Pull x32 support for x86-64 from Ingo Molnar:
"This tree introduces the X32 binary format and execution mode for x86:
32-bit data space binaries using 64-bit instructions and 64-bit kernel
syscalls.
This allows applications whose working set fits into a 32 bits address
space to make use of 64-bit instructions while using a 32-bit address
space with shorter pointers, more compressed data structures, etc."
Fix up trivial context conflicts in arch/x86/{Kconfig,vdso/vma.c}
* 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
x32: Fix alignment fail in struct compat_siginfo
x32: Fix stupid ia32/x32 inversion in the siginfo format
x32: Add ptrace for x32
x32: Switch to a 64-bit clock_t
x32: Provide separate is_ia32_task() and is_x32_task() predicates
x86, mtrr: Use explicit sizing and padding for the 64-bit ioctls
x86/x32: Fix the binutils auto-detect
x32: Warn and disable rather than error if binutils too old
x32: Only clear TIF_X32 flag once
x32: Make sure TS_COMPAT is cleared for x32 tasks
fs: Remove missed ->fds_bits from cessation use of fd_set structs internally
fs: Fix close_on_exec pointer in alloc_fdtable
x32: Drop non-__vdso weak symbols from the x32 VDSO
x32: Fix coding style violations in the x32 VDSO code
x32: Add x32 VDSO support
x32: Allow x32 to be configured
x32: If configured, add x32 system calls to system call tables
x32: Handle process creation
x32: Signal-related system calls
x86: Add #ifdef CONFIG_COMPAT to <asm/sys_ia32.h>
...
Fix the m68k versions of xchg() and cmpxchg() to fail to link if given an
inappropriately sized pointer rather than BUG()'ing at runtime.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
cc: linux-m68k@lists.linux-m68k.org
Pull m68knommu arch updates from Greg Ungerer:
"Includes a cleanup of the non-MMU linker script (it now almost
exclusively uses the well defined linker script support macros and
definitions). Some more merging of MMU and non-MMU common files
(specifically the arch process.c, ptrace and time.c). And a big
cleanup of the massively duplicated ColdFire device definition code.
Overall we remove about 2000 lines of code, and end up with a single
set of platform device definitions for the serial ports, ethernet
ports and QSPI ports common in most ColdFire SoCs.
I expect you will get a merge conflict on arch/m68k/kernel/process.c,
in cpu_idle(). It should be relatively strait forward to fixup."
And cpu_idle() conflict resolution was indeed trivial (merging the
nommu/mmu versions of process.c trivially conflicting with the
conversion to use the schedule_preempt_disabled() helper function)
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (57 commits)
m68knommu: factor more common ColdFire cpu reset code
m68knommu: make 528x CPU reset register addressing consistent
m68knommu: make 527x CPU reset register addressing consistent
m68knommu: make 523x CPU reset register addressing consistent
m68knommu: factor some common ColdFire cpu reset code
m68knommu: move old ColdFire timers init from CPU init to timers code
m68knommu: clean up init code in ColdFire 532x startup
m68knommu: clean up init code in ColdFire 528x startup
m68knommu: clean up init code in ColdFire 523x startup
m68knommu: merge common ColdFire QSPI platform setup code
m68knommu: make 532x QSPI platform addressing consistent
m68knommu: make 528x QSPI platform addressing consistent
m68knommu: make 527x QSPI platform addressing consistent
m68knommu: make 5249 QSPI platform addressing consistent
m68knommu: make 523x QSPI platform addressing consistent
m68knommu: make 520x QSPI platform addressing consistent
m68knommu: merge common ColdFire FEC platform setup code
m68knommu: make 532x FEC platform addressing consistent
m68knommu: make 528x FEC platform addressing consistent
m68knommu: make 527x FEC platform addressing consistent
...
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 532x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 528x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 527x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 5249 QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 523x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 520x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 532x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 528x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 527x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 5272 FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 523x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 520x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Some ColdFire CPU UART hardware modules can configure the IRQ they use.
Currently the same setup code is duplicated in the init code for each of
these ColdFire CPUs. Merge all this code to a single instance.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 54xx UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5407 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 532x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 528x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5307 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 527x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5272 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5249 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 523x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 520x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 5206 UART addressing so that:
. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
With a few small changes we can make the m68knommu timer init code the
same as the m68k code. By using the mach_sched_init function pointer
and reworking the current timer initializers to keep track of the common
m68k timer_interrupt() handler we end up with almost identical code for
m68knommu.
This will allow us to more easily merge the mmu and non-mmu m68k time.c
in future patches.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The read_persistent_clock() code is different on m68knommu, for really no
reason. With a few changes to support function names and some code
re-organization the code can be made the same.
This will make it easier to merge the arch/m68k/kernel/time.c for m68k and
m68knommu in a future patch.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Conflicts:
drivers/net/ethernet/sfc/rx.c
Overlapping changes in drivers/net/ethernet/sfc/rx.c, one to change
the rx_buf->is_page boolean into a set of u16 flags, and another to
adjust how ->ip_summed is initialized.
Signed-off-by: David S. Miller <davem@davemloft.net>
This is useful for testing RX handling of frames with bad
CRCs.
Requires driver support to actually put the packet on the
wire properly.
Signed-off-by: Ben Greear <greearb@candelatech.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This one specifies where to start MSG_PEEK-ing queue data from. When
set to negative value means that MSG_PEEK works as ususally -- peeks
from the head of the queue always.
When some bytes are peeked from queue and the peeking offset is non
negative it is moved forward so that the next peek will return next
portion of data.
When non-peeking recvmsg occurs and the peeking offset is non negative
is is moved backward so that the next peek will still peek the proper
data (i.e. the one that would have been picked if there were no non
peeking recv in between).
The offset is set using per-proto opteration to let the protocol handle
the locking issues and to check whether the peeking offset feature is
supported by the protocol the socket belongs to.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We had problems accessing our NOR flash trough mtd. The system always got
stuck at attaching UBI using ubiattach if booted from NFS or after mounting
squashfs as rootfs directly from NOR flash.
After some testing of the new changes introduced from v3.2-rc1 to v3.2-rc7
we had to apply the following patch to get mtd working again.
[gerg: The problem was ultimately caused by allocated kernel pages not having
the shared (SG) bit set. Without the SG bit set the MMU will look for page
matches incorporating the ASID as well. Things like module regions allocated
using vmalloc would fault when other processes run. ]
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k: Fix assembler constraint to prevent overeager gcc optimisation
mac_esp: rename irq
mac_scsi: dont enable mac_scsi irq before requesting it
macfb: fix black and white modes
m68k/irq: Remove obsolete IRQ_FLG_* definitions
Fix up trivial conflict in arch/m68k/kernel/process_mm.c as per Geert.
