Here is the big TTY and Serial patch set for 4.9-rc1.
It also includes some drivers/dma/ changes, as those were needed by some
serial drivers, and they were all acked by the DMA maintainer. Also in
here is the long-suffering ACPI SPCR patchset, which was passed around
from maintainer to maintainer like a hot-potato. Seems I was the
sucker^Wlucky one. All of those patches have been acked by the various
subsystem maintainers as well.
All of this has been in linux-next with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iFYEABECABYFAlfyNjEPHGdyZWdAa3JvYWguY29tAAoJEDFH1A3bLfspwIcAn2uN
qCD8xQJ0Cs61hD1nUzhNygG8AJ94I4zz/fPGpyh/CtJfLQwtUdLhNA==
=Rken
-----END PGP SIGNATURE-----
Merge tag 'tty-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty and serial updates from Greg KH:
"Here is the big tty and serial patch set for 4.9-rc1.
It also includes some drivers/dma/ changes, as those were needed by
some serial drivers, and they were all acked by the DMA maintainer.
Also in here is the long-suffering ACPI SPCR patchset, which was
passed around from maintainer to maintainer like a hot-potato. Seems I
was the sucker^Wlucky one. All of those patches have been acked by the
various subsystem maintainers as well.
All of this has been in linux-next with no reported issues"
* tag 'tty-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (111 commits)
Revert "serial: pl011: add console matching function"
MAINTAINERS: update entry for atmel_serial driver
serial: pl011: add console matching function
ARM64: ACPI: enable ACPI_SPCR_TABLE
ACPI: parse SPCR and enable matching console
of/serial: move earlycon early_param handling to serial
Revert "drivers/tty: Explicitly pass current to show_stack"
tty: amba-pl011: Don't complain on -EPROBE_DEFER when no irq
nios2: dts: 10m50: Add tx-threshold parameter
serial: 8250: Set Altera 16550 TX FIFO Threshold
serial: 8250: of: Load TX FIFO Threshold from DT
Documentation: dt: serial: Add TX FIFO threshold parameter
drivers/tty: Explicitly pass current to show_stack
serial: imx: Fix DCD reading
serial: stm32: mark symbols static where possible
serial: xuartps: Add some register initialisation to cdns_early_console_setup()
serial: xuartps: Removed unwanted checks while reading the error conditions
serial: xuartps: Rewrite the interrupt handling logic
serial: stm32: use mapbase instead of membase for DMA
tty/serial: atmel: fix fractional baud rate computation
...
Pull irq updates from Thomas Gleixner:
"The irq departement proudly presents:
- A rework of the core infrastructure to optimally spread interrupt
for multiqueue devices. The first version was a bit naive and
failed to take thread siblings and other details into account.
Developed in cooperation with Christoph and Keith.
- Proper delegation of softirqs to ksoftirqd, so if ksoftirqd is
active then no further softirq processsing on interrupt return
happens. Otherwise we try to delegate and still run another batch
of network packets in the irq return path, which then tries to
delegate to ksoftirqd .....
- A proper machine parseable sysfs based alternative for
/proc/interrupts.
- ACPI support for the GICV3-ITS and ARM interrupt remapping
- Two new irq chips from the ARM SoC zoo: STM32-EXTI and MVEBU-PIC
- A new irq chip for the JCore (SuperH)
- The usual pile of small fixlets in core and irqchip drivers"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
softirq: Let ksoftirqd do its job
genirq: Make function __irq_do_set_handler() static
ARM/dts: Add EXTI controller node to stm32f429
ARM/STM32: Select external interrupts controller
drivers/irqchip: Add STM32 external interrupts support
Documentation/dt-bindings: Document STM32 EXTI controller bindings
irqchip/mips-gic: Use for_each_set_bit to iterate over local IRQs
pci/msi: Retrieve affinity for a vector
genirq/affinity: Remove old irq spread infrastructure
genirq/msi: Switch to new irq spreading infrastructure
genirq/affinity: Provide smarter irq spreading infrastructure
genirq/msi: Add cpumask allocation to alloc_msi_entry
genirq: Expose interrupt information through sysfs
irqchip/gicv3-its: Use MADT ITS subtable to do PCI/MSI domain initialization
irqchip/gicv3-its: Factor out PCI-MSI part that might be reused for ACPI
irqchip/gicv3-its: Probe ITS in the ACPI way
irqchip/gicv3-its: Refactor ITS DT init code to prepare for ACPI
irqchip/gicv3-its: Cleanup for ITS domain initialization
PCI/MSI: Setup MSI domain on a per-device basis using IORT ACPI table
ACPI: Add new IORT functions to support MSI domain handling
...
