dma-buf:
- rename dma-buf-map to iosys-map
core:
- move buddy allocator to core
- add pci/platform init macros
- improve EDID parser deep color handling
- EDID timing type 7 support
- add GPD Win Max quirk
- add yes/no helpers to string_helpers
- flatten syncobj chains
- add nomodeset support to lots of drivers
- improve fb-helper clipping support
- add default property value interface
fbdev:
- improve fbdev ops speed
ttm:
- add a backpointer from ttm bo->ttm resource
dp:
- move displayport headers
- add a dp helper module
bridge:
- anx7625 atomic support, HDCP support
panel:
- split out panel-lvds and lvds bindings
- find panels in OF subnodes
privacy:
- add chromeos privacy screen support
fb:
- hot unplug fw fb on forced removal
simpledrm:
- request region instead of marking ioresource busy
- add panel oreintation property
udmabuf:
- fix oops with 0 pages
amdgpu:
- power management code cleanup
- Enable freesync video mode by default
- RAS code cleanup
- Improve VRAM access for debug using SDMA
- SR-IOV rework special register access and fixes
- profiling power state request ioctl
- expose IP discovery via sysfs
- Cyan skillfish updates
- GC 10.3.7, SDMA 5.2.7, DCN 3.1.6 updates
- expose benchmark tests via debugfs
- add module param to disable XGMI for testing
- GPU reset debugfs register dumping support
amdkfd:
- CRIU support
- SDMA queue fixes
radeon:
- UVD suspend fix
- iMac backlight fix
i915:
- minimal parallel submission for execlists
- DG2-G12 subplatform added
- DG2 programming workarounds
- DG2 accelerated migration support
- flat CCS and CCS engine support for XeHP
- initial small BAR support
- drop fake LMEM support
- ADL-N PCH support
- bigjoiner updates
- introduce VMA resources and async unbinding
- register definitions cleanups
- multi-FBC refactoring
- DG1 OPROM over SPI support
- ADL-N platform enabling
- opregion mailbox #5 support
- DP MST ESI improvements
- drm device based logging
- async flip optimisation for DG2
- CPU arch abstraction fixes
- improve GuC ADS init to work on aarch64
- tweak TTM LRU priority hint
- GuC 69.0.3 support
- remove short term execbuf pins
nouveau:
- higher DP/eDP bitrates
- backlight fixes
msm:
- dpu + dp support for sc8180x
- dp support for sm8350
- dpu + dsi support for qcm2290
- 10nm dsi phy tuning support
- bridge support for dp encoder
- gpu support for additional 7c3 SKUs
ingenic:
- HDMI support for JZ4780
- aux channel EDID support
ast:
- AST2600 support
- add wide screen support
- create DP/DVI connectors
omapdrm:
- fix implicit dma_buf fencing
vc4:
- add CSC + full range support
- better display firmware handoff
panfrost:
- add initial dual-core GPU support
stm:
- new revision support
- fb handover support
mediatek:
- transfer display binding document to yaml format.
- add mt8195 display device binding.
- allow commands to be sent during video mode.
- add wait_for_event for crtc disable by cmdq.
tegra:
- YUV format support
rcar-du:
- LVDS support for M3-W+ (R8A77961)
exynos:
- BGR pixel format for FIMD device
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEEKbZHaGwW9KfbeusDHTzWXnEhr4FAmI71h4ACgkQDHTzWXnE
hr6wKg//SvKFiEOhptua8Ao8XYkhXpg1/tgdAs4D7bZ0YgJyF4Im0RuFOKMmF3mN
0Y8AwguqrsmrOAFbK8B1WEysB66DmGlZN/V2Q75X7fui8xs4uGF2Fcxyr+265zhf
vONPwAoxYr+KXqwOI1p1BP2QEL6bJTdu+nrXRsXIBIrWnw8ehXJlw3fDhgvG5QBn
RPdbU7lQnd47hdYxkbe5SiZvWnPC46dJmpqsRJir0xjskR6juU36f34C4IKhTGwO
NDPeWVgusVXtIC/F4X6RebCWG0f66h+CUFa9zeYIleI/2/5yZWXfcw6Obx8HgPkt
gieiI0R4TpkVxeHCApCQ5UpxWgfSOXdoDoyw172bKQw7JCHVEkSwenyMEEwNet6r
SCJrRmlB1PBI/iTWmhm9qgrU46ZZyAnQoTlCsXGzJncdP3hzGlA1embl00yfEl7f
wzM35N20qd5T4VKUEF8QYF0fLZYmKw4cWVASu4hQ3qmGal6frilphz2J8JK8hQNq
KhFqNbVTnZsQNr9LBCbrf0kOPaMzpmW+2vQG9ApdAb1N3gNPZT7ctti0Xq5N2OUR
AipWFAsDPS2NPADKmBtDU55PgFH9MqUIsoHHXLV4Qi76dvCqYoN68qRQxrL7rpSu
b0gr0YKU2QcIB/uytjOPHcgtI5Xvrh+q8JPz/dJ38/Esgjmk4wo=
=uRsT
-----END PGP SIGNATURE-----
Merge tag 'drm-next-2022-03-24' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie:
"Lots of work all over, Intel improving DG2 support, amdkfd CRIU
support, msm new hw support, and faster fbdev support.
dma-buf:
- rename dma-buf-map to iosys-map
core:
- move buddy allocator to core
- add pci/platform init macros
- improve EDID parser deep color handling
- EDID timing type 7 support
- add GPD Win Max quirk
- add yes/no helpers to string_helpers
- flatten syncobj chains
- add nomodeset support to lots of drivers
- improve fb-helper clipping support
- add default property value interface
fbdev:
- improve fbdev ops speed
ttm:
- add a backpointer from ttm bo->ttm resource
dp:
- move displayport headers
- add a dp helper module
bridge:
- anx7625 atomic support, HDCP support
panel:
- split out panel-lvds and lvds bindings
- find panels in OF subnodes
privacy:
- add chromeos privacy screen support
fb:
- hot unplug fw fb on forced removal
simpledrm:
- request region instead of marking ioresource busy
- add panel oreintation property
udmabuf:
- fix oops with 0 pages
amdgpu:
- power management code cleanup
- Enable freesync video mode by default
- RAS code cleanup
- Improve VRAM access for debug using SDMA
- SR-IOV rework special register access and fixes
- profiling power state request ioctl
- expose IP discovery via sysfs
- Cyan skillfish updates
- GC 10.3.7, SDMA 5.2.7, DCN 3.1.6 updates
- expose benchmark tests via debugfs
- add module param to disable XGMI for testing
- GPU reset debugfs register dumping support
amdkfd:
- CRIU support
- SDMA queue fixes
radeon:
- UVD suspend fix
- iMac backlight fix
i915:
- minimal parallel submission for execlists
- DG2-G12 subplatform added
- DG2 programming workarounds
- DG2 accelerated migration support
- flat CCS and CCS engine support for XeHP
- initial small BAR support
- drop fake LMEM support
- ADL-N PCH support
- bigjoiner updates
- introduce VMA resources and async unbinding
- register definitions cleanups
- multi-FBC refactoring
- DG1 OPROM over SPI support
- ADL-N platform enabling
- opregion mailbox #5 support
- DP MST ESI improvements
- drm device based logging
- async flip optimisation for DG2
- CPU arch abstraction fixes
- improve GuC ADS init to work on aarch64
- tweak TTM LRU priority hint
- GuC 69.0.3 support
- remove short term execbuf pins
nouveau:
- higher DP/eDP bitrates
- backlight fixes
msm:
- dpu + dp support for sc8180x
- dp support for sm8350
- dpu + dsi support for qcm2290
- 10nm dsi phy tuning support
- bridge support for dp encoder
- gpu support for additional 7c3 SKUs
ingenic:
- HDMI support for JZ4780
- aux channel EDID support
ast:
- AST2600 support
- add wide screen support
- create DP/DVI connectors
omapdrm:
- fix implicit dma_buf fencing
vc4:
- add CSC + full range support
- better display firmware handoff
panfrost:
- add initial dual-core GPU support
stm:
- new revision support
- fb handover support
mediatek:
- transfer display binding document to yaml format.