* 'pm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (76 commits)
PM / Hibernate: Implement compat_ioctl for /dev/snapshot
PM / Freezer: fix return value of freezable_schedule_timeout_killable()
PM / shmobile: Allow the A4R domain to be turned off at run time
PM / input / touchscreen: Make st1232 use device PM QoS constraints
PM / QoS: Introduce dev_pm_qos_add_ancestor_request()
PM / shmobile: Remove the stay_on flag from SH7372's PM domains
PM / shmobile: Don't include SH7372's INTCS in syscore suspend/resume
PM / shmobile: Add support for the sh7372 A4S power domain / sleep mode
PM: Drop generic_subsys_pm_ops
PM / Sleep: Remove forward-only callbacks from AMBA bus type
PM / Sleep: Remove forward-only callbacks from platform bus type
PM: Run the driver callback directly if the subsystem one is not there
PM / Sleep: Make pm_op() and pm_noirq_op() return callback pointers
PM/Devfreq: Add Exynos4-bus device DVFS driver for Exynos4210/4212/4412.
PM / Sleep: Merge internal functions in generic_ops.c
PM / Sleep: Simplify generic system suspend callbacks
PM / Hibernate: Remove deprecated hibernation snapshot ioctls
PM / Sleep: Fix freezer failures due to racy usermodehelper_is_disabled()
ARM: S3C64XX: Implement basic power domain support
PM / shmobile: Use common always on power domain governor
...
Fix up trivial conflict in fs/xfs/xfs_buf.c due to removal of unused
XBT_FORCE_SLEEP bit
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (165 commits)
reiserfs: Properly display mount options in /proc/mounts
vfs: prevent remount read-only if pending removes
vfs: count unlinked inodes
vfs: protect remounting superblock read-only
vfs: keep list of mounts for each superblock
vfs: switch ->show_options() to struct dentry *
vfs: switch ->show_path() to struct dentry *
vfs: switch ->show_devname() to struct dentry *
vfs: switch ->show_stats to struct dentry *
switch security_path_chmod() to struct path *
vfs: prefer ->dentry->d_sb to ->mnt->mnt_sb
vfs: trim includes a bit
switch mnt_namespace ->root to struct mount
vfs: take /proc/*/mounts and friends to fs/proc_namespace.c
vfs: opencode mntget() mnt_set_mountpoint()
vfs: spread struct mount - remaining argument of next_mnt()
vfs: move fsnotify junk to struct mount
vfs: move mnt_devname
vfs: move mnt_list to struct mount
vfs: switch pnode.h macros to struct mount *
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k: (21 commits)
m68k/mac: Make CONFIG_HEARTBEAT unavailable on Mac
m68k/serial: Remove references to obsolete serial config options
m68k/net: Remove obsolete IRQ_FLG_* users
m68k: Don't comment out syscalls used by glibc
m68k/atari: Move declaration of atari_SCC_reset_done to header file
m68k/serial: Remove references to obsolete CONFIG_SERIAL167
m68k/hp300: Export hp300_ledstate
m68k: Initconst section fixes
m68k/mac: cleanup macro case
mac_scsi: fix mac_scsi on some powerbooks
m68k/mac: fix powerbook 150 adb_type
m68k/mac: fix baboon irq disable and shutdown
m68k/mac: oss irq fixes
m68k/mac: fix nubus slot irq disable and shutdown
m68k/mac: enable via_alt_mapping on performa 580
m68k/mac: cleanup forward declarations
m68k/mac: cleanup mac_irq_pending
m68k/mac: cleanup mac_clear_irq
m68k/mac: early console
m68k/mvme16x: Add support for EARLY_PRINTK
...
Fix up trivial conflict in arch/m68k/Kconfig.debug due to new
EARLY_PRINTK config option addition clashing with movement of the
BOOTPARAM options.
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (56 commits)
m68k: allow ColdFire 547x and 548x CPUs to be built with MMU enabled
m68k/Kconfig: Separate classic m68k and coldfire early
m68k: add ColdFire with MMU enabled support to the m68k mem init code
m68k: do not use m68k startup or interrupt code for ColdFire CPUs
m68k: add ColdFire FPU support for the V4e ColdFire CPUs
m68k: adjustments to stack frame for ColdFire with MMU enabled
m68k: use non-MMU linker script for ColdFire MMU builds
m68k: ColdFire with MMU enabled uses same clocking code as non-MMU
m68k: add code to setup a ColdFire 54xx platform when MMU enabled
m68k: use non-MMU entry.S code when compiling for ColdFire CPU
m68k: create ColdFire MMU pgalloc code
m68k: compile appropriate mm arch files for ColdFire MMU support
m68k: ColdFire V4e MMU paging init code and miss handler
m68k: use ColdFire MMU read/write bit flags when ioremapping
m68k: modify cache push and clear code for ColdFire with MMU enable
m68k: use tracehook_report_syscall_entry/exit for ColdFire MMU ptrace path
m68k: ColdFire V4e MMU context support code
m68k: MMU enabled ColdFire needs 8k ELF alignment
m68k: set ColdFire MMU page size
m68k: define PAGE_OFFSET_RAW for ColdFire CPU with MMU enabled
...
The V4e ColdFire CPU family also has an integrated FPU (as well as the MMU).
So add code to support this hardware along side the existing m68k FPU code.
The ColdFire FPU is of course different to all previous 68k FP units. It is
close in operation to the 68060, but not completely compatible. The biggest
issue to deal with is that the ColdFire FPU multi-move instructions are
different. It does not support multi-moving the FP control registers, and
the multi-move of the FP data registers uses a different instruction
mnemonic.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
The different ColdFire V4e MMU requires its own dedicated paging init
code, and a TLB miss handler for its software driven TLB.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
The ColdFire MMU has separate read and write bits, unlike the Motorola
m68k MMU which has a single read-only bit.
Define a _PAGE_READWRITE value for the Motorola MMU, which is 0, so we
can unconditionaly include that in the page table entry bits when setting
up ioremapped pages.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Add code to manage the context's of the ColdFire V4e MMU. This code is
mostly taken from the Freescale 2.6.35 kernel BSP for MMU enabled ColdFire.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Like the SUN3 hardware MMU the ColdFire MMU uses 8k pages. So we want
our ELF page size alingment to also be 8k. Modify the ELF alignment
setting.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
We use the ColdFire V4e MMU page size of 8KiB. Define PAGE_SHIFT
appropriately.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
The ColdFire CPU configurations need PAGE_OFFSET_RAW set to the base of
their RAM. It doesn't matter if they are running with the MMU enabled or
disabled, it is always set to the base of RAM.
We can keep the choices simple here and key of CONFIG_RAMBASE. If it is
defined we are on a plaftorm (ColdFire or other non-MMU systems) which
have a configurable RAM base, just use it.
Reported-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The ColdFire V4e MMU is unlike any of the other m68k MMU hardware.
It needs its own TLB flush support code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Modify the cache setup for the ColdFire 54xx parts when running with
the MMU enabled.
We want to map the peripheral register space (MBAR region) as non
cacheable. And create an identity mapping for all of RAM for the
kernel.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Add code to deal with instruction, data and branch caches of the V4e
ColdFire cores when they are running with the MMU enabled.
This code is loosely based on Freescales changes for the caches of the
V4e ColdFire in the 2.6.25 kernel BSP. That code was originally by
Kurt Mahan <kmahan@freescale.com> (now <kmahan@xmission.com>).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Define the page table size and attributes for the ColdFire V4e MMU.
Also setup the vmalloc and kmap regions we will use.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
The ColdFire V4e MMU is nothing like any of the other m68k MMU's.
So we need to create a set of definitions and support routines
for the kernels paging functions.
