Move the pointer for iommu private data from struct iommu_fwspec to
struct dev_iommu.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Will Deacon <will@kernel.org> # arm-smmu
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Link: https://lore.kernel.org/r/20200326150841.10083-17-joro@8bytes.org
Add dev_iommu_priv_get/set() functions to access per-device iommu
private data. This makes it easier to move the pointer to a different
location.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Will Deacon <will@kernel.org> # arm-smmu
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Link: https://lore.kernel.org/r/20200326150841.10083-9-joro@8bytes.org
Move the iommu_fwspec pointer in struct device into struct dev_iommu.
This is a step in the effort to reduce the iommu related pointers in
struct device to one.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Tested-by: Will Deacon <will@kernel.org> # arm-smmu
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20200326150841.10083-7-joro@8bytes.org
There are users outside of the IOMMU code that need to call that
function. Define it for !CONFIG_IOMMU_API too so that compilation does
not break.
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Link: https://lore.kernel.org/r/20200326150841.10083-2-joro@8bytes.org
Although the 1-element array was a typical pre-C99 way to implement
variable-length structures, and indeed is a fundamental construct in the
APIs of certain other popular platforms, there's no good reason for it
here (and in particular the sizeof() trick is far too "clever" for its
own good). We can just as easily implement iommu_fwspec's preallocation
behaviour using a standard flexible array member, so let's make it look
the way most readers would expect.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
For platform devices that support SubstreamID (SSID), firmware provides
the number of supported SSID bits. Restrict it to what the SMMU supports
and cache it into master->ssid_bits, which will also be used for PCI
PASID.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Signed-off-by: Will Deacon <will@kernel.org>
Requiring each IOMMU driver to initialise the 'owner' field of their
'struct iommu_ops' is error-prone and easily forgotten. Follow the
example set by PCI and USB by assigning THIS_MODULE automatically when
registering the ops structure with IOMMU core.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Will Deacon <will@kernel.org>
Implement a generic function for removing reserved regions. This can be
used by drivers that don't do anything fancy with these regions other
than allocating memory for them.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
To avoid accidental removal of an active IOMMU driver module, take a
reference to the driver module in 'iommu_probe_device()' immediately
prior to invoking the '->add_device()' callback and hold it until the
after the device has been removed by '->remove_device()'.
Suggested-by: Joerg Roedel <joro@8bytes.org>
Signed-off-by: Will Deacon <will@kernel.org>
Tested-by: John Garry <john.garry@huawei.com> # smmu v3
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The 'IOMMU_QCOM_SYS_CACHE' IOMMU protection flag is exposed to all
users of the IOMMU API. Despite its name, the idea behind it isn't
especially tied to Qualcomm implementations and could conceivably be
used by other systems.
Rename it to 'IOMMU_SYS_CACHE_ONLY' and update the comment to describe
a bit better the idea behind it.
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: "Isaac J. Manjarres" <isaacm@codeaurora.org>
Signed-off-by: Will Deacon <will@kernel.org>
Guest shared virtual address (SVA) may require host to shadow guest
PASID tables. Guest PASID can also be allocated from the host via
enlightened interfaces. In this case, guest needs to bind the guest
mm, i.e. cr3 in guest physical address to the actual PASID table in
the host IOMMU. Nesting will be turned on such that guest virtual
address can go through a two level translation:
- 1st level translates GVA to GPA
- 2nd level translates GPA to HPA
This patch introduces APIs to bind guest PASID data to the assigned
device entry in the physical IOMMU. See the diagram below for usage
explanation.
.-------------. .---------------------------.
| vIOMMU | | Guest process mm, FL only |
| | '---------------------------'
.----------------/
| PASID Entry |--- PASID cache flush -
'-------------' |
| | V
| | GP
'-------------'
Guest
------| Shadow |----------------------- GP->HP* ---------
v v |
Host v
.-------------. .----------------------.
| pIOMMU | | Bind FL for GVA-GPA |
| | '----------------------'
.----------------/ |
| PASID Entry | V (Nested xlate)
'----------------\.---------------------.
| | |Set SL to GPA-HPA |
| | '---------------------'
'-------------'
Where:
- FL = First level/stage one page tables
- SL = Second level/stage two page tables
- GP = Guest PASID
- HP = Host PASID
* Conversion needed if non-identity GP-HP mapping option is chosen.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Liu Yi L <yi.l.liu@intel.com>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.com>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
In any virtualization use case, when the first translation stage
is "owned" by the guest OS, the host IOMMU driver has no knowledge
of caching structure updates unless the guest invalidation activities
are trapped by the virtualizer and passed down to the host.
