Commit Graph

149 Commits

Author SHA1 Message Date
Marc Zyngier 8c4b810a87 clocksource/drivers/arm_arch_timer: Use event stream scaling when available
With FEAT_ECV and the 1GHz counter, it is pretty likely that the
event stream divider doesn't fit in the field that holds the
divider value (we only have 4 bits to describe counter bits [15:0]

Thankfully, FEAT_ECV also provides a scaling mechanism to switch
the field to cover counter bits [23:8] instead.

Enable this on arm64 when ECV is available (32bit doesn't have
any detection infrastructure and is unlikely to be run on an
ARMv8.6 system anyway).

Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220203170502.2694422-1-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-03-07 18:27:22 +01:00
Marc Zyngier 1edb7e74a7 clocksource/drivers/arm_arch_timer: Force inlining of erratum_set_next_event_generic()
With some specific kernel configuration and Clang, the kernel fails
to like with something like:

ld.lld: error: undefined symbol: __compiletime_assert_200
>>> referenced by arch_timer.h:156 (./arch/arm64/include/asm/arch_timer.h:156)
>>>               clocksource/arm_arch_timer.o:(erratum_set_next_event_generic) in archive drivers/built-in.a

ld.lld: error: undefined symbol: __compiletime_assert_197
>>> referenced by arch_timer.h:133 (./arch/arm64/include/asm/arch_timer.h:133)
>>>               clocksource/arm_arch_timer.o:(erratum_set_next_event_generic) in archive drivers/built-in.a
make: *** [Makefile:1161: vmlinux] Error 1

These are due to the BUILD_BUG() macros contained in the low-level
accessors (arch_timer_reg_{write,read}_cp15) being emitted, as the
access type wasn't known at compile time.

Fix this by making erratum_set_next_event_generic() __force_inline,
resulting in the 'access' parameter to be resolved at compile time,
similarly to what is already done for set_next_event().

Fixes: 4775bc63f8 ("Add build-time guards for unhandled register accesses")
Reported-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20211117113532.3895208-1-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-12-10 17:47:00 +01:00
Oliver Upton c1153d52c4 clocksource/drivers/arm_arch_timer: Fix masking for high freq counters
Unfortunately, the architecture provides no means to determine the bit
width of the system counter. However, we do know the following from the
specification:

 - the system counter is at least 56 bits wide
 - Roll-over time of not less than 40 years

To date, the arch timer driver has depended on the first property,
assuming any system counter to be 56 bits wide and masking off the rest.
However, combining a narrow clocksource mask with a high frequency
counter could result in prematurely wrapping the system counter by a
significant margin. For example, a 56 bit wide, 1GHz system counter
would wrap in a mere 2.28 years!

This is a problem for two reasons: v8.6+ implementations are required to
provide a 64 bit, 1GHz system counter. Furthermore, before v8.6,
implementers may select a counter frequency of their choosing.

Fix the issue by deriving a valid clock mask based on the second
property from above. Set the floor at 56 bits, since we know no system
counter is narrower than that.

[maz: fixed width computation not to lose the last bit, added
      max delta generation for the timer]

Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210807191428.3488948-1-oupton@google.com
Link: https://lore.kernel.org/r/20211017124225.3018098-13-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-18 09:20:02 +02:00
Marc Zyngier 41f8d02a6a clocksource/drivers/arm_arch_timer: Remove any trace of the TVAL programming interface
TVAL usage is now long gone, get rid of the leftovers.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-11-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:47:39 +02:00
Marc Zyngier 012f188504 clocksource/drivers/arm_arch_timer: Work around broken CVAL implementations
The Applied Micro XGene-1 SoC has a busted implementation of the
CVAL register: it looks like it is based on TVAL instead of the
other way around. The net effect of this implementation blunder
is that the maximum deadline you can program in the timer is
32bit wide.

Use a MIDR check to notice the broken CPU, and reduce the width
of the timer to 32bit.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-10-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:47:31 +02:00
Marc Zyngier 30aa08da35 clocksource/drivers/arm_arch_timer: Advertise 56bit timer to the core code
Proudly tell the code code that we have a timer able to handle
56 bits deltas.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-9-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:47:27 +02:00
Marc Zyngier 8b82c4f883 clocksource/drivers/arm_arch_timer: Move MMIO timer programming over to CVAL
Similarily to the sysreg-based timer, move the MMIO over to using
the CVAL registers instead of TVAL. Note that there is no warranty
that the 64bit MMIO access will be atomic, but the timer is always
disabled at the point where we program CVAL.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-8-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:47:21 +02:00
Marc Zyngier 72f47a3f0e clocksource/drivers/arm_arch_timer: Fix MMIO base address vs callback ordering issue
The MMIO timer base address gets published after we have registered
the callbacks and the interrupt handler, which is... a bit dangerous.

Fix this by moving the base address publication to the point where
we register the timer, and expose a pointer to the timer structure
itself rather than a naked value.

Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-7-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:47:15 +02:00
Marc Zyngier ac9ef4f24c clocksource/drivers/arm_arch_timer: Move drop _tval from erratum function names
The '_tval' name in the erratum handling function names doesn't
make much sense anymore (and they were using CVAL the first place).

Drop the _tval tag.

Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-6-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:47:10 +02:00
Marc Zyngier a38b71b083 clocksource/drivers/arm_arch_timer: Move system register timer programming over to CVAL
In order to cope better with high frequency counters, move the
programming of the timers from the countdown timer (TVAL) over
to the comparator (CVAL).

The programming model is slightly different, as we now need to
read the current counter value to have an absolute deadline
instead of a relative one.

There is a small overhead to this change, which we will address
in the following patches.

Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-5-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:47:05 +02:00
Marc Zyngier 1e8d929231 clocksource/drivers/arm_arch_timer: Extend write side of timer register accessors to u64
The various accessors for the timer sysreg and MMIO registers are
currently hardwired to 32bit. However, we are about to introduce
the use of the CVAL registers, which require a 64bit access.

Upgrade the write side of the accessors to take a 64bit value
(the read side is left untouched as we don't plan to ever read
back any of these registers).

No functional change expected.

Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-4-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:46:59 +02:00
Marc Zyngier d72689988d clocksource/drivers/arm_arch_timer: Drop CNT*_TVAL read accessors
The arch timer driver never reads the various TVAL registers, only
writes to them. It is thus pointless to provide accessors
for them and to implement errata workarounds.

Drop these read-side accessors, and add a couple of BUG() statements
for the time being. These statements will be removed further down
the line.

Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-3-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:46:50 +02:00
Marc Zyngier 4775bc63f8 clocksource/arm_arch_timer: Add build-time guards for unhandled register accesses
As we are about to change the registers that are used by the driver,
start by adding build-time checks to ensure that we always handle
all registers and access modes.

Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-2-maz@kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2021-10-17 21:45:48 +02:00
Samuel Holland 8b33dfe0ba clocksource/arm_arch_timer: Improve Allwinner A64 timer workaround
Bad counter reads are experienced sometimes when bit 10 or greater rolls
over. Originally, testing showed that at least 10 lower bits would be
set to the same value during these bad reads. However, some users still
reported time skips.

