Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add the ability to use unaligned chunks in the AF_XDP umem. By
relaxing where the chunks can be placed, it allows to use an
arbitrary buffer size and place whenever there is a free
address in the umem. Helps more seamless DPDK AF_XDP driver
integration. Support for i40e, ixgbe and mlx5e, from Kevin and
Maxim.
2) Addition of a wakeup flag for AF_XDP tx and fill rings so the
application can wake up the kernel for rx/tx processing which
avoids busy-spinning of the latter, useful when app and driver
is located on the same core. Support for i40e, ixgbe and mlx5e,
from Magnus and Maxim.
3) bpftool fixes for printf()-like functions so compiler can actually
enforce checks, bpftool build system improvements for custom output
directories, and addition of 'bpftool map freeze' command, from Quentin.
4) Support attaching/detaching XDP programs from 'bpftool net' command,
from Daniel.
5) Automatic xskmap cleanup when AF_XDP socket is released, and several
barrier/{read,write}_once fixes in AF_XDP code, from Björn.
6) Relicense of bpf_helpers.h/bpf_endian.h for future libbpf
inclusion as well as libbpf versioning improvements, from Andrii.
7) Several new BPF kselftests for verifier precision tracking, from Alexei.
8) Several BPF kselftest fixes wrt endianess to run on s390x, from Ilya.
9) And more BPF kselftest improvements all over the place, from Stanislav.
10) Add simple BPF map op cache for nfp driver to batch dumps, from Jakub.
11) AF_XDP socket umem mapping improvements for 32bit archs, from Ivan.
12) Add BPF-to-BPF call and BTF line info support for s390x JIT, from Yauheni.
13) Small optimization in arm64 JIT to spare 1 insns for BPF_MOD, from Jerin.
14) Fix an error check in bpf_tcp_gen_syncookie() helper, from Petar.
15) Various minor fixes and cleanups, from Nathan, Masahiro, Masanari,
Peter, Wei, Yue.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
If protocols registered exceeded PROTO_INUSE_NR, prot will be
added to proto_list, but no available bit left for prot in
proto_inuse_idx.
Changes since v2:
* Propagate the error code properly
Signed-off-by: zhanglin <zhang.lin16@zte.com.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add new helper bpf_sk_storage_clone which optionally clones sk storage
and call it from sk_clone_lock.
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
sk_validate_xmit_skb() and drivers depend on the sk member of
struct sk_buff to identify segments requiring encryption.
Any operation which removes or does not preserve the original TLS
socket such as skb_orphan() or skb_clone() will cause clear text
leaks.
Make the TCP socket underlying an offloaded TLS connection
mark all skbs as decrypted, if TLS TX is in offload mode.
Then in sk_validate_xmit_skb() catch skbs which have no socket
(or a socket with no validation) and decrypted flag set.
Note that CONFIG_SOCK_VALIDATE_XMIT, CONFIG_TLS_DEVICE and
sk->sk_validate_xmit_skb are slightly interchangeable right now,
they all imply TLS offload. The new checks are guarded by
CONFIG_TLS_DEVICE because that's the option guarding the
sk_buff->decrypted member.
Second, smaller issue with orphaning is that it breaks
the guarantee that packets will be delivered to device
queues in-order. All TLS offload drivers depend on that
scheduling property. This means skb_orphan_partial()'s
trick of preserving partial socket references will cause
issues in the drivers. We need a full orphan, and as a
result netem delay/throttling will cause all TLS offload
skbs to be dropped.
Reusing the sk_buff->decrypted flag also protects from
leaking clear text when incoming, decrypted skb is redirected
(e.g. by TC).
See commit 0608c69c9a ("bpf: sk_msg, sock{map|hash} redirect
through ULP") for justification why the internal flag is safe.
The only location which could leak the flag in is tcp_bpf_sendmsg(),
which is taken care of by clearing the previously unused bit.
v2:
- remove superfluous decrypted mark copy (Willem);
- remove the stale doc entry (Boris);
- rely entirely on EOR marking to prevent coalescing (Boris);
- use an internal sendpages flag instead of marking the socket
(Boris).
v3 (Willem):
- reorganize the can_skb_orphan_partial() condition;
- fix the flag leak-in through tcp_bpf_sendmsg.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Boris Pismenny <borisp@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Patch series "add init_on_alloc/init_on_free boot options", v10.
Provide init_on_alloc and init_on_free boot options.
These are aimed at preventing possible information leaks and making the
control-flow bugs that depend on uninitialized values more deterministic.
Enabling either of the options guarantees that the memory returned by the
page allocator and SL[AU]B is initialized with zeroes. SLOB allocator
isn't supported at the moment, as its emulation of kmem caches complicates
handling of SLAB_TYPESAFE_BY_RCU caches correctly.
Enabling init_on_free also guarantees that pages and heap objects are
initialized right after they're freed, so it won't be possible to access
stale data by using a dangling pointer.
As suggested by Michal Hocko, right now we don't let the heap users to
disable initialization for certain allocations. There's not enough
evidence that doing so can speed up real-life cases, and introducing ways
to opt-out may result in things going out of control.
This patch (of 2):
The new options are needed to prevent possible information leaks and make
control-flow bugs that depend on uninitialized values more deterministic.