Since the invalidation data can be obtained from user space and will be
written into physical IOMMU, we must allow security check at various
layers. Therefore, generic invalidation data format are proposed here,
model specific IOMMU drivers need to convert them into their own format.
Signed-off-by: Yi L Liu <yi.l.liu@intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.com>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add a gfp_t parameter to the iommu_ops::map function.
Remove the needless locking in the AMD iommu driver.
The iommu_ops::map function (or the iommu_map function which calls it)
was always supposed to be sleepable (according to Joerg's comment in
this thread: https://lore.kernel.org/patchwork/patch/977520/ ) and so
should probably have had a "might_sleep()" since it was written. However
currently the dma-iommu api can call iommu_map in an atomic context,
which it shouldn't do. This doesn't cause any problems because any iommu
driver which uses the dma-iommu api uses gfp_atomic in it's
iommu_ops::map function. But doing this wastes the memory allocators
atomic pools.
Signed-off-by: Tom Murphy <murphyt7@tcd.ie>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add a couple of functions to allow changing the default
domain type from architecture code and a function for iommu
drivers to request whether the default domain is
passthrough.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
To allow IOMMU drivers to batch up TLB flushing operations and postpone
them until ->iotlb_sync() is called, extend the prototypes for the
->unmap() and ->iotlb_sync() IOMMU ops callbacks to take a pointer to
the current iommu_iotlb_gather structure.
All affected IOMMU drivers are updated, but there should be no
functional change since the extra parameter is ignored for now.
Signed-off-by: Will Deacon <will@kernel.org>
Introduce a helper function for drivers to use when updating an
iommu_iotlb_gather structure in response to an ->unmap() call, rather
than having to open-code the logic in every page-table implementation.
Signed-off-by: Will Deacon <will@kernel.org>
To permit batching of TLB flushes across multiple calls to the IOMMU
driver's ->unmap() implementation, introduce a new structure for
tracking the address range to be flushed and the granularity at which
the flushing is required.
This is hooked into the IOMMU API and its caller are updated to make use
of the new structure. Subsequent patches will plumb this into the IOMMU
drivers as well, but for now the gathering information is ignored.
Signed-off-by: Will Deacon <will@kernel.org>
Commit add02cfdc9 ("iommu: Introduce Interface for IOMMU TLB Flushing")
added three new TLB flushing operations to the IOMMU API so that the
underlying driver operations can be batched when unmapping large regions
of IO virtual address space.
However, the ->iotlb_range_add() callback has not been implemented by
any IOMMU drivers (amd_iommu.c implements it as an empty function, which
incurs the overhead of an indirect branch). Instead, drivers either flush
the entire IOTLB in the ->iotlb_sync() callback or perform the necessary
invalidation during ->unmap().
Attempting to implement ->iotlb_range_add() for arm-smmu-v3.c revealed
two major issues:
1. The page size used to map the region in the page-table is not known,
and so it is not generally possible to issue TLB flushes in the most
efficient manner.
2. The only mutable state passed to the callback is a pointer to the
iommu_domain, which can be accessed concurrently and therefore
requires expensive synchronisation to keep track of the outstanding
flushes.
Remove the callback entirely in preparation for extending ->unmap() and
->iotlb_sync() to update a token on the caller's stack.
Signed-off-by: Will Deacon <will@kernel.org>
Few Qualcomm platforms such as, sdm845 have an additional outer
cache called as System cache, aka. Last level cache (LLC) that
allows non-coherent devices to upgrade to using caching.