This is largely taken from Freescales BSP code for this (though it
was a 2.6.25 kernel). I have cleaned it up alot from the original.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Virtual memory m68k systems build with register a2 dedicated to being the
current proc pointer (non-MMU don't do this). Add code to the ColdFire
interrupt and exception processing to set this on entry, and at context
switch time. We use the same GET_CURRENT() macro that MMU enabled code
uses - modifying it so that the assembler is ColdFire clean.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Add code to the 54xx ColdFire CPU init to setup memory ready for the m68k
paged memory start up.
Some of the RAM variables that were specific to the non-mmu code paths
now need to be used during this setup, so when CONFIG_MMU is enabled.
Move these out of page_no.h and into page.h.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The ColdFire CPU family, and the original 68000, do not support separate
address spaces like the other 680x0 CPU types. Modify the set_fs()/get_fs()
functions and macros to use a thread_info addr_limit for address space
checking. This is pretty much what all other architectures that do not
support separate setable address spaces do.
Signed-off-by: Alexander Stein <alexander.stein@systec-electronic.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Modify the user space access functions to support the ColdFire V4e cores
running with MMU enabled.
The ColdFire processors do not support the "moves" instruction used by
the traditional 680x0 processors for moving data into and out of another
address space. They only support the notion of a single address space,
and you use the usual "move" instruction to access that.
Create a new config symbol (CONFIG_CPU_HAS_ADDRESS_SPACES) to mark the
CPU types that support separate address spaces, and thus also support
the sfc/dfc registers and the "moves" instruction that go along with that.
The code is almost identical for user space access, so lets just use a
define to choose either the "move" or "moves" in the assembler code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The interrupt handling support defines and code is not so much conditional
on an MMU being present (CONFIG_MMU), as it is on which type of CPU we are
building for. So make the code conditional on the CPU types instead. The
current irq.h is mostly specific to the interrupt code for the 680x0 CPUs,
so it should only be used for them.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Basic register level definitions to support the internal MMU of the
V4e ColdFire cores.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
Create machine and CPU definitions to support the ColdFire CPU family
members that have a virtual memory management unit.
The ColdFire V4e core contains an MMU, and it is quite different to
any other 68k family members.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
The traditional 68000 processors and the newer reduced instruction set
ColdFire processors do not support the 32*32->64 multiply or the 64/32->32
divide instructions. This is not a difference based on the presence of
a hardware MMU or not.
Create a new config symbol to mark that a CPU type doesn't support the
longer multiply/divide instructions. Use this then as a basis for using
the fast 64bit based divide (in div64.h) and for linking in the extra
libgcc functions that may be required (mulsi3, divsi3, etc).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
We have two implementations of the IP checksuming code for the m68k arch.
One uses the more advanced instructions available in 68020 and above
processors, the other uses the simpler instructions available on the
original 68000 processors and the modern ColdFire processors.
This simpler code is pretty much the same as the generic lib implementation
of the IP csum functions. So lets just switch over to using that. That
means we can completely remove the checksum_no.c file, and only have the
local fast code used for the more complex 68k CPU family members.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
There is no reason we can't make the saved fp registers the same for all
m68k types and ColdFire. There is a little wasted space, but the code
consistency and cleanliness is a big win.
sigcontext.h is an exported header, but currently there is no in-mainline
users of the !__uClinux__ and __mcoldfire__ case that this change effects.
Even better this change actually makes this structure consistent with
the out-of-mainline ColdFire/MMU code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Output a table of the kernel memory regions at boot time.
This is taken directly from the ARM architecture code that does this.
The table looks like this:
Virtual kernel memory layout:
vector : 0x00000000 - 0x00000400 ( 0 KiB)
kmap : 0xd0000000 - 0xe0000000 ( 256 MiB)
vmalloc : 0xc0000000 - 0xcfffffff ( 255 MiB)
lowmem : 0x00000000 - 0x02000000 ( 32 MiB)
.init : 0x00128000 - 0x00134000 ( 48 KiB)
.text : 0x00020000 - 0x00118d54 ( 996 KiB)
.data : 0x00118d60 - 0x00126000 ( 53 KiB)
.bss : 0x00134000 - 0x001413e0 ( 53 KiB)
This has been very useful while debugging the ColdFire virtual memory
support code. But in general I think it is nice to know extacly where
the kernel has layed everything out on boot.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Currently on m68k we have a comeplete thread_info structure stored inside
of the thread_struct, and we also have it in the initial part of the kernel
stack. Mostly the code currently uses the one inside of the thread_struct,
only using the "task" pointer from the stack based one.
This is wasteful and confusing, we should only have the single instance of
thread_info inside the stack page. And this is the norm for all other
architectures.
This change makes m68k handle thread_info consistently on both MMU enabled
and non-MMU setups.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
We have a duplicate name and definition for the offset of the thread.info
struct within the task struct in our asm-offsets.c code. Remove one of them,
and consolidate to use a single define, TASK_INFO.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
gpiolib provides __gpio_to_irq() to map gpiolib gpios to interrupts - hook
that up on m68k.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Conflicts:
net/bluetooth/l2cap_core.c
Just two overlapping changes, one added an initialization of
a local variable, and another change added a new local variable.
Signed-off-by: David S. Miller <davem@davemloft.net>
* master: (848 commits)
SELinux: Fix RCU deref check warning in sel_netport_insert()
binary_sysctl(): fix memory leak
mm/vmalloc.c: remove static declaration of va from __get_vm_area_node
ipmi_watchdog: restore settings when BMC reset
oom: fix integer overflow of points in oom_badness
memcg: keep root group unchanged if creation fails
nilfs2: potential integer overflow in nilfs_ioctl_clean_segments()
nilfs2: unbreak compat ioctl
cpusets: stall when updating mems_allowed for mempolicy or disjoint nodemask
evm: prevent racing during tfm allocation
evm: key must be set once during initialization
mmc: vub300: fix type of firmware_rom_wait_states module parameter
Revert "mmc: enable runtime PM by default"
mmc: sdhci: remove "state" argument from sdhci_suspend_host
x86, dumpstack: Fix code bytes breakage due to missing KERN_CONT
IB/qib: Correct sense on freectxts increment and decrement
RDMA/cma: Verify private data length
cgroups: fix a css_set not found bug in cgroup_attach_proc
oprofile: Fix uninitialized memory access when writing to writing to oprofilefs
Revert "xen/pv-on-hvm kexec: add xs_reset_watches to shutdown watches from old kernel"
...
Conflicts:
kernel/cgroup_freezer.c
Define again the syscalls that are used by glibc so that it is possible to
compile a feature-complete glibc with the newest kernel headers.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
The accidental loss of CONFIG_DIO in commit
0e152d8050 ("m68k: reorganize Kconfig options
to improve mmu/non-mmu selections") exposed a missing symbol export in
m68k allmodconfig. If CONFIG_HP300=y but CONFIG_HPLANCE (which is bool,
and depends on CONFIG_DIO) is not set, and CONFIG_MVME147=y and
CONFIG_MVME147_NET=m, 7990.c is compiled as a module, giving:
ERROR: "ledstate" [drivers/net/ethernet/amd/7990.ko] undefined!
Add the missing export, and rename ledstate to hp300_ledstate while we're
at it, as it's a too generic name.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Code style convention has macro names in uppercase. Change MAC_VIA_IIci to MAC_VIA_IICI.
