Commit Graph

55 Commits

Author SHA1 Message Date
Mark Rutland dfbca61af0 arm64: hibernate: handle allocation failures
In create_safe_exec_page(), we create a copy of the hibernate exit text,
along with some page tables to map this via TTBR0. We then install the
new tables in TTBR0.

In swsusp_arch_resume() we call create_safe_exec_page() before trying a
number of operations which may fail (e.g. copying the linear map page
tables). If these fail, we bail out of swsusp_arch_resume() and return
an error code, but leave TTBR0 as-is. Subsequently, the core hibernate
code will call free_basic_memory_bitmaps(), which will free all of the
memory allocations we made, including the page tables installed in
TTBR0.

Thus, we may have TTBR0 pointing at dangling freed memory for some
period of time. If the hibernate attempt was triggered by a user
requesting a hibernate test via the reboot syscall, we may return to
userspace with the clobbered TTBR0 value.

Avoid these issues by reorganising swsusp_arch_resume() such that we
have no failure paths after create_safe_exec_page(). We also add a check
that the zero page allocation succeeded, matching what we have for other
allocations.

Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 4.7+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-12 19:08:33 +01:00
Mark Rutland 0194e760f7 arm64: hibernate: avoid potential TLB conflict
In create_safe_exec_page we install a set of global mappings in TTBR0,
then subsequently invalidate TLBs. While TTBR0 points at the zero page,
and the TLBs should be free of stale global entries, we may have stale
ASID-tagged entries (e.g. from the EFI runtime services mappings) for
the same VAs. Per the ARM ARM these ASID-tagged entries may conflict
with newly-allocated global entries, and we must follow a
Break-Before-Make approach to avoid issues resulting from this.

This patch reworks create_safe_exec_page to invalidate TLBs while the
zero page is still in place, ensuring that there are no potential
conflicts when the new TTBR0 value is installed. As a single CPU is
online while this code executes, we do not need to perform broadcast TLB
maintenance, and can call local_flush_tlb_all(), which also subsumes
some barriers. The remaining assembly is converted to use write_sysreg()
and isb().

Other than this, we safely manipulate TTBRs in the hibernate dance. The
code we install as part of the new TTBR0 mapping (the hibernated
kernel's swsusp_arch_suspend_exit) installs a zero page into TTBR1,
invalidates TLBs, then installs its preferred value. Upon being restored
to the middle of swsusp_arch_suspend, the new image will call
__cpu_suspend_exit, which will call cpu_uninstall_idmap, installing the
zero page in TTBR0 and invalidating all TLB entries.

Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 4.7+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-12 18:46:29 +01:00
James Morse d74b4e4f1a arm64: hibernate: Don't hibernate on systems with stuck CPUs
Hibernate relies on cpu hotplug to prevent secondary cores executing
the kernel text while it is being restored.

Add a call to cpus_are_stuck_in_kernel() to determine if there are
CPUs not counted by 'num_online_cpus()', and prevent hibernate in this
case.

Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-06-22 15:48:10 +01:00
James Morse 1fe492ce64 arm64: hibernate: Refuse to hibernate if the boot cpu is offline
Hibernation represents a system state save/restore through
a system reboot; this implies that the logical cpus carrying
out hibernation/thawing must be the same, so that the context
saved in the snapshot image on hibernation is consistent with
the state of the system on resume. If resume from hibernation
is driven through kernel command line parameter, the cpu responsible
for thawing the system will be whatever CPU firmware boots the system
on upon cold-boot (ie logical cpu 0); this means that in order to
keep system context consistent between the hibernate snapshot image
and system state on kernel resume from hibernate, logical cpu 0 must
be online on hibernation and must be the logical cpu that creates
the snapshot image.

This patch adds a PM notifier that enforces logical cpu 0 is online
when the hibernation is started (and prevents hibernation if it is
not), which is sufficient to guarantee it will be the one creating
the snapshot image therefore providing the resume cpu a consistent
snapshot of the system to resume to.

Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 13:36:23 +01:00
James Morse 82869ac57b arm64: kernel: Add support for hibernate/suspend-to-disk
Add support for hibernate/suspend-to-disk.

Suspend borrows code from cpu_suspend() to write cpu state onto the stack,
before calling swsusp_save() to save the memory image.

Restore creates a set of temporary page tables, covering only the
linear map, copies the restore code to a 'safe' page, then uses the copy to
restore the memory image. The copied code executes in the lower half of the
address space, and once complete, restores the original kernel's page
tables. It then calls into cpu_resume(), and follows the normal
cpu_suspend() path back into the suspend code.

To restore a kernel using KASLR, the address of the page tables, and
cpu_resume() are stored in the hibernate arch-header and the el2
vectors are pivotted via the 'safe' page in low memory.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Kevin Hilman <khilman@baylibre.com> # Tested on Juno R2
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 13:36:22 +01:00