- add mt8195 display device binding.
- allow commands to be sent during video mode.
- add wait_for_event for crtc disable by cmdq.
tegra:
- YUV format support
rcar-du:
- LVDS support for M3-W+ (R8A77961)
exynos:
- BGR pixel format for FIMD device"
* tag 'drm-next-2022-03-24' of git://anongit.freedesktop.org/drm/drm: (1529 commits)
drm/i915/display: Do not re-enable PSR after it was marked as not reliable
drm/i915/display: Fix HPD short pulse handling for eDP
drm/amdgpu: Use drm_mode_copy()
drm/radeon: Use drm_mode_copy()
drm/amdgpu: Use ternary operator in `vcn_v1_0_start()`
drm/amdgpu: Remove pointless on stack mode copies
drm/amd/pm: fix indenting in __smu_cmn_reg_print_error()
drm/amdgpu/dc: fix typos in comments
drm/amdgpu: fix typos in comments
drm/amd/pm: fix typos in comments
drm/amdgpu: Add stolen reserved memory for MI25 SRIOV.
drm/amdgpu: Merge get_reserved_allocation to get_vbios_allocations.
drm/amdkfd: evict svm bo worker handle error
drm/amdgpu/vcn: fix vcn ring test failure in igt reload test
drm/amdgpu: only allow secure submission on rings which support that
drm/amdgpu: fixed the warnings reported by kernel test robot
drm/amd/display: 3.2.177
drm/amd/display: [FW Promotion] Release 0.0.108.0
drm/amd/display: Add save/restore PANEL_PWRSEQ_REF_DIV2
drm/amd/display: Wait for hubp read line for Pollock
...
There are a few separately maintained driver subsystems that we merge through
the SoC tree, notable changes are:
- Memory controller updates, mainly for Tegra and Mediatek SoCs,
and clarifications for the memory controller DT bindings
- SCMI firmware interface updates, in particular a new transport based
on OPTEE and support for atomic operations.
- Cleanups to the TEE subsystem, refactoring its memory management
For SoC specific drivers without a separate subsystem, changes include
- Smaller updates and fixes for TI, AT91/SAMA5, Qualcomm and NXP
Layerscape SoCs.
- Driver support for Microchip SAMA5D29, Tesla FSD, Renesas RZ/G2L,
and Qualcomm SM8450.
- Better power management on Mediatek MT81xx, NXP i.MX8MQ
and older NVIDIA Tegra chips
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmI4nOUACgkQmmx57+YA
GNlNNhAApPQw+FKQ6yVj2EZYcaAgik8PJAJoNQWYED52iQfm5uXgjt3aQewvrPNW
nkKx5Mx+fPUfaKx5mkVOFMhME5Bw9tYbXHm2/RpRp+n8jOdUlQpAhzIPOyWPHOJS
QX6qu4t+agrQzjbOCGouAJXgyxhTJFUMviM2EgVHbQHXPtdF8i2kyanfCP7Rw8cx
sVtLwpvhbLm849+deYRXuv2Xw9I3M1Np7018s5QciimI2eLLEb+lJ/C5XWz5pMYn
M1nZ7uwCLKPCewpMETTuhKOv0ioOXyY9C1ghyiGZFhHQfoCYTu94Hrx9t8x5gQmL
qWDinXWXVk8LBegyrs8Bp4wcjtmvMMLnfWtsGSfT5uq24JOGg22OmtUNhNJbS9+p
VjEvBgkXYD7UEl5npI9v9/KQWr3/UDir0zvkuV40gJyeBWNEZ/PB8olXAxgL7wZv
cXRYSaUYYt3DKQf1k5I4GUyQtkP/4RaBy6AqvH5Sx0lCwuY6G6ISK+kCPaaSRKnX
WR+nFw84dKCu7miehmW9qSzMQ4kiSCKIDqk7ilHcwv0J2oXDrlqVPKGGGTzZjUc8
+feqM/eSoYvDDEDemuXNSnl3hc1Zlvm7Apd5AN6kdTaNgoACDYdyvGuJ3CvzcA+K
1gBHUBvGS/ODA25KnYabr7wCMgxYqf7dXfkyKIBwFHwxOnRHtgs=
=Cfbk
-----END PGP SIGNATURE-----
Merge tag 'arm-drivers-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
Pull ARM driver updates from Arnd Bergmann:
"There are a few separately maintained driver subsystems that we merge
through the SoC tree, notable changes are:
- Memory controller updates, mainly for Tegra and Mediatek SoCs, and
clarifications for the memory controller DT bindings
- SCMI firmware interface updates, in particular a new transport
based on OPTEE and support for atomic operations.
- Cleanups to the TEE subsystem, refactoring its memory management
For SoC specific drivers without a separate subsystem, changes include
- Smaller updates and fixes for TI, AT91/SAMA5, Qualcomm and NXP
Layerscape SoCs.
- Driver support for Microchip SAMA5D29, Tesla FSD, Renesas RZ/G2L,
and Qualcomm SM8450.
- Better power management on Mediatek MT81xx, NXP i.MX8MQ and older
NVIDIA Tegra chips"
* tag 'arm-drivers-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (154 commits)
ARM: spear: fix typos in comments
soc/microchip: fix invalid free in mpfs_sys_controller_delete
soc: s4: Add support for power domains controller
dt-bindings: power: add Amlogic s4 power domains bindings
ARM: at91: add support in soc driver for new SAMA5D29
soc: mediatek: mmsys: add sw0_rst_offset in mmsys driver data
dt-bindings: memory: renesas,rpc-if: Document RZ/V2L SoC
memory: emif: check the pointer temp in get_device_details()
memory: emif: Add check for setup_interrupts
dt-bindings: arm: mediatek: mmsys: add support for MT8186
dt-bindings: mediatek: add compatible for MT8186 pwrap
soc: mediatek: pwrap: add pwrap driver for MT8186 SoC
soc: mediatek: mmsys: add mmsys reset control for MT8186
soc: mediatek: mtk-infracfg: Disable ACP on MT8192
soc: ti: k3-socinfo: Add AM62x JTAG ID
soc: mediatek: add MTK mutex support for MT8186
soc: mediatek: mmsys: add mt8186 mmsys routing table
soc: mediatek: pm-domains: Add support for mt8186
dt-bindings: power: Add MT8186 power domains
soc: mediatek: pm-domains: Add support for mt8195
...
This reverts commit 6f98a4bfee.
It turns out we still can't do this. Way too many platforms that don't
have any real source of randomness at boot and no jitter entropy because
they don't even have a cycle counter.