This is expected to be on-by-default on Android and Chrome OS. And it
gives the opportunity for anyone else to use it under distros too via the
boot args. (The init_on_free feature is regularly requested by folks
where memory forensics is included in their threat models.)
init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
objects with zeroes. Initialization is done at allocation time at the
places where checks for __GFP_ZERO are performed.
init_on_free=1 makes the kernel initialize freed pages and heap objects
with zeroes upon their deletion. This helps to ensure sensitive data
doesn't leak via use-after-free accesses.
Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
returns zeroed memory. The two exceptions are slab caches with
constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never
zero-initialized to preserve their semantics.
Both init_on_alloc and init_on_free default to zero, but those defaults
can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
CONFIG_INIT_ON_FREE_DEFAULT_ON.
If either SLUB poisoning or page poisoning is enabled, those options take
precedence over init_on_alloc and init_on_free: initialization is only
applied to unpoisoned allocations.
Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%)
hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%)
Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%)
Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
is within the standard error.
The new features are also going to pave the way for hardware memory
tagging (e.g. arm64's MTE), which will require both on_alloc and on_free
hooks to set the tags for heap objects. With MTE, tagging will have the
same cost as memory initialization.
Although init_on_free is rather costly, there are paranoid use-cases where
in-memory data lifetime is desired to be minimized. There are various
arguments for/against the realism of the associated threat models, but
given that we'll need the infrastructure for MTE anyway, and there are
people who want wipe-on-free behavior no matter what the performance cost,
it seems reasonable to include it in this series.
[glider@google.com: v8]
Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
[glider@google.com: v10]
Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts
Acked-by: James Morris <jamorris@linux.microsoft.com>]
Cc: Christoph Lameter <cl@linux.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Sandeep Patil <sspatil@android.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
socket->wq is assign-once, set when we are initializing both
struct socket it's in and struct socket_wq it points to. As the
matter of fact, the only reason for separate allocation was the
ability to RCU-delay freeing of socket_wq. RCU-delaying the
freeing of socket itself gets rid of that need, so we can just
fold struct socket_wq into the end of struct socket and simplify
the life both for sock_alloc_inode() (one allocation instead of
two) and for tun/tap oddballs, where we used to embed struct socket
and struct socket_wq into the same structure (now - embedding just
the struct socket).
Note that reference to struct socket_wq in struct sock does remain
a reference - that's unchanged.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2019-06-19
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) new SO_REUSEPORT_DETACH_BPF setsocktopt, from Martin.
2) BTF based map definition, from Andrii.
3) support bpf_map_lookup_elem for xskmap, from Jonathan.
4) bounded loops and scalar precision logic in the verifier, from Alexei.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
In sock_getsockopt(), 'optlen' is fetched the first time from userspace.
'len < 0' is then checked. Then in condition 'SO_MEMINFO', 'optlen' is
fetched the second time from userspace.
If change it between two fetches may cause security problems or unexpected
behaivor, and there is no reason to fetch it a second time.
To fix this, we need to remove the second fetch.
Signed-off-by: JingYi Hou <houjingyi647@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Alexei Starovoitov says:
====================
pull-request: bpf 2019-06-15
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) fix stack layout of JITed x64 bpf code, from Alexei.
2) fix out of bounds memory access in bpf_sk_storage, from Arthur.
3) fix lpm trie walk, from Jonathan.
4) fix nested bpf_perf_event_output, from Matt.
5) and several other fixes.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
>From linux-3.7, (commit 5640f76858 "net: use a per task frag
allocator") TCP sendmsg() has preferred using order-3 allocations.
While it gives good results for most cases, we had reports
that heavy uses of TCP over loopback were hitting a spinlock
contention in page allocations/freeing.
This commits adds a sysctl so that admins can opt-in
for order-0 allocations. Hopefully mm layer might optimize
order-3 allocations in the future since it could give us
a nice boost (see 8 lines of following benchmark)
The following benchmark shows a win when more than 8 TCP_STREAM
threads are running (56 x86 cores server in my tests)
for thr in {1..30}
do
sysctl -wq net.core.high_order_alloc_disable=0
T0=`./super_netperf $thr -H 127.0.0.1 -l 15`
sysctl -wq net.core.high_order_alloc_disable=1
T1=`./super_netperf $thr -H 127.0.0.1 -l 15`
echo $thr:$T0:$T1
done
1: 49979: 37267
2: 98745: 76286
3: 141088: 110051
4: 177414: 144772
5: 197587: 173563
6: 215377: 208448
7: 241061: 234087
8: 267155: 263373
9: 295069: 297402
10: 312393: 335213
11: 340462: 368778
12: 371366: 403954
13: 412344: 443713
14: 426617: 473580
15: 474418: 507861
16: 503261: 538539
17: 522331: 563096
18: 532409: 567084
19: 550824: 605240
20: 525493: 641988
21: 564574: 665843
22: 567349: 690868
23: 583846: 710917
24: 588715: 736306
25: 603212: 763494
26: 604083: 792654
27: 602241: 796450
28: 604291: 797993
29: 611610: 833249
30: 577356: 841062
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is SO_ATTACH_REUSEPORT_[CE]BPF but there is no DETACH.
This patch adds SO_DETACH_REUSEPORT_BPF sockopt. The same
sockopt can be used to undo both SO_ATTACH_REUSEPORT_[CE]BPF.
reseport_detach_prog() is added and it is mostly a mirror
of the existing reuseport_attach_prog(). The differences are,
it does not call reuseport_alloc() and returns -ENOENT when
there is no old prog.
Cc: Craig Gallek <kraig@google.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The cloned sk should not carry its parent-listener's sk_bpf_storage.