Wider testing revealed that on some chips, occasionally only the lowest
9 bits would read as the anomalous value. During these reads (which
still happen only when bit 10), bit 9 would read as the correct value.

Reduce the mask by one bit to cover these cases as well.

Cc: stable@vger.kernel.org
Fixes: c950ca8c35 ("clocksource/drivers/arch_timer: Workaround for Allwinner A64 timer instability")
Reported-by: Roman Stratiienko <r.stratiienko@gmail.com>
Signed-off-by: Samuel Holland <samuel@sholland.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20210515021439.55316-1-samuel@sholland.org
2021-06-16 17:33:04 +02:00
Jisheng Zhang 4f9f4f0f62 clocksource/drivers/arm_arch_timer: Remove arch_timer_rate1
This variable is added by my mistake, it's not used at all.

Fixes: e2bf384d43 ("clocksource/drivers/arm_arch_timer: Add __ro_after_init and __init")
Signed-off-by: Jisheng Zhang <Jisheng.Zhang@synaptics.com>
Reported-by: Hulk Robot <hulkci@huawei.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20210511154856.6afbcb65@xhacker.debian
2021-06-03 22:15:12 +02:00
Linus Torvalds 152d32aa84 ARM:
- Stage-2 isolation for the host kernel when running in protected mode
 
 - Guest SVE support when running in nVHE mode
 
 - Force W^X hypervisor mappings in nVHE mode
 
 - ITS save/restore for guests using direct injection with GICv4.1
 
 - nVHE panics now produce readable backtraces
 
 - Guest support for PTP using the ptp_kvm driver
 
 - Performance improvements in the S2 fault handler
 
 x86:
 
 - Optimizations and cleanup of nested SVM code
 
 - AMD: Support for virtual SPEC_CTRL
 
 - Optimizations of the new MMU code: fast invalidation,
   zap under read lock, enable/disably dirty page logging under
   read lock
 
 - /dev/kvm API for AMD SEV live migration (guest API coming soon)
 
 - support SEV virtual machines sharing the same encryption context
 
 - support SGX in virtual machines
 
 - add a few more statistics
 
 - improved directed yield heuristics
 
 - Lots and lots of cleanups
 
 Generic:
 
 - Rework of MMU notifier interface, simplifying and optimizing
 the architecture-specific code
 
 - Some selftests improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
 y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
 c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
 Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
 +2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
 M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
 =AXUi
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This is a large update by KVM standards, including AMD PSP (Platform
  Security Processor, aka "AMD Secure Technology") and ARM CoreSight
  (debug and trace) changes.

  ARM:

   - CoreSight: Add support for ETE and TRBE

   - Stage-2 isolation for the host kernel when running in protected
     mode

   - Guest SVE support when running in nVHE mode

   - Force W^X hypervisor mappings in nVHE mode

   - ITS save/restore for guests using direct injection with GICv4.1

   - nVHE panics now produce readable backtraces

   - Guest support for PTP using the ptp_kvm driver

   - Performance improvements in the S2 fault handler

  x86:

   - AMD PSP driver changes

   - Optimizations and cleanup of nested SVM code

   - AMD: Support for virtual SPEC_CTRL

   - Optimizations of the new MMU code: fast invalidation, zap under
     read lock, enable/disably dirty page logging under read lock

   - /dev/kvm API for AMD SEV live migration (guest API coming soon)

   - support SEV virtual machines sharing the same encryption context

   - support SGX in virtual machines

   - add a few more statistics

   - improved directed yield heuristics

   - Lots and lots of cleanups

  Generic:

   - Rework of MMU notifier interface, simplifying and optimizing the
     architecture-specific code

   - a handful of "Get rid of oprofile leftovers" patches

   - Some selftests improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
  KVM: selftests: Speed up set_memory_region_test
  selftests: kvm: Fix the check of return value
  KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
  KVM: SVM: Skip SEV cache flush if no ASIDs have been used
  KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
  KVM: SVM: Drop redundant svm_sev_enabled() helper
  KVM: SVM: Move SEV VMCB tracking allocation to sev.c
  KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
  KVM: SVM: Unconditionally invoke sev_hardware_teardown()
  KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
  KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
  KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
  KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
  KVM: SVM: Move SEV module params/variables to sev.c
  KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
  KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
  KVM: SVM: Zero out the VMCB array used to track SEV ASID association
  x86/sev: Drop redundant and potentially misleading 'sev_enabled'
  KVM: x86: Move reverse CPUID helpers to separate header file
  KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
  ...
2021-05-01 10:14:08 -07:00
Linus Torvalds 0c85556318 ARM: platform support for Apple M1
The Apple M1 is the processor used it all current generation Apple
 Macintosh computers. Support for this platform so far is rudimentary,
 but it boots and can use framebuffer and serial console over a special
 USB cable.
 
 Support for several essential on-chip devices (USB, PCIe, IOMMU, NVMe)
 is work in progress but was not ready in time.
 
 A very detailed description of what works is in the merge commit
 and on the AsahiLinux wiki.
 
 Link: https://lore.kernel.org/linux-arm-kernel/bdb18e9f-fcd7-1e31-2224-19c0e5090706@marcan.st/
 Signed-off-by: Arnd Bergmann <arnd@arndb.de>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmCC2eIACgkQmmx57+YA
 GNkAGg/+NY3MKphm1fhJB7X66fZwviBUt6OTiZnbAHxIX7WChgM05KvxLUFXXpDI
 0E/YZU18no1YxioyLMEH+BJoZjO8fT1lu/H40KVepbx1uHI8k0pnf7qFOdWy48se
 X87dunxR0Mo4iR94sDKUAEaeXuFA0xxoQLLipCn00/rN5xx6K3OL4g1Gh42bS4L8
 f8ThQ/MuU7KksJjMy8YO99g2REmzGkE40ptAPc/InUln7lCJPTTmMO9a14uP9T1i
 B5uQTKOihlln1RiFCmxgKl+YKeJIxNtk9FpyEJNxTrPzcUX6SDwro9A7OZdK1wVM
 v/i4t2acI16670iqzf/HZg+0zGuV8xc5Axn0+PBNdA/ZdDPnmB8ej0uJhty4fI2j
 nTDBS32OtdkBk+aRZthFGTt6fYEcy5hdkMQJinBKObLZbZBBPwF6P1WSGXS3AHVC
 EKZf+Vh5MVyl3t5BJgDsyCmLC8p7uJYt2NzMLcCWJbKppR7dxXSByAO8JtuExEP3
 Y0RjChsR87y9yzMRcy/MqLy57YwpEEmTjE2wH8UKmNzYBRFZcV1uaWX1oRhWfPJw
 NGXHzpNhlC0gVk6OvIA9t6X9fQ590FWdJmVlIPIjiWJ/LHP/idmyZu+7F1H6v3/k
 Ah1EVqzwsksbS8iWZlhYJB5S+tSVvtW5ZUgUQtz1VSQrT1wwKJ4=
 =pBZy
 -----END PGP SIGNATURE-----

Merge tag 'arm-apple-m1-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc

Pull ARM Apple M1 platform support from Arnd Bergmann:
 "The Apple M1 is the processor used it all current generation Apple
  Macintosh computers. Support for this platform so far is rudimentary,
  but it boots and can use framebuffer and serial console over a special
  USB cable.