As reported by Guenter Roeck:
"This causes a large number of qemu boot test failures for various
architectures (arm, m68k, microblaze, sparc32, xtensa are the ones I
observed).
Common denominator is that boot hangs at 'Saving random seed:'"
This isn't hugely unexpected - we tried it, it failed, so now we'll
revert it.
Link: https://lore.kernel.org/all/20220322155820.GA1745955@roeck-us.net/
Reported-and-bisected-by: Guenter Roeck <linux@roeck-us.net>
Cc: Jason Donenfeld <Jason@zx2c4.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Various buffer and array bounds related fixes
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmI4nPQWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJi/gD/9UctJGcKAi28EVVcS11oLSxl97
LuIOJ4lWr8WUpCUqHcN65biUoODjshkIJRTx6Vxx9diLm3u6NO58+oJJCveKvE7w
LtFjkbXBZ2sTxUoMZiva7qW8A6pYTfpiGq2lyUWVZRLOAMnNlCVuhcIonkzkR7js
xdMZ2AmiQ0LJqT8paw4UUtSxGXGpLkcbuEoWHVWbqd3jgUbDwA4WR4xJw3ZUyh9i
ONHOsfl/nFCNcLU69ppGJWPlXqNr5hHjjCeRzlcMfnwD/kxA7Qgt5TmpdEeAD4zx
csNbvXbaW2Y+5IUWKXHT2Rt0rW1u+Zi5c+mtstTJf7XqK6slvTdLugY5TCtI6oXf
x4qOMbqDjPbTr9Gpw3289WlqZYNJs1pGdeD4zL2HiOmwXq75GCNgxe0bv1hjnhNG
b/bggAkpN/0n9r5BCQ32FWBg6S26VPOzg7//l6M38EBtQyakBVnS/064SP3aGTx4
8oCKmrNLQXyQz7mdskOA9hwyEkF1+hCX2kJFsoZ9iN0TDYKzzJYP8cBLzZe6bfPE
dqsAc36W8FIHATfo7wrbTVABP61wJcHgocSLICRYmGQrSMTqREl9P+nDDEWl/wcc
vKd1kyYhnskcz7GVdFtSDnpcHp6W/aiLwJUFCpAkgz2GBzrt1MtGxnFrXl6s8cc4
bSK/JClIBhMvBas4Tw==
=gm8R
-----END PGP SIGNATURE-----
Merge tag 'bounds-fixes-v5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull bounds fixes from Kees Cook:
"These are a handful of buffer and array bounds fixes that I've been
carrying in preparation for the coming memcpy improvements and the
enabling of '-Warray-bounds' globally.
There are additional similar fixes in other maintainer's trees, but
these ended up getting carried by me. :)"
* tag 'bounds-fixes-v5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
media: omap3isp: Use struct_group() for memcpy() region
tpm: vtpm_proxy: Check length to avoid compiler warning
alpha: Silence -Warray-bounds warnings
m68k: cmpxchg: Dereference matching size
intel_th: msu: Use memset_startat() for clearing hw header
KVM: x86: Replace memset() "optimization" with normal per-field writes
The overwhelming bulk of this pull request is a change from Uwe
Kleine-König which changes the return type of the remove() function to
void as part of some wider work he's doing to do this for all bus types,
causing updates to most SPI device drivers. The branch with that on has
been cross merged with a couple of other trees which added new SPI
drivers this cycle, I'm not expecting any build issues resulting from
the change.
Otherwise it's been a relatively quiet release with some new device
support, a few minor features and the welcome completion of the
conversion of the subsystem to use GPIO descriptors rather than numbers:
- Change return type of remove() to void.
- Completion of the conversion of SPI controller drivers to use GPIO
descriptors rather than numbers.
- Quite a few DT schema conversions.
- Support for multiple SPI devices on a bus in ACPI systems.
- Big overhaul of the PXA2xx SPI driver.
- Support for AMD AMDI0062, Intel Raptor Lake, Mediatek MT7986 and
MT8186, nVidia Tegra210 and Tegra234, Renesas RZ/V2L, Tesla FSD and
Sunplus SP7021.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmI4b+8ACgkQJNaLcl1U
h9AB+Qf/WhPzDSCdhK1repnSmEpRNs/J6hItmY2H6pTQaWALpfTB0+p1Nb5tAotg
fHbu6a2AsiiwWt+tDal44GFYhS0CDSOT4hqgLV8msyDDPPJqqr7A2dbu7YrCjTVI
TgNZNwxW7c2LgqBXR9GV7NPWYoxYxveoYh+L+05MSuSQxSOvPl6LUZiZPnPufQM6
dCpEh19atrtasFg3rFnslWBd2C3h8hb6YT7vUZs9gxhg3FvSgpYQwzz5SfFgHXK6
Rg07m8fDTSjf2qo1C4pc/d1Ni1xBe7aHKMtjtR3jJ4q8QqiawfCcvvOep/Iaec1+
s3qnDthohWMJoF1W6ERf3HiAgNIfhg==
=4tlR
-----END PGP SIGNATURE-----
Merge tag 'spi-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi updates from Mark Brown:
"The overwhelming bulk of this pull request is a change from Uwe
Kleine-König which changes the return type of the remove() function to
void as part of some wider work he's doing to do this for all bus
types, causing updates to most SPI device drivers. The branch with
that on has been cross merged with a couple of other trees which added
new SPI drivers this cycle, I'm not expecting any build issues
resulting from the change.
Otherwise it's been a relatively quiet release with some new device
support, a few minor features and the welcome completion of the
conversion of the subsystem to use GPIO descriptors rather than
numbers:
- Change return type of remove() to void.
- Completion of the conversion of SPI controller drivers to use GPIO
descriptors rather than numbers.
- Quite a few DT schema conversions.
- Support for multiple SPI devices on a bus in ACPI systems.
- Big overhaul of the PXA2xx SPI driver.