This patch fixes it by setting it back to NULL.
Fixes: 6ac99e8f23 ("bpf: Introduce bpf sk local storage")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-04-28
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Introduce BPF socket local storage map so that BPF programs can store
private data they associate with a socket (instead of e.g. separate hash
table), from Martin.
2) Add support for bpftool to dump BTF types. This is done through a new
`bpftool btf dump` sub-command, from Andrii.
3) Enable BPF-based flow dissector for skb-less eth_get_headlen() calls which
was currently not supported since skb was used to lookup netns, from Stanislav.
4) Add an opt-in interface for tracepoints to expose a writable context
for attached BPF programs, used here for NBD sockets, from Matt.
5) BPF xadd related arm64 JIT fixes and scalability improvements, from Daniel.
6) Change the skb->protocol for bpf_skb_adjust_room() helper in order to
support tunnels such as sit. Add selftests as well, from Willem.
7) Various smaller misc fixes.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
After allowing a bpf prog to
- directly read the skb->sk ptr
- get the fullsock bpf_sock by "bpf_sk_fullsock()"
- get the bpf_tcp_sock by "bpf_tcp_sock()"
- get the listener sock by "bpf_get_listener_sock()"
- avoid duplicating the fields of "(bpf_)sock" and "(bpf_)tcp_sock"
into different bpf running context.
this patch is another effort to make bpf's network programming
more intuitive to do (together with memory and performance benefit).
When bpf prog needs to store data for a sk, the current practice is to
define a map with the usual 4-tuples (src/dst ip/port) as the key.
If multiple bpf progs require to store different sk data, multiple maps
have to be defined. Hence, wasting memory to store the duplicated
keys (i.e. 4 tuples here) in each of the bpf map.
[ The smallest key could be the sk pointer itself which requires
some enhancement in the verifier and it is a separate topic. ]
Also, the bpf prog needs to clean up the elem when sk is freed.
Otherwise, the bpf map will become full and un-usable quickly.
The sk-free tracking currently could be done during sk state
transition (e.g. BPF_SOCK_OPS_STATE_CB).
The size of the map needs to be predefined which then usually ended-up
with an over-provisioned map in production. Even the map was re-sizable,
while the sk naturally come and go away already, this potential re-size
operation is arguably redundant if the data can be directly connected
to the sk itself instead of proxy-ing through a bpf map.
This patch introduces sk->sk_bpf_storage to provide local storage space
at sk for bpf prog to use. The space will be allocated when the first bpf
prog has created data for this particular sk.
The design optimizes the bpf prog's lookup (and then optionally followed by
an inline update). bpf_spin_lock should be used if the inline update needs
to be protected.
BPF_MAP_TYPE_SK_STORAGE:
-----------------------
To define a bpf "sk-local-storage", a BPF_MAP_TYPE_SK_STORAGE map (new in
this patch) needs to be created. Multiple BPF_MAP_TYPE_SK_STORAGE maps can
be created to fit different bpf progs' needs. The map enforces
BTF to allow printing the sk-local-storage during a system-wise
sk dump (e.g. "ss -ta") in the future.
The purpose of a BPF_MAP_TYPE_SK_STORAGE map is not for lookup/update/delete
a "sk-local-storage" data from a particular sk.
Think of the map as a meta-data (or "type") of a "sk-local-storage". This
particular "type" of "sk-local-storage" data can then be stored in any sk.
The main purposes of this map are mostly:
1. Define the size of a "sk-local-storage" type.
2. Provide a similar syscall userspace API as the map (e.g. lookup/update,
map-id, map-btf...etc.)
3. Keep track of all sk's storages of this "type" and clean them up
when the map is freed.
sk->sk_bpf_storage:
------------------
The main lookup/update/delete is done on sk->sk_bpf_storage (which
is a "struct bpf_sk_storage"). When doing a lookup,
the "map" pointer is now used as the "key" to search on the
sk_storage->list. The "map" pointer is actually serving
as the "type" of the "sk-local-storage" that is being
requested.
To allow very fast lookup, it should be as fast as looking up an
array at a stable-offset. At the same time, it is not ideal to
set a hard limit on the number of sk-local-storage "type" that the
system can have. Hence, this patch takes a cache approach.
The last search result from sk_storage->list is cached in
sk_storage->cache[] which is a stable sized array. Each
"sk-local-storage" type has a stable offset to the cache[] array.
In the future, a map's flag could be introduced to do cache
opt-out/enforcement if it became necessary.
The cache size is 16 (i.e. 16 types of "sk-local-storage").
Programs can share map. On the program side, having a few bpf_progs
running in the networking hotpath is already a lot. The bpf_prog
should have already consolidated the existing sock-key-ed map usage
to minimize the map lookup penalty. 16 has enough runway to grow.
All sk-local-storage data will be removed from sk->sk_bpf_storage
during sk destruction.
bpf_sk_storage_get() and bpf_sk_storage_delete():
------------------------------------------------
Instead of using bpf_map_(lookup|update|delete)_elem(),
the bpf prog needs to use the new helper bpf_sk_storage_get() and
bpf_sk_storage_delete(). The verifier can then enforce the
ARG_PTR_TO_SOCKET argument. The bpf_sk_storage_get() also allows to
"create" new elem if one does not exist in the sk. It is done by
the new BPF_SK_STORAGE_GET_F_CREATE flag. An optional value can also be
provided as the initial value during BPF_SK_STORAGE_GET_F_CREATE.