Also remove an obsolete comment.
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
The IOP driver calls into the OSS driver to enable its IRQ. This undesirable coupling between drivers only exists because the OSS driver doesn't correctly handle all of its machspec IRQs.
Fix OSS handling of enable/disable for VIA1 IRQs (8 thru 15) which includes MAC_IRQ_ADB.
Back when I implemented pmac_zilog support I redefined IRQ_MAC_SCC incorrectly. Change this to a machspec IRQ so that it works on OSS.
Clean up the unused OSS audio IRQ and OSS_IRQLEV_* cruft that only confuses things.
Fix the OSS description in macints.c and remove an obsolete comment.
Don't enable the VIA1 irq before registering the handler.
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Improve NuBus slot interrupt handling code and documentation. This patch fixes the NuBus NIC (mac8390) in my Quadra 700.
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Move some forward declarations into header files and adjust includes.
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
mac_irq_pending() has only one caller (mac_esp.c). Nothing tests for Baboon, PSC or OSS pending interrupts. Until that need arises, let's keep it simple and remove all the unused abstraction. Replace it with a routine to check for SCSI DRQ.
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Only define SERIAL_PORT_DFNS when CONFIG_ISA is defined. Otherwise the first
4 slots in the 8250 driver are unavailable on non-ISA machines.
Signed-off-by: Kars de Jong <jongk@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
The forcedeth changes had a conflict with the conversion over
to atomic u64 statistics in net-next.
The libertas cfg.c code had a conflict with the bss reference
counting fix by John Linville in net-next.
Conflicts:
drivers/net/ethernet/nvidia/forcedeth.c
drivers/net/wireless/libertas/cfg.c
The 802.1X EAPOL handshake hostapd does requires
knowing whether the frame was ack'ed by the peer.
Currently, we fudge this pretty badly by not even
transmitting the frame as a normal data frame but
injecting it with radiotap and getting the status
out of radiotap monitor as well. This is rather
complex, confuses users (mon.wlan0 presence) and
doesn't work with all hardware.
To get rid of that hack, introduce a real wifi TX
status option for data frame transmissions.
This works similar to the existing TX timestamping
in that it reflects the SKB back to the socket's
error queue with a SCM_WIFI_STATUS cmsg that has
an int indicating ACK status (0/1).
Since it is possible that at some point we will
want to have TX timestamping and wifi status in a
single errqueue SKB (there's little point in not
doing that), redefine SO_EE_ORIGIN_TIMESTAMPING
to SO_EE_ORIGIN_TXSTATUS which can collect more
than just the timestamp; keep the old constant
as an alias of course. Currently the internal APIs
don't make that possible, but it wouldn't be hard
to split them up in a way that makes it possible.
Thanks to Neil Horman for helping me figure out
the functions that add the control messages.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
q40_irq_handler() must be kept to translate ISA IRQs to the range 1-15.
q40_probe_irq_o{ff,n}() become unused.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Richard Zidlicky <rz@linux-m68k.org>
- Rename m68k_handle_int() to generic_handle_irq(), and drop the unneeded
asmlinkage,
- Rename __m68k_handle_int() to do_IRQ().
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
This is a wrapper around m68k_setup_irq_chip() that discards its dummy
second parameter, to ease the future transition to genirq.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Make it more similar to the genirq version:
- Add an irq field
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Make it more similar to the genirq version:
- Remove lock (unused as we don't do SMP anyway),
- Prepend methods with irq_,
- Make irq_startup() return unsigned int.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Create common extern definitions of _rambase, _ramstart and _ramend
instead of them being externed when used in code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
We should be including and using sections.h to get at the extern
definitions of the linker sections in the m68knommu startup code.
Not defining them locally.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The code for handling traps in the non-mmu case is a subset of the mmu
enabled case. Merge the non-mmu traps_no.c code back to a single traps.c.
There is actually no code mmu specific here at all, and the processor
specific code (for the more complex 68020/68030/68040/68060) is already
proplerly conditionaly used.
The format of console exception dump is a little different, but I don't
think will cause any one problems, it is purely for debug purposes.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The changes in the mmu version of entry.h (entry_mm.h) and the non-mmu
version (entry_no.h) are not about the presence or use of an MMU at all.
The main changes are to support the ColdFire processors. The code for
trap entry and exit for all types of 68k processor outside coldfire is
the same.
So merge the files back to a single entry.h and share the common 68k
entry/exit code. Some changes are required for the non-mmu entry
handlers to adopt the differing macros for system call and interrupt
entry, but this is quite strait forward. The changes for the ColdFire
remove a couple of instructions for the separate a7 register case, and
are no worse for the older single a7 register case.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The problem has its root in the calculation of the set-port offsets (macro
MCFGPIO_SETR() in arch/m68k/include/asm/gpio.h), this assumes that all ports
have the same offset from the base port address (MCFGPIO_SETR) which is
defined in mcf520xsim.h as an alias of MCFGIO_PSETR_BUSCTL. Because the BUSCTL
and BE port do not have a set-register (see MCF5208 Reference Manual Page
13-10, Table 13-3) the offset calculations went wrong.
Because the BE and BUSCTL port do not seem useful in these parts, as they
lack a set register, I removed them and adapted the gpio chip bases which
are also used for the offset-calculations. Now both setting and resetting
the chip selects works as expected from userland and from the kernelspace.
Signed-off-by: Peter Turczak <peter@turczak.de>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Fixes fallout due to the removal of the cast in commit aa462abe8a
("mm: fix __page_to_pfn for a const struct page argument")
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: linux-m68k@lists.linux-m68k.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k/math-emu: Remove unnecessary code
m68k/math-emu: Remove commented out old code
m68k: Kill warning in setup_arch() when compiling for Sun3
m68k/atari: Prefix GPIO_{IN,OUT} with CODEC_
sparc: iounmap() and *_free_coherent() - Use lookup_resource()
m68k/atari: Reserve some ST-RAM early on for device buffer use
m68k/amiga: Chip RAM - Use lookup_resource()
resources: Add lookup_resource()
sparc: _sparc_find_resource() should check for exact matches
m68k/amiga: Chip RAM - Offset resource end by CHIP_PHYSADDR
m68k/amiga: Chip RAM - Use resource_size() to fix off-by-one error
m68k/amiga: Chip RAM - Change chipavail to an atomic_t
m68k/amiga: Chip RAM - Always allocate from the start of memory
m68k/amiga: Chip RAM - Convert from printk() to pr_*()
m68k/amiga: Chip RAM - Use tabs for indentation
These defines are way to generic, and cause conflicts:
drivers/net/wireless/rtlwifi/rtl8192c/../rtl8192ce/reg.h:369:1: warning: "GPIO_IN" redefined
drivers/net/wireless/rtlwifi/rtl8192c/../rtl8192ce/reg.h:370:1: warning: "GPIO_OUT" redefined
drivers/net/wireless/rtlwifi/rtl8192se/reg.h:252:1: warning: "GPIO_IN" redefined
drivers/net/wireless/rtlwifi/rtl8192se/reg.h:253:1: warning: "GPIO_OUT" redefined
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Based on an original patch from Michael Schmitz:
Because mem_init() is now called before device init, devices that rely on
ST-RAM may find all ST-RAM already allocated to other users by the time
device init happens. In particular, a large initrd RAM disk may use up
enough of ST-RAM to cause atari_stram_alloc() to resort to
__get_dma_pages() allocation.
In the current state of Atari memory management, all of RAM is marked
DMA capable, so __get_dma_pages() may well return RAM that is not in actual
fact DMA capable. Using this for frame buffer or SCSI DMA buffer causes
subtle failure.
