_ON() in
__finish_chunk_alloc() was triggered.
------------[ cut here ]------------
kernel BUG at fs/btrfs/volumes.c:2568!
[SNIP]
Call Trace:
[<ffffffffa049525e>] btrfs_alloc_chunk+0x8e/0xa0 [btrfs]
[<ffffffffa04546b0>] do_chunk_alloc+0x330/0x3a0 [btrfs]
[<ffffffffa045c654>] btrfs_reserve_extent+0xb4/0x1f0 [btrfs]
[<ffffffffa045c86b>] btrfs_alloc_free_block+0xdb/0x350 [btrfs]
[<ffffffffa048a8d8>] ? read_extent_buffer+0xd8/0x1d0 [btrfs]
[<ffffffffa04476fd>] __btrfs_cow_block+0x14d/0x5e0 [btrfs]
[<ffffffffa044660d>] ? read_block_for_search+0x14d/0x4d0 [btrfs]
[<ffffffffa0447c9b>] btrfs_cow_block+0x10b/0x240 [btrfs]
[<ffffffffa044dd5e>] btrfs_search_slot+0x49e/0x7a0 [btrfs]
[<ffffffffa044f07d>] btrfs_insert_empty_items+0x8d/0xf0 [btrfs]
[<ffffffffa045e973>] insert_with_overflow+0x43/0x110 [btrfs]
[<ffffffffa045eb0d>] btrfs_insert_dir_item+0xcd/0x1f0 [btrfs]
[<ffffffffa0489bd0>] ? map_extent_buffer+0xb0/0xc0 [btrfs]
[<ffffffff812276ad>] ? rb_insert_color+0x9d/0x160
[<ffffffffa046cc40>] ? inode_tree_add+0xf0/0x150 [btrfs]
[<ffffffffa0474801>] btrfs_add_link+0xc1/0x1c0 [btrfs]
[<ffffffff811dacac>] ? security_inode_init_security+0x1c/0x30
[<ffffffffa04a28aa>] ? btrfs_init_acl+0x4a/0x180 [btrfs]
[<ffffffffa047492f>] btrfs_add_nondir+0x2f/0x70 [btrfs]
[<ffffffffa046af16>] ? btrfs_init_inode_security+0x46/0x60 [btrfs]
[<ffffffffa0474ac0>] btrfs_create+0x150/0x1d0 [btrfs]
[<ffffffff81159c63>] ? generic_permission+0x23/0xb0
[<ffffffff8115b415>] vfs_create+0xa5/0xc0
[<ffffffff8115ce6e>] do_last+0x5fe/0x880
[<ffffffff8115dc0d>] path_openat+0xcd/0x3d0
[<ffffffff8115e029>] do_filp_open+0x49/0xa0
[<ffffffff8116a965>] ? alloc_fd+0x95/0x160
[<ffffffff8114f0c7>] do_sys_open+0x107/0x1e0
[<ffffffff810bcc3f>] ? audit_syscall_entry+0x1bf/0x1f0
[<ffffffff8114f1e0>] sys_open+0x20/0x30
[<ffffffff81484ec2>] system_call_fastpath+0x16/0x1b
[SNIP]
RIP [<ffffffffa049444a>] __finish_chunk_alloc+0x20a/0x220 [btrfs]
The reason is:
Task1 Space balance task
do_chunk_alloc()
__finish_chunk_alloc()
update device info
in the chunk tree
alloc system metadata block
relocate system metadata block group
set system metadata block group
readonly, This block group is the
only one that can allocate space. So
there is no free space that can be
allocated now.
find no space and don't try
to alloc new chunk, and then
return ENOSPC
BUG_ON() in __finish_chunk_alloc()
was triggered.
Fix this bug by allocating a new system metadata chunk before relocating the
old one if we find there is no free space which can be allocated after setting
the old block group to be read-only.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Everybody else does this, we need to do it too. If we're syncing, we need to
tag the pages we're going to write for writeback so we don't end up writing the
same stuff over and over again if somebody is constantly redirtying our file.