The BPF_MAP_TYPE_SK_STORAGE also supports bpf_spin_lock. Together,
it has eliminated the potential use cases for an equivalent
bpf_map_update_elem() API (for bpf_prog) in this patch.
Misc notes:
----------
1. map_get_next_key is not supported. From the userspace syscall
perspective, the map has the socket fd as the key while the map
can be shared by pinned-file or map-id.
Since btf is enforced, the existing "ss" could be enhanced to pretty
print the local-storage.
Supporting a kernel defined btf with 4 tuples as the return key could
be explored later also.
2. The sk->sk_lock cannot be acquired. Atomic operations is used instead.
e.g. cmpxchg is done on the sk->sk_bpf_storage ptr.
Please refer to the source code comments for the details in
synchronization cases and considerations.
3. The mem is charged to the sk->sk_omem_alloc as the sk filter does.
Benchmark:
---------
Here is the benchmark data collected by turning on
the "kernel.bpf_stats_enabled" sysctl.
Two bpf progs are tested:
One bpf prog with the usual bpf hashmap (max_entries = 8192) with the
sk ptr as the key. (verifier is modified to support sk ptr as the key
That should have shortened the key lookup time.)
Another bpf prog is with the new BPF_MAP_TYPE_SK_STORAGE.
Both are storing a "u32 cnt", do a lookup on "egress_skb/cgroup" for
each egress skb and then bump the cnt. netperf is used to drive
data with 4096 connected UDP sockets.
BPF_MAP_TYPE_HASH with a modifier verifier (152ns per bpf run)
27: cgroup_skb name egress_sk_map tag 74f56e832918070b run_time_ns 58280107540 run_cnt 381347633
loaded_at 2019-04-15T13:46:39-0700 uid 0
xlated 344B jited 258B memlock 4096B map_ids 16
btf_id 5
BPF_MAP_TYPE_SK_STORAGE in this patch (66ns per bpf run)
30: cgroup_skb name egress_sk_stora tag d4aa70984cc7bbf6 run_time_ns 25617093319 run_cnt 390989739
loaded_at 2019-04-15T13:47:54-0700 uid 0
xlated 168B jited 156B memlock 4096B map_ids 17
btf_id 6
Here is a high-level picture on how are the objects organized:
sk
┌──────┐
│ │
│ │
│ │
│*sk_bpf_storage─────▶ bpf_sk_storage
└──────┘ ┌───────┐
┌───────────┤ list │
│ │ │
│ │ │
│ │ │
│ └───────┘
│
│ elem
│ ┌────────┐
├─▶│ snode │
│ ├────────┤
│ │ data │ bpf_map
│ ├────────┤ ┌─────────┐
│ │map_node│◀─┬─────┤ list │
│ └────────┘ │ │ │
│ │ │ │
│ elem │ │ │
│ ┌────────┐ │ └─────────┘
└─▶│ snode │ │
├────────┤ │
bpf_map │ data │ │
┌─────────┐ ├────────┤ │
│ list ├───────▶│map_node│ │
│ │ └────────┘ │
│ │ │
│ │ elem │
└─────────┘ ┌────────┐ │
┌─▶│ snode │ │
│ ├────────┤ │
│ │ data │ │
│ ├────────┤ │
│ │map_node│◀─┘
│ └────────┘
│
│
│ ┌───────┐
sk └──────────│ list │
┌──────┐ │ │
│ │ │ │
│ │ │ │
│ │ └───────┘
│*sk_bpf_storage───────▶bpf_sk_storage
└──────┘
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The SIOCGSTAMP/SIOCGSTAMPNS ioctl commands are implemented by many
socket protocol handlers, and all of those end up calling the same
sock_get_timestamp()/sock_get_timestampns() helper functions, which
results in a lot of duplicate code.
With the introduction of 64-bit time_t on 32-bit architectures, this
gets worse, as we then need four different ioctl commands in each
socket protocol implementation.
To simplify that, let's add a new .gettstamp() operation in
struct proto_ops, and move ioctl implementation into the common
sock_ioctl()/compat_sock_ioctl_trans() functions that these all go
through.
We can reuse the sock_get_timestamp() implementation, but generalize
it so it can deal with both native and compat mode, as well as
timeval and timespec structures.
Acked-by: Stefan Schmidt <stefan@datenfreihafen.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Marc Kleine-Budde <mkl@pengutronix.de>
Link: https://lore.kernel.org/lkml/CAK8P3a038aDQQotzua_QtKGhq8O9n+rdiz2=WDCp82ys8eUT+A@mail.gmail.com/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It looks like the new socket options only work correctly
for native execution, but in case of compat mode fall back
to the old behavior as we ignore the 'old_timeval' flag.
Rework so we treat SO_RCVTIMEO_NEW/SO_SNDTIMEO_NEW the
same way in compat and native 32-bit mode.
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Fixes: a9beb86ae6 ("sock: Add SO_RCVTIMEO_NEW and SO_SNDTIMEO_NEW")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For legacy applications using 32bit variable, SO_MAX_PACING_RATE
has to cap the returned value to 0xFFFFFFFF, meaning that
rates above 34.35 Gbit are capped.
This patch allows applications to read socket pacing rate
at full resolution, if they provide a 64bit variable to store it,
and the kernel is 64bit.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
64bit kernels now support 64bit pacing rates.