This cache sits right before the DDR, and is tightly coupled
with the memory controller. The clients using this cache request
their slices from this system cache, make it active, and can then
start using it.
There is a fundamental assumption that non-coherent devices can't
access caches. This change adds an exception where they *can* use
some level of cache despite still being non-coherent overall.
The coherent devices that use cacheable memory, and CPU make use of
this system cache by default.
Looking at memory types, we have following -
a) Normal uncached :- MAIR 0x44, inner non-cacheable,
outer non-cacheable;
b) Normal cached :- MAIR 0xff, inner read write-back non-transient,
outer read write-back non-transient;
attribute setting for coherenet I/O devices.
and, for non-coherent i/o devices that can allocate in system cache
another type gets added -
c) Normal sys-cached :- MAIR 0xf4, inner non-cacheable,
outer read write-back non-transient
Coherent I/O devices use system cache by marking the memory as
normal cached.
Non-coherent I/O devices should mark the memory as normal
sys-cached in page tables to use system cache.
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Vivek Gautam <vivek.gautam@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce a new type for reserved region. This corresponds
to directly mapped regions which are known to be relaxable
in some specific conditions, such as device assignment use
case. Well known examples are those used by USB controllers
providing PS/2 keyboard emulation for pre-boot BIOS and
early BOOT or RMRRs associated to IGD working in legacy mode.
Since commit c875d2c1b8 ("iommu/vt-d: Exclude devices using RMRRs
from IOMMU API domains") and commit 18436afdc1 ("iommu/vt-d: Allow
RMRR on graphics devices too"), those regions are currently
considered "safe" with respect to device assignment use case
which requires a non direct mapping at IOMMU physical level
(RAM GPA -> HPA mapping).
Those RMRRs currently exist and sometimes the device is
attempting to access it but this has not been considered
an issue until now.
However at the moment, iommu_get_group_resv_regions() is
not able to make any difference between directly mapped
regions: those which must be absolutely enforced and those
like above ones which are known as relaxable.
This is a blocker for reporting severe conflicts between
non relaxable RMRRs (like MSI doorbells) and guest GPA space.
With this new reserved region type we will be able to use
iommu_get_group_resv_regions() to enumerate the IOVA space
that is usable through the IOMMU API without introducing
regressions with respect to existing device assignment
use cases (USB and IGD).
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Some IOMMU hardware features, for example PCI PRI and Arm SMMU Stall,
enable recoverable I/O page faults. Allow IOMMU drivers to report PRI Page
Requests and Stall events through the new fault reporting API. The
consumer of the fault can be either an I/O page fault handler in the host,
or a guest OS.
Once handled, the fault must be completed by sending a page response back
to the IOMMU. Add an iommu_page_response() function to complete a page
fault.
There are two ways to extend the userspace API:
* Add a field to iommu_page_response and a flag to
iommu_page_response::flags describing the validity of this field.
* Introduce a new iommu_page_response_X structure with a different version
number. The kernel must then support both versions.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Traditionally, device specific faults are detected and handled within
their own device drivers. When IOMMU is enabled, faults such as DMA
related transactions are detected by IOMMU. There is no generic
reporting mechanism to report faults back to the in-kernel device
driver or the guest OS in case of assigned devices.
This patch introduces a registration API for device specific fault
handlers. This differs from the existing iommu_set_fault_handler/
report_iommu_fault infrastructures in several ways:
- it allows to report more sophisticated fault events (both
unrecoverable faults and page request faults) due to the nature
of the iommu_fault struct
- it is device specific and not domain specific.
The current iommu_report_device_fault() implementation only handles
the "shoot and forget" unrecoverable fault case. Handling of page
request faults or stalled faults will come later.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Device faults detected by IOMMU can be reported outside the IOMMU
subsystem for further processing. This patch introduces
a generic device fault data structure.
The fault can be either an unrecoverable fault or a page request,
also referred to as a recoverable fault.