This will keep us from having latencies with heavy sync workloads. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
So I had this brilliant idea to use atomic counters for outstanding and reserved
extents, but this turned out to be a bad idea. Consider this where we have 1
outstanding extent and 1 reserved extent
Reserver Releaser
atomic_dec(outstanding) now 0
atomic_read(outstanding)+1 get 1
atomic_read(reserved) get 1
don't actually reserve anything because
they are the same
atomic_cmpxchg(reserved, 1, 0)
atomic_inc(outstanding)
atomic_add(0, reserved)
free reserved space for 1 extent
Then the reserver now has no actual space reserved for it, and when it goes to
finish the ordered IO it won't have enough space to do it's allocation and you
get those lovely warnings.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Kill the check to see if we have 512mb of reserved space in delalloc and
shrink_delalloc if we do. This causes unexpected latencies and we have other
logic to see if we need to throttle. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
grab_cache_page will use mapping_gfp_mask(), which for all inodes is set to
GFP_HIGHUSER_MOVABLE. So instead use find_or_create_page in all cases where we
need GFP_NOFS so we don't deadlock. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
A user reported a deadlock when copying a bunch of files. This is because they
were low on memory and kthreadd got hung up trying to migrate pages for an
allocation when starting the caching kthread. The page was locked by the person
starting the caching kthread. To fix this we just need to use the async thread
stuff so that the threads are already created and we don't have to worry about
deadlocks. Thanks,
Reported-by: Roman Mamedov <rm@romanrm.ru>
Signed-off-by: Josef Bacik <josef@redhat.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
merge fchmod() and fchmodat() guts, kill ancient broken kludge
xfs: fix misspelled S_IS...()
xfs: get rid of open-coded S_ISREG(), etc.
vfs: document locking requirements for d_move, __d_move and d_materialise_unique
omfs: fix (mode & S_IFDIR) abuse
btrfs: S_ISREG(mode) is not mode & S_IFREG...
ima: fmode_t misspelled as mode_t...
pci-label.c: size_t misspelled as mode_t
jffs2: S_ISLNK(mode & S_IFMT) is pointless
snd_msnd ->mode is fmode_t, not mode_t
v9fs_iop_get_acl: get rid of unused variable
vfs: dont chain pipe/anon/socket on superblock s_inodes list
Documentation: Exporting: update description of d_splice_alias
fs: add missing unlock in default_llseek()
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In addition to properly handling allocation failure from btrfs_alloc_path, I
also fixed up the kzalloc error handling code immediately below it.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
I also removed the BUG_ON from error return of find_next_chunk in
init_first_rw_device(). It turns out that the only caller of
init_first_rw_device() also BUGS on any nonzero return so no actual behavior
change has occurred here.
do_chunk_alloc() also needed an update since it calls btrfs_alloc_chunk()
which can now return -ENOMEM. Instead of setting space_info->full on any
error from btrfs_alloc_chunk() I catch and return every error value _except_
-ENOSPC. Thanks goes to Tsutomu Itoh for pointing that issue out.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Replace the ->check_acl method with a ->get_acl method that simply reads an
ACL from disk after having a cache miss. This means we can replace the ACL
checking boilerplate code with a single implementation in namei.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
new helper: posix_acl_create(&acl, gfp, mode_p). Replaces acl with
modified clone, on failure releases acl and replaces with NULL.
Returns 0 or -ve on error. All callers of posix_acl_create_masq()
switched.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
new helper: posix_acl_chmod(&acl, gfp, mode). Replaces acl with modified
clone or with NULL if that has failed; returns 0 or -ve on error. All
callers of posix_acl_chmod_masq() switched to that - they'd been doing
exactly the same thing.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This moves logic for checking the cached ACL values from low-level
filesystems into generic code. The end result is a streamlined ACL
check that doesn't need to load the inode->i_op->check_acl pointer at
all for the common cached case.
The filesystems also don't need to check for a non-blocking RCU walk
case in their acl_check() functions, because that is all handled at a
VFS layer.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
both callers there have dentry->d_parent stabilized by the fact that
their caller had obtained dentry from lookup_one_len() and had not
dropped ->i_mutex on parent since then.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In order to handle SEEK_HOLE/SEEK_DATA we need to implement our own llseek.
Basically for the normal SEEK_*'s we will just defer to the generic helper, and
for SEEK_HOLE/SEEK_DATA we will use our fiemap helper to figure out the nearest
hole or data. Currently this helper doesn't check for delalloc bytes for
prealloc space, so for now treat prealloc as data until that is fixed. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
its value depends only on inode and does not change; we might as
well store it in ->i_op->check_acl and be done with that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch changes the security_inode_init_security API by adding a
filesystem specific callback to write security extended attributes.