'ARM Server Base Boot Requiremets' [1] mentions SPCR (Serial Port
Console Redirection Table) [2] as a mandatory ACPI table that
specifies the configuration of serial console.
Defer initialization of DT earlycon until ACPI/DT decision is made.
Parse the ACPI SPCR table, setup earlycon if required,
enable specified console.
Thanks to Peter Hurley for explaining how this should work.
[1] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0044a/index.html
[2] https://msdn.microsoft.com/en-us/library/windows/hardware/dn639132(v=vs.85).aspx
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Starting from Intel Skylake the iTCO watchdog timer registers were moved to
reside in the same register space with SMBus host controller. Not all
needed registers are available though and we need to unhide P2SB (Primary
to Sideband) device briefly to be able to read status of required NO_REBOOT
bit. The i2c-i801.c SMBus driver used to handle this and creation of the
iTCO watchdog platform device.
Windows, on the other hand, does not use the iTCO watchdog hardware
directly even if it is available. Instead it relies on ACPI Watchdog Action
Table (WDAT) table to describe the watchdog hardware to the OS. This table
contains necessary information about the the hardware and also set of
actions which are executed by a driver as needed.
This patch implements a new watchdog driver that takes advantage of the
ACPI WDAT table. We split the functionality into two parts: first part
enumerates the WDAT table and if found, populates resources and creates
platform device for the actual driver. The second part is the driver
itself.
The reason for the split is that this way we can make the driver itself to
be a module and loaded automatically if the WDAT table is found. Otherwise
the module is not loaded.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
IORT shows representation of IO topology for ARM based systems.
It describes how various components are connected together on
parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec.
http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf
Initial support allows to detect IORT table presence and save its
root pointer obtained through acpi_get_table(). The pointer validity
depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap
is not set while using IORT nodes we would dereference unmapped pointers.
For the aforementioned reason call acpi_iort_init() from acpi_init()
which guarantees acpi_gbl_permanent_mmap to be set at that point.
Add generic helpers which are helpful for scanning and retrieving
information from IORT table content. List of the most important helpers:
- iort_find_dev_node() finds IORT node for a given device
- iort_node_map_rid() maps device RID and returns IORT node which provides
final translation
IORT support is placed under drivers/acpi/arm64/ new directory due to its
ARM64 specific nature. The code there is considered only for ARM64.
The long term plan is to keep all ARM64 specific tables support
in this place e.g. GTDT table.
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
1/ Replace pcommit with ADR / directed-flushing:
The pcommit instruction, which has not shipped on any product, is
deprecated. Instead, the requirement is that platforms implement either
ADR, or provide one or more flush addresses per nvdimm. ADR
(Asynchronous DRAM Refresh) flushes data in posted write buffers to the
memory controller on a power-fail event. Flush addresses are defined in
ACPI 6.x as an NVDIMM Firmware Interface Table (NFIT) sub-structure:
"Flush Hint Address Structure". A flush hint is an mmio address that
when written and fenced assures that all previous posted writes
targeting a given dimm have been flushed to media.
2/ On-demand ARS (address range scrub):
Linux uses the results of the ACPI ARS commands to track bad blocks
in pmem devices. When latent errors are detected we re-scrub the media
to refresh the bad block list, userspace can also request a re-scrub at
any time.
3/ Support for the Microsoft DSM (device specific method) command format.
4/ Support for EDK2/OVMF virtual disk device memory ranges.
5/ Various fixes and cleanups across the subsystem.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmXBsAAoJEB7SkWpmfYgCEwwP/1IOt9ocP+iHLMDH9KE7VaTZ
NmUDR+Zy6g5cRQM7SgcuU5BXUcx+OsSrSrUTVF1cW994o9Gbz1mFotkv0ZAsPcYY
ZVRQxo2oqHrssyOcg+PsgKWiXn68rJOCgmpEyzaJywl5qTMst7pzsT1s1f7rSh6h
trCf4VaJJwxZR8fARGtlHUnnhPe2Orp99EZRKEWprAsIv2kPuWpPHSjRjuEgN1JG
KW8AYwWqFTtiLRUk86I4KBB0wcDrfctsjgN9Ogd6+aHyQBRnVSr2U+vDCFkC8KLu
qiDCpYp+yyxBjclnljz7tRRT3GtzfCUWd4v2KVWqgg2IaobUc0Lbukp/rmikUXQP
WLikT2OCQ994eFK5OX3Q3cIU/4j459TQnof8q14yVSpjAKrNUXVSR5puN7Hxa+V7
41wKrAsnsyY1oq+Yd/rMR8VfH7PHx3bFkrmRCGZCufLX1UQm4aYj+sWagDKiV3yA
DiudghbOnhfurfGsnXUVw7y7GKs+gNWNBmB6ndAD6ZEHmKoGUhAEbJDLCc3DnANl
b/2mv1MIdIcC1DlCmnbbcn6fv6bICe/r8poK3VrCK3UgOq/EOvKIWl7giP+k1JuC
6DdVYhlNYIVFXUNSLFAwz8OkLu8byx7WDm36iEqrKHtPw+8qa/2bWVgOU6OBgpjV
cN3edFVIdxvZeMgM5Ubq
=xCBG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
- Replace pcommit with ADR / directed-flushing.