This commit changes setsockopt() to accept 64bit
values provided by applications.
Old applications providing 32bit value are still supported,
but limited to the old 34Gbit limitation.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This pointer is RCU protected, so proper primitives should be used.
Signed-off-by: Zhang Yu <zhangyu31@baidu.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
SO_SNDBUF and SO_RCVBUF (and their *BUFFORCE version) may overflow or
underflow their input value. This patch aims at providing explicit
handling of these extreme cases, to get a clear behaviour even with
values bigger than INT_MAX / 2 or lower than INT_MIN / 2.
For simplicity, only SO_SNDBUF and SO_SNDBUFFORCE are described here,
but the same explanation and fix apply to SO_RCVBUF and SO_RCVBUFFORCE
(with 'SNDBUF' replaced by 'RCVBUF' and 'wmem_max' by 'rmem_max').
Overflow of positive values
===========================
When handling SO_SNDBUF or SO_SNDBUFFORCE, if 'val' exceeds
INT_MAX / 2, the buffer size is set to its minimum value because
'val * 2' overflows, and max_t() considers that it's smaller than
SOCK_MIN_SNDBUF. For SO_SNDBUF, this can only happen with
net.core.wmem_max > INT_MAX / 2.
SO_SNDBUF and SO_SNDBUFFORCE are actually designed to let users probe
for the maximum buffer size by setting an arbitrary large number that
gets capped to the maximum allowed/possible size. Having the upper
half of the positive integer space to potentially reduce the buffer
size to its minimum value defeats this purpose.
This patch caps the base value to INT_MAX / 2, so that bigger values
don't overflow and keep setting the buffer size to its maximum.
Underflow of negative values
============================
For negative numbers, SO_SNDBUF always considers them bigger than
net.core.wmem_max, which is bounded by [SOCK_MIN_SNDBUF, INT_MAX].
Therefore such values are set to net.core.wmem_max and we're back to
the behaviour of positive integers described above (return maximum
buffer size if wmem_max <= INT_MAX / 2, return SOCK_MIN_SNDBUF
otherwise).
However, SO_SNDBUFFORCE behaves differently. The user value is
directly multiplied by two and compared with SOCK_MIN_SNDBUF. If
'val * 2' doesn't underflow or if it underflows to a value smaller
than SOCK_MIN_SNDBUF then buffer size is set to its minimum value.
Otherwise the buffer size is set to the underflowed value.
This patch treats negative values passed to SO_SNDBUFFORCE as null, to
prevent underflows. Therefore negative values now always set the buffer
size to its minimum value.
Even though SO_SNDBUF behaves inconsistently by setting buffer size to
the maximum value when passed a negative number, no attempt is made to
modify this behaviour. There may exist some programs that rely on using
negative numbers to set the maximum buffer size. Avoiding overflows
because of extreme net.core.wmem_max values is the most we can do here.
Summary of altered behaviours
=============================
val : user-space value passed to setsockopt()
val_uf : the underflowed value resulting from doubling val when
val < INT_MIN / 2
wmem_max : short for net.core.wmem_max
val_cap : min(val, wmem_max)
min_len : minimal buffer length (that is, SOCK_MIN_SNDBUF)
max_len : maximal possible buffer length, regardless of wmem_max (that
is, INT_MAX - 1)
^^^^ : altered behaviour
SO_SNDBUF:
+-------------------------+-------------+------------+----------------+
| CONDITION | OLD RESULT | NEW RESULT | COMMENT |
+-------------------------+-------------+------------+----------------+
| val < 0 && | | | No overflow, |
| wmem_max <= INT_MAX/2 | wmem_max*2 | wmem_max*2 | keep original |
| | | | behaviour |
+-------------------------+-------------+------------+----------------+
| val < 0 && | | | Cap wmem_max |
| INT_MAX/2 < wmem_max | min_len | max_len | to prevent |
| | | ^^^^^^^ | overflow |
+-------------------------+-------------+------------+----------------+
| 0 <= val <= min_len/2 | min_len | min_len | Ordinary case |
+-------------------------+-------------+------------+----------------+
| min_len/2 < val && | val_cap*2 | val_cap*2 | Ordinary case |
| val_cap <= INT_MAX/2 | | | |
+-------------------------+-------------+------------+----------------+
| min_len < val && | | | Cap val_cap |
| INT_MAX/2 < val_cap | min_len | max_len | again to |
| (implies that | | ^^^^^^^ | prevent |
| INT_MAX/2 < wmem_max) | | | overflow |
+-------------------------+-------------+------------+----------------+
SO_SNDBUFFORCE:
+------------------------------+---------+---------+------------------+
| CONDITION | BEFORE | AFTER | COMMENT |
| | PATCH | PATCH | |
+------------------------------+---------+---------+------------------+
| val < INT_MIN/2 && | min_len | min_len | Underflow with |
| val_uf <= min_len | | | no consequence |
+------------------------------+---------+---------+------------------+
| val < INT_MIN/2 && | val_uf | min_len | Set val to 0 to |
| val_uf > min_len | | ^^^^^^^ | avoid underflow |
+------------------------------+---------+---------+------------------+
| INT_MIN/2 <= val < 0 | min_len | min_len | No underflow |
+------------------------------+---------+---------+------------------+
| 0 <= val <= min_len/2 | min_len | min_len | Ordinary case |
+------------------------------+---------+---------+------------------+
| min_len/2 < val <= INT_MAX/2 | val*2 | val*2 | Ordinary case |
+------------------------------+---------+---------+------------------+
| INT_MAX/2 < val | min_len | max_len | Cap val to |
| | | ^^^^^^^ | prevent overflow |
+------------------------------+---------+---------+------------------+
Signed-off-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The netfilter conflicts were rather simple overlapping
changes.