The ST-RAM allocator has been changed to allocate memory from a pool of
reserved ST-RAM of configurable size, set aside on ST-RAM init (i.e.
before mem_init()). As long as this pool is not exhausted, allocation of
real ST-RAM can be guaranteed.
Other changes:
- Replace the custom allocator in the ST-RAM pool by the existing allocator
in the resource subsystem,
- Remove mem_init_done and its hook, as memory init is now done before
device init,
- Remove /proc/stram, as ST-RAM usage now shows up under /proc/iomem, e.g.
005f2000-006f1fff : ST-RAM Pool
005f2000-0063dfff : atafb
0063e000-00641fff : ataflop
00642000-00642fff : SCSI
Signed-off-by: Michael Schmitz <schmitz@debian.org>
[Andreas Schwab <schwab@linux-m68k.org>: Use memparse()]
[Geert: Use the resource subsystem instead of a custom allocator]
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
After changing all consumers of atomics to include <linux/atomic.h>, we
ran into some compile time errors due to this dependency chain:
linux/atomic.h
-> asm/atomic.h
-> asm-generic/atomic-long.h
where atomic-long.h could use funcs defined later in linux/atomic.h
without a prototype. This patches moves the code that includes
asm-generic/atomic*.h to linux/atomic.h.
Archs that need <asm-generic/atomic64.h> need to select
CONFIG_GENERIC_ATOMIC64 from now on (some of them used to include it
unconditionally).
Compile tested on i386 and x86_64 with allnoconfig.
Signed-off-by: Arun Sharma <asharma@fb.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is in preparation for more generic atomic primitives based on
__atomic_add_unless.
Signed-off-by: Arun Sharma <asharma@fb.com>
Signed-off-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Harmonise these return values with other architectures. In some cases
this affects all compilers and in other cases non-gcc compilers only.
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ulrich Drepper <drepper@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ poleg@redhat.com: no need to declare show_regs() in ptrace.h, sched.h does this ]
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu:
m68k: Revive reporting of spurious interrupts
m68knommu: Move forward declaration of do_IRQ() from machdep.h to irq.h
m68k: fix some atomic operation asm address modes for ColdFire
m68k: use CPU_HAS_NO_BITFIELDS for signal functions
m68k: merge and clean up delay.h files
m68knommu: correctly use trap_init
m68knommu: merge ColdFire 5206 and 5206e platform code
m68k: merge mmu and non-mmu bitops.h
m68k: merge MMU and non MMU versions of system.h
m68k: merge MMU and non-MMU versions of asm/hardirq.h
m68k: merge the non-mmu and mmu versions of module.c
m68knommu: Fix printk() format in free_initrd_mem()
m68knommu: Make empty_zero_page "void *", like on m68k
The address limit is already set in flush_old_exec() so those calls to
set_fs(USER_DS) are redundant.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not machine-specific, but common irq infrastructure.
Also add the missing asmlinkage, to match its definition.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire processors have a much more limited set of addressing modes
that can be used for most instructions. A number of the atomic operations
have already been fixed to limit the addressing modes used with add and
sub instructions when building for ColdFire. But we missed a few.
Fix the remaining atomic operations to be clean for ColdFire processors.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
When reworking bitops.h to be clean for all processor types we introduced
a CONFIG_CPU_HAS_NO_BITFIELDS define to signal whether this processor type
supported the bit field instructions. The ARCH_SIG_BITOPS functions for
m68k use these instruction types. We should base the use of these functions
(or the generic versions) on the CONFIG_CPU_HAS_NO_BITFIELDS define.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The real difference between the mmu and non-mmu varients of the delay.h
files has nothing to do with having an mmu or not. It is processor family
differences that means slightly different code. Merge the delay_mm.h and
delay_no.h files back into a single file.
The primarly difference we need to deal with is whether the processor
supports a 32bit * 32bit -> 64bit multiply. Without it we need to do some
shift scaling as well as use a 32bit * 32bit -> 32bit multiply. If building
for a multi-CPU type kernel then we must use the simpler mult/shift scaling.
This version of delay code allows the CPU32 family to use a 64bit mul,
since it supports this instruction, the old code did not.
The changes use macros where appropriate to try and optimize constant sized
udelay times. And it removes the use of a fixed lib function for the non-mmu
case. Code size on typical kernel configurations is similar, or only larger
by a few tens of bytes.
Also removed the unused muldiv() code from delay_mm.h.
Build and run tested on ColdFire and ARAnyM. Build tested only on 68328
and 68360 (CPU32).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Currently trap_init() is an empty function for m68knommu. Instead
the vectors are being setup as part of the IRQ initialization.
This is inconsistent with m68k and other architectures.
Change the local init_vectors() to be trap_init(), and init the
vectors at the correct time during startup. This will help merge of
m68k and m68knommu trap code in the furture.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The following patch merges the mmu and non-mmu versions of the m68k
bitops.h files. Now there is a good deal of difference between the two
files, but none of it is actually an mmu specific difference. It is
all about the specific m68k/coldfire varient we are targeting. So it
makes an awful lot of sense to merge these into a single bitops.h.
There is a number of ways I can see to factor this code. The approach
I have taken here is to keep the various versions of each macro/function
type together. This means that there is some ifdefery with each to handle
each CPU type.
I have added some comments in a couple of appropriate places to try
and make it clear what the differences we are dealing with are.
Specifically the instruction and addressing mode differences we have
to deal with.
The merged form keeps the same underlying optimizations for each CPU
type for all the general bit clear/set/change and find bit operations.
It does switch to using the generic le operations though, instead of
any local varients.
Build tested on ColdFire, 68328, 68360 (which is cpu32) and 68020+.
Run tested on ColdFire and ARAnyM.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The non-MMU m68k targets can use the same asm/system.h as the MMU
targets. So switch the current system_mm.h to be system.h and remove
system_no.h.
The assembly support code for the non-MMU resume functions needs to
be modified to match the now common switch_to() macro. Specifically
this means correctly saving and restoring the status flags in the case
of the ColdFire resume, and some reordering of the code to not use
registers before they are saved or after they are restored.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The contents of asm/hardirq.h are pretty strait forward for both the
MMU (hardirq_mm.h) and non-MMU (hardirq_no.h) include files. Merge the
two back into a single file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The non-mmu and mmu versions of the module loader module.c are
nearly identical. Merge them back to a single module.c. There is
a little bit of re-ordering of the struct and enum definitions in
module.h to keep the ifdefery to a minimum.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
32bit and 64bit on x86 are tested and working. The rest I have looked
at closely and I can't find any problems.
setns is an easy system call to wire up. It just takes two ints so I
don't expect any weird architecture porting problems.