The pcommit instruction, which has not shipped on any product, is
deprecated. Instead, the requirement is that platforms implement
either ADR, or provide one or more flush addresses per nvdimm.
ADR (Asynchronous DRAM Refresh) flushes data in posted write buffers
to the memory controller on a power-fail event.
Flush addresses are defined in ACPI 6.x as an NVDIMM Firmware
Interface Table (NFIT) sub-structure: "Flush Hint Address Structure".
A flush hint is an mmio address that when written and fenced assures
that all previous posted writes targeting a given dimm have been
flushed to media.
- On-demand ARS (address range scrub).
Linux uses the results of the ACPI ARS commands to track bad blocks
in pmem devices. When latent errors are detected we re-scrub the
media to refresh the bad block list, userspace can also request a
re-scrub at any time.
- Support for the Microsoft DSM (device specific method) command
format.
- Support for EDK2/OVMF virtual disk device memory ranges.
- Various fixes and cleanups across the subsystem.
* tag 'libnvdimm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (41 commits)
libnvdimm-btt: Delete an unnecessary check before the function call "__nd_device_register"
nfit: do an ARS scrub on hitting a latent media error
nfit: move to nfit/ sub-directory
nfit, libnvdimm: allow an ARS scrub to be triggered on demand
libnvdimm: register nvdimm_bus devices with an nd_bus driver
pmem: clarify a debug print in pmem_clear_poison
x86/insn: remove pcommit
Revert "KVM: x86: add pcommit support"
nfit, tools/testing/nvdimm/: unify shutdown paths
libnvdimm: move ->module to struct nvdimm_bus_descriptor
nfit: cleanup acpi_nfit_init calling convention
nfit: fix _FIT evaluation memory leak + use after free
tools/testing/nvdimm: add manufacturing_{date|location} dimm properties
tools/testing/nvdimm: add virtual ramdisk range
acpi, nfit: treat virtual ramdisk SPA as pmem region
pmem: kill __pmem address space
pmem: kill wmb_pmem()
libnvdimm, pmem: use nvdimm_flush() for namespace I/O writes
fs/dax: remove wmb_pmem()
libnvdimm, pmem: flush posted-write queues on shutdown
...
* acpi-drivers:
ACPI / DPTF: move int340x_thermal.c to the DPTF folder
ACPI / DPTF: Add DPTF power participant driver
* acpi-misc:
ACPI / lpat: make it explicitly non-modular
ACPI / dock: make dock explicitly non-modular
* acpi-tools:
tools/acpi: use CROSS_COMPILE to define prefix
* acpi-pmic:
ACPI / PMIC: remove modular references from non-modular code
ACPI / PMIC: intel: initialize result to 0
ACPI / PMIC: intel: add REGS operation region support
ACPI / PMIC: Add opregion driver for Intel BXT WhiskeyCove PMIC
ACPI / PMIC: modify the pen function signature to take bit field
Conflicts:
drivers/acpi/Makefile
With the arrival of x86-machine-check support the nfit driver will add a
(conditionally-compiled) source file. Prepare for this by moving all
nfit source to drivers/acpi/nfit/. This is pure code movement, no
functional changes.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Since DPTF has its own folder under ACPI, move this file also there.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This driver adds support for Dynamic Platform and Thermal Framework
(DPTF) Platform Power Participant device (INT3407) support.
This participant is responsible for exposing platform telemetry such as:
max_platform_power
platform_power_source
adapter_rating
battery_steady_power
charger_type
These attributes are presented via sysfs interface under the INT3407
platform device:
$ls /sys/bus/platform/devices/INT3407\:00/dptf_power/
adapter_rating_mw
battery_steady_power_mw
charger_type
max_platform_power_mw
platform_power_source
`
ACPI methods description used in this driver:
PMAX: Maximum platform power that can be supported by the battery in
mW.
PSRC: System charge source,
0x00 = DC
0x01 = AC
0x02 = USB
0x03 = Wireless Charger
ARTG: Adapter rating in mW (Maximum Adapter power) Must be 0 if no
AC adapter is plugged in.
CTYP: Charger Type,
Traditional : 0x01
Hybrid: 0x02
NVDC: 0x03
PBSS: Returns max sustained power for battery in milliWatts.