However, the cls_tcindex.c stuff was a bit more complex.
On the 'net' side, Cong is fixing several races and memory
leaks. Whilst on the 'net-next' side we have Vlad adding
the rtnl-ness support.
What I've decided to do, in order to resolve this, is revert the
conversion over to using a workqueue that Cong did, bringing us back
to pure RCU. I did it this way because I believe that either Cong's
races don't apply with have Vlad did things, or Cong will have to
implement the race fix slightly differently.
Signed-off-by: David S. Miller <davem@davemloft.net>
With many active TCP sockets, fat TCP sockets could fool
__sk_mem_raise_allocated() thanks to an overflow.
They would increase their share of the memory, instead
of decreasing it.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
net/core/sock.c: In function 'sock_setsockopt':
net/core/sock.c:914:3: warning: this statement may fall through [-Wimplicit-fallthrough=]
sock_set_flag(sk, SOCK_TSTAMP_NEW);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
net/core/sock.c:915:2: note: here
case SO_TIMESTAMPING_OLD:
^~~~
Fixes: 9718475e69 ("socket: Add SO_TIMESTAMPING_NEW")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
SO_RCVTIMEO and SO_SNDTIMEO socket options use struct timeval
as the time format. struct timeval is not y2038 safe.
The subsequent patches in the series add support for new socket
timeout options with _NEW suffix that will use y2038 safe
data structures. Although the existing struct timeval layout
is sufficiently wide to represent timeouts, because of the way
libc will interpret time_t based on user defined flag, these
new flags provide a way of having a structure that is the same
for all architectures consistently.
Rename the existing options with _OLD suffix forms so that the
right option is enabled for userspace applications according
to the architecture and time_t definition of libc.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Cc: ccaulfie@redhat.com
Cc: deller@gmx.de
Cc: paulus@samba.org
Cc: ralf@linux-mips.org
Cc: rth@twiddle.net
Cc: cluster-devel@redhat.com
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a cleanup to prepare for the addition of 64-bit time_t
in O_SNDTIMEO/O_RCVTIMEO. The existing compat handler seems
unnecessarily complex and error-prone, moving it all into the
main setsockopt()/getsockopt() implementation requires half
as much code and is easier to extend.
32-bit user space can now use old_timeval32 on both 32-bit
and 64-bit machines, while 64-bit code can use
__old_kernel_timeval.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The only call site of sk_clone_lock is in inet_csk_clone_lock,
and sk_cookie will be set there.
So we don't need to set sk_cookie in sk_clone_lock().
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This introduces a new generic SOL_SOCKET-level socket option called
SO_BINDTOIFINDEX. It behaves similar to SO_BINDTODEVICE, but takes a
network interface index as argument, rather than the network interface
name.
User-space often refers to network-interfaces via their index, but has
to temporarily resolve it to a name for a call into SO_BINDTODEVICE.
This might pose problems when the network-device is renamed
asynchronously by other parts of the system. When this happens, the
SO_BINDTODEVICE might either fail, or worse, it might bind to the wrong
device.
In most cases user-space only ever operates on devices which they
either manage themselves, or otherwise have a guarantee that the device
name will not change (e.g., devices that are UP cannot be renamed).
However, particularly in libraries this guarantee is non-obvious and it
would be nice if that race-condition would simply not exist. It would
make it easier for those libraries to operate even in situations where
the device-name might change under the hood.
A real use-case that we recently hit is trying to start the network
stack early in the initrd but make it survive into the real system.
Existing distributions rename network-interfaces during the transition
from initrd into the real system. This, obviously, cannot affect
devices that are up and running (unless you also consider moving them
between network-namespaces). However, the network manager now has to
make sure its management engine for dormant devices will not run in
parallel to these renames. Particularly, when you offload operations
like DHCP into separate processes, these might setup their sockets
early, and thus have to resolve the device-name possibly running into
this race-condition.
By avoiding a call to resolve the device-name, we no longer depend on
the name and can run network setup of dormant devices in parallel to
the transition off the initrd. The SO_BINDTOIFINDEX ioctl plugs this
race.
Reviewed-by: Tom Gundersen <teg@jklm.no>
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Al Viro mentioned (Message-ID
<20170626041334.GZ10672@ZenIV.linux.org.uk>)
that there is probably a race condition
lurking in accesses of sk_stamp on 32-bit machines.
sock->sk_stamp is of type ktime_t which is always an s64.
On a 32 bit architecture, we might run into situations of
unsafe access as the access to the field becomes non atomic.
Use seqlocks for synchronization.
This allows us to avoid using spinlocks for readers as
readers do not need mutual exclusion.
Another approach to solve this is to require sk_lock for all
modifications of the timestamps. The current approach allows
for timestamps to have their own lock: sk_stamp_lock.
This allows for the patch to not compete with already
existing critical sections, and side effects are limited
to the paths in the patch.