- Support for AMD AMDI0062, Intel Raptor Lake, Mediatek MT7986 and
MT8186, nVidia Tegra210 and Tegra234, Renesas RZ/V2L, Tesla FSD and
Sunplus SP7021"
[ And this is obviously where that spi change that snuck into the
regulator tree _should_ have been :^]
* tag 'spi-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (124 commits)
spi: fsi: Implement a timeout for polling status
spi: Fix erroneous sgs value with min_t()
spi: tegra20: Use of_device_get_match_data()
spi: mediatek: add ipm design support for MT7986
spi: Add compatible for MT7986
spi: sun4i: fix typos in comments
spi: mediatek: support tick_delay without enhance_timing
spi: Update clock-names property for arm pl022
spi: rockchip-sfc: fix platform_get_irq.cocci warning
spi: s3c64xx: Add spi port configuration for Tesla FSD SoC
spi: dt-bindings: samsung: Add fsd spi compatible
spi: topcliff-pch: Prevent usage of potentially stale DMA device
spi: tegra210-quad: combined sequence mode
spi: tegra210-quad: add acpi support
spi: npcm-fiu: Fix typo ("npxm")
spi: Fix Tegra QSPI example
spi: qup: replace spin_lock_irqsave by spin_lock in hard IRQ
spi: cadence: fix platform_get_irq.cocci warning
spi: Update NXP Flexspi maintainer details
dt-bindings: mfd: maxim,max77802: Convert to dtschema
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmIzwtEACgkQSfxwEqXe
A67NCBAA1+U01HXx4ethmmy1m2pXHAIwngI7PP0QzyZtmoloWockdN1lRfQ1C0uJ
Whk/9Hc9G7iujznsxOnCS+LeNwRzd7CjtFbTgK+yGIRKwL9GFcVwA5nrifP9TjqZ
FWmTIomjjmA06YRYsNOdNSQdN6DdpQz8xLw0EqVOZerI4ITFErYlW8lLqOOKY99N
f9glQK75kh41SUgo+K3JSn46fhB95HldL6dYSZzjQ6QsVKBQuQTDE9ryfrH2XZDw
xI2nf/ycXPUBv7Bb+0op+7ES++CoDigM2nIyxapEj3ZkpplxL4M+cCIHq3Juzfwm
jDdbZbs5SqDszOQM/dvCJSR+S/D3QIKdv3fwwWHDTigByZdgpudT3rr9k7dY60Z8
aNvOzNWOzGH9/0boLl55WysF6cBQnazbgtzeWpzeuWFhAyfxN/DJx2sf8U+TmN6n
3bDUafamAvmkkIOoHUzOXfjo2lhXxlmRZ40rWVNX5JvcJj5+5jRmTawrQj+9fn8/
MhiIZ6KBDV1OxPwJzG6jm++JP6rgXfXsxduomO7cIEWs10itf/cE8WD9qJrtZTtg
kfjYUguFOd/QyzY0A1w6FD865vy8YhATk71Ywgwj9AI+cfH8QUajpDkXOutjop8x
8HBxIGx6Itgzilfuo5jpJxlVhNO3G6v1fX/A+mUMAfHufkmnfiQ=
=cyDR
-----END PGP SIGNATURE-----
Merge tag 'random-5.18-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"There have been a few important changes to the RNG's crypto, but the
intent for 5.18 has been to shore up the existing design as much as
possible with modern cryptographic functions and proven constructions,
rather than actually changing up anything fundamental to the RNG's
design.
So it's still the same old RNG at its core as before: it still counts
entropy bits, and collects from the various sources with the same
heuristics as before, and so forth. However, the cryptographic
algorithms that transform that entropic data into safe random numbers
have been modernized.
Just as important, if not more, is that the code has been cleaned up
and re-documented. As one of the first drivers in Linux, going back to
1.3.30, its general style and organization was showing its age and
becoming both a maintenance burden and an auditability impediment.
Hopefully this provides a more solid foundation to build on for the
future. I encourage you to open up the file in full, and maybe you'll
remark, "oh, that's what it's doing," and enjoy reading it. That, at
least, is the eventual goal, which this pull begins working toward.
Here's a summary of the various patches in this pull:
- /dev/urandom and /dev/random now do the same thing, per the patch
we discussed on the list. I think this is worth trying out. If it
does appear problematic, I've made sure to keep it standalone and
revertible without any conflicts.
- Fixes and cleanups for numerous integer type problems, locking
issues, and general code quality concerns.
- The input pool's LFSR has been replaced with a cryptographically
secure hash function, which has security and performance benefits
alike, and consequently allows us to count entropy bits linearly.
- The pre-init injection now uses a real hash function too, instead
of an LFSR or vanilla xor.
- The interrupt handler's fast_mix() function now uses one round of
SipHash, rather than the fake crypto that was there before.
- All additions of RDRAND and RDSEED now go through the input pool's
hash function, in part to mitigate ridiculous hypothetical CPU
backdoors, but more so to have a consistent interface for ingesting
entropy that's easy to analyze, making everything happen one way,
instead of a potpourri of different ways.
- The crng now works on per-cpu data, while also being in accordance
with the actual "fast key erasure RNG" design. This allows us to
fix several boot-time race complications associated with the prior
dynamically allocated model, eliminates much locking, and makes our
backtrack protection more robust.
- Batched entropy now erases doled out values so that it's backtrack
resistant.
- Working closely with Sebastian, the interrupt handler no longer
needs to take any locks at all, as we punt the
synchronized/expensive operations to a workqueue. This is
especially nice for PREEMPT_RT, where taking spinlocks in irq
context is problematic. It also makes the handler faster for the
rest of us.
- Also working with Sebastian, we now do the right thing on CPU
hotplug, so that we don't use stale entropy or fail to accumulate
new entropy when CPUs come back online.
- We handle virtual machines that fork / clone / snapshot, using the
"vmgenid" ACPI specification for retrieving a unique new RNG seed,
which we can use to also make WireGuard (and in the future, other
things) safe across VM forks.
- Around boot time, we now try to reseed more often if enough entropy
is available, before settling on the usual 5 minute schedule.
- Last, but certainly not least, the documentation in the file has
been updated considerably"
* tag 'random-5.18-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (60 commits)
random: check for signal and try earlier when generating entropy
random: reseed more often immediately after booting
random: make consistent usage of crng_ready()
random: use SipHash as interrupt entropy accumulator
wireguard: device: clear keys on VM fork
random: provide notifier for VM fork
random: replace custom notifier chain with standard one
random: do not export add_vmfork_randomness() unless needed
virt: vmgenid: notify RNG of VM fork and supply generation ID
ACPI: allow longer device IDs
random: add mechanism for VM forks to reinitialize crng
random: don't let 644 read-only sysctls be written to
random: give sysctl_random_min_urandom_seed a more sensible value
random: block in /dev/urandom
random: do crng pre-init loading in worker rather than irq
random: unify cycles_t and jiffies usage and types
random: cleanup UUID handling
random: only wake up writers after zap if threshold was passed
random: round-robin registers as ulong, not u32
random: clear fast pool, crng, and batches in cpuhp bring up
...
The corresponding API for clk_prepare_enable is clk_disable_unprepare,
other than clk_disable_unprepare.
Fix this by changing clk_disable to clk_disable_unprepare.
Fixes: beca35d05c ("hwrng: nomadik - use clk_prepare_enable()")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rather than waiting a full second in an interruptable waiter before
trying to generate entropy, try to generate entropy first and wait
second. While waiting one second might give an extra second for getting
entropy from elsewhere, we're already pretty late in the init process
here, and whatever else is generating entropy will still continue to
contribute. This has implications on signal handling: we call
try_to_generate_entropy() from wait_for_random_bytes(), and
wait_for_random_bytes() always uses wait_event_interruptible_timeout()
when waiting, since it's called by userspace code in restartable
contexts, where signals can pend. Since try_to_generate_entropy() now
runs first, if a signal is pending, it's necessary for
try_to_generate_entropy() to check for signals, since it won't hit the
wait until after try_to_generate_entropy() has returned. And even before
this change, when entering a busy loop in try_to_generate_entropy(), we
should have been checking to see if any signals are pending, so that a
process doesn't get stuck in that loop longer than expected.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
In order to chip away at the "premature first" problem, we augment our
existing entropy accounting with more frequent reseedings at boot.
The idea is that at boot, we're getting entropy from various places, and
we're not very sure which of early boot entropy is good and which isn't.
Even when we're crediting the entropy, we're still not totally certain
that it's any good. Since boot is the one time (aside from a compromise)
that we have zero entropy, it's important that we shepherd entropy into
the crng fairly often.