The INT3407 also contains _BTS and _BIX objects, which are compliant to
ACPI 5.0, specification. Those objects are already used by ACPI battery
(PNP0C0A) driver and information about them is exported via Linux power
supply class registration.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If we compile ACPI configfs.c as module it will confuse the linker as it
hides symbols from the actual configfs:
Kernel: arch/x86/boot/bzImage is ready (#1236)
MODPOST 5739 modules
ERROR: "configfs_unregister_subsystem" [samples/configfs/configfs_sample.ko] undefined!
ERROR: "configfs_register_subsystem" [samples/configfs/configfs_sample.ko] undefined!
ERROR: "config_group_init" [samples/configfs/configfs_sample.ko] undefined!
ERROR: "config_item_init_type_name" [samples/configfs/configfs_sample.ko] undefined!
ERROR: "config_group_init_type_name" [samples/configfs/configfs_sample.ko] undefined!
ERROR: "configfs_undepend_item" [fs/ocfs2/cluster/ocfs2_nodemanager.ko] undefined!
...
Prevent these by renaming the file to acpi_configfs.c instead.
Reported-by: Scott Lawson <scott.lawson@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Register the ACPI subsystem with configfs.
Signed-off-by: Octavian Purdila <octavian.purdila@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds operation region driver for Intel BXT WhiskeyCove
PMIC. The register mapping is done as per the BXT WC data sheet.
Signed-off-by: Ajay Thomas <ajay.thomas.david.rajamanickam@intel.com>
Signed-off-by: Bin Gao <bin.gao@intel.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On ACPI systems that support memory-mapped config space access, i.e., ECAM,
the PCI Firmware Specification says the OS can learn where the ECAM space
is from either:
- the static MCFG table (for non-hotpluggable bridges), or
- the _CBA method (for hotpluggable bridges)
The current MCFG table handling code cannot be easily generalized owing to
x86-specific quirks, which makes it hard to reuse on other architectures.
Implement generic MCFG handling from scratch, including:
- Simple MCFG table parsing (via pci_mmcfg_late_init() as in current x86)
- MCFG region lookup for a (domain, bus_start, bus_end) tuple
[bhelgaas: changelog]
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Jayachandran C <jchandra@broadcom.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
_OSI handling code grows giant and it's time to move them into one file.
This patch collects all _OSI handling code into one single file.
So that we only have the following functions to be used externally:
early_acpi_osi_init(): Used by DMI detections;
acpi_osi_init(): Used to initialize OSI command line settings and install
Linux specific _OSI handler;
acpi_osi_setup(): The API that should be used by the external quirks.
acpi_osi_is_win8(): The API is used by the external drivers to determine
if BIOS supports Win8.
CONFIG_DMI is not useful as stub dmi_check_system() can make everything
stub because of strip.
No functional changes.
Tested-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Generic Event Device described in ACPI 6.1 allows platforms to handle
platform interrupts in ACPI ASL statements. It borrows constructs like
_EVT from GPIO events. All interrupts are listed in _CRS and the handler
is written in _EVT method. Here is an example.
Device (GED0)
{
Name (_HID, "ACPI0013")
Name (_UID, 0)
Name(_CRS, ResourceTemplate ()
{
Interrupt(ResourceConsumer, Edge, ActiveHigh, Shared, , , )
{123}
})
Method (_EVT, 1) {
if (Lequal(123, Arg0))
{
}
}
}
Wake capability has not been implemented yet.
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On ARM64 some devices use the AMBA device and not the platform bus for
probing so add support for this. Uses a dummy clock for apb_pclk as ACPI
does not have a suitable clock representation and to keep the core
AMBA bus code unchanged between probing methods.
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch converts AML debugger into a loadable module.
Note that, it implements driver unloading at the level dependent on the
module reference count. Which means if ACPI debugger is being used by a
userspace program, "rmmod acpi_dbg" should result in failure.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds /sys/kernel/debug/acpi/acpidbg, which can be used by
userspace programs to access ACPICA debugger functionalities.
Known issue:
1. IO flush support
acpi_os_notify_command_complete() and acpi_os_wait_command_ready() can
be used by acpi_dbg module to implement .flush() filesystem operation.
While this patch doesn't go that far. It then becomes userspace tool's
duty now to flush old commands before executing new batch mode commands.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If the CONFIG_ACPI Kconfig symbol is not enabled and a partial build is
attempted, compile errors will happen due missing types and identifiers.