The addition of the new field maintains the data locality
optimizations from
commit 9115e8cd2a ("net: reorganize struct sock for better data
locality")
Note that all the instances of the sk_stamp accesses
are either through the ioctl or the syscall recvmsg.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
after set SO_DONTROUTE to 1, the IP layer should not route packets if
the dest IP address is not in link scope. But if the socket has cached
the dst_entry, such packets would be routed until the sk_dst_cache
expires. So we should clean the sk_dst_cache when a user set
SO_DONTROUTE option. Below are server/client python scripts which
could reprodue this issue:
server side code:
==========================================================================
import socket
import struct
import time
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('0.0.0.0', 9000))
s.listen(1)
sock, addr = s.accept()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_DONTROUTE, struct.pack('i', 1))
while True:
sock.send(b'foo')
time.sleep(1)
==========================================================================
client side code:
==========================================================================
import socket
import time
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('server_address', 9000))
while True:
data = s.recv(1024)
print(data)
==========================================================================
Signed-off-by: yupeng <yupeng0921@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extend zerocopy to udp sockets. Allow setting sockopt SO_ZEROCOPY and
interpret flag MSG_ZEROCOPY.
This patch was previously part of the zerocopy RFC patchsets. Zerocopy
is not effective at small MTU. With segmentation offload building
larger datagrams, the benefit of page flipping outweights the cost of
generating a completion notification.
tools/testing/selftests/net/msg_zerocopy.sh after applying follow-on
test patch and making skb_orphan_frags_rx same as skb_orphan_frags:
ipv4 udp -t 1
tx=191312 (11938 MB) txc=0 zc=n
rx=191312 (11938 MB)
ipv4 udp -z -t 1
tx=304507 (19002 MB) txc=304507 zc=y
rx=304507 (19002 MB)
ok
ipv6 udp -t 1
tx=174485 (10888 MB) txc=0 zc=n
rx=174485 (10888 MB)
ipv6 udp -z -t 1
tx=294801 (18396 MB) txc=294801 zc=y
rx=294801 (18396 MB)
ok
Changes
v1 -> v2
- Fixup reverse christmas tree violation
v2 -> v3
- Split refcount avoidance optimization into separate patch
- Fix refcount leak on error in fragmented case
(thanks to Paolo Abeni for pointing this one out!)
- Fix refcount inc on zero
- Test sock_flag SOCK_ZEROCOPY directly in __ip_append_data.
This is needed since commit 5cf4a8532c ("tcp: really ignore
MSG_ZEROCOPY if no SO_ZEROCOPY") did the same for tcp.
Signed-off-by: Willem de Bruijn <willemb@google.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When setting the SO_MARK socket option, if the mark changes, the dst
needs to be reset so that a new route lookup is performed.
This fixes the case where an application wants to change routing by
setting a new sk_mark. If this is done after some packets have already
been sent, the dst is cached and has no effect.
Signed-off-by: David Barmann <david.barmann@stackpath.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ensure an unbound datagram skt is chosen when not in a VRF. The check
for a device match in compute_score() for UDP must be performed when
there is no device match. For this, a failure is returned when there is
no device match. This ensures that bound sockets are never selected,
even if there is no unbound socket.
Allow IPv6 packets to be sent over a datagram skt bound to a VRF. These
packets are currently blocked, as flowi6_oif was set to that of the
master vrf device, and the ipi6_ifindex is that of the slave device.
Allow these packets to be sent by checking the device with ipi6_ifindex
has the same L3 scope as that of the bound device of the skt, which is
the master vrf device. Note that this check always succeeds if the skt
is unbound.
Even though the right datagram skt is now selected by compute_score(),
a different skt is being returned that is bound to the wrong vrf. The
difference between these and stream sockets is the handling of the skt
option for SO_REUSEPORT. While the handling when adding a skt for reuse
correctly checks that the bound device of the skt is a match, the skts
in the hashslot are already incorrect. So for the same hash, a skt for
the wrong vrf may be selected for the required port. The root cause is
that the skt is immediately placed into a slot when it is created,
but when the skt is then bound using SO_BINDTODEVICE, it remains in the
same slot. The solution is to move the skt to the correct slot by
forcing a rehash.
Signed-off-by: Mike Manning <mmanning@vyatta.att-mail.com>
Reviewed-by: David Ahern <dsahern@gmail.com>
Tested-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
IPPROTO_RAW isn't registred as an inet protocol, so
inet_protos[protocol] is always NULL for it.
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Xin Long <lucien.xin@gmail.com>
Fixes: bf2ae2e4bf ("sock_diag: request _diag module only when the family or proto has been registered")
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-10-16
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Convert BPF sockmap and kTLS to both use a new sk_msg API and enable
sk_msg BPF integration for the latter, from Daniel and John.
2) Enable BPF syscall side to indicate for maps that they do not support
a map lookup operation as opposed to just missing key, from Prashant.
3) Add bpftool map create command which after map creation pins the
map into bpf fs for further processing, from Jakub.
4) Add bpftool support for attaching programs to maps allowing sock_map
and sock_hash to be used from bpftool, from John.
5) Improve syscall BPF map update/delete path for map-in-map types to
wait a RCU grace period for pending references to complete, from Daniel.
6) Couple of follow-up fixes for the BPF socket lookup to get it
enabled also when IPv6 is compiled as a module, from Joe.
7) Fix a generic-XDP bug to handle the case when the Ethernet header
was mangled and thus update skb's protocol and data, from Jesper.
8) Add a missing BTF header length check between header copies from
user space, from Wenwen.
9) Minor fixups in libbpf to use __u32 instead u32 types and include
proper perf_event.h uapi header instead of perf internal one, from Yonghong.