We only care about non internal faults that are likely to be reported
to an external subsystem.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Liu, Yi L <yi.l.liu@linux.intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation inc 59 temple place suite 330 boston ma 02111
1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 136 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.384967451@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Normally during iommu probing a device, a default doamin will
be allocated and attached to the device. The domain type of
the default domain is statically defined, which results in a
situation where the allocated default domain isn't suitable
for the device due to some limitations. We already have API
iommu_request_dm_for_dev() to replace a DMA domain with an
identity one. This adds iommu_request_dma_domain_for_dev()
to request a dma domain if an allocated identity domain isn't
suitable for the device in question.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Root complex node in IORT has a bit telling whether it supports ATS or
not. Store this bit in the IOMMU fwspec when setting up a device, so it
can be accessed later by an IOMMU driver. In the future we'll probably
want to store this bit at the host bridge or SMMU rather than in each
endpoint.
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add bind() and unbind() operations to the IOMMU API.
iommu_sva_bind_device() binds a device to an mm, and returns a handle to
the bond, which is released by calling iommu_sva_unbind_device().
Each mm bound to devices gets a PASID (by convention, a 20-bit system-wide
ID representing the address space), which can be retrieved with
iommu_sva_get_pasid(). When programming DMA addresses, device drivers
include this PASID in a device-specific manner, to let the device access
the given address space. Since the process memory may be paged out, device
and IOMMU must support I/O page faults (e.g. PCI PRI).
Using iommu_sva_set_ops(), device drivers provide an mm_exit() callback
that is called by the IOMMU driver if the process exits before the device
driver called unbind(). In mm_exit(), device driver should disable DMA
from the given context, so that the core IOMMU can reallocate the PASID.
Whether the process exited or nor, the device driver should always release
the handle with unbind().
To use these functions, device driver must first enable the
IOMMU_DEV_FEAT_SVA device feature with iommu_dev_enable_feature().
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Sharing a physical PCI device in a finer-granularity way
is becoming a consensus in the industry. IOMMU vendors
are also engaging efforts to support such sharing as well
as possible. Among the efforts, the capability of support
finer-granularity DMA isolation is a common requirement
due to the security consideration. With finer-granularity
DMA isolation, subsets of a PCI function can be isolated
from each others by the IOMMU. As a result, there is a
request in software to attach multiple domains to a physical
PCI device. One example of such use model is the Intel
Scalable IOV [1] [2]. The Intel vt-d 3.0 spec [3] introduces
the scalable mode which enables PASID granularity DMA
isolation.
This adds the APIs to support multiple domains per device.
In order to ease the discussions, we call it 'a domain in
auxiliary mode' or simply 'auxiliary domain' when multiple
domains are attached to a physical device.
The APIs include:
* iommu_dev_has_feature(dev, IOMMU_DEV_FEAT_AUX)
- Detect both IOMMU and PCI endpoint devices supporting
the feature (aux-domain here) without the host driver
dependency.
* iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX)
- Check the enabling status of the feature (aux-domain
here). The aux-domain interfaces are available only
if this returns true.
* iommu_dev_enable/disable_feature(dev, IOMMU_DEV_FEAT_AUX)
- Enable/disable device specific aux-domain feature.
* iommu_aux_attach_device(domain, dev)
- Attaches @domain to @dev in the auxiliary mode. Multiple
domains could be attached to a single device in the
auxiliary mode with each domain representing an isolated
address space for an assignable subset of the device.
* iommu_aux_detach_device(domain, dev)
- Detach @domain which has been attached to @dev in the
auxiliary mode.
* iommu_aux_get_pasid(domain, dev)
- Return ID used for finer-granularity DMA translation.
For the Intel Scalable IOV usage model, this will be
a PASID. The device which supports Scalable IOV needs
to write this ID to the device register so that DMA
requests could be tagged with a right PASID prefix.
This has been updated with the latest proposal from Joerg
posted here [5].
Many people involved in discussions of this design.
Kevin Tian <kevin.tian@intel.com>
Liu Yi L <yi.l.liu@intel.com>
Ashok Raj <ashok.raj@intel.com>
Sanjay Kumar <sanjay.k.kumar@intel.com>
Jacob Pan <jacob.jun.pan@linux.intel.com>
Alex Williamson <alex.williamson@redhat.com>
Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Joerg Roedel <joro@8bytes.org>
and some discussions can be found here [4] [5].