This can be easily reproduced with the following commands:
$ export CROSS_COMPILE="arm-linux-gnueabihf-" ARCH=arm
$ make allmodconfig
$ make M=drivers/acpi/
CC drivers/acpi//tables.o
drivers/acpi//tables.c:235:3: warning: 'struct acpi_subtable_proc' declared inside parameter list
unsigned int max_entries)
^
drivers/acpi//tables.c:235:3: warning: its scope is only this definition or declaration, which is probably not what you want
drivers/acpi//tables.c: In function 'acpi_parse_entries_array':
drivers/acpi//tables.c:269:4: error: invalid use of undefined type 'struct acpi_subtable_proc'
...
scripts/Makefile.build:258: recipe for target 'drivers/acpi//tables.o' failed
make[1]: *** [drivers/acpi//tables.o] Error 1
Makefile:1401: recipe for target '_module_drivers/acpi/' failed
make: *** [_module_drivers/acpi/] Error 2
This is because objects are tried to be built unconditionally even when
CONFIG_ACPI is not enabled. This is usually not a problem since arches'
Kconfig sources drivers/acpi/Kconfig directly and also selects ACPI but
the Makefile should conditionally build the objects as well to prevent
these build errors.
Signed-off-by: Javier Martinez Canillas <javier@osg.samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
CPPC stands for Collaborative Processor Performance Controls
and is defined in the ACPI v5.0+ spec. It describes CPU
performance controls on an abstract and continuous scale
allowing the platform (e.g. remote power processor) to flexibly
optimize CPU performance with its knowledge of power budgets
and other architecture specific knowledge.
This patch adds a shim which exports commonly used functions
to get and set CPPC specific controls for each CPU. This enables
CPUFreq drivers to gather per CPU performance data and use
with exisiting governors or even allows for customized governors
which are implemented inside CPUFreq drivers.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Reviewed-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch introduces a new Kconfig symbol, ACPI_PROCESSOR_IDLE,
which is auto selected by architectures which support the ACPI
based C states for CPU Idle management.
The processor_idle driver in its present form contains declarations
specific to X86 and IA64. Since there are no reasonable defaults
for other architectures e.g. ARM64, the driver is selected only for
X86 or IA64.
This helps in decoupling the ACPI processor_driver from the ACPI
processor_idle driver which is useful for the upcoming alternative
patchwork for controlling CPU Performance (CPPC) and CPU Idle (LPI).
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI processor driver is currently tied too closely
to the ACPI P-states (PSS) and other related constructs
for controlling CPU performance.
The newer ACPI specification (v5.1 onwards) introduces
alternative methods to PSS. These new mechanisms are
described within each ACPI Processor object and so they
need to be scanned whenever a new Processor object is detected.
This patch introduces a new Kconfig symbol to allow for
finer configurability among the two options for controlling
performance states. There is no change in functionality and
the option is auto-selected by the architectures which support it.
A future commit will introduce support for CPPC: A newer method of
controlling CPU performance. The OS is not expected to support
CPPC and PSS at the same time, so the Kconfig option lets us make
the two mutually exclusive at compile time.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To reduce the size of scan.c and improve the readability of it, move
all code related to device sysfs, modalias creation etc. to a new
file called device_sysfs.c.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory devices
(NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface
table). After registering NVDIMMs the NFIT driver then registers
"region" devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block device
(disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of persistent
memory address ranges is re-worked to drive PMEM-namespaces emitted by
the libnvdimm-core. In this update the PMEM driver, on x86, gains the
ability to assert that writes to persistent memory have been flushed all
the way through the caches and buffers in the platform to persistent
media. See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through "Block
Data Windows" as defined by the NFIT. The primary difference of this
driver to PMEM is that only a small window of persistent memory is
mapped into system address space at any given point in time. Per-NVDIMM
windows are reprogrammed at run time, per-I/O, to access different
portions of the media. BLK-mode, by definition, does not support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss). The
sinister aspect of sector tearing is that most applications do not know
they have a atomic sector dependency. At least today's disk's rarely
ever tear sectors and if they do one almost certainly gets a CRC error
on access. NVDIMMs will always tear and always silently. Until an
application is audited to be robust in the presence of sector-tearing
the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVjZGBAAoJEB7SkWpmfYgC4fkP/j+k6HmSRNU/yRYPyo7CAWvj
3P5P1i6R6nMZZbjQrQArAXaIyLlFk4sEQDYsciR6dmslhhFZAkR2eFwVO5rBOyx3
QN0yxEpyjJbroRFUrV/BLaFK4cq2oyJAFFHs0u7/pLHBJ4MDMqfRKAMtlnBxEkTE
LFcqXapSlvWitSbjMdIBWKFEvncaiJ2mdsFqT4aZqclBBTj00eWQvEG9WxleJLdv
+tj7qR/vGcwOb12X5UrbQXgwtMYos7A6IzhHbqwQL8IrOcJ6YB8NopJUpLDd7ZVq
KAzX6ZYMzNueN4uvv6aDfqDRLyVL7qoxM9XIjGF5R8SV9sF2LMspm1FBpfowo1GT
h2QMr0ky1nHVT32yspBCpE9zW/mubRIDtXxEmZZ53DIc4N6Dy9jFaNVmhoWtTAqG
b9pndFnjUzzieCjX5pCvo2M5U6N0AQwsnq76/CasiWyhSa9DNKOg8MVDRg0rbxb0
UvK0v8JwOCIRcfO3qiKcx+02nKPtjCtHSPqGkFKPySRvAdb+3g6YR26CxTb3VmnF
etowLiKU7HHalLvqGFOlDoQG6viWes9Zl+ZeANBOCVa6rL2O7ZnXJtYgXf1wDQee
fzgKB78BcDjXH4jHobbp/WBANQGN/GF34lse8yHa7Ym+28uEihDvSD1wyNLnefmo
7PJBbN5M5qP5tD0aO7SZ
=VtWG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
A struct nvdimm_bus is the anchor device for registering nvdimm
resources and interfaces, for example, a character control device,
nvdimm devices, and I/O region devices. The ACPI NFIT (NVDIMM Firmware
Interface Table) is one possible platform description for such
non-volatile memory resources in a system. The nfit.ko driver attaches
to the "ACPI0012" device that indicates the presence of the NFIT and
parses the table to register a struct nvdimm_bus instance.