10) Allow to pass user-defined flags through EXTRA_CFLAGS and EXTRA_LDFLAGS
to bpftool's build, from Jiri.
11) BPF kselftest tweaks to add LWTUNNEL to config fragment and to install
with_addr.sh script from flow dissector selftest, from Anders.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_pacing_rate has beed introduced as a u32 field in 2013,
effectively limiting per flow pacing to 34Gbit.
We believe it is time to allow TCP to pace high speed flows
on 64bit hosts, as we now can reach 100Gbit on one TCP flow.
This patch adds no cost for 32bit kernels.
The tcpi_pacing_rate and tcpi_max_pacing_rate were already
exported as 64bit, so iproute2/ss command require no changes.
Unfortunately the SO_MAX_PACING_RATE socket option will stay
32bit and we will need to add a new option to let applications
control high pacing rates.
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 1787144 10.246.9.76:49992 10.246.9.77:36741
timer:(on,003ms,0) ino:91863 sk:2 <->
skmem:(r0,rb540000,t66440,tb2363904,f605944,w1822984,o0,bl0,d0)
ts sack bbr wscale:8,8 rto:201 rtt:0.057/0.006 mss:1448
rcvmss:536 advmss:1448
cwnd:138 ssthresh:178 bytes_acked:256699822585 segs_out:177279177
segs_in:3916318 data_segs_out:177279175
bbr:(bw:31276.8Mbps,mrtt:0,pacing_gain:1.25,cwnd_gain:2)
send 28045.5Mbps lastrcv:73333
pacing_rate 38705.0Mbps delivery_rate 22997.6Mbps
busy:73333ms unacked:135 retrans:0/157 rcv_space:14480
notsent:2085120 minrtt:0.013
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert kTLS over to make use of sk_msg interface for plaintext and
encrypted scattergather data, so it reuses all the sk_msg helpers
and data structure which later on in a second step enables to glue
this to BPF.
This also allows to remove quite a bit of open coded helpers which
are covered by the sk_msg API. Recent changes in kTLs 80ece6a03a
("tls: Remove redundant vars from tls record structure") and
4e6d47206c ("tls: Add support for inplace records encryption")
changed the data path handling a bit; while we've kept the latter
optimization intact, we had to undo the former change to better
fit the sk_msg model, hence the sg_aead_in and sg_aead_out have
been brought back and are linked into the sk_msg sgs. Now the kTLS
record contains a msg_plaintext and msg_encrypted sk_msg each.
In the original code, the zerocopy_from_iter() has been used out
of TX but also RX path. For the strparser skb-based RX path,
we've left the zerocopy_from_iter() in decrypt_internal() mostly
untouched, meaning it has been moved into tls_setup_from_iter()
with charging logic removed (as not used from RX). Given RX path
is not based on sk_msg objects, we haven't pursued setting up a
dummy sk_msg to call into sk_msg_zerocopy_from_iter(), but it
could be an option to prusue in a later step.
Joint work with John.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
syzkaller was able to hit the WARN_ON(sock_owned_by_user(sk));
in tcp_close()
While a socket is being closed, it is very possible other
threads find it in rtnetlink dump.
tcp_get_info() will acquire the socket lock for a short amount
of time (slow = lock_sock_fast(sk)/unlock_sock_fast(sk, slow);),
enough to trigger the warning.
Fixes: 67db3e4bfb ("tcp: no longer hold ehash lock while calling tcp_get_info()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
An SKB is not on a list if skb->next is NULL.
Codify this convention into a helper function and use it
where we are dequeueing an SKB and need to mark it as such.
Signed-off-by: David S. Miller <davem@davemloft.net>
The sock_flag() check is alreay inside sock_enable_timestamp(), so it is
unnecessary checking it in the caller.
void sock_enable_timestamp(struct sock *sk, int flag)
{
if (!sock_flag(sk, flag)) {
...
}
}
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This refactoring work has been started by David Howells in cdfbabfb2f
(net: Work around lockdep limitation in sockets that use sockets) but
the exact same day in 581319c586 (net/socket: use per af lockdep
classes for sk queues), Paolo Abeni added new classes.
This reduces the amount of (nearly) duplicated code and eases the
addition of new socket types.
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current sg coalescing logic in sk_alloc_sg() (latter is used by tls and
sockmap) is not quite correct in that we do fetch the previous sg entry,
however the subsequent check whether the refilled page frag from the
socket is still the same as from the last entry with prior offset and
length matching the start of the current buffer is comparing always the
first sg list entry instead of the prior one.
Fixes: 3c4d755915 ("tls: kernel TLS support")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the socket error queue for reporting dropped packets if the
socket has enabled that feature through the SO_TXTIME API.
Packets are dropped either on enqueue() if they aren't accepted by the
qdisc or on dequeue() if the system misses their deadline. Those are
reported as different errors so applications can react accordingly.
Userspace can retrieve the errors through the socket error queue and the
corresponding cmsg interfaces. A struct sock_extended_err* is used for
returning the error data, and the packet's timestamp can be retrieved by
adding both ee_data and ee_info fields as e.g.:
((__u64) serr->ee_data << 32) + serr->ee_info
This feature is disabled by default and must be explicitly enabled by
applications. Enabling it can bring some overhead for the Tx cycles
of the application.
Signed-off-by: Jesus Sanchez-Palencia <jesus.sanchez-palencia@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>