While doing this I have noticed that we have some architectures that are
very slow to get new system calls. cris seems to be the slowest where
the last system calls wired up were preadv and pwritev. avr32 is weird
in that recvmmsg was wired up but never declared in unistd.h. frv is
behind with perf_event_open being the last syscall wired up. On h8300
the last system call wired up was epoll_wait. On m32r the last system
call wired up was fallocate. mn10300 has recvmmsg as the last system
call wired up. The rest seem to at least have syncfs wired up which was
new in the 2.6.39.
v2: Most of the architecture support added by Daniel Lezcano <dlezcano@fr.ibm.com>
v3: ported to v2.6.36-rc4 by: Eric W. Biederman <ebiederm@xmission.com>
v4: Moved wiring up of the system call to another patch
v5: ported to v2.6.39-rc6
v6: rebased onto parisc-next and net-next to avoid syscall conflicts.
v7: ported to Linus's latest post 2.6.39 tree.
> arch/blackfin/include/asm/unistd.h | 3 ++-
> arch/blackfin/mach-common/entry.S | 1 +
Acked-by: Mike Frysinger <vapier@gentoo.org>
Oh - ia64 wiring looks good.
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The implementation of find_next_bit_le() on m68knommu is identical with
the generic implementation of find_next_bit_le().
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The style that we normally use in asm-generic is to test the macro itself
for existence, so in asm-generic, do:
#ifndef find_next_zero_bit_le
extern unsigned long find_next_zero_bit_le(const void *addr,
unsigned long size, unsigned long offset);
#endif
and in the architectures, write
static inline unsigned long find_next_zero_bit_le(const void *addr,
unsigned long size, unsigned long offset)
#define find_next_zero_bit_le find_next_zero_bit_le
This adds the #define for each of the optimized find bitops in the
architectures.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
m68knommu can't build ext4, udf, and ocfs2 due to the lack of
find_next_bit_le().
This implements find_next_bit_le() on m68knommu by duplicating the generic
find_next_bit_le() in lib/find_next_bit.c.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
m68knommu can use generic implementation of ext2 atomic bitops.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The implementation of iounmap() and __ioremap() for non-mmu m68k is
trivial. We can inline them in m68knommu headers and remove the trivial
implementations.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
b43: fix comment typo reqest -> request
Haavard Skinnemoen has left Atmel
cris: typo in mach-fs Makefile
Kconfig: fix copy/paste-ism for dell-wmi-aio driver
doc: timers-howto: fix a typo ("unsgined")
perf: Only include annotate.h once in tools/perf/util/ui/browsers/annotate.c
md, raid5: Fix spelling error in comment ('Ofcourse' --> 'Of course').
treewide: fix a few typos in comments
regulator: change debug statement be consistent with the style of the rest
Revert "arm: mach-u300/gpio: Fix mem_region resource size miscalculations"
audit: acquire creds selectively to reduce atomic op overhead
rtlwifi: don't touch with treewide double semicolon removal
treewide: cleanup continuations and remove logging message whitespace
ath9k_hw: don't touch with treewide double semicolon removal
include/linux/leds-regulator.h: fix syntax in example code
tty: fix typo in descripton of tty_termios_encode_baud_rate
xtensa: remove obsolete BKL kernel option from defconfig
m68k: fix comment typo 'occcured'
arch:Kconfig.locks Remove unused config option.
treewide: remove extra semicolons
...
The Atari keyboard driver calls atari_mouse_interrupt_hook if it's set, not
atari_input_mouse_interrupt_hook. Fix below.
[geert] Killed off atari_mouse_interrupt_hook completely, after fixing another
incorrect assignment in atarimouse.c.
Signed-off-by: Michael Schmitz <schmitz@debian.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
find_next bitops on m68k (find_next_zero_bit, find_next_bit, and
find_next_bit_le) may cause out of bounds memory access
when the bitmap size in bits % 32 != 0 and offset (the bitnumber
to start searching at) is very close to the bitmap size.
For example,
unsigned long bitmap[2] = { 0, 0 };
find_next_bit(bitmap, 63, 62);
1. find_next_bit() tries to find any set bits in bitmap[1],
but no bits set.
2. Then find_first_bit(bimap + 2, -1)
3. Unfortunately find_first_bit() takes unsigned int as the size argument.
4. find_first_bit will access bitmap[2~] until it find any set bits.
Add missing tests for stepping beyond the end of the bitmap to all
find_{first,next}_*() functions, and make sure they never return a value
larger than the bitmap size.
Reported-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Hence use "offset" in find_next_{,zero_}bit(), like is already done for
find_next_{,zero_}bit_le()
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
The patch below changes a typo occcured to occurred in two comments.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
There is no user now.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: David Miller <davem@davemloft.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
minix bit operations are only used by minix filesystem and useless by
other modules. Because byte order of inode and block bitmaps is different
on each architecture like below:
m68k:
big-endian 16bit indexed bitmaps
h8300, microblaze, s390, sparc, m68knommu:
big-endian 32 or 64bit indexed bitmaps
m32r, mips, sh, xtensa:
big-endian 32 or 64bit indexed bitmaps for big-endian mode
little-endian bitmaps for little-endian mode
Others:
little-endian bitmaps
In order to move minix bit operations from asm/bitops.h to architecture
independent code in minix filesystem, this provides two config options.
CONFIG_MINIX_FS_BIG_ENDIAN_16BIT_INDEXED is only selected by m68k.
CONFIG_MINIX_FS_NATIVE_ENDIAN is selected by the architectures which use
native byte order bitmaps (h8300, microblaze, s390, sparc, m68knommu,
m32r, mips, sh, xtensa). The architectures which always use little-endian
bitmaps do not select these options.
Finally, we can remove minix bit operations from asm/bitops.h for all
architectures.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a preparation for moving minix bit operations from asm/bitops.h to
architecture independent code in minix filesystem, this removes inline asm
from minix_find_first_zero_bit() for m68k.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As the result of conversions, there are no users of ext2 non-atomic bit
operations except for ext2 filesystem itself. Now we can put them into
architecture independent code in ext2 filesystem, and remove from
asm/bitops.h for all architectures.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce little-endian bit operations by renaming native ext2 bit
operations. The ext2 bit operations are kept as wrapper macros using
little-endian bit operations to maintain bisectability until the
conversions are finished.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce little-endian bit operations by renaming native ext2 bit
operations and changing find_*_bit_le() to take a "void *". The ext2 bit
operations are kept as wrapper macros using little-endian bit operations
to maintain bisectability until the conversions are finished.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All architectures can use the common dma_addr_t typedef now. We can
remove the arch specific dma_addr_t.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k/block: amiflop - Remove superfluous amiga_chip_alloc() cast
m68k/atari: ARAnyM - Add support for network access
m68k/atari: ARAnyM - Add support for console access
m68k/atari: ARAnyM - Add support for block access
m68k/atari: Initial ARAnyM support
m68k: Kconfig - Remove unneeded "default n"
m68k: Makefiles - Change to new flags variables
m68k/amiga: Reclaim Chip RAM for PPC exception handlers
m68k: Allow all kernel traps to be handled via exception fixups
m68k: Use base_trap_init() to initialize vectors
m68k: Add helper function handle_kernel_fault()
Add improved support for running under the ARAnyM emulator
(Atari Running on Any Machine - http://aranym.org/).