Cc: <linux-acpi@vger.kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This is a preparation patch for the backlight interface selection logic
cleanup, there are 2 reasons to not always build the video_detect code
into the kernel:
1) In order for the video_detect.c to also deal with / select native
backlight interfaces on win8 systems, instead of doing this in video.c
where it does not belong, video_detect.c needs to call into the backlight
class code. Which cannot be done if it is builtin and the blacklight class
is not.
2) Currently all the platform/x86 drivers which have quirks to prefer
the vendor driver over acpi-video call acpi_video_unregister_backlight()
to remove the acpi-video backlight interface, this logic really belongs
in video_detect.c, which will cause video_detect.c to depend on symbols of
video.c and video.c already depends on video_detect.c symbols, so they
really need to be a single module.
Note that this commits make 2 changes so as to maintain 100% kernel
commandline compatibility:
1) The __setup call for the acpi_backlight= handling is moved to
acpi/util.c as __setup may only be used by code which is alwasy builtin
2) video.c is renamed to acpi_video.c so that it can be combined with
video_detect.c into video.ko
This commit also makes changes to drivers/platform/x86/Kconfig to ensure
that drivers which use acpi_video_backlight_support() from video_detect.c,
will not be built-in when acpi_video is not built in. This also changes
some "select" uses to "depends on" to avoid dependency loops.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Acked-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The code deployed to implement GSI linux IRQ numbers mapping on arm64 turns
out to be generic enough so that it can be moved to ACPI core code along
with its respective config option ACPI_GENERIC_GSI selectable on
architectures that can reuse the same code.
Current ACPI IRQ mapping code is not integrated in the kernel IRQ domain
infrastructure, in particular there is no way to look-up the
IRQ domain associated with a particular interrupt controller, so this
first version of GSI generic code carries out the GSI<->IRQ mapping relying
on the IRQ default domain which is supposed to be always set on a
specific architecture in case the domain structure passed to
irq_create/find_mapping() functions is missing.
This patch moves the arm64 acpi functions that implement the gsi mappings:
acpi_gsi_to_irq()
acpi_register_gsi()
acpi_unregister_gsi()
to ACPI core code. Since the generic GSI<->domain mapping is based on IRQ
domains, it can be extended as soon as a way to map an interrupt
controller to an IRQ domain is implemented for ACPI in the IRQ domain
layer.
x86 and ia64 code for GSI mappings cannot rely on the generic GSI
layer at present for legacy reasons, so they do not select the
ACPI_GENERIC_GSI config options and keep relying on their arch
specific GSI mapping layer.
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ACPI 5.1 does not currently support S states for ARM64 hardware but
ACPI code will call acpi_target_system_state() and acpi_sleep_init()
for device power management, so introduce
CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT and select it for x86 and
ia64 only to make sleep functions available, and also introduce stub
function to allow other drivers to function until S states are defined
for ARM64.
It will be no functional change for x86 and IA64.
Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Pull thermal managament updates from Zhang Rui:
"Specifics:
- Abstract the code and introduce helper functions for all int340x
thermal drivers. From: Srinivas Pandruvada.
- Reorganize the ACPI LPAT table support code so that it can be
shared for both ACPI PMIC driver and int340x thermal driver.
- Add support for Braswell in intel_soc_dts thermal driver.