This change is in preparation for supporting the initialization of
multiple LSM xattrs and the EVM xattr. Initially the callback function
walks an array of xattrs, writing each xattr separately, but could be
optimized to write multiple xattrs at once.
For existing security_inode_init_security() calls, which have not yet
been converted to use the new callback function, such as those in
reiserfs and ocfs2, this patch defines security_old_inode_init_security().
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Dealing with this seems trivial - the only caller of btrfs_balance() is
btrfs_ioctl() which passes the error code directly back to userspace. There
also isn't much state to unwind (if I'm wrong about this point, we can
always safely move the allocation to the top of btrfs_balance() anyway).
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
btrfs_iget() also needed an update so that errors from btrfs_locked_inode()
are caught and bubbled back up.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
I moved the path allocation up a few lines to the top of the function so
that we couldn't get into the state where we've dropped delayed items and
the extent cache but fail due to -ENOMEM.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The two ->process_func call sites in tree-log.c which were ignoring a return
code have also been updated to gracefully exit as well.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch fixes many callers of btrfs_alloc_path() which BUG_ON allocation
failure. All the sites that are fixed in this patch were checked by me to
be fairly trivial to fix because of at least one of two criteria:
- Callers of the function catch errors from it already so bubbling the
error up will be handled.
- Callers of the function might BUG_ON any nonzero return code in which
case there is no behavior changed (but we still got to remove a BUG_ON)
The following functions were updated:
btrfs_lookup_extent, alloc_reserved_tree_block, btrfs_remove_block_group,
btrfs_lookup_csums_range, btrfs_csum_file_blocks, btrfs_mark_extent_written,
btrfs_inode_by_name, btrfs_new_inode, btrfs_symlink,
insert_reserved_file_extent, and run_delalloc_nocow
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
First, we can sometimes free the state we're merging, which means anybody who
calls merge_state() may have the state it passed in free'ed. This is
problematic because we could end up caching the state, which makes caching
useless as the state will no longer be part of the tree. So instead of free'ing
the state we passed into merge_state(), set it's end to the other->end and free
the other state. This way we are sure to cache the correct state. Also because
we can merge states together, instead of only using the cache'd state if it's
start == the start we are looking for, go ahead and use it if the start we are
looking for is within the range of the cached state. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We used to store the checksums of the space cache directly in the space cache,
however that doesn't work out too well if we have more space than we can fit the
checksums into the first page. So instead use the normal checksumming
infrastructure. There were problems with doing this originally but those
problems don't exist now so this works out fine. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We keep having problems with early enospc, and that's because our method of
making space is inherently racy. The problem is we can have one guy trying to
make space for himself, and in the meantime people come in and steal his
reservation. In order to stop this we make a waitqueue and put anybody who
comes into reserve_metadata_bytes on that waitqueue if somebody is trying to
make more space. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We have to do weird things when handling enospc in the transaction joining code.
Because we've already joined the transaction we cannot commit the transaction
within the reservation code since it will deadlock, so we have to return EAGAIN
and then make sure we don't retry too many times. Instead of doing this, just
do the reservation the normal way before we join the transaction, that way we
can do whatever we want to try and reclaim space, and then if it fails we know
for sure we are out of space and we can return ENOSPC. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
I've been watching how many btrfs_search_slot()'s we do and I noticed that when
we create a file with selinux enabled we were doing 2 each time we initialize
the security context. That's because we lookup the xattr first so we can delete
it if we're setting a new value to an existing xattr. But in the create case we
don't have any xattrs, so it is completely useless to have the extra lookup. So
re-arrange things so that we only lookup first if we specifically have
XATTR_REPLACE. That way in the basic case we only do 1 search, and in the more
complicated case we do the normal 2 lookups. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(),
and initialize the struct writeback_control there.
struct writeback_control is basically designed to control writeback of a
single file, but we keep abuse it for writing multiple files in
writeback_sb_inodes() and its callers.
It immediately clean things up, e.g. suddenly wbc.nr_to_write vs
work->nr_pages starts to make sense, and instead of saving and restoring
pages_skipped in writeback_sb_inodes it can always start with a clean
zero value.
It also makes a neat IO pattern change: large dirty files are now
written in the full 4MB writeback chunk size, rather than whatever
remained quota in wbc->nr_to_write.
Acked-by: Jan Kara <jack@suse.cz>
Proposed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
btrfs: fix oops when doing space balance
Btrfs: don't panic if we get an error while balancing V2
btrfs: add missing options displayed in mount output