  Support for several essential on-chip devices (USB, PCIe, IOMMU, NVMe)
  is work in progress but was not ready in time.

  A very detailed description of what works is in the commit message of
  commit 1bb2fd3880 ("Merge tag 'm1-soc-bringup-v5' [..]") and on the
  AsahiLinux wiki"

Link: https://lore.kernel.org/linux-arm-kernel/bdb18e9f-fcd7-1e31-2224-19c0e5090706@marcan.st/

* tag 'arm-apple-m1-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc:
  asm-generic/io.h: Unbork ioremap_np() declaration
  arm64: apple: Add initial Apple Mac mini (M1, 2020) devicetree
  dt-bindings: display: Add apple,simple-framebuffer
  arm64: Kconfig: Introduce CONFIG_ARCH_APPLE
  irqchip/apple-aic: Add support for the Apple Interrupt Controller
  dt-bindings: interrupt-controller: Add DT bindings for apple-aic
  arm64: Move ICH_ sysreg bits from arm-gic-v3.h to sysreg.h
  of/address: Add infrastructure to declare MMIO as non-posted
  asm-generic/io.h: implement pci_remap_cfgspace using ioremap_np
  arm64: Implement ioremap_np() to map MMIO as nGnRnE
  docs: driver-api: device-io: Document ioremap() variants & access funcs
  docs: driver-api: device-io: Document I/O access functions
  asm-generic/io.h:  Add a non-posted variant of ioremap()
  arm64: arch_timer: Implement support for interrupt-names
  dt-bindings: timer: arm,arch_timer: Add interrupt-names support
  arm64: cputype: Add CPU implementor & types for the Apple M1 cores
  dt-bindings: arm: cpus: Add apple,firestorm & icestorm compatibles
  dt-bindings: arm: apple: Add bindings for Apple ARM platforms
  dt-bindings: vendor-prefixes: Add apple prefix
2021-04-26 12:30:36 -07:00
Jisheng Zhang e2bf384d43 clocksource/drivers/arm_arch_timer: Add __ro_after_init and __init
Some functions are not needed after booting, so mark them as __init
to move them to the .init section.

Some global variables are never modified after init, so can be
__ro_after_init.

Signed-off-by: Jisheng Zhang <Jisheng.Zhang@synaptics.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20210330140444.4fb2a7cb@xhacker.debian
2021-04-08 16:41:19 +02:00
Hector Martin 86332e9e34 arm64: arch_timer: Implement support for interrupt-names
This allows the devicetree to correctly represent the available set of
timers, which varies from device to device, without the need for fake
dummy interrupts for unavailable slots.

Also add the hyp-virt timer/PPI, which is not currently used, but worth
representing.

Reviewed-by: Tony Lindgren <tony@atomide.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Hector Martin <marcan@marcan.st>
2021-04-08 20:18:38 +09:00
Jianyong Wu 300bb1fe76 ptp: arm/arm64: Enable ptp_kvm for arm/arm64
Currently, there is no mechanism to keep time sync between guest and host
in arm/arm64 virtualization environment. Time in guest will drift compared
with host after boot up as they may both use third party time sources
to correct their time respectively. The time deviation will be in order
of milliseconds. But in some scenarios,like in cloud environment, we ask
for higher time precision.

kvm ptp clock, which chooses the host clock source as a reference
clock to sync time between guest and host, has been adopted by x86
which takes the time sync order from milliseconds to nanoseconds.

This patch enables kvm ptp clock for arm/arm64 and improves clock sync precision
significantly.

Test result comparisons between with kvm ptp clock and without it in arm/arm64
are as follows. This test derived from the result of command 'chronyc
sources'. we should take more care of the last sample column which shows
the offset between the local clock and the source at the last measurement.

no kvm ptp in guest:
MS Name/IP address   Stratum Poll Reach LastRx Last sample
========================================================================
^* dns1.synet.edu.cn      2   6   377    13  +1040us[+1581us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    21  +1040us[+1581us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    29  +1040us[+1581us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    37  +1040us[+1581us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    45  +1040us[+1581us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    53  +1040us[+1581us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    61  +1040us[+1581us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377     4   -130us[ +796us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    12   -130us[ +796us] +/-   21ms
^* dns1.synet.edu.cn      2   6   377    20   -130us[ +796us] +/-   21ms

in host:
MS Name/IP address   Stratum Poll Reach LastRx Last sample
========================================================================
^* 120.25.115.20          2   7   377    72   -470us[ -603us] +/-   18ms
^* 120.25.115.20          2   7   377    92   -470us[ -603us] +/-   18ms
^* 120.25.115.20          2   7   377   112   -470us[ -603us] +/-   18ms
^* 120.25.115.20          2   7   377     2   +872ns[-6808ns] +/-   17ms
^* 120.25.115.20          2   7   377    22   +872ns[-6808ns] +/-   17ms
^* 120.25.115.20          2   7   377    43   +872ns[-6808ns] +/-   17ms
^* 120.25.115.20          2   7   377    63   +872ns[-6808ns] +/-   17ms
^* 120.25.115.20          2   7   377    83   +872ns[-6808ns] +/-   17ms
^* 120.25.115.20          2   7   377   103   +872ns[-6808ns] +/-   17ms
^* 120.25.115.20          2   7   377   123   +872ns[-6808ns] +/-   17ms

The dns1.synet.edu.cn is the network reference clock for guest and
120.25.115.20 is the network reference clock for host. we can't get the
clock error between guest and host directly, but a roughly estimated value
will be in order of hundreds of us to ms.

with kvm ptp in guest:
chrony has been disabled in host to remove the disturb by network clock.

MS Name/IP address         Stratum Poll Reach LastRx Last sample
========================================================================
* PHC0                    0   3   377     8     -7ns[   +1ns] +/-    3ns
* PHC0                    0   3   377     8     +1ns[  +16ns] +/-    3ns
* PHC0                    0   3   377     6     -4ns[   -0ns] +/-    6ns
* PHC0                    0   3   377     6     -8ns[  -12ns] +/-    5ns
* PHC0                    0   3   377     5     +2ns[   +4ns] +/-    4ns
* PHC0                    0   3   377    13     +2ns[   +4ns] +/-    4ns
* PHC0                    0   3   377    12     -4ns[   -6ns] +/-    4ns
* PHC0                    0   3   377    11     -8ns[  -11ns] +/-    6ns
* PHC0                    0   3   377    10    -14ns[  -20ns] +/-    4ns
* PHC0                    0   3   377     8     +4ns[   +5ns] +/-    4ns

The PHC0 is the ptp clock which choose the host clock as its source
clock. So we can see that the clock difference between host and guest
is in order of ns.

Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jianyong Wu <jianyong.wu@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201209060932.212364-8-jianyong.wu@arm.com
2021-04-07 16:33:20 +01:00
Jianyong Wu 100148d0fc clocksource: Add clocksource id for arm arch counter
Add clocksource id to the ARM generic counter so that it can be easily
identified from callers such as ptp_kvm.

Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Jianyong Wu <jianyong.wu@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201209060932.212364-6-jianyong.wu@arm.com
2021-04-07 16:33:20 +01:00
Keqian Zhu 8b7770b877 clocksource/drivers/arm_arch_timer: Correct fault programming of CNTKCTL_EL1.EVNTI
ARM virtual counter supports event stream, it can only trigger an event
when the trigger bit (the value of CNTKCTL_EL1.EVNTI) of CNTVCT_EL0 changes,
so the actual period of event stream is 2^(cntkctl_evnti + 1). For example,
when the trigger bit is 0, then virtual counter trigger an event for every
two cycles.

While we're at it, rework the way we compute the trigger bit position
by making it more obvious that when bits [n:n-1] are both set (with n
being the most significant bit), we pick bit (n + 1).

Fixes: 037f637767 ("drivers: clocksource: add support for ARM architected timer event stream")
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20201204073126.6920-3-zhukeqian1@huawei.com
2020-12-05 19:34:04 +01:00
Keqian Zhu d8cc3905b8 clocksource/drivers/arm_arch_timer: Use stable count reader in erratum sne
In commit 0ea415390c ("clocksource/arm_arch_timer: Use arch_timer_read_counter
to access stable counters"), we separate stable and normal count reader to omit
unnecessary overhead on systems that have no timer erratum.

However, in erratum_set_next_event_tval_generic(), count reader becomes normal
reader. This converts it to stable reader.

Fixes: 0ea415390c ("clocksource/arm_arch_timer: Use arch_timer_read_counter to access stable counters")
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20201204073126.6920-2-zhukeqian1@huawei.com
2020-12-05 19:33:55 +01:00
Marc Zyngier 4b661d6133 arm64: arch_timer: Disable the compat vdso for cores affected by ARM64_WORKAROUND_1418040
ARM64_WORKAROUND_1418040 requires that AArch32 EL0 accesses to
the virtual counter register are trapped and emulated by the kernel.
This makes the vdso pretty pointless, and in some cases livelock
prone.

Provide a workaround entry that limits the vdso to 64bit tasks.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200706163802.1836732-4-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2020-07-08 21:57:51 +01:00
Marc Zyngier c1fbec4ac0 arm64: arch_timer: Allow an workaround descriptor to disable compat vdso
As we are about to disable the vdso for compat tasks in some circumstances,
let's allow a workaround descriptor to express exactly that.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200706163802.1836732-3-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2020-07-08 21:57:51 +01:00
Daniel Lezcano 1f42241794 Merge branch 'timers/drivers/timer-ti' into timers/drivers/next 2020-05-23 00:01:13 +02:00
Dejin Zheng d1b5e55208 drivers/clocksource/arm_arch_timer: Remove duplicate error message
The function acpi_gtdt_init() prints a message in case of
error. Remove the error message after testing if the function fails,
otherwise it is a duplicate message.

Signed-off-by: Dejin Zheng <zhengdejin5@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20200429153559.21189-1-zhengdejin5@gmail.com
2020-05-22 23:58:56 +02:00
Linus Torvalds 3cd86a58f7 arm64 updates for 5.7:
- In-kernel Pointer Authentication support (previously only offered to
   user space).
 
 - ARM Activity Monitors (AMU) extension support allowing better CPU
   utilisation numbers for the scheduler (frequency invariance).
 
 - Memory hot-remove support for arm64.
 
 - Lots of asm annotations (SYM_*) in preparation for the in-kernel
   Branch Target Identification (BTI) support.
 
 - arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the PMU
   init callbacks, support for new DT compatibles.
 
 - IPv6 header checksum optimisation.
 
 - Fixes: SDEI (software delegated exception interface) double-lock on
   hibernate with shared events.
 
 - Minor clean-ups and refactoring: cpu_ops accessor, cpu_do_switch_mm()
   converted to C, cpufeature finalisation helper.
 
 - sys_mremap() comment explaining the asymmetric address untagging
   behaviour.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6DVyIACgkQa9axLQDI
 XvHkqRAAiZA2EYKiQL4M1DJ1cNTADjT7xKX9+UtYBXj7GMVhgVWdunpHVE6qtfgk
 cT6avmKrS/6PDqizJgr+Z1yX8x3Kvs57G4BvmIUKIw97mkdewvFQ9JKv6VA1vb86
 7Qrl1WzqsGg5Kj9uUfI4h+ZoT1H4C/9PQeFxJwgZRtF9DxRh8O7VeZI+JCu8Aub2
 lIkjI8rh+EpTsGT9h/PMGWUcawnKQloZ1/F+GfMAuYBvIv2RNN2xVreJtTmm4NyJ
 VcpL0KCNyAI2lGdaJg5nBLRDyGuXDm5i+PLsCSXMquI4fie00txXeD8sjbeuO0ks
 YTJ0EhmUUhbSE17go+SxYiEFE0v09i+lD5ud+B4Vmojp0KTczTta9VSgURlbb2/9
 n9biq5G3PPDNIrZqiTT2Tf4AMz1350nkbzL2gzKecM5aIzR/u3y5yII5CgfZtFnj
 7bGbyFpFpcqI7UaISPsNCxmknbTt/7ff0WM3+7SbecxI3AD2mnxsOdN9JTLyhDp+
 owjyiaWxl5zMWF9DhplLG/9BKpNWSxh3skazdOdELd8GTq2MbJlXrVG2XgXTAOh3
 y1s6RQrfw8zXh8TSqdmmzauComXIRWTum/sbVB3U8Z3AUsIeq/NTSbN5X9JyIbOP
 HOabhlVhhkI6omN1grqPX4jwUiZLZoNfn7Ez4q71549KVK/uBtA=
 =LJVX
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "The bulk is in-kernel pointer authentication, activity monitors and
  lots of asm symbol annotations. I also queued the sys_mremap() patch
  commenting the asymmetry in the address untagging.

  Summary:

   - In-kernel Pointer Authentication support (previously only offered
     to user space).

   - ARM Activity Monitors (AMU) extension support allowing better CPU
     utilisation numbers for the scheduler (frequency invariance).

   - Memory hot-remove support for arm64.

   - Lots of asm annotations (SYM_*) in preparation for the in-kernel
     Branch Target Identification (BTI) support.

   - arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the
     PMU init callbacks, support for new DT compatibles.

   - IPv6 header checksum optimisation.

