Commit Graph

9 Commits

Author SHA1 Message Date
Mat Martineau ddbb411487 KEYS: Add KEYCTL_DH_COMPUTE command
This adds userspace access to Diffie-Hellman computations through a
new keyctl() syscall command to calculate shared secrets or public
keys using input parameters stored in the keyring.

Input key ids are provided in a struct due to the current 5-arg limit
for the keyctl syscall. Only user keys are supported in order to avoid
exposing the content of logon or encrypted keys.

The output is written to the provided buffer, based on the assumption
that the values are only needed in userspace.

Future support for other types of key derivation would involve a new
command, like KEYCTL_ECDH_COMPUTE.

Once Diffie-Hellman support is included in the crypto API, this code
can be converted to use the crypto API to take advantage of possible
hardware acceleration and reduce redundant code.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-12 19:54:58 +01:00
Kirill Marinushkin 13100a72f4 Security: Keys: Big keys stored encrypted
Solved TODO task: big keys saved to shmem file are now stored encrypted.
The encryption key is randomly generated and saved to payload[big_key_data].

Signed-off-by: Kirill Marinushkin <k.marinushkin@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-12 19:54:58 +01:00
Jarkko Sakkinen 5ca4c20cfd keys, trusted: select hash algorithm for TPM2 chips
Added 'hash=' option for selecting the hash algorithm for add_key()
syscall and documentation for it.

Added entry for sm3-256 to the following tables in order to support
TPM_ALG_SM3_256:

* hash_algo_name
* hash_digest_size

Includes support for the following hash algorithms:

* sha1
* sha256
* sha384
* sha512
* sm3-256

Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Tested-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Acked-by: Peter Huewe <peterhuewe@gmx.de>
2015-12-20 15:27:12 +02:00
David Howells dabd39cc2f KEYS: Make /proc/keys unconditional if CONFIG_KEYS=y
Now that /proc/keys is used by libkeyutils to look up a key by type and
description, we should make it unconditional and remove
CONFIG_DEBUG_PROC_KEYS.

Reported-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
2015-01-22 22:34:32 +00:00
Josh Boyer 2eaf6b5dca KEYS: Make BIG_KEYS boolean
Having the big_keys functionality as a module is very marginally useful.
The userspace code that would use this functionality will get odd error
messages from the keys layer if the module isn't loaded.  The code itself
is fairly small, so just have this as a boolean option and not a tristate.

Signed-off-by: Josh Boyer <jwboyer@fedoraproject.org>
Signed-off-by: David Howells <dhowells@redhat.com>
2013-10-30 11:15:23 +00:00
David Howells f36f8c75ae KEYS: Add per-user_namespace registers for persistent per-UID kerberos caches
Add support for per-user_namespace registers of persistent per-UID kerberos
caches held within the kernel.

This allows the kerberos cache to be retained beyond the life of all a user's
processes so that the user's cron jobs can work.

The kerberos cache is envisioned as a keyring/key tree looking something like:

	struct user_namespace
	  \___ .krb_cache keyring		- The register
		\___ _krb.0 keyring		- Root's Kerberos cache
		\___ _krb.5000 keyring		- User 5000's Kerberos cache
		\___ _krb.5001 keyring		- User 5001's Kerberos cache
			\___ tkt785 big_key	- A ccache blob
			\___ tkt12345 big_key	- Another ccache blob

Or possibly:

	struct user_namespace
	  \___ .krb_cache keyring		- The register
		\___ _krb.0 keyring		- Root's Kerberos cache
		\___ _krb.5000 keyring		- User 5000's Kerberos cache
		\___ _krb.5001 keyring		- User 5001's Kerberos cache
			\___ tkt785 keyring	- A ccache
				\___ krbtgt/REDHAT.COM@REDHAT.COM big_key
				\___ http/REDHAT.COM@REDHAT.COM user
				\___ afs/REDHAT.COM@REDHAT.COM user
				\___ nfs/REDHAT.COM@REDHAT.COM user
				\___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key
				\___ http/KERNEL.ORG@KERNEL.ORG big_key

What goes into a particular Kerberos cache is entirely up to userspace.  Kernel
support is limited to giving you the Kerberos cache keyring that you want.

The user asks for their Kerberos cache by:

	krb_cache = keyctl_get_krbcache(uid, dest_keyring);

The uid is -1 or the user's own UID for the user's own cache or the uid of some
other user's cache (requires CAP_SETUID).  This permits rpc.gssd or whatever to
mess with the cache.

The cache returned is a keyring named "_krb.<uid>" that the possessor can read,
search, clear, invalidate, unlink from and add links to.  Active LSMs get a
chance to rule on whether the caller is permitted to make a link.

Each uid's cache keyring is created when it first accessed and is given a
timeout that is extended each time this function is called so that the keyring
goes away after a while.  The timeout is configurable by sysctl but defaults to
three days.

Each user_namespace struct gets a lazily-created keyring that serves as the
register.  The cache keyrings are added to it.  This means that standard key
search and garbage collection facilities are available.

The user_namespace struct's register goes away when it does and anything left
in it is then automatically gc'd.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Simo Sorce <simo@redhat.com>
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
2013-09-24 10:35:19 +01:00
David Howells ab3c3587f8 KEYS: Implement a big key type that can save to tmpfs
Implement a big key type that can save its contents to tmpfs and thus
swapspace when memory is tight.  This is useful for Kerberos ticket caches.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Simo Sorce <simo@redhat.com>
2013-09-24 10:35:18 +01:00
David Howells b2a4df200d KEYS: Expand the capacity of a keyring
Expand the capacity of a keyring to be able to hold a lot more keys by using
the previously added associative array implementation.  Currently the maximum
capacity is:

	(PAGE_SIZE - sizeof(header)) / sizeof(struct key *)

which, on a 64-bit system, is a little more 500.  However, since this is being
used for the NFS uid mapper, we need more than that.  The new implementation
gives us effectively unlimited capacity.

With some alterations, the keyutils testsuite runs successfully to completion
after this patch is applied.  The alterations are because (a) keyrings that
are simply added to no longer appear ordered and (b) some of the errors have
changed a bit.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:18 +01:00
David Howells f0894940ae KEYS: Move the key config into security/keys/Kconfig
Move the key config into security/keys/Kconfig as there are going to be a lot
of key-related options.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mimi Zohar <zohar@us.ibm.com>
2012-05-11 10:56:56 +01:00