At the same time, we don't want a "premature next" problem, whereby an
attacker can brute force individual bits of added entropy. In lieu of
going full-on Fortuna (for now), we can pick a simpler strategy of just
reseeding more often during the first 5 minutes after boot. This is
still bounded by the 256-bit entropy credit requirement, so we'll skip a
reseeding if we haven't reached that, but in case entropy /is/ coming
in, this ensures that it makes its way into the crng rather rapidly
during these early stages.
Ordinarily we reseed if the previous reseeding is 300 seconds old. This
commit changes things so that for the first 600 seconds of boot time, we
reseed if the previous reseeding is uptime / 2 seconds old. That means
that we'll reseed at the very least double the uptime of the previous
reseeding.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Rather than sometimes checking `crng_init < 2`, we should always use the
crng_ready() macro, so that should we change anything later, it's
consistent. Additionally, that macro already has a likely() around it,
which means we don't need to open code our own likely() and unlikely()
annotations.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
The current fast_mix() function is a piece of classic mailing list
crypto, where it just sort of sprung up by an anonymous author without a
lot of real analysis of what precisely it was accomplishing. As an ARX
permutation alone, there are some easily searchable differential trails
in it, and as a means of preventing malicious interrupts, it completely
fails, since it xors new data into the entire state every time. It can't
really be analyzed as a random permutation, because it clearly isn't,
and it can't be analyzed as an interesting linear algebraic structure
either, because it's also not that. There really is very little one can
say about it in terms of entropy accumulation. It might diffuse bits,
some of the time, maybe, we hope, I guess. But for the most part, it
fails to accomplish anything concrete.
As a reminder, the simple goal of add_interrupt_randomness() is to
simply accumulate entropy until ~64 interrupts have elapsed, and then
dump it into the main input pool, which uses a cryptographic hash.
It would be nice to have something cryptographically strong in the
interrupt handler itself, in case a malicious interrupt compromises a
per-cpu fast pool within the 64 interrupts / 1 second window, and then
inside of that same window somehow can control its return address and
cycle counter, even if that's a bit far fetched. However, with a very
CPU-limited budget, actually doing that remains an active research
project (and perhaps there'll be something useful for Linux to come out
of it). And while the abundance of caution would be nice, this isn't
*currently* the security model, and we don't yet have a fast enough
solution to make it our security model. Plus there's not exactly a
pressing need to do that. (And for the avoidance of doubt, the actual
cluster of 64 accumulated interrupts still gets dumped into our
cryptographically secure input pool.)
So, for now we are going to stick with the existing interrupt security
model, which assumes that each cluster of 64 interrupt data samples is
mostly non-malicious and not colluding with an infoleaker. With this as
our goal, we have a few more choices, simply aiming to accumulate
entropy, while discarding the least amount of it.
We know from <https://eprint.iacr.org/2019/198> that random oracles,
instantiated as computational hash functions, make good entropy
accumulators and extractors, which is the justification for using
BLAKE2s in the main input pool. As mentioned, we don't have that luxury
here, but we also don't have the same security model requirements,
because we're assuming that there aren't malicious inputs. A
pseudorandom function instance can approximately behave like a random
oracle, provided that the key is uniformly random. But since we're not
concerned with malicious inputs, we can pick a fixed key, which is not
secret, knowing that "nature" won't interact with a sufficiently chosen
fixed key by accident. So we pick a PRF with a fixed initial key, and
accumulate into it continuously, dumping the result every 64 interrupts
into our cryptographically secure input pool.
For this, we make use of SipHash-1-x on 64-bit and HalfSipHash-1-x on
32-bit, which are already in use in the kernel's hsiphash family of
functions and achieve the same performance as the function they replace.
It would be nice to do two rounds, but we don't exactly have the CPU
budget handy for that, and one round alone is already sufficient.
As mentioned, we start with a fixed initial key (zeros is fine), and
allow SipHash's symmetry breaking constants to turn that into a useful
starting point. Also, since we're dumping the result (or half of it on
64-bit so as to tax our hash function the same amount on all platforms)
into the cryptographically secure input pool, there's no point in
finalizing SipHash's output, since it'll wind up being finalized by
something much stronger. This means that all we need to do is use the
ordinary round function word-by-word, as normal SipHash does.
Simplified, the flow is as follows:
Initialize:
siphash_state_t state;
siphash_init(&state, key={0, 0, 0, 0});
Update (accumulate) on interrupt:
siphash_update(&state, interrupt_data_and_timing);
Dump into input pool after 64 interrupts:
blake2s_update(&input_pool, &state, sizeof(state) / 2);
The result of all of this is that the security model is unchanged from
before -- we assume non-malicious inputs -- yet we now implement that
model with a stronger argument. I would like to emphasize, again, that
the purpose of this commit is to improve the existing design, by making
it analyzable, without changing any fundamental assumptions. There may
well be value down the road in changing up the existing design, using
something cryptographically strong, or simply using a ring buffer of
samples rather than having a fast_mix() at all, or changing which and
how much data we collect each interrupt so that we can use something
linear, or a variety of other ideas. This commit does not invalidate the
potential for those in the future.
For example, in the future, if we're able to characterize the data we're
collecting on each interrupt, we may be able to inch toward information
theoretic accumulators. <https://eprint.iacr.org/2021/523> shows that `s
= ror32(s, 7) ^ x` and `s = ror64(s, 19) ^ x` make very good
accumulators for 2-monotone distributions, which would apply to
timestamp counters, like random_get_entropy() or jiffies, but would not
apply to our current combination of the two values, or to the various
function addresses and register values we mix in. Alternatively,
<https://eprint.iacr.org/2021/1002> shows that max-period linear
functions with no non-trivial invariant subspace make good extractors,
used in the form `s = f(s) ^ x`. However, this only works if the input
data is both identical and independent, and obviously a collection of
address values and counters fails; so it goes with theoretical papers.
Future directions here may involve trying to characterize more precisely
what we actually need to collect in the interrupt handler, and building
something specific around that.
However, as mentioned, the morass of data we're gathering at the
interrupt handler presently defies characterization, and so we use
SipHash for now, which works well and performs well.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Drivers such as WireGuard need to learn when VMs fork in order to clear
sessions. This commit provides a simple notifier_block for that, with a
register and unregister function. When no VM fork detection is compiled
in, this turns into a no-op, similar to how the power notifier works.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
We previously rolled our own randomness readiness notifier, which only
has two users in the whole kernel. Replace this with a more standard
atomic notifier block that serves the same purpose with less code. Also
unexport the symbols, because no modules use it, only unconditional
builtins. The only drawback is that it's possible for a notification
handler returning the "stop" code to prevent further processing, but
given that there are only two users, and that we're unexporting this
anyway, that doesn't seem like a significant drawback for the
simplification we receive here.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Since add_vmfork_randomness() is only called from vmgenid.o, we can
guard it in CONFIG_VMGENID, similarly to how we do with
add_disk_randomness() and CONFIG_BLOCK. If we ever have multiple things
calling into add_vmfork_randomness(), we can add another shared Kconfig
symbol for that, but for now, this is good enough. Even though
add_vmfork_randomess() is a pretty small function, removing it means
that there are only calls to crng_reseed(false) and none to
crng_reseed(true), which means the compiler can constant propagate the
false, removing branches from crng_reseed() and its descendants.