   - Fixes: SDEI (software delegated exception interface) double-lock on
     hibernate with shared events.

   - Minor clean-ups and refactoring: cpu_ops accessor,
     cpu_do_switch_mm() converted to C, cpufeature finalisation helper.

   - sys_mremap() comment explaining the asymmetric address untagging
     behaviour"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits)
  mm/mremap: Add comment explaining the untagging behaviour of mremap()
  arm64: head: Convert install_el2_stub to SYM_INNER_LABEL
  arm64: Introduce get_cpu_ops() helper function
  arm64: Rename cpu_read_ops() to init_cpu_ops()
  arm64: Declare ACPI parking protocol CPU operation if needed
  arm64: move kimage_vaddr to .rodata
  arm64: use mov_q instead of literal ldr
  arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH
  lkdtm: arm64: test kernel pointer authentication
  arm64: compile the kernel with ptrauth return address signing
  kconfig: Add support for 'as-option'
  arm64: suspend: restore the kernel ptrauth keys
  arm64: __show_regs: strip PAC from lr in printk
  arm64: unwind: strip PAC from kernel addresses
  arm64: mask PAC bits of __builtin_return_address
  arm64: initialize ptrauth keys for kernel booting task
  arm64: initialize and switch ptrauth kernel keys
  arm64: enable ptrauth earlier
  arm64: cpufeature: handle conflicts based on capability
  arm64: cpufeature: Move cpu capability helpers inside C file
  ...
2020-03-31 10:05:01 -07:00
Ionela Voinescu c265861af2 clocksource/drivers/arm_arch_timer: validate arch_timer_rate
Using an arch timer with a frequency of less than 1MHz can potentially
result in incorrect functionality in systems that assume a reasonable
rate of the arch timer of 1 to 50MHz, described as typical in the
architecture specification.

Therefore, warn if the arch timer rate is below 1MHz, which is
considered atypical and worth emphasizing.

Suggested-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-06 16:02:51 +00:00
Vincenzo Frascino a67de48b30 clocksource/drivers/arm_arch_timer: Fix vDSO clockmode when vDSO disabled
The arm_arch_timer requires VDSO_CLOCKMODE_ARCHTIMER to be defined to
compile correctly. On ARM the vDSO can be disabled and when this is the
case the compilation ends prematurely with an error:

 $ make ARCH=arm multi_v7_defconfig
 $ ./scripts/config -d VDSO
 $ make

drivers/clocksource/arm_arch_timer.c:73:44: error:
‘VDSO_CLOCKMODE_ARCHTIMER’ undeclared here (not in a function)
  static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;

Make the usage of VDSO_CLOCKMODE_ARCHTIMER depend on the VDSO enablement
and initialize the vdso clockmode variable with VDSO_CLOCKMODE_NONE
otherwise.

[ tglx: Match changelog and patch content. ]

Fixes: 5e3c6a312a ("ARM/arm64: vdso: Use common vdso clock mode storage")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200224151552.57274-1-vincenzo.frascino@arm.com
2020-02-25 22:08:39 +01:00
Thomas Gleixner 5e3c6a312a ARM/arm64: vdso: Use common vdso clock mode storage
Convert ARM/ARM64 to the generic VDSO clock mode storage. This needs to
happen in one go as they share the clocksource driver.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lkml.kernel.org/r/20200207124403.363235229@linutronix.de
2020-02-17 20:12:16 +01:00
Thomas Gleixner 3419240495 Merge branch 'timers/vdso' into timers/core
so the hyper-v clocksource update can be applied.
2019-07-03 10:50:21 +02:00
Andrew Murray 5a35441256 clocksource/drivers/arm_arch_timer: Extract elf_hwcap use to arch-helper
Different mechanisms are used to test and set elf_hwcaps between ARM
and ARM64, this results in the use of ifdeferry in this file when
setting/testing for the EVTSTRM hwcap.

Let's improve readability by extracting this to an arch helper.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2019-06-25 19:49:18 +02:00
Thomas Gleixner d2912cb15b treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation #

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 4122 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:55 +02:00
Julien Thierry 5d6168fc61 clocksource/drivers/arm_arch_timer: Don't trace count reader functions
With v5.2-rc1, The ftrace functions_graph tracer locks up whenever it is
enabled on arm64.

Since commit 0ea415390c ("clocksource/arm_arch_timer: Use
arch_timer_read_counter to access stable counters") a function pointer
is consistently used to read the counter instead of potentially
referencing an inlinable function.

The graph tracers relies on accessing the timer counters to compute the
time spent in functions which causes the lockup when attempting to trace
these code paths.

Annotate the arm arch timer counter accessors as notrace.

Fixes: 0ea415390c ("clocksource/arm_arch_timer: Use
       arch_timer_read_counter to access stable counters")
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2019-06-12 15:38:54 +02:00
Linus Torvalds c620f7bd0b arm64 updates for 5.2
Mostly just incremental improvements here:
 
 - Introduce AT_HWCAP2 for advertising CPU features to userspace
 
 - Expose SVE2 availability to userspace
 
 - Support for "data cache clean to point of deep persistence" (DC PODP)
 
 - Honour "mitigations=off" on the cmdline and advertise status via sysfs
 
 - CPU timer erratum workaround (Neoverse-N1 #1188873)
 
 - Introduce perf PMU driver for the SMMUv3 performance counters
 
 - Add config option to disable the kuser helpers page for AArch32 tasks
 
 - Futex modifications to ensure liveness under contention
 
 - Rework debug exception handling to seperate kernel and user handlers
 
 - Non-critical fixes and cleanup
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAlzMFGgACgkQt6xw3ITB
 YzTicAf/TX1h1+ecbx4WJAa4qeiOCPoNpG9efldQumqJhKL44MR5bkhuShna5mwE
 ptm5qUXkZCxLTjzssZKnbdbgwa3t+emW8Of3D91IfI9akiZbMoDx5FGgcNbqjazb
 RLrhOFHwgontA38yppZN+DrL+sXbvif/CVELdHahkEx6KepSGaS2lmPXRmz/W56v
 4yIRy/zxc3Dhjgfm3wKh72nBwoZdLiIc4mchd5pthNlR9E2idrYkQegG1C+gA00r
 o8uZRVOWgoh7H+QJE+xLUc8PaNCg8xqRRXOuZYg9GOz6hh7zSWhm+f1nRz9S2tIR
 gIgsCHNqoO2I3E1uJpAQXDGtt2kFhA==
 =ulpJ
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "Mostly just incremental improvements here:

   - Introduce AT_HWCAP2 for advertising CPU features to userspace

   - Expose SVE2 availability to userspace

   - Support for "data cache clean to point of deep persistence" (DC PODP)

   - Honour "mitigations=off" on the cmdline and advertise status via
     sysfs

   - CPU timer erratum workaround (Neoverse-N1 #1188873)