- a couple of small fixes/cleanups for step_wise governor and int340x
thermal driver"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux:
Thermal/int340x_thermal: remove unused uuids.
thermal: step_wise: spelling fixes
thermal: int340x: fix sparse warning
Thermal/int340x: LPAT conversion for temperature
ACPI / PMIC: Use common LPAT table handling functions
ACPI / LPAT: Common table processing functions
thermal: Intel SoC DTS: Add Braswell support
Thermal/int340x/int3402: Provide notification support
Thermal/int340x/processor_thermal: Add thermal zone support
Thermal/int340x/int3403: Use int340x thermal API
Thermal/int340x/int3402: Use int340x thermal API
Thermal/int340x: Add common thermal zone handler
* acpi-resources: (23 commits)
Merge branch 'pci/host-generic' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci into acpi-resources
x86/irq, ACPI: Implement ACPI driver to support IOAPIC hotplug
ACPI: Add interfaces to parse IOAPIC ID for IOAPIC hotplug
x86/PCI: Refine the way to release PCI IRQ resources
x86/PCI/ACPI: Use common ACPI resource interfaces to simplify implementation
x86/PCI: Fix the range check for IO resources
PCI: Use common resource list management code instead of private implementation
resources: Move struct resource_list_entry from ACPI into resource core
ACPI: Introduce helper function acpi_dev_filter_resource_type()
ACPI: Add field offset to struct resource_list_entry
ACPI: Translate resource into master side address for bridge window resources
ACPI: Return translation offset when parsing ACPI address space resources
ACPI: Enforce stricter checks for address space descriptors
ACPI: Set flag IORESOURCE_UNSET for unassigned resources
ACPI: Normalize return value of resource parser functions
ACPI: Fix a bug in parsing ACPI Memory24 resource
ACPI: Add prefetch decoding to the address space parser
ACPI: Move the window flag logic to the combined parser
ACPI: Unify the parsing of address_space and ext_address_space
ACPI: Let the parser return false for disabled resources
...
This new feature is to interpret AMD specific ACPI device to
platform device such as I2C, UART, GPIO found on AMD CZ and
later chipsets. It based on example intel LPSS. Now, it can
support AMD I2C, UART and GPIO.
Signed-off-by: Ken Xue <Ken.Xue@amd.com>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Enable support of IOAPIC hotplug by:
1) reintroducing ACPI based IOAPIC driver
2) enhance pci_root driver to hook hotplug events
The ACPI IOAPIC driver is always enabled if all of ACPI, PCI and IOAPIC
are enabled.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/1414387308-27148-19-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since LPAT table processing is also required for other thermal drivers,
moved LPAT table related functions from intel PMIC driver (intel_pmic.c)
to a stand alonge module with exported interfaces.
In this way there will be no code duplication.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
* acpi-video:
ACPI / video: Run _BCL before deciding registering backlight
* acpi-pmic:
ACPI / PMIC: AXP288: support virtual GPIO in ACPI table
ACPI / PMIC: support PMIC operation region for XPower AXP288
ACPI / PMIC: support PMIC operation region for CrystalCove
iio/axp288_adc: remove THIS_MODULE owner
mfd/axp20x: avoid irq numbering collision
iio: adc: Add module device table for autoloading
iio: adc: Add support for axp288 adc
mfd: axp20x: Extend axp20x to support axp288 pmic
The Baytrail-T-CR platform firmware has defined two customized operation
regions for PMIC chip Dollar Cove XPower - one is for power resource
handling and one is for thermal just like the CrystalCove one. This patch
adds support for them on top of the common PMIC opregion region code.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Lee Jones <lee.jones@linaro.org> for the MFD part
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Baytrail-T platform firmware has defined two customized operation
regions for PMIC chip Crystal Cove - one is for power resource handling
and one is for thermal: sensor temperature reporting, trip point setting,
etc. This patch adds support for them on top of the existing Crystal Cove
PMIC driver.
The reason to split code into a separate file intel_pmic.c is that there
are more PMIC drivers with ACPI operation region support coming and we can
re-use those code. The intel_pmic_opregion_data structure is created also
for this purpose: when we need to support a new PMIC's operation region,
we just need to fill those callbacks and the two register mapping tables.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Lee Jones <lee.jones@linaro.org> for the MFD part
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Device Tree is used in many embedded systems to describe the system
configuration to the OS. It supports attaching properties or name-value
pairs to the devices it describe. With these properties one can pass
additional information to the drivers that would not be available
otherwise.
ACPI is another configuration mechanism (among other things) typically
seen, but not limited to, x86 machines. ACPI allows passing arbitrary
data from methods but there has not been mechanism equivalent to Device
Tree until the introduction of _DSD in the recent publication of the
ACPI 5.1 specification.
In order to facilitate ACPI usage in systems where Device Tree is
typically used, it would be beneficial to standardize a way to retrieve
Device Tree style properties from ACPI devices, which is what we do in
this patch.