[michael, geert: Cleanups and updates]
Signed-off-by: Petr Stehlik <pstehlik@sophics.cz>
Signed-off-by: Michael Schmitz <schmitz@debian.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Add helper function handle_kernel_fault() in signal.c, so frame_extra_sizes
can become static, and to avoid future code duplication.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
The EDGE Port module of some ColdFire parts using the intc-simr interrupt
controller provides support for 7 external interrupts. These interrupts
go off-chip (that is they are not for internal peripherals). They need
some special handling and have some extra setup registers. Add code to
support them.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The EDGE Port module of some ColdFire parts using the intc-2 interrupt
controller provides support for 7 external interrupts. These interrupts
go off-chip (that is they are not for internal peripherals). They need
some special handling and have some extra setup registers. Add code to
support them.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The reality is that you do not need the abiltity to configure the
clock divider for ColdFire CPUs. It is a fixed ratio on any given
ColdFire family member. It is not the same for all ColdFire parts,
but it is always the same in a model range. So hard define the divider
for each supported ColdFire CPU type and remove the Kconfig option.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Most ColdFire CPUs have an internal peripheral set that can be mapped at
a user selectable address. Different ColdFire parts either use an MBAR
register of an IPSBAR register to map the peripheral region. Most boards
use the Freescale default mappings - but not all.
Make the setting of the MBAR or IPSBAR register configurable. And only make
the selection available on the appropriate ColdFire CPU types.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Different ColdFire CPUs have different ways of defining where their
internal peripheral registers sit in their address space. Some use an
MBAR register, some use and IPSBAR register, some have a fixed mapping.
Now that most of the peripheral address definitions have been cleaned up
we can clean up the setting of the MBAR and IPSBAR defines to limit them
to just where they are needed (and where they actually exist).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
In some of the RAM size autodetection code on ColdFire CPU startup
we reference DRAM registers relative to the MBAR register. Not all of
the supported ColdFire CPUs have an MBAR, and currently this works
because we fake an MBAR address on those registers. In an effort to
clean this up, and eventually remove the fake MBAR setting make the
DRAM register address definitions actually contain the MBAR (or IPSBAR
as appropriate) value as required.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Not all ColdFire CPUs that use the old style timer hardware module use
an MBAR set peripheral region. Move the TIMER base address defines to the
per-CPU header files where we can set it correctly based on how the
peripherals are mapped - instead of using a fake MBAR for some platforms.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The base addresses of the ColdFire DMA unit registers belong with
all the other address definitions in the per-cpu headers. The current
definitions assume they are relative to an MBAR register. Not all
ColdFire CPUs have an MBAR register. A clean address define can only
be acheived in the per-cpu headers along with all the other chips
peripheral base addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 528x family of CPUs does not have an MBAR register, so don't
define its peripheral addresses relative to one. Its internal peripherals
are relative to the IPSBAR register, so make sure to use that.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 527x family of CPUs does not have an MBAR register, so don't
define its peripheral addresses relative to one. Its internal peripherals
are relative to the IPSBAR register, so make sure to use that.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 523x family of CPUs does not have an MBAR register, so don't
define its peripheral addresses relative to one. Its internal peripherals
are relative to the IPSBAR register, so make sure to use that.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 5207 and 5208 CPUs have fixed peripheral addresses.
They do not use the setable peripheral address registers like the MBAR
and IPSBAR used on many other ColdFire parts. Don't use fake values
of MBAR and IPSBAR when using peripheral addresses for them, there
is no need to.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The PIT hardware timer module used in some ColdFire CPU's is not always
addressed relative to an IPSBAR register. Parts like the ColdFire 5207 and
5208 have fixed peripheral addresses. So lets not define the register
addresses of the PIT relative to an IPSBAR definition. Move the base
address definitions into the per-part headers. This is a lot more consistent
since all the other peripheral base addresses are defined in the per-part
header files already.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Remove the bogus definition of the MBAR register for the ColdFire 532x
family. It doesn't have an MBAR register, its peripheral registers are
at fixed addresses and are not relative to a settable base.
All the code that relyed on this definition existing has been cleaned
up. The register address definitions now include the base as required.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 54xx family shares the same interrupt controller used
on the 523x, 527x and 528x ColdFire parts, but it isn't offset
relative to the IPSBAR register. The 54xx doesn't have an IPSBAR
register.
By including the base address of the peripheral registers in the register
definitions (MCFICM_INTC0 and MCFICM_INTC1 in this case) we can avoid
having to define a fake IPSBAR for the 54xx. And this makes the register
address definitions of these more consistent, the majority of the other
register address defines include the peripheral base address already.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The MBAR2 register is only used on the ColdFire 5249 part, so move its
definition out of the common coldfire.h and into the 5249 support header.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Add an m68k/coldfire optimized memmove() function for the m68knommu arch.
This is the same function as used by m68k. Simple speed tests show this
is faster once buffers are larger than 4 bytes, and significantly faster
on much larger buffers (4 times faster above about 100 bytes).
This also goes part of the way to fixing a regression caused by commit
ea61bc461d ("m68k/m68knommu: merge MMU and
non-MMU string.h"), which breaks non-coldfire non-mmu builds (which is
the 68x328 and 68360 families). They currently have no memmove() fucntion
defined, since there was none in the m68knommu/lib functions.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The m68k arch implements its own memcmp() function. It is not optimized
in any way (it is the most strait forward coding of memcmp you can get).
Remove it and use the kernels standard memcmp() implementation.
This also goes part of the way to fixing a regression caused by commit
ea61bc461d ("m68k/m68knommu: merge MMU and
non-MMU string.h"), which breaks non-coldfire non-mmu builds (which is
the 68x328 and 68360 families). They currently have no memcmp() function
defined, since there is none in the m68knommu/lib functions.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
It's a way too generic name for a global #define and conflicts with a variable
with the same name, causing build errors like:
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c: In function ‘_si_clkctl_cc’:
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1364: error: expected identifier or ‘(’ before ‘volatile’
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1364: error: expected ‘)’ before ‘(’ token
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1421: error: incompatible types in assignment
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1422: error: invalid operands to binary &
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1423: error: invalid operands to binary &
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1424: error: invalid operands to binary |
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: aggregate value used where an integer was expected
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1425: error: incompatible type for argument 4 of ‘bcmsdh_reg_write’
| drivers/staging/brcm80211/brcmfmac/../util/siutils.c:1428: error: invalid operands to binary &
| make[8]: *** [drivers/staging/brcm80211/brcmfmac/../util/siutils.o] Error 1
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Some versions of gcc replace calls to strstr() with single-character
"needle" string parameters by calls to strchr() behind our back.
If strchr() is defined as an inline function, this causes linking errors
like
ERROR: "strchr" [drivers/target/target_core_mod.ko] undefined!
As m68k is the only architecture that has an inline strchr() and this
inline version is not an optimized asm version, uninline strchr() and use
the standard out-of-line C version in lib/string.c instead.