   - Introduce perf PMU driver for the SMMUv3 performance counters

   - Add config option to disable the kuser helpers page for AArch32 tasks

   - Futex modifications to ensure liveness under contention

   - Rework debug exception handling to seperate kernel and user
     handlers

   - Non-critical fixes and cleanup"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
  Documentation: Add ARM64 to kernel-parameters.rst
  arm64/speculation: Support 'mitigations=' cmdline option
  arm64: ssbs: Don't treat CPUs with SSBS as unaffected by SSB
  arm64: enable generic CPU vulnerabilites support
  arm64: add sysfs vulnerability show for speculative store bypass
  arm64: Fix size of __early_cpu_boot_status
  clocksource/arm_arch_timer: Use arch_timer_read_counter to access stable counters
  clocksource/arm_arch_timer: Remove use of workaround static key
  clocksource/arm_arch_timer: Drop use of static key in arch_timer_reg_read_stable
  clocksource/arm_arch_timer: Direcly assign set_next_event workaround
  arm64: Use arch_timer_read_counter instead of arch_counter_get_cntvct
  watchdog/sbsa: Use arch_timer_read_counter instead of arch_counter_get_cntvct
  ARM: vdso: Remove dependency with the arch_timer driver internals
  arm64: Apply ARM64_ERRATUM_1188873 to Neoverse-N1
  arm64: Add part number for Neoverse N1
  arm64: Make ARM64_ERRATUM_1188873 depend on COMPAT
  arm64: Restrict ARM64_ERRATUM_1188873 mitigation to AArch32
  arm64: mm: Remove pte_unmap_nested()
  arm64: Fix compiler warning from pte_unmap() with -Wunused-but-set-variable
  arm64: compat: Reduce address limit for 64K pages
  ...
2019-05-06 17:54:22 -07:00
Will Deacon 24cf262da1 Merge branch 'for-next/timers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux into for-next/core
Conflicts:
	arch/arm64/Kconfig
	arch/arm64/include/asm/arch_timer.h
2019-05-01 15:45:36 +01:00
Marc Zyngier 0ea415390c clocksource/arm_arch_timer: Use arch_timer_read_counter to access stable counters
Instead of always going via arch_counter_get_cntvct_stable to access the
counter workaround, let's have arch_timer_read_counter point to the
right method.

For that, we need to track whether any CPU in the system has a
workaround for the counter. This is done by having an atomic variable
tracking this.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-30 16:12:54 +01:00
Marc Zyngier a862fc2254 clocksource/arm_arch_timer: Remove use of workaround static key
The use of a static key in a hotplug path has proved to be a real
nightmare, and makes it impossible to have scream-free lockdep
kernel.

Let's remove the static key altogether, and focus on something saner.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-30 16:11:47 +01:00
Marc Zyngier 5ef19a161c clocksource/arm_arch_timer: Direcly assign set_next_event workaround
When a given timer is affected by an erratum and requires an
alternative implementation of set_next_event, we do a rather
complicated dance to detect and call the workaround on each
set_next_event call.

This is clearly idiotic, as we can perfectly detect whether
this CPU requires a workaround while setting up the clock event
device.

This only requires the CPU-specific detection to be done a bit
earlier, and we can then safely override the set_next_event pointer
if we have a workaround associated to that CPU.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by; Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-30 16:10:57 +01:00
Marc Zyngier 0f80cad312 arm64: Restrict ARM64_ERRATUM_1188873 mitigation to AArch32
We currently deal with ARM64_ERRATUM_1188873 by always trapping EL0
accesses for both instruction sets. Although nothing wrong comes out
of that, people trying to squeeze the last drop of performance from
buggy HW find this over the top. Oh well.

Let's change the mitigation by flipping the counter enable bit
on return to userspace. Non-broken HW gets an extra branch on
the fast path, which is hopefully not the end of the world.
The arch timer workaround is also removed.

Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-30 14:45:53 +01:00
Andrew Murray aaba098fe6 arm64: HWCAP: add support for AT_HWCAP2
As we will exhaust the first 32 bits of AT_HWCAP let's start
exposing AT_HWCAP2 to userspace to give us up to 64 caps.

Whilst it's possible to use the remaining 32 bits of AT_HWCAP, we
prefer to expand into AT_HWCAP2 in order to provide a consistent
view to userspace between ILP32 and LP64. However internal to the
kernel we prefer to continue to use the full space of elf_hwcap.

To reduce complexity and allow for future expansion, we now
represent hwcaps in the kernel as ordinals and use a
KERNEL_HWCAP_ prefix. This allows us to support automatic feature
based module loading for all our hwcaps.

We introduce cpu_set_feature to set hwcaps which complements the
existing cpu_have_feature helper. These helpers allow us to clean
up existing direct uses of elf_hwcap and reduce any future effort
required to move beyond 64 caps.

For convenience we also introduce cpu_{have,set}_named_feature which
makes use of the cpu_feature macro to allow providing a hwcap name
without a {KERNEL_}HWCAP_ prefix.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
[will: use const_ilog2() and tweak documentation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-16 16:27:12 +01:00
Yangtao Li 9155697e20 clocksource/drivers/arm_arch_timer: Remove unneeded pr_fmt macro
After this commit ded24019b6b6f(clocksource: arm_arch_timer: clean up
printk usage), the previous macro is redundant, so delete it.

And move the new macro to the previous position.

Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2019-04-11 22:13:43 +02:00
Linus Torvalds 636deed6c0 ARM: some cleanups, direct physical timer assignment, cache sanitization
for 32-bit guests
 
 s390: interrupt cleanup, introduction of the Guest Information Block,
 preparation for processor subfunctions in cpu models
 
 PPC: bug fixes and improvements, especially related to machine checks
 and protection keys
 
 x86: many, many cleanups, including removing a bunch of MMU code for
 unnecessary optimizations; plus AVIC fixes.
 
 Generic: memcg accounting
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
 16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
 l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
 RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
 gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
 2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
 =XIzU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - some cleanups
   - direct physical timer assignment
   - cache sanitization for 32-bit guests

  s390:
   - interrupt cleanup
   - introduction of the Guest Information Block
   - preparation for processor subfunctions in cpu models

  PPC:
   - bug fixes and improvements, especially related to machine checks
     and protection keys

  x86:
   - many, many cleanups, including removing a bunch of MMU code for
     unnecessary optimizations
   - AVIC fixes

  Generic:
   - memcg accounting"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
  kvm: vmx: fix formatting of a comment
  KVM: doc: Document the life cycle of a VM and its resources
  MAINTAINERS: Add KVM selftests to existing KVM entry
  Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
  KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
  KVM: PPC: Fix compilation when KVM is not enabled
  KVM: Minor cleanups for kvm_main.c
  KVM: s390: add debug logging for cpu model subfunctions
  KVM: s390: implement subfunction processor calls
  arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
  KVM: arm/arm64: Remove unused timer variable
  KVM: PPC: Book3S: Improve KVM reference counting
  KVM: PPC: Book3S HV: Fix build failure without IOMMU support
  Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
  x86: kvmguest: use TSC clocksource if invariant TSC is exposed
  KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
  KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
  KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
  KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
  KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
  ...
2019-03-15 15:00:28 -07:00
Samuel Holland c950ca8c35 clocksource/drivers/arch_timer: Workaround for Allwinner A64 timer instability
The Allwinner A64 SoC is known[1] to have an unstable architectural
timer, which manifests itself most obviously in the time jumping forward
a multiple of 95 years[2][3]. This coincides with 2^56 cycles at a
timer frequency of 24 MHz, implying that the time went slightly backward
(and this was interpreted by the kernel as it jumping forward and
wrapping around past the epoch).