[1] https://software.intel.com/en-us/download/intel-scalable-io-virtualization-technical-specification
[2] https://schd.ws/hosted_files/lc32018/00/LC3-SIOV-final.pdf
[3] https://software.intel.com/en-us/download/intel-virtualization-technology-for-directed-io-architecture-specification
[4] https://lkml.org/lkml/2018/7/26/4
[5] https://www.spinics.net/lists/iommu/msg31874.html
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Liu Yi L <yi.l.liu@intel.com>
Suggested-by: Kevin Tian <kevin.tian@intel.com>
Suggested-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Suggested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Introduce iotlb_sync_map() callback that is invoked in the end of
iommu_map(). This new callback allows IOMMU drivers to avoid syncing
after mapping of each contiguous chunk and sync only when the whole
mapping is completed, optimizing performance of the mapping operation.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
These wrappers will be used to easily change the location of
the field later when all users are converted.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
With the flush queue infrastructure already abstracted into IOVA
domains, hooking it up in iommu-dma is pretty simple. Since there is a
degree of dependency on the IOMMU driver knowing what to do to play
along, we key the whole thing off a domain attribute which will be set
on default DMA ops domains to request non-strict invalidation. That way,
drivers can indicate the appropriate support by acknowledging the
attribute, and we can easily fall back to strict invalidation otherwise.
The flush queue callback needs a handle on the iommu_domain which owns
our cookie, so we have to add a pointer back to that, but neatly, that's
also sufficient to indicate whether we're using a flush queue or not,
and thus which way to release IOVAs. The only slight subtlety is
switching __iommu_dma_unmap() from calling iommu_unmap() to explicit
iommu_unmap_fast()/iommu_tlb_sync() so that we can elide the sync
entirely in non-strict mode.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
[rm: convert to domain attribute, tweak comments and commit message]
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since these are trivially handled by the .domain_{get,set}_attr
callbacks when relevant, we can streamline struct iommu_ops for
everyone.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
While iommu_get_domain_for_dev() is the robust way for arbitrary IOMMU
API callers to retrieve the domain pointer, for DMA ops domains it
doesn't scale well for large systems and multi-queue devices, since the
momentary refcount adjustment will lead to exclusive cacheline contention
when multiple CPUs are operating in parallel on different mappings for
the same device.
In the case of DMA ops domains, however, this refcounting is actually
unnecessary, since they already imply that the group exists and is
managed by platform code and IOMMU internals (by virtue of
iommu_group_get_for_dev()) such that a reference will already be held
for the lifetime of the device. Thus we can avoid the bottleneck by
providing a fast lookup specifically for the DMA code to retrieve the
default domain it already knows it has set up - a simple read-only
dereference plays much nicer with cache-coherency protocols.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Implement bus specific support for the fsl-mc bus including
registering arm_smmu_ops and bus specific device add operations.
Signed-off-by: Nipun Gupta <nipun.gupta@nxp.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
All iommu drivers use the default_iommu_map_sg implementation, and there
is no good reason to ever override it. Just expose it as iommu_map_sg
directly and remove the indirection, specially in our post-spectre world
where indirect calls are horribly expensive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Provide base enablement for using debugfs to expose internal data of an
IOMMU driver. When called, create the /sys/kernel/debug/iommu directory.
Emit a strong warning at boot time to indicate that this feature is
enabled.
This function is called from iommu_init, and creates the initial DebugFS
directory. Drivers may then call iommu_debugfs_new_driver_dir() to
instantiate a device-specific directory to expose internal data.
It will return a pointer to the new dentry structure created in
/sys/kernel/debug/iommu, or NULL in the event of a failure.
Since the IOMMU driver can not be removed from the running system, there
is no need for an "off" function.
Signed-off-by: Gary R Hook <gary.hook@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Currently, iommu_unmap, iommu_unmap_fast and iommu_map_sg return
size_t. However, some of the return values are error codes (< 0),
which can be misinterpreted as large size. Therefore, returning size 0
instead to signify failure to map/unmap.
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>