This also decreases the defconfig/allmodconfig kernel image sizes by a few
hundred bytes.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (25 commits)
m68knommu: fix broken setting of irq_chip and handler
m68knommu: switch to using -mcpu= flags for ColdFire targets
m68knommu: arch/m68knommu/Kconfig whitespace cleanup
m68knommu: create optimal separate instruction and data cache for ColdFire
m68knommu: support ColdFire caches that do copyback and write-through
m68knommu: support version 2 ColdFire split cache
m68knommu: make cache push code ColdFire generic
m68knommu: clean up ColdFire cache control code
m68knommu: move inclusion of ColdFire v4 cache registers
m68knommu: merge bit definitions for version 3 ColdFire cache controller
m68knommu: create bit definitions for the version 2 ColdFire cache controller
m68knommu: remove empty __iounmap() it is no used
m68knommu: remove kernel_map() code, it is not used
m68knommu: remove do_page_fault(), it is not used
m68knommu: use user stack pointer hardware on some ColdFire cores
m68knommu: remove command line printing DEBUG
m68knommu: remove fasthandler interrupt code
m68knommu: move UART addressing to part specific includes
m68knommu: fix clock rate value reported for ColdFire 54xx parts
m68knommu: move ColdFire CPU names into their headers
...
and saner do_signal() arguments, while we are at it
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Since commit 31c911329e ("mm: check the argument
of kunmap on architectures without highmem"), we get lots of warnings like
arch/m68k/kernel/sys_m68k.c:508: warning: passing argument 1 of ‘kunmap’ from incompatible pointer type
As m68k doesn't support highmem anyway, open code the calls to kmap() and
kunmap() (the latter is a no-op) to kill the warnings, like is done on most
other architectures without CONFIG_HIGHPTE.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Sam Creasey <sammy@sammy.net>
Create separate functions to deal with instruction and data cache flushing.
This way we can optimize them for the vairous cache types and arrangements
used across the ColdFire family.
For example the unified caches in the version 3 cores means we don't
need to flush the instruction cache. For the version 2 cores that do
not do data cacheing (or where we choose instruction cache only) we
don't need to do any data flushing.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The version 3 and version 4 ColdFire cache controllers support both
write-through and copy-back modes on the data cache. Allow for Kconfig
time configuration of this, and set the cache mode appropriately.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The newer version 2 ColdFire CPU cores support a configurable cache
arrangement. The cache memory can be used as all instruction cache, all
data cache, or split in half for both instruction and data caching.
Support this setup via a Kconfig time menu that allows a kernel builder
to choose the arrangement they want to use.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Currently the code to push cache lines is only available to version 4
cores. Version 3 cores may also need to use this if we support copy-
back caches on them. Move this code to make it more generic, and
useful for all version ColdFire cores.
With this in place we can now have a single cache_flush_all() code
path that does all the right things on all version cores.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The cache control code for the ColdFire CPU's is a big ugly mess
of "#ifdef"ery liberally coated with bit constants. Clean it up.
The cache controllers in the various ColdFire parts are actually quite
similar. Just differing in some bit flags and options supported. Using
the header defines now in place it is pretty easy to factor out the
small differences and use common setup and flush/invalidate code.
I have preserved the cache setups as they where in the old code
(except where obviously wrong - like in the case of the 5249). Following
from this it should be easy now to extend the possible setups used on
the CACHE controllers that support split cacheing or copy-back or
write through options.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Move the inclusion of the version 4 cache controller registers so that
it is with all the other register bit flag definitions. This makes it
consistent with the other version core inclusion points, and means we
don't need "#ifdef"ery in odd-ball places for these definitions.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
All version 3 based ColdFire CPU cores have a similar cache controller.
Merge all the exitsing definitions into a single file, and make them
similar in style and naming to the existing version 2 and version 4
cache controller definitions.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The version 2 ColdFire CPU based cores all contain a similar cache
controller unit. Create a set of bit flag definitions for the supporting
registers.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The more modern ColdFire parts (even if based on older version cores)
have separate user and supervisor stack pointers (a7 register).
Modify the ColdFire CPU setup and exception code to enable and use
this on parts that have it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire UART base addresses varies between the different ColdFire
family members. Instead of keeping the base addresses with the UART
definitions keep them with the other addresses definitions for each
ColdFire part.
The motivation for this move is so that when we add new ColdFire
part definitions, they are all in a single file (and we shouldn't
normally need to modify the UART definitions in mcfuart.h at all).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The instruction timings of the ColdFire 54xx family parts are
different to other version 4 parts (or version 2 or 3 parts for
that matter too).
Move the instruction timing setting into the ColdFire part
specific headers, and set the 54xx value appropriately.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Move the ColdFire CPU names out of setup.c and into their repsective
headers. That way when we add new ones we won't need to modify
setup.c any more.
Add the missing 548x CPU name.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The ColdFire 547x family of processors is very similar to the ColdFire
548x series. Almost all of the support for them is the same. Make the
code supporting the 548x more gneric, so it will be capable of
supporting both families.
For the most part this is a renaming excerise to make the support
code more obviously apply to both families.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Now that we have meaningfull symbolic constants for bit definitions
of the cache registers of m5407 and m548x chips, use them to
improve readability, portability and efficiency of the cache operations.
This also fixes __flush_cache_all for m548x chips : implicit
DCACHE_SIZE was exact for m5407, but wrong for m548x.
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
__flush_cache_all for m54xx is intrinsically related to the bit
definitions in m54xxacr.h. Move it there from cacheflush_no.h,
for easier maintenance.
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The MCF548x have the same cache control registers as the MCF5407.
Extract the bit definitions for the ACR and CACR registers from m5407sim.h
and move them to a new file m54xxacr.h. Those definitions are not used
anywhere yet, so no other file is involved. This is a preparation for
m54xx cache support cleanup.
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Recent changes to header files made kernel compilation for m68k/m68knommu
fail with :
CC arch/m68knommu/kernel/asm-offsets.s
In file included from /archives/linux/git/arch/m68k/include/asm/system.h:2,
from include/linux/wait.h:25,
from include/linux/mmzone.h:9,
from include/linux/gfp.h:4,
from include/linux/irq.h:20,
from include/asm-generic/hardirq.h:12,
from /archives/linux/git/arch/m68k/include/asm/hardirq_no.h:17,
from /archives/linux/git/arch/m68k/include/asm/hardirq.h:2,
from include/linux/hardirq.h:10,
from /archives/linux/git/arch/m68k/include/asm/irqflags.h:5,
from include/linux/irqflags.h:15,
from include/linux/spinlock.h:53,
from include/linux/seqlock.h:29,
from include/linux/time.h:8,
from include/linux/timex.h:56,
from include/linux/sched.h:56,
from arch/m68knommu/kernel/asm-offsets.c:12:
/archives/linux/git/arch/m68k/include/asm/system_no.h: In function ‘__xchg’:
/archives/linux/git/arch/m68k/include/asm/system_no.h:79: error: implicit
+declaration of function ‘local_irq_save’
/archives/linux/git/arch/m68k/include/asm/system_no.h:101: error: implicit
+declaration of function ‘local_irq_restore’
Fix that
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The cleanup and merge of machdep should not have removed the do_IRQ
declaration. It is needed by the 68328 based targets.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Long ago, PT_TRACESYS_OFF and friends were introduced as hard defines to
avoid straight constants in assembler parts of linux m68k. They are not
used anymore, and were not updated to follow changes in linux kernel.
Remove them. When similar constants are needed, they are now generated
using asm-offsets.c.
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since we no longer need to provide KM_type, the whole pte_*map_nested()
API is now redundant, remove it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>