If a given device described in ACPI namespace wants to export properties it
must implement _DSD method (Device Specific Data, introduced with ACPI 5.1)
that returns the properties in a package of packages. For example:
Name (_DSD, Package () {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () {"name1", <VALUE1>},
Package () {"name2", <VALUE2>},
...
}
})
The UUID reserved for properties is daffd814-6eba-4d8c-8a91-bc9bbf4aa301
and is documented in the ACPI 5.1 companion document called "_DSD
Implementation Guide" [1], [2].
We add several helper functions that can be used to extract these
properties and convert them to different Linux data types.
The ultimate goal is that we only have one device property API that
retrieves the requested properties from Device Tree or from ACPI
transparent to the caller.
[1] http://www.uefi.org/sites/default/files/resources/_DSD-implementation-guide-toplevel.htm
[2] http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Newer laptops and tablets that use ACPI may have thermal sensors and
other devices with thermal control capabilities outside the core CPU/SOC,
for thermal safety reasons.
They are exposed for the OS to use via
1) INT3400 ACPI device object as the master.
2) INT3401 ~ INT340B ACPI device objects as the slaves.
This patch introduces a scan handler to enumerate the INT3400
ACPI device object to platform bus, and prevent its slaves
from being enumerated before the controller driver being probed.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
The use of _PDC is deprecated in ACPI 3.0 in favor of _OSC,
as ARM platform is supported only in ACPI 5.0 or higher version,
_PDC will not be used in ARM platform, so make Make _PDC only for
platforms with Intel CPUs.
Introduce ARCH_MIGHT_HAVE_ACPI_PDC and move _PDC related code in
ACPI processor driver into a single file processor_pdc.c, make x86
and ia64 select it when ACPI is enabled.
This patch also use pr_* to replace printk to fix the checkpatch
warning and factor acpi_processor_alloc_pdc() a little bit to
avoid duplicate pr_err() code.
Suggested-by: Robert Richter <rric@kernel.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Prevent platform devices from being created for ACPI LPSS devices
if CONFIG_X86_INTEL_LPSS is unset by compiling out the LPSS scan
handler's callbacks only in that case and still compiling its device
ID list in and registering the scan handler in either case.
This change is based on a prototype from Zhang Rui.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Prevent platform devices from being created for ACPI memory device
objects if CONFIG_ACPI_HOTPLUG_MEMORY is unset by compiling out the
memory hotplug scan handler's callbacks only in that case and still
compiling its device ID list in and registering the scan handler in
either case.
Also unset the memory hotplug scan handler's .attach() callback
if acpi_no_memhotplug is set, but still register the scan handler to
avoid creating platform devices for ACPI memory devices in that case
too.
This change is based on a prototype from Zhang Rui.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Prevent platform devices from being created for ACPI containers
if CONFIG_ACPI_CONTAINER is unset by compiling out the container
scan handler's callbacks only in that case and still compiling
its device ID list in and registering the scan handler in either
case.
This change is based on a prototype from Zhang Rui.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
ACPI can be used to enumerate PNP devices, but the code does not
handle this in the right way currently. Namely, if an ACPI device
object
1. Has a _CRS method,
2. Has an identification of
"three capital characters followed by four hex digits",
3. Is not in the excluded IDs list,
it will be enumerated to PNP bus (that is, a PNP device object will
be create for it). This means that, actually, the PNP bus type is
used as the default bus type for enumerating _HID devices in ACPI.
However, more and more _HID devices need to be enumerated to the
platform bus instead (that is, platform device objects need to be
created for them). As a result, the device ID list in acpi_platform.c
is used to enforce creating platform device objects rather than PNP
device objects for matching devices. That list has been continuously
growing recently, unfortunately, and it is pretty much guaranteed to
grow even more in the future.
To address that problem it is better to enumerate _HID devices
as platform devices by default. To this end, change the way of
enumerating PNP devices by adding a PNP ACPI scan handler that
will use a device ID list to create PNP devices for the ACPI
device objects whose device IDs are present in that list.
The initial device ID list in the PNP ACPI scan handler contains
all of the pnp_device_id strings from all the existing PNP drivers,
so this change should be transparent to the PNP core and all of the
PNP drivers. Still, in the future it should be possible to reduce
its size by converting PNP drivers that need not be PNP for any
technical reasons into platform drivers.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
[rjw: Rewrote the changelog, modified the PNP ACPI scan handler code]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
The commit 1e2d9cd and 7d7ee95 remove ACPI Proc Battery
directory and breaks some old userspace tools. This patch
is to revert 7d7ee95.
Fixes: 7d7ee95886 (ACPI: Remove CONFIG_ACPI_PROCFS_POWER and cm_sbsc.c)
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>