Investigation revealed instability in the low bits of CNTVCT at the
point a high bit rolls over. This leads to power-of-two cycle forward
and backward jumps. (Testing shows that forward jumps are about twice as
likely as backward jumps.) Since the counter value returns to normal
after an indeterminate read, each "jump" really consists of both a
forward and backward jump from the software perspective.

Unless the kernel is trapping CNTVCT reads, a userspace program is able
to read the register in a loop faster than it changes. A test program
running on all 4 CPU cores that reported jumps larger than 100 ms was
run for 13.6 hours and reported the following:

 Count | Event
-------+---------------------------
  9940 | jumped backward      699ms
   268 | jumped backward     1398ms
     1 | jumped backward     2097ms
 16020 | jumped forward       175ms
  6443 | jumped forward       699ms
  2976 | jumped forward      1398ms
     9 | jumped forward    356516ms
     9 | jumped forward    357215ms
     4 | jumped forward    714430ms
     1 | jumped forward   3578440ms

This works out to a jump larger than 100 ms about every 5.5 seconds on
each CPU core.

The largest jump (almost an hour!) was the following sequence of reads:
    0x0000007fffffffff → 0x00000093feffffff → 0x0000008000000000

Note that the middle bits don't necessarily all read as all zeroes or
all ones during the anomalous behavior; however the low 10 bits checked
by the function in this patch have never been observed with any other
value.

Also note that smaller jumps are much more common, with backward jumps
of 2048 (2^11) cycles observed over 400 times per second on each core.
(Of course, this is partially explained by lower bits rolling over more
frequently.) Any one of these could have caused the 95 year time skip.

Similar anomalies were observed while reading CNTPCT (after patching the
kernel to allow reads from userspace). However, the CNTPCT jumps are
much less frequent, and only small jumps were observed. The same program
as before (except now reading CNTPCT) observed after 72 hours:

 Count | Event
-------+---------------------------
    17 | jumped backward      699ms
    52 | jumped forward       175ms
  2831 | jumped forward       699ms
     5 | jumped forward      1398ms

Further investigation showed that the instability in CNTPCT/CNTVCT also
affected the respective timer's TVAL register. The following values were
observed immediately after writing CNVT_TVAL to 0x10000000:

 CNTVCT             | CNTV_TVAL  | CNTV_CVAL          | CNTV_TVAL Error
--------------------+------------+--------------------+-----------------
 0x000000d4a2d8bfff | 0x10003fff | 0x000000d4b2d8bfff | +0x00004000
 0x000000d4a2d94000 | 0x0fffffff | 0x000000d4b2d97fff | -0x00004000
 0x000000d4a2d97fff | 0x10003fff | 0x000000d4b2d97fff | +0x00004000
 0x000000d4a2d9c000 | 0x0fffffff | 0x000000d4b2d9ffff | -0x00004000

The pattern of errors in CNTV_TVAL seemed to depend on exactly which
value was written to it. For example, after writing 0x10101010:

 CNTVCT             | CNTV_TVAL  | CNTV_CVAL          | CNTV_TVAL Error
--------------------+------------+--------------------+-----------------
 0x000001ac3effffff | 0x1110100f | 0x000001ac4f10100f | +0x1000000
 0x000001ac40000000 | 0x1010100f | 0x000001ac5110100f | -0x1000000
 0x000001ac58ffffff | 0x1110100f | 0x000001ac6910100f | +0x1000000
 0x000001ac66000000 | 0x1010100f | 0x000001ac7710100f | -0x1000000
 0x000001ac6affffff | 0x1110100f | 0x000001ac7b10100f | +0x1000000
 0x000001ac6e000000 | 0x1010100f | 0x000001ac7f10100f | -0x1000000

I was also twice able to reproduce the issue covered by Allwinner's
workaround[4], that writing to TVAL sometimes fails, and both CVAL and
TVAL are left with entirely bogus values. One was the following values:

 CNTVCT             | CNTV_TVAL  | CNTV_CVAL
--------------------+------------+--------------------------------------
 0x000000d4a2d6014c | 0x8fbd5721 | 0x000000d132935fff (615s in the past)
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>

========================================================================

Because the CPU can read the CNTPCT/CNTVCT registers faster than they
change, performing two reads of the register and comparing the high bits
(like other workarounds) is not a workable solution. And because the
timer can jump both forward and backward, no pair of reads can
distinguish a good value from a bad one. The only way to guarantee a
good value from consecutive reads would be to read _three_ times, and
take the middle value only if the three values are 1) each unique and
2) increasing. This takes at minimum 3 counter cycles (125 ns), or more
if an anomaly is detected.

However, since there is a distinct pattern to the bad values, we can
optimize the common case (1022/1024 of the time) to a single read by
simply ignoring values that match the error pattern. This still takes no
more than 3 cycles in the worst case, and requires much less code. As an
additional safety check, we still limit the loop iteration to the number
of max-frequency (1.2 GHz) CPU cycles in three 24 MHz counter periods.

For the TVAL registers, the simple solution is to not use them. Instead,
read or write the CVAL and calculate the TVAL value in software.

Although the manufacturer is aware of at least part of the erratum[4],
there is no official name for it. For now, use the kernel-internal name
"UNKNOWN1".

[1]: https://github.com/armbian/build/commit/a08cd6fe7ae9
[2]: https://forum.armbian.com/topic/3458-a64-datetime-clock-issue/
[3]: https://irclog.whitequark.org/linux-sunxi/2018-01-26
[4]: https://github.com/Allwinner-Homlet/H6-BSP4.9-linux/blob/master/drivers/clocksource/arm_arch_timer.c#L272

Acked-by: Maxime Ripard <maxime.ripard@bootlin.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Samuel Holland <samuel@sholland.org>
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2019-02-23 12:13:45 +01:00
Andre Przywara ee7930490a clocksource/arm_arch_timer: Store physical timer IRQ number for KVM on VHE
A host running in VHE mode gets the EL2 physical timer as its time
source (accessed using the EL1 sysreg accessors, which get re-directed
to the EL2 sysregs by VHE).

The EL1 physical timer remains unused by the host kernel, allowing us to
pass that on directly to a KVM guest and saves us from emulating this
timer for the guest on VHE systems.

Store the EL1 Physical Timer's IRQ number in
struct arch_timer_kvm_info on VHE systems to allow KVM to use it.

Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
2019-02-19 21:05:22 +00:00
Marc Zyngier 95b861a4a6 arm64: arch_timer: Add workaround for ARM erratum 1188873
When running on Cortex-A76, a timer access from an AArch32 EL0
task may end up with a corrupted value or register. The workaround for
this is to trap these accesses at EL1/EL2 and execute them there.

This only affects versions r0p0, r1p0 and r2p0 of the CPU.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-01 13:38:47 +01:00
Sudeep Holla 5e18e41297 clocksource: arm_arch_timer: Set arch_mem_timer cpumask to cpu_possible_mask
Currently, arch_mem_timer cpumask is set to cpu_all_mask which should be
fine. However, cpu_possible_mask is more accurate and if there are other
clockevent source in the system which are set to cpu_possible_mask, then
having cpu_all_mask may result in issue.

E.g. on a platform with arm,sp804 timer with rating 300 and
cpu_possible_mask and this arch_mem_timer timer with rating 400 and
cpu_all_mask, tick_check_preferred may choose both preferred as the
cpumasks are not equal though they must be.

This issue was root caused incorrectly initially and a fix was merged as
commit 1332a90558 ("tick: Prefer a lower rating device only if it's CPU
local device").

Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kevin Hilman <khilman@baylibre.com>
Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/1531151136-18297-2-git-send-email-sudeep.holla@arm.com
2018-07-10 22:12:47 +02:00
Linus Torvalds 974aa5630b First batch of KVM changes for 4.15
Common:
  - Python 3 support in kvm_stat
 
  - Accounting of slabs to kmemcg
 
 ARM:
  - Optimized arch timer handling for KVM/ARM
 
  - Improvements to the VGIC ITS code and introduction of an ITS reset
    ioctl
 
  - Unification of the 32-bit fault injection logic
 
  - More exact external abort matching logic
 
 PPC:
  - Support for running hashed page table (HPT) MMU mode on a host that
    is using the radix MMU mode;  single threaded mode on POWER 9 is
    added as a pre-requisite
 
  - Resolution of merge conflicts with the last second 4.14 HPT fixes
 
  - Fixes and cleanups
 
 s390:
  - Some initial preparation patches for exitless interrupts and crypto
 
  - New capability for AIS migration
 
  - Fixes
 
 x86:
  - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
    after-reset state
 
  - Refined dependencies for VMX features
 
  - Fixes for nested SMI injection
 
  - A lot of cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
 0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
 sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
 0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
 D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
 bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
 =593n
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "First batch of KVM changes for 4.15

  Common:
   - Python 3 support in kvm_stat
   - Accounting of slabs to kmemcg

  ARM:
   - Optimized arch timer handling for KVM/ARM
   - Improvements to the VGIC ITS code and introduction of an ITS reset
     ioctl
   - Unification of the 32-bit fault injection logic
   - More exact external abort matching logic

  PPC:
   - Support for running hashed page table (HPT) MMU mode on a host that
     is using the radix MMU mode; single threaded mode on POWER 9 is
     added as a pre-requisite
   - Resolution of merge conflicts with the last second 4.14 HPT fixes
   - Fixes and cleanups

  s390:
   - Some initial preparation patches for exitless interrupts and crypto
   - New capability for AIS migration
   - Fixes

  x86:
   - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
     and after-reset state
   - Refined dependencies for VMX features
   - Fixes for nested SMI injection
   - A lot of cleanups"

* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
  KVM: s390: provide a capability for AIS state migration
  KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
  KVM: s390: abstract conversion between isc and enum irq_types
  KVM: s390: vsie: use common code functions for pinning
  KVM: s390: SIE considerations for AP Queue virtualization
  KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
  KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
  KVM: arm/arm64: fix the incompatible matching for external abort
  KVM: arm/arm64: Unify 32bit fault injection
  KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
  KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
  KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
  KVM: arm/arm64: vgic-its: New helper functions to free the caches
  KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
  arm/arm64: KVM: Load the timer state when enabling the timer
  KVM: arm/arm64: Rework kvm_timer_should_fire
  KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
  KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
  KVM: arm/arm64: Move phys_timer_emulate function
  KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
  ...
2017-11-16 13:00:24 -08:00
Linus Torvalds c9b012e5f4 arm64 updates for 4.15
Plenty of acronym soup here:
 
 - Initial support for the Scalable Vector Extension (SVE)
 - Improved handling for SError interrupts (required to handle RAS events)
 - Enable GCC support for 128-bit integer types
 - Remove kernel text addresses from backtraces and register dumps
 - Use of WFE to implement long delay()s
 - ACPI IORT updates from Lorenzo Pieralisi
 - Perf PMU driver for the Statistical Profiling Extension (SPE)
 - Perf PMU driver for Hisilicon's system PMUs
 - Misc cleanups and non-critical fixes
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
 TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
 W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
 VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
 ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
 v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
 =0qrg
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "The big highlight is support for the Scalable Vector Extension (SVE)
  which required extensive ABI work to ensure we don't break existing
  applications by blowing away their signal stack with the rather large
  new vector context (<= 2 kbit per vector register). There's further
  work to be done optimising things like exception return, but the ABI
  is solid now.

  Much of the line count comes from some new PMU drivers we have, but
  they're pretty self-contained and I suspect we'll have more of them in
  future.

  Plenty of acronym soup here:

   - initial support for the Scalable Vector Extension (SVE)

   - improved handling for SError interrupts (required to handle RAS
     events)

   - enable GCC support for 128-bit integer types

   - remove kernel text addresses from backtraces and register dumps

   - use of WFE to implement long delay()s

   - ACPI IORT updates from Lorenzo Pieralisi

   - perf PMU driver for the Statistical Profiling Extension (SPE)

   - perf PMU driver for Hisilicon's system PMUs

   - misc cleanups and non-critical fixes"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
  arm64: Make ARMV8_DEPRECATED depend on SYSCTL
  arm64: Implement __lshrti3 library function
  arm64: support __int128 on gcc 5+
  arm64/sve: Add documentation
  arm64/sve: Detect SVE and activate runtime support
  arm64/sve: KVM: Hide SVE from CPU features exposed to guests
  arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
  arm64/sve: KVM: Prevent guests from using SVE
  arm64/sve: Add sysctl to set the default vector length for new processes
  arm64/sve: Add prctl controls for userspace vector length management
  arm64/sve: ptrace and ELF coredump support
  arm64/sve: Preserve SVE registers around EFI runtime service calls
  arm64/sve: Preserve SVE registers around kernel-mode NEON use
  arm64/sve: Probe SVE capabilities and usable vector lengths
  arm64: cpufeature: Move sys_caps_initialised declarations
  arm64/sve: Backend logic for setting the vector length
  arm64/sve: Signal handling support
  arm64/sve: Support vector length resetting for new processes
  arm64/sve: Core task context handling
  arm64/sve: Low-level CPU setup
  ...
2017-11-15 10:56:56 -08:00