`zstd_opt.c` contains the match finder for the highest compression
levels. These levels are already very slow, and are unlikely to be used
in the kernel. If they are used, they shouldn't be used in latency
sensitive workloads, so slowing them down shouldn't be a big deal.
This saves 188 KB of the 288 KB regression reported by Geert Uytterhoeven [0].
I've also opened an issue upstream [1] so that we can properly tackle
the code size issue in `zstd_opt.c` for all users, and can hopefully
remove this hack in the next zstd version we import.
Bloat-o-meter output on x86-64:
```
> ../scripts/bloat-o-meter vmlinux.old vmlinux
add/remove: 6/5 grow/shrink: 1/9 up/down: 16673/-209939 (-193266)
Function old new delta
ZSTD_compressBlock_opt_generic.constprop - 7559 +7559
ZSTD_insertBtAndGetAllMatches - 6304 +6304
ZSTD_insertBt1 - 1731 +1731
ZSTD_storeSeq - 693 +693
ZSTD_BtGetAllMatches - 255 +255
ZSTD_updateRep - 128 +128
ZSTD_updateTree 96 99 +3
ZSTD_insertAndFindFirstIndexHash3 81 - -81
ZSTD_setBasePrices.constprop 98 - -98
ZSTD_litLengthPrice.constprop 138 - -138
ZSTD_count 362 181 -181
ZSTD_count_2segments 1407 938 -469
ZSTD_insertBt1.constprop 2689 - -2689
ZSTD_compressBlock_btultra2 19990 423 -19567
ZSTD_compressBlock_btultra 19633 15 -19618
ZSTD_initStats_ultra 19825 - -19825
ZSTD_compressBlock_btopt 20374 12 -20362
ZSTD_compressBlock_btopt_extDict 29984 12 -29972
ZSTD_compressBlock_btultra_extDict 30718 15 -30703
ZSTD_compressBlock_btopt_dictMatchState 32689 12 -32677
ZSTD_compressBlock_btultra_dictMatchState 33574 15 -33559
Total: Before=6611828, After=6418562, chg -2.92%
```
[0] https://lkml.org/lkml/2021/11/14/189
[1] https://github.com/facebook/zstd/issues/2862
Link: https://lore.kernel.org/r/20211117014949.1169186-3-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-3-nickrterrell@gmail.com/
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Nick Terrell <terrelln@fb.com>
Upgrade to the latest upstream zstd version 1.4.10.
This patch is 100% generated from upstream zstd commit 20821a46f412 [0].
This patch is very large because it is transitioning from the custom
kernel zstd to using upstream directly. The new zstd follows upstreams
file structure which is different. Future update patches will be much
smaller because they will only contain the changes from one upstream
zstd release.
As an aid for review I've created a commit [1] that shows the diff
between upstream zstd as-is (which doesn't compile), and the zstd
code imported in this patch. The verion of zstd in this patch is
generated from upstream with changes applied by automation to replace
upstreams libc dependencies, remove unnecessary portability macros,
replace `/**` comments with `/*` comments, and use the kernel's xxhash
instead of bundling it.
The benefits of this patch are as follows:
1. Using upstream directly with automated script to generate kernel
code. This allows us to update the kernel every upstream release, so
the kernel gets the latest bug fixes and performance improvements,
and doesn't get 3 years out of date again. The automation and the
translated code are tested every upstream commit to ensure it
continues to work.
2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years
of performance improvements and bug fixes. On x86_64 I've measured
15% faster BtrFS and SquashFS decompression+read speeds, 35% faster
kernel decompression, and 30% faster ZRAM decompression+read speeds.
3. Zstd-1.4.10 supports negative compression levels, which allow zstd to
match or subsume lzo's performance.
4. Maintains the same kernel-specific wrapper API, so no callers have to
be modified with zstd version updates.
One concern that was brought up was stack usage. Upstream zstd had
already removed most of its heavy stack usage functions, but I just
removed the last functions that allocate arrays on the stack. I've
measured the high water mark for both compression and decompression
before and after this patch. Decompression is approximately neutral,
using about 1.2KB of stack space. Compression levels up to 3 regressed
from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB
-> 2KB. We've added unit tests upstream to prevent further regression.
I believe that this is a reasonable increase, and if it does end up
causing problems, this commit can be cleanly reverted, because it only
touches zstd.
I chose the bulk update instead of replaying upstream commits because
there have been ~3500 upstream commits since the 1.3.1 release, zstd
wasn't ready to be used in the kernel as-is before a month ago, and not
all upstream zstd commits build. The bulk update preserves bisectablity
because bugs can be bisected to the zstd version update. At that point
the update can be reverted, and we can work with upstream to find and
fix the bug.
Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a
staging branch at 20821a46f412 [0] and will apply any changes requested
to the staging branch. Once we're ready to merge this update I will cut
a zstd release at the commit we merge, so we have a known zstd release
in the kernel.
The implementation of the kernel API is contained in
zstd_compress_module.c and zstd_decompress_module.c.
[0] 20821a46f4
[1] e0fa481d0e
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>