Additionally, we don't even need the symbol to be exported if
CONFIG_VMGENID is not a module, so conditionalize that too.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When a VM forks, we must immediately mix in additional information to
the stream of random output so that two forks or a rollback don't
produce the same stream of random numbers, which could have catastrophic
cryptographic consequences. This commit adds a simple API, add_vmfork_
randomness(), for that, by force reseeding the crng.
This has the added benefit of also draining the entropy pool and setting
its timer back, so that any old entropy that was there prior -- which
could have already been used by a different fork, or generally gone
stale -- does not contribute to the accounting of the next 256 bits.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jann Horn <jannh@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
We leave around these old sysctls for compatibility, and we keep them
"writable" for compatibility, but even after writing, we should keep
reporting the same value. This is consistent with how userspaces tend to
use sysctl_random_write_wakeup_bits, writing to it, and then later
reading from it and using the value.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This isn't used by anything or anywhere, but we can't delete it due to
compatibility. So at least give it the correct value of what it's
supposed to be instead of a garbage one.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This topic has come up countless times, and usually doesn't go anywhere.
This time I thought I'd bring it up with a slightly narrower focus,
updated for some developments over the last three years: we finally can
make /dev/urandom always secure, in light of the fact that our RNG is
now always seeded.
Ever since Linus' 50ee7529ec ("random: try to actively add entropy
rather than passively wait for it"), the RNG does a haveged-style jitter
dance around the scheduler, in order to produce entropy (and credit it)
for the case when we're stuck in wait_for_random_bytes(). How ever you
feel about the Linus Jitter Dance is beside the point: it's been there
for three years and usually gets the RNG initialized in a second or so.
As a matter of fact, this is what happens currently when people use
getrandom(). It's already there and working, and most people have been
using it for years without realizing.
So, given that the kernel has grown this mechanism for seeding itself
from nothing, and that this procedure happens pretty fast, maybe there's
no point any longer in having /dev/urandom give insecure bytes. In the
past we didn't want the boot process to deadlock, which was
understandable. But now, in the worst case, a second goes by, and the
problem is resolved. It seems like maybe we're finally at a point when
we can get rid of the infamous "urandom read hole".
The one slight drawback is that the Linus Jitter Dance relies on random_
get_entropy() being implemented. The first lines of try_to_generate_
entropy() are:
stack.now = random_get_entropy();
if (stack.now == random_get_entropy())
return;
On most platforms, random_get_entropy() is simply aliased to get_cycles().
The number of machines without a cycle counter or some other
implementation of random_get_entropy() in 2022, which can also run a
mainline kernel, and at the same time have a both broken and out of date
userspace that relies on /dev/urandom never blocking at boot is thought
to be exceedingly low. And to be clear: those museum pieces without
cycle counters will continue to run Linux just fine, and even
/dev/urandom will be operable just like before; the RNG just needs to be
seeded first through the usual means, which should already be the case
now.
On systems that really do want unseeded randomness, we already offer
getrandom(GRND_INSECURE), which is in use by, e.g., systemd for seeding
their hash tables at boot. Nothing in this commit would affect
GRND_INSECURE, and it remains the means of getting those types of random
numbers.
This patch goes a long way toward eliminating a long overdue userspace
crypto footgun. After several decades of endless user confusion, we will
finally be able to say, "use any single one of our random interfaces and
you'll be fine. They're all the same. It doesn't matter." And that, I
think, is really something. Finally all of those blog posts and
disagreeing forums and contradictory articles will all become correct
about whatever they happened to recommend, and along with it, a whole
class of vulnerabilities eliminated.
With very minimal downside, we're finally in a position where we can
make this change.
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Guo Ren <guoren@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Joshua Kinard <kumba@gentoo.org>
Cc: David Laight <David.Laight@aculab.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Lennart Poettering <mzxreary@0pointer.de>
Cc: Konstantin Ryabitsev <konstantin@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
As part of the series conversion to remove nested TPM operations:
https://lore.kernel.org/all/20190205224723.19671-1-jarkko.sakkinen@linux.intel.com/
exposure of the chip->tpm_mutex was removed from much of the upper
level code. In this conversion, tpm2_del_space() was missed. This
didn't matter much because it's usually called closely after a
converted operation, so there's only a very tiny race window where the
chip can be removed before the space flushing is done which causes a
NULL deref on the mutex. However, there are reports of this window
being hit in practice, so fix this by converting tpm2_del_space() to
use tpm_try_get_ops(), which performs all the teardown checks before
acquring the mutex.
Cc: stable@vger.kernel.org # 5.4.x
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
The following sequence of operations results in a refcount warning:
1. Open device /dev/tpmrm.
2. Remove module tpm_tis_spi.
3. Write a TPM command to the file descriptor opened at step 1.
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1161 at lib/refcount.c:25 kobject_get+0xa0/0xa4
refcount_t: addition on 0; use-after-free.
Modules linked in: tpm_tis_spi tpm_tis_core tpm mdio_bcm_unimac brcmfmac
sha256_generic libsha256 sha256_arm hci_uart btbcm bluetooth cfg80211 vc4
brcmutil ecdh_generic ecc snd_soc_core crc32_arm_ce libaes
raspberrypi_hwmon ac97_bus snd_pcm_dmaengine bcm2711_thermal snd_pcm
snd_timer genet snd phy_generic soundcore [last unloaded: spi_bcm2835]
CPU: 3 PID: 1161 Comm: hold_open Not tainted 5.10.0ls-main-dirty #2
Hardware name: BCM2711
[<c0410c3c>] (unwind_backtrace) from [<c040b580>] (show_stack+0x10/0x14)
[<c040b580>] (show_stack) from [<c1092174>] (dump_stack+0xc4/0xd8)
[<c1092174>] (dump_stack) from [<c0445a30>] (__warn+0x104/0x108)
[<c0445a30>] (__warn) from [<c0445aa8>] (warn_slowpath_fmt+0x74/0xb8)
[<c0445aa8>] (warn_slowpath_fmt) from [<c08435d0>] (kobject_get+0xa0/0xa4)
[<c08435d0>] (kobject_get) from [<bf0a715c>] (tpm_try_get_ops+0x14/0x54 [tpm])
[<bf0a715c>] (tpm_try_get_ops [tpm]) from [<bf0a7d6c>] (tpm_common_write+0x38/0x60 [tpm])
[<bf0a7d6c>] (tpm_common_write [tpm]) from [<c05a7ac0>] (vfs_write+0xc4/0x3c0)
[<c05a7ac0>] (vfs_write) from [<c05a7ee4>] (ksys_write+0x58/0xcc)
[<c05a7ee4>] (ksys_write) from [<c04001a0>] (ret_fast_syscall+0x0/0x4c)
Exception stack(0xc226bfa8 to 0xc226bff0)
bfa0: 00000000 000105b4 00000003 beafe664 00000014 00000000
bfc0: 00000000 000105b4 000103f8 00000004 00000000 00000000 b6f9c000 beafe684
bfe0: 0000006c beafe648 0001056c b6eb6944
---[ end trace d4b8409def9b8b1f ]---
The reason for this warning is the attempt to get the chip->dev reference
in tpm_common_write() although the reference counter is already zero.
Since commit 8979b02aaf ("tpm: Fix reference count to main device") the
extra reference used to prevent a premature zero counter is never taken,
because the required TPM_CHIP_FLAG_TPM2 flag is never set.
Fix this by moving the TPM 2 character device handling from
tpm_chip_alloc() to tpm_add_char_device() which is called at a later point
in time when the flag has been set in case of TPM2.
Commit fdc915f7f7 ("tpm: expose spaces via a device link /dev/tpmrm<n>")
already introduced function tpm_devs_release() to release the extra
reference but did not implement the required put on chip->devs that results
in the call of this function.
Fix this by putting chip->devs in tpm_chip_unregister().
Finally move the new implementation for the TPM 2 handling into a new
function to avoid multiple checks for the TPM_CHIP_FLAG_TPM2 flag in the
good case and error cases.
Cc: stable@vger.kernel.org
Fixes: fdc915f7f7 ("tpm: expose spaces via a device link /dev/tpmrm<n>")
Fixes: 8979b02aaf ("tpm: Fix reference count to main device")
Co-developed-by: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Make use of the struct_size() helper instead of an open-coded version,
in order to avoid any potential type mistakes or integer overflows that,
in the worse scenario, could lead to heap overflows.
Also, address the following sparse warning:
drivers/char/tpm/xen-tpmfront.c:131:16: warning: using sizeof on a flexible structure
Link: https://github.com/KSPP/linux/issues/160
Link: https://github.com/KSPP/linux/issues/174
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
When an invalid (non existing) handle is used in a TPM command,
that uses the resource manager interface (/dev/tpmrm0) the resource
manager tries to load it from its internal cache, but fails and
the tpm_dev_transmit returns an -EINVAL error to the caller.
The existing async handler doesn't handle these error cases
currently and the condition in the poll handler never returns
mask with EPOLLIN set.
The result is that the poll call blocks and the application gets stuck
until the user_read_timer wakes it up after 120 sec.
Change the tpm_dev_async_work function to handle error conditions
returned from tpm_dev_transmit they are also reflected in the poll mask
and a correct error code could passed back to the caller.
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: <linux-integrity@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: <linux-kernel@vger.kernel.org>
Fixes: 9e1b74a63f ("tpm: add support for nonblocking operation")
Tested-by: Jarkko Sakkinen<jarkko@kernel.org>
Signed-off-by: Tadeusz Struk <tstruk@gmail.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
A common pattern for device reset is currently:
vdev->config->reset(vdev);
.. cleanup ..
reset prevents new interrupts from arriving and waits for interrupt
handlers to finish.
However if - as is common - the handler queues a work request which is
flushed during the cleanup stage, we have code adding buffers / trying
to get buffers while device is reset. Not good.
This was reproduced by running
modprobe virtio_console
modprobe -r virtio_console
in a loop.
Fix this up by calling virtio_break_device + flush before reset.
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1786239
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Fix following coccicheck warning:
./drivers/char/hw_random/cavium-rng-vf.c:182:17-20: ERROR:
pdev is NULL but dereferenced.
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: Sunil Goutham <sgoutham@marvell.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use __maybe_unused and pm_ptr() for pm ops.
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move set of TRNG_HALFR in atmel_trng_init() as this function is
also called on resume path. In case of SAMA7G5 where backup and
self-refresh PM mode is available most of the SoC parts are
powered of (including TRNG) when entering suspend. In that case
on resuming path TRNG_HALFR should also be re-configured.
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
s/atmel_trng_disable/atmel_trng_cleanup/g and
s/atmel_trng_enable/atmel_trng_init/g to cope with
struct hwrng::{init, cleanup} members.
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add wait for ready support on read.
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Taking spinlocks from IRQ context is generally problematic for
PREEMPT_RT. That is, in part, why we take trylocks instead. However, a
spin_try_lock() is also problematic since another spin_lock() invocation
can potentially PI-boost the wrong task, as the spin_try_lock() is
invoked from an IRQ-context, so the task on CPU (random task or idle) is
not the actual owner.
Additionally, by deferring the crng pre-init loading to the worker, we
can use the cryptographic hash function rather than xor, which is
perhaps a meaningful difference when considering this data has only been
through the relatively weak fast_mix() function.
The biggest downside of this approach is that the pre-init loading is
now deferred until later, which means things that need random numbers
after interrupts are enabled, but before workqueues are running -- or
before this particular worker manages to run -- are going to get into
trouble. Hopefully in the real world, this window is rather small,
especially since this code won't run until 64 interrupts had occurred.
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
random_get_entropy() returns a cycles_t, not an unsigned long, which is
sometimes 64 bits on various 32-bit platforms, including x86.
Conversely, jiffies is always unsigned long. This commit fixes things to
use cycles_t for fields that use random_get_entropy(), named "cycles",
and unsigned long for fields that use jiffies, named "now". It's also
good to mix in a cycles_t and a jiffies in the same way for both
add_device_randomness and add_timer_randomness, rather than using xor in
one case. Finally, we unify the order of these volatile reads, always
reading the more precise cycles counter, and then jiffies, so that the
cycle counter is as close to the event as possible.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Rather than hard coding various lengths, we can use the right constants.
Strings should be `char *` while buffers should be `u8 *`. Rather than
have a nonsensical and unused maxlength, just remove it. Finally, use
snprintf instead of sprintf, just out of good hygiene.
As well, remove the old comment about returning a binary UUID via the
binary sysctl syscall. That syscall was removed from the kernel in 5.5,
and actually, the "uuid_strategy" function and related infrastructure
for even serving it via the binary sysctl syscall was removed with
894d249115 ("sysctl drivers: Remove dead binary sysctl support") back
in 2.6.33.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When building with -Warray-bounds under GCC 11.2, this warning was
emitted:
In function 'memset',
inlined from 'vtpm_proxy_fops_read' at drivers/char/tpm/tpm_vtpm_proxy.c:102:2:
./include/linux/fortify-string.h:43:33: warning: '__builtin_memset' pointer overflow between offset 164 and size [2147483648, 4294967295]
[-Warray-bounds]
43 | #define __underlying_memset __builtin_memset
| ^
This warning appears to be triggered due to the "count < len"
check in vtpm_proxy_fops_read() splitting the CFG[1], and the compiler
attempting to reason about the possible value range in len compared
to the buffer size.
In order to silence this warning, and to keep this code robust if the
use of proxy_dev->req_len ever changes in the future, explicitly check
the size of len before reaching the memset().
[1] https://lore.kernel.org/lkml/CAG48ez1iTF9KegKJrW5a3WzXgCPZJ73nS2_e5esKJRppdzvv8g@mail.gmail.com
Cc: Peter Huewe <peterhuewe@gmx.de>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: linux-integrity@vger.kernel.org
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Link: https://lore.kernel.org/lkml/4b59d305-6858-1514-751a-37853ad777be@linux.ibm.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220119184354.3367603-1-keescook@chromium.org
- The TEE shared memory pool based on two pools is replaced with a single
somewhat more capable pool.
- Replaces tee_shm_alloc() and tee_shm_register() with new functions
easier to use and maintain. The TEE subsystem and the TEE drivers are
updated to use the new functions instead.
- The TEE based Trusted keys routines are updated to use the new
simplified functions above.
- The OP-TEE based rng driver is updated to use the new simplified
functions above.
- The TEE_SHM-flags are refactored to better match their usage
-----BEGIN PGP SIGNATURE-----
iQJOBAABCgA4FiEEFV+gSSXZJY9ZyuB5LinzTIcAHJcFAmIP5coaHGplbnMud2lr
bGFuZGVyQGxpbmFyby5vcmcACgkQLinzTIcAHJdLQg/9F+9wtUsM3sJAitaB0DN1
tTd8Iwt0Ir8khuac56/pMcVlFF1dwBAFy5vnAKKSGF0nzToyEhOc4uRsOA0vvQ4s
EtTX7ONuHjPR18faxJbtLHPl3tSjGxkwtrBo5IvCapxaYsJK8x2XEamr9ih7r5nZ
KwSTNgiGZ+WM+IgwgZIFfOoB4pXnkQZAf2UBAdK2W1dVpIOoJzLpiS28DNgA08C5
sUduKi2GvmaieTqu6QHY2FJNRAVgYrzuyXIgfQ+Kjsa/GDMZ6CS9DB3BBt1D4xyM
OzIl4/Y2nZqJ6EFhuFtWIQIuMLlw0HiM08d/PC4vW05EwKmeJ5zTs+I9nJQEnPKN
n4SfwqKIIq5KeYeT0ByVuGwm/JET4YXvL3d9EqkDtFAwnkT0Jx7o5GgFQbj1+0Z9
RvmWWy7VFPRhvLGsPpkuJnGc9rD4XVtzFw92K1VRmarQnjQFmD2y7DvNEEXokLCv
Z4GV3bz7ntmURJsOoMpt56i9WboXkjFmsaIqg09ShPRC9EB+9RMvRNEwE72FZmlH
RIMl5Vx4SkYbY1FlaiJ9BSctcdQD9HES17D5z5l6Im3JjMbFeKvLLQCJ/Ch3vxNj
OujRhXsEO2g9uUXwh0OveK8mEh3bz+GE/uj+c7xZXb95ImswyK9fo9uLvG+Z6JVk
n9+xgsKUZlHwHkoofuXor4k=
=xOBv
-----END PGP SIGNATURE-----
gpgsig -----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmIY/jcACgkQmmx57+YA
GNk94w//VHkLJADLSqwh8AZXUwpBN3nCKtsEay7HbRmC9Nh4Zm/TQyYx79QmRnnK
kDxLVAFTapFLxQVo441jPfnjp2cSW0Oomhv3zLIPNE44Gb0jF+hqfbN3sLJLk5hZ
EiiRxnMEJ6KCbvLEXaSUqRfGoYkU98HF6vNzN0nme6Zq9f11GO7RsUGL1nLNrU7R
mGj4O1hr6QVWMCY5vvEYLkGZFj54jVb64UVYzmyw8Nt5IIbY2upCQFoeQYHtiIle
h354Wn3PgE+txzSKGGH0dw9hq2JPNFSwmx3psvw+9HUjYXGC8rfaJeRNTEC9oIaC
ALXqNnnu/kkhKt6rfkVaVuJFjefn/WjTCfEFyCRblwmNdi+DZfkcCkDh0Tj/4F6X
/hoLYC4XXt+bxvdi8I6+xH8ho+Zwsh3F9WXWAU+p1fR5/kOTpvYe10k+59lK+AUK
bbPCN2WQ+IB66Mt8OXAVRycXKrbGU32QTioWF7Jv5/ZgF1aTeAnzyoRnT9OI8FMz
sxqSNd/Lasc8czP+xdTrfisOy+7vRfSOPDgZ4BUVQLAZIDmuqiJo3Rtu4J72aZx2
Pyk680b3iGKORBGVFznF8DOWxNdbUbuQFxUzIGGKHtsy9++fyZzrwtjASmT9Bzef
ec6FVInEKt+f6nuMUZrMWRaWIZw3KGqWRnkX47k86PsCAh3HDvo=
=0vIF
-----END PGP SIGNATURE-----
Merge tag 'tee-shm-for-v5.18' of git://git.linaro.org:/people/jens.wiklander/linux-tee into arm/drivers
TEE shared memory cleanup for v5.18
- The TEE shared memory pool based on two pools is replaced with a single
somewhat more capable pool.
- Replaces tee_shm_alloc() and tee_shm_register() with new functions
easier to use and maintain. The TEE subsystem and the TEE drivers are
updated to use the new functions instead.
- The TEE based Trusted keys routines are updated to use the new
simplified functions above.
- The OP-TEE based rng driver is updated to use the new simplified
functions above.
- The TEE_SHM-flags are refactored to better match their usage
* tag 'tee-shm-for-v5.18' of git://git.linaro.org:/people/jens.wiklander/linux-tee:
tee: refactor TEE_SHM_* flags
tee: replace tee_shm_register()
KEYS: trusted: tee: use tee_shm_register_kernel_buf()
tee: add tee_shm_register_{user,kernel}_buf()
optee: add optee_pool_op_free_helper()
tee: replace tee_shm_alloc()
tee: simplify shm pool handling
tee: add tee_shm_alloc_user_buf()
tee: remove unused tee_shm_pool_alloc_res_mem()
hwrng: optee-rng: use tee_shm_alloc_kernel_buf()
optee: use driver internal tee_context for some rpc
Link: https://lore.kernel.org/r/20220218184802.GA968155@jade
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The only time that we need to wake up /dev/random writers on
RNDCLEARPOOL/RNDZAPPOOL is when we're changing from a value that is
greater than or equal to POOL_MIN_BITS to zero, because if we're
changing from below POOL_MIN_BITS to zero, the writers are already
unblocked.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When the interrupt handler does not have a valid cycle counter, it calls
get_reg() to read a register from the irq stack, in round-robin.
Currently it does this assuming that registers are 32-bit. This is
_probably_ the case, and probably all platforms without cycle counters
are in fact 32-bit platforms. But maybe not, and either way, it's not
quite correct. This commit fixes that to deal with `unsigned long`
rather than `u32`.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
For the irq randomness fast pool, rather than having to use expensive
atomics, which were visibly the most expensive thing in the entire irq
handler, simply take care of the extreme edge case of resetting count to
zero in the cpuhp online handler, just after workqueues have been
reenabled. This simplifies the code a bit and lets us use vanilla
variables rather than atomics, and performance should be improved.
As well, very early on when the CPU comes up, while interrupts are still
disabled, we clear out the per-cpu crng and its batches, so that it
always starts with fresh randomness.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
add_hwgenerator_randomness() is a function implemented and documented
inside of random.c. It is the way that hardware RNGs push data into it.
Therefore, it should be declared in random.h. Otherwise sparse complains
with:
random.c:1137:6: warning: symbol 'add_hwgenerator_randomness' was not declared. Should it be static?
The alternative would be to include hw_random.h into random.c, but that
wouldn't really be good for anything except slowing down compile time.
Cc: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This has no real functional change, as crng_pre_init_inject() (and
before that, crng_slow_init()) always checks for == 0, not >= 2. So
correct the outer unlocked change to reflect that. Before this used
crng_ready(), which was not correct.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
crng_fast_load() and crng_slow_load() have different semantics:
- crng_fast_load() xors and accounts with crng_init_cnt.
- crng_slow_load() hashes and doesn't account.
However add_hwgenerator_randomness() can afford to hash (it's called
from a kthread), and it should account. Additionally, ones that can
afford to hash don't need to take a trylock but can take a normal lock.
So, we combine these into one function, crng_pre_init_inject(), which
allows us to control these in a uniform way. This will make it simpler
later to simplify this all down when the time comes for that.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Since rand_initialize() is run while interrupts are still off and
nothing else is running, we don't need to repeatedