One should not attempt to switch a PHB into CAPI mode if there is
a switch between the PHB and the adapter. This patch modifies the
cxl driver to ignore CAPI adapters misplaced in switched slots.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The AFU disable operation has a bug where it will not clear the enable
bit and therefore will have no effect. To date this has likely been
masked by fact that we perform an AFU reset before the disable, which
also has the effect of clearing the enable bit, making the following
disable operation effectively a noop on most hardware. This patch
modifies the afu_control function to take a parameter to clear from the
AFU control register so that the disable operation can clear the
appropriate bit.
This bug was uncovered on the Mellanox CX4, which uses an XSL rather
than a PSL. On the XSL the reset operation will not complete while the
AFU is enabled, meaning the enable bit was still set at the start of the
disable and as a result this bug was hit and the disable also timed out.
Because of this difference in behaviour between the PSL and XSL, this
patch now makes the reset dependent on the card using a PSL to avoid
waiting for a timeout on the XSL. It is entirely possible that we may be
able to drop the reset altogether if it turns out we only ever needed it
due to this bug - however I am not willing to drop it without further
regression testing and have added comments to the code explaining the
background.
This also fixes a small issue where the AFU_Cntl register was read
outside of the lock that protects it.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If the AFU descriptor of an AFU directed AFU indicates that it supports
0 maximum processes, we will accept that value and attempt to use it.
The SPA will still be allocated (with 2 pages due to another minor bug
and room for 958 processes), and when a context is allocated we will
pass the value of 0 to idr_alloc as the maximum. However, idr_alloc will
treat that as meaning no maximum and will allocate a context number and
we return a valid context.
Conceivably, this could lead to a buffer overflow of the SPA if more
than 958 contexts were allocated, however this is mitigated by the fact
that there are no known AFUs in the wild with a bogus AFU descriptor
like this, and that only the root user is allowed to flash an AFU image
to a card.
Add a check when validating the AFU descriptor to reject any with 0
maximum processes.
We do still allow a dedicated process only AFU to indicate that it
supports 0 contexts even though that is forbidden in the architecture,
as in that case we ignore the value and use 1 instead. This is just on
the off-chance that such a dedicated process AFU may exist (not that I
am aware of any), since their developers are less likely to have cared
about this value at all.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds support for using CAPP DMA mode, which is required for XSL
based cards such as the Mellanox CX4 to function.
This is currently an RFC as it depends on the corresponding support to
be merged into skiboot first, which was submitted here:
http://patchwork.ozlabs.org/patch/625582/
In the event that the skiboot on the system does not have the above
support, it will indicate as such in the kernel log and abort the init
process.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The XSL (Translation Service Layer) is a stripped down version of the
PSL (Power Service Layer) used in some cards such as the Mellanox CX4.
Like the PSL, it implements the CAIA architecture, but has a number of
differences, mostly in it's implementation dependent registers. This
adds an ops structure to abstract these differences to bring initial
support for XSL CAPI devices.
The XSL does not implement the optional architected SERR register,
however while it treats it as a reserved register and should work with
no special treatment, attempting to access it will cause the XSL_FEC
(First Error Capture) register to be filled out, preventing it from
capturing any subsequent errors. Therefore, this patch also prevents the
kernel from trying to set up the SERR register so that the FEC register
may still be useful, and to save one interrupt.
The XSL also uses a special DMA cxl mode, which uses a slightly
different init sequence for the CAPP and PHB. The kernel support for
this will be in a future patch once the corresponding support has been
merged into skiboot.
Co-authored-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PSL designers recommend a larger value for the mmio hang pulse, 256 us
instead of 1 us. The CAIA architecture states that it needs to be
smaller than 1/2 of the RTOS timeout set in the PHB for outbound
non-posted transactions, which is still (easily) the case here.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Frank Haverkamp <haver@linux.vnet.ibm.com>
Tested-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Failure to synchronize the PSL timebase currently prevents the
initialization of the cxl card, thus rendering the card useless. This
is too extreme for a feature which is rarely used, if at all. No
hardware AFUs or software is currently using PSL timebase.
This patch still tries to synchronize the PSL timebase when the card
is initialized, but ignores the error if it can't. Instead, it reports
a status via /sys.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The POWER8NVL chip has two CAPI ports. Configure the PSL to route
data to the port corresponding to the CAPP unit.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril
Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey,
Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_* helpers from
Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/relaxed
variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei
Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter values,
display domain indices in sysfs, eliminate domain suffix in event names,
from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum
optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and
other dt bits, and minor fixes/cleanup."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW69OrAAoJEFHr6jzI4aWAe5EQAJw/hE6WBQc6a7Tj70AnXOqR
qk/m5pZjuTwQxfBteIvHR1pE5eXdlvtAjcD254LVkFkAbIn19W/h2k0VX/nlee7P
n/VRHRifjtGmukqHrPYJJ7ua9mNlY7pxh3leGSixBFASnSWqMxNNNziNQtSTcuCs
TjHiw6NkZ/kzeunA4bAfE4yHVUZjmL74oiS9JbLyaVHqoW4fqWLlh26AKo2yYMZI
qPicBBG4HBi3FGvoexnKxlJNdcV4HO7LzDjJmCSfUKYCJi+Pw19T5qmhso0q0qVz
vHg/A8HNeG4Hn83pNVmLeQSAIQRZ3DvTtcLgbjPo+TVwm/hzrRRBWipTeOVbkLW8
2bcOXT4t7LWUq15EAJ1LYgYZGzcLrfRfUeOcuQ1TWd3+PcfY9pE7FmizsxAAfaVe
E9j9mpz4XnIqBtWkFHneTIHkQ5OWptyKuZJEaYH0nut4VsP0k8NarkseafGqBPu7
5eG83gbiQbCVixfOgblV9eocJ29JcwpjPAY4CZSGJimShg909FV7WRgZgJkKWrbK
dBRco8Jcp4VglGfo2qymv7Uj4KwQoypBREOhiKUvrAsVlDxPfx+bcskhjGu9xGDC
xs/+nme0/lKa/wg5K4C3mQ1GAlkMWHI0ojhJjsyODbetup5UbkEu03wjAaTdO9dT
Y6ptGm0rYAJluPNlziFj
=qkAt
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This was delayed a day or two by some build-breakage on old toolchains
which we've now fixed.
There's two PCI commits both acked by Bjorn.
There's one commit to mm/hugepage.c which is (co)authored by Kirill.
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul
Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_*
helpers from Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/
relaxed variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas
Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs
from Wei Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell
Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev
Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter
values, display domain indices in sysfs, eliminate domain suffix in
event names, from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit
checksum optimizations, 86xx consolidation, e5500/e6500 cpu
hotplug, more fman and other dt bits, and minor fixes/cleanup"
* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
powerpc: Fix unrecoverable SLB miss during restore_math()
powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
powerpc/rcpm: Fix build break when SMP=n
powerpc/book3e-64: Use hardcoded mttmr opcode
powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
powerpc/T104xRDB: add tdm riser card node to device tree
powerpc32: PAGE_EXEC required for inittext
powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
powerpc/86xx: Introduce and use common dtsi
powerpc/86xx: Update device tree
powerpc/86xx: Move dts files to fsl directory
powerpc/86xx: Switch to kconfig fragments approach
powerpc/86xx: Update defconfigs
powerpc/86xx: Consolidate common platform code
powerpc32: Remove one insn in mulhdu
powerpc32: small optimisation in flush_icache_range()
powerpc: Simplify test in __dma_sync()
powerpc32: move xxxxx_dcache_range() functions inline
powerpc32: Remove clear_pages() and define clear_page() inline
...
Add a check at the beginning of cxl_probe function to ignore virtual pci
devices created for each afu registered. This fixes the the errors
messages logged about missing CXL vsec, when cxl probe is unable to
find necessary vsec entries in device pci config space. The error
message logged are of the form :
cxl-pci 0004:00:00.0: ABORTING: CXL VSEC not found!
cxl-pci 0004:00:00.0: cxl_init_adapter failed: -19
Cc: Ian Munsie <imunsie@au1.ibm.com>
Cc: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Reviewed-by: fbarrat@linux.vnet.ibm.com
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Like on bare-metal, the cxl driver creates a virtual PHB and a pci
device for the AFU. The configuration space of the device is mapped to
the configuration record of the AFU.
Reuse the code defined in afu_cr_read8|16|32() when reading the
configuration space of the AFU device.
Even though the (virtual) AFU device is a pci device, the adapter is
not. So a driver using the cxl kernel API cannot read the VPD of the
adapter through the usual PCI interface. Therefore, we add a call to
the cxl kernel API:
ssize_t cxl_read_adapter_vpd(struct pci_dev *dev, void *buf, size_t count);
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Introduce sub-structures containing the bare-metal specific fields in
the structures describing the adapter (struct cxl) and AFU (struct
cxl_afu).
Update all their references.
Co-authored-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rename a few functions, changing the 'cxl_' prefix to either
'cxl_pci_' or 'cxl_native_', to make clear that the implementation is
bare-metal specific.
Those functions will have an equivalent implementation for a guest in
a later patch.
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The backend API (in cxl.h) lists some low-level functions whose
implementation is different on bare-metal and in a guest. Each
environment implements its own functions, and the common code uses
them through function pointers, defined in cxl_backend_ops
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Move a few functions around to better separate code specific to
bare-metal environment from code which will be commonly used between
guest and bare-metal.
Code specific to bare-metal is meant to be in native.c or pci.c
only. It's basically anything which touches the card p1 registers,
some p2 registers not needed from a guest and the PCI interface.
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Move around some functions which will be accessed from the bare-metal
and guest environments.
Code in native.c and pci.c is meant to be bare-metal specific.
Other files contain code which may be shared with guests.
Co-authored-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The PSL timebase synchronization is seemingly failing for
configuration not including VIRT_CPU_ACCOUNTING_NATIVE. The driver
shows the following trace in dmesg:
PSL: Timebase sync: giving up!
The PSL timebase register is actually syncing correctly, but the cxl
driver is not detecting it. Fix is to use the proper timebase-to-time
conversion.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.3+
Acked-by: Michael Neuling <mikey@neuling.org>
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Drivers should include asm/pci-bridge.h only when they need the arch-
specific things provided there. Outside of the arch/ directories, the only
drivers that actually need things provided by asm/pci-bridge.h are the
powerpc RPA hotplug drivers in drivers/pci/hotplug/rpa*.
Remove the includes of asm/pci-bridge.h from the other drivers, adding an
include of linux/pci.h if necessary.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Add support for future IBM Coherent Accelerator (CXL) device
with ID of 0x0601.
Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a pcie host bridge defect on some cards, that can cause
malformed Transaction Layer Packet (TLP) errors to be erroneously reported.
The upper nibble of the vendor section PSL revision is used to distinguish
between different cards. The affected ones have it set to 0.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently the first thing we do in cxl_probe is to grab a reference
on the pci device. Later on, we call device_register on our adapter.
In our remove path, we call device_unregister, but we never call
pci_dev_put. We therefore leak the device every time we do a
reflash.
device_register/unregister is sufficient to hold the reference.
Therefore, drop the call to pci_dev_get.
Here's why this is safe.
The proposed cxl_probe(pdev) calls cxl_adapter_init:
a) init calls cxl_adapter_alloc, which creates a struct cxl,
conventionally called adapter. This struct contains a
device entry, adapter->dev.
b) init calls cxl_configure_adapter, where we set
adapter->dev.parent = &dev->dev (here dev is the pci dev)
So at this point, the cxl adapter's device's parent is the PCI
device that I want to be refcounted properly.
c) init calls cxl_register_adapter
*) cxl_register_adapter calls device_register(&adapter->dev)
So now we're in device_register, where dev is the adapter device, and
we want to know if the PCI device is safe after we return.
device_register(&adapter->dev) calls device_initialize() and then
device_add().
device_add() does a get_device(). device_add() also explicitly grabs
the device's parent, and calls get_device() on it:
parent = get_device(dev->parent);
So therefore, device_register() takes a lock on the parent PCI dev,
which is what pci_dev_get() was guarding. pci_dev_get() can therefore
be safely removed.
Fixes: f204e0b8ce ("cxl: Driver code for powernv PCIe based cards for userspace access")
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch configures the PSL Timebase function and enables it,
after the CAPP has been initialized by OPAL.
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
cxl_reset currently PERSTs the slot, and then repeatedly tries to
read MMIO space in order to kick off EEH.
There are 2 problems with this: it's unnecessary, and it's racy.
It's unnecessary because the PERST will bring down the PHB link.
That will be picked up by the CAPP, which will send out an HMI.
Skiboot, noticing an HMI from the CAPP, will send an OPAL
notification to the kernel, which will trigger EEH recovery.
It's also racy: the EEH recovery triggered by the CAPP will
eventually cause the MMIO space to have its mapping invalidated
and the pointer NULLed out. This races with our attempt to read
the MMIO space. This is causing OOPSes in testing.
Simply drop all the attempts to force EEH detection, and trust
that Skiboot will send the notification and that we'll act on it.
The Skiboot code to send the EEH notification has been in Skiboot
for as long as CAPP recovery has been supported, so we don't need
to worry about breaking obscure setups with ancient firmware.
Cc: Ryan Grimm <grimm@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Fixes: 62fa19d4b4 ("cxl: Add ability to reset the card")
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Macro DEFINE_PCI_DEVICE_TABLE is deprecated. So, here use
struct pci_device_id instead of DEFINE_PCI_DEVICE_TABLE with
the goal of getting rid of this macro completely.
The Coccinelle semantic patch that performs this transformation
is as follows:
@@
identifier a;
declarer name DEFINE_PCI_DEVICE_TABLE;
initializer i;
@@
- DEFINE_PCI_DEVICE_TABLE(a)
+ const struct pci_device_id a[]
= i;
Signed-off-by: Vaishali Thakkar <vthakkar1994@gmail.com>
Acked-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
EEH (Enhanced Error Handling) allows a driver to recover from the
temporary failure of an attached PCI card. Enable basic CXL support
for EEH.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Provide a kernel API and a sysfs entry which allow a user to specify
that when a card is PERSTed, it's image will stay the same, allowing
it to participate in EEH.
cxl_reset is used to reflash the card. In that case, we cannot safely
assert that the image will not change. Therefore, disallow cxl_reset
if the flag is set.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If the driver doesn't participate in EEH, the AFUs will be removed
by cxl_remove, which will be invoked by EEH.
If the driver does particpate in EEH, the vPHB needs to stick around
so that the it can particpate.
In both cases, we shouldn't remove the AFU/vPHB.
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As with an adapter, some aspects of initialisation are done only once
in the lifetime of an AFU: for example, allocating memory, or setting
up sysfs/debugfs files.
However, we may want to be able to do some parts of the initialisation
multiple times: for example, in error recovery we want to be able to
tear down and then re-map IO memory and IRQs.
Therefore, refactor AFU init/teardown as follows.
- Create two new functions: 'cxl_configure_afu', and its pair
'cxl_deconfigure_afu'. As with the adapter functions,
these (de)configure resources that do not need to last the entire
lifetime of the AFU.
- Allocating and releasing memory remain the task of 'cxl_alloc_afu'
and 'cxl_release_afu'.
- Once-only functions that do not involve allocating/releasing memory
stay in the overarching 'cxl_init_afu'/'cxl_remove_afu' pair.
However, the task of picking an AFU mode and activating it has been
broken out.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some aspects of initialisation are done only once in the lifetime of
an adapter: for example, allocating memory for the adapter,
allocating the adapter number, or setting up sysfs/debugfs files.
However, we may want to be able to do some parts of the
initialisation multiple times: for example, in error recovery we
want to be able to tear down and then re-map IO memory and IRQs.
Therefore, refactor CXL init/teardown as follows.
- Keep the overarching functions 'cxl_init_adapter' and its pair,
'cxl_remove_adapter'.
- Move all 'once only' allocation/freeing steps to the existing
'cxl_alloc_adapter' function, and its pair 'cxl_release_adapter'
(This involves moving allocation of the adapter number out of
cxl_init_adapter.)
- Create two new functions: 'cxl_configure_adapter', and its pair
'cxl_deconfigure_adapter'. These two functions 'wire up' the
hardware --- they (de)configure resources that do not need to
last the entire lifetime of the adapter
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- MMIO pointer unmapping is guarded by a null pointer check.
However, iounmap doesn't null the pointer, just invalidate it.
Therefore, explicitly null the pointer after unmapping.
- afu_desc_mmio also needs to be unmapped.
- PCI regions are allocated in cxl_map_adapter_regs.
Therefore they should be released in unmap, not elsewhere.
Acked-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Previously the SPA was allocated and freed upon entering and leaving
AFU-directed mode. This causes some issues for error recovery - contexts
hold a pointer inside the SPA, and they may persist after the AFU has
been detached.
We would ideally like to allocate the SPA when the AFU is allocated, and
release it until the AFU is released. However, we don't know how big the
SPA needs to be until we read the AFU descriptor.
Therefore, restructure the code:
- Allocate the SPA only once, on the first attach.
- Release the SPA only when the entire AFU is being released (not
detached). Guard the release with a NULL check, so we don't free
if it was never allocated (e.g. dedicated mode)
Acked-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Destroy afu->contexts_idr on release of an afu, reclaiming the allocated
memory.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
A precision of 16 (%.16llx) has the same effect as a field width of 16
along with passing the 0 flag (%016llx), but the latter is much more
common in the kernel tree. Update cxl to use that.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Before freeing p2n, test p2n, not p1n.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Fix typo in debug print. p1_base() should be p2_base(). No change other
than to the debug output.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch does two things.
Firstly it presents the Accelerator Function Unit (AFUs) behind the POWER
Service Layer (PSL) as PCI devices on a virtual PCI Host Bridge (vPHB). This
in in addition to the PSL being a PCI device itself.
As part of the Coherent Accelerator Interface Architecture (CAIA) AFUs can
provide an AFU configuration. This AFU configuration recored is architected to
be the same as a PCI config space.
This patch sets discovers the AFU configuration records, provides AFU config
space read/write functions to these configuration records. It then enumerates
the PCI bus. It also hooks in PCI ops where appropriate. It also destroys the
vPHB when the physical card is removed.
Secondly, it add an in kernel API for AFU to use CXL. AFUs must present a
driver that firstly binds as a PCI device. This PCI device can then be using
to do CXL specific operations (that can't sit in the PCI ops) using this API.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rename cxl_afu_reset() to __cxl_afu_reset() to we can reuse this function name
in the API.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that we parse the AFU Configuration record, dump some info on it when in
debug mode.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When probing we call pci_enable_device() but don't call pci_disable_device() on
fail. This causes refcounting issues in the PCI subsystem if a second driver
tries to bind to the same device.
This patch adds the pci_disable_device() to the probe error path. This error
path is hit when this cxl driver tries to bind to AFUs (on the vPHB) rather
than the physical device.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When we expose AFUs as virtual PCI devices, they may look like the physical
CAPI PCI card. ie they may have the same vendor/device IDs.
We want to avoid these AFUs binding to this driver and any init this driver may
do.
Re-order card init to check the VSEC earlier before assigning BARs or
activating CXL. Also change the dev used in early prints as the adapter struct
may not be inited at this earlier stage.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Export the "AFU Error Buffer" via sysfs attribute (afu_err_buf). AFU
error buffer is used by the AFU to report application specific
errors. The contents of this buffer are AFU specific and are intended to
be interpreted by the application interacting with the afu.
Suggested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If an AFU claims to have a configuration record but doesn't actually
contain a vendor and device ID, fail the AFU initialisation. Right now
this is just a way of politely letting AFU developers know that they
need to fix their config space, but later on we may expose the AFUs as
actual PCI devices in their own right and don't want to inadvertendly
expose an AFU with a bad config space.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
An AFU may optionally contain one or more PCIe like configuration
records, which can be used to identify the AFU.
This patch adds support for exposing the raw config space and the
vendor, device and class code under sysfs. These will appear in a
subdirectory of the AFU device corresponding with the configuration
record number, e.g.
cat /sys/class/cxl/afu0.0/cr0/vendor
0x1014
cat /sys/class/cxl/afu0.0/cr0/device
0x4350
cat /sys/class/cxl/afu0.0/cr0/class
0x120000
hexdump -C /sys/class/cxl/afu0.0/cr0/config
00000000 14 10 50 43 00 00 00 00 06 00 00 12 00 00 00 00 |..PC............|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000100
These files behave in much the same way as the equivalent files for PCI
devices, with one exception being that the config file is currently
read-only and restricted to the root user. It is not necessarily
required to be this strict, but we currently do not have a compelling
use-case to make it writable and/or world-readable, so I erred on the
side of being restrictive.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When unbinding and rebinding the driver on a system with a card in PHB0, this
error condition is reached after a few attempts:
ERROR: Bad of_node_put() on /pciex@3fffe40000000
CPU: 0 PID: 3040 Comm: bash Not tainted 3.18.0-rc3-12545-g3627ffe #152
Call Trace:
[c000000721acb5c0] [c00000000086ef94] .dump_stack+0x84/0xb0 (unreliable)
[c000000721acb640] [c00000000073a0a8] .of_node_release+0xd8/0xe0
[c000000721acb6d0] [c00000000044bc44] .kobject_release+0x74/0xe0
[c000000721acb760] [c0000000007394fc] .of_node_put+0x1c/0x30
[c000000721acb7d0] [c000000000545cd8] .cxl_probe+0x1a98/0x1d50
[c000000721acb900] [c0000000004845a0] .local_pci_probe+0x40/0xc0
[c000000721acb980] [c000000000484998] .pci_device_probe+0x128/0x170
[c000000721acba30] [c00000000052400c] .driver_probe_device+0xac/0x2a0
[c000000721acbad0] [c000000000522468] .bind_store+0x108/0x160
[c000000721acbb70] [c000000000521448] .drv_attr_store+0x38/0x60
[c000000721acbbe0] [c000000000293840] .sysfs_kf_write+0x60/0xa0
[c000000721acbc50] [c000000000292500] .kernfs_fop_write+0x140/0x1d0
[c000000721acbcf0] [c000000000208648] .vfs_write+0xd8/0x260
[c000000721acbd90] [c000000000208b18] .SyS_write+0x58/0x100
[c000000721acbe30] [c000000000009258] syscall_exit+0x0/0x98
We are missing a call to of_node_get(). pnv_pci_to_phb_node() should
call of_node_get() otherwise np's reference count isn't incremented and
it might go away. Rename pnv_pci_to_phb_node() to pnv_pci_get_phb_node()
so it's clear it calls of_node_get().
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Adds reset to sysfs which will PERST the card. If load_image_on_perst is set
to "user" or "factory", the PERST will cause that image to be loaded.
load_image_on_perst is set to "user" for production.
"none" could be used for debugging. The PSL trace arrays are preserved which
then can be read through debugfs.
PERST also triggers CAPP recovery. An HMI comes in, which is handled by EEH.
EEH unbinds the driver, calls into Sapphire to reinitialize the PHB, then
rebinds the driver.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Turning snoops on is the last step in CAPP recovery. Sapphire is expected to
have reinitialized the PHB and done the previous recovery steps.
Add mode argument to opal call to do this. Driver can turn snoops off although
it does not currently.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Select defaults such that a PERST causes flash image reload. Select which
image based on what the card is set up to load.
CXL_VSEC_PERST_LOADS_IMAGE selects whether PERST assertion causes flash image
load.
CXL_VSEC_PERST_SELECT_USER selects which image is loaded on the next PERST.
cxl_update_image_control writes these bits into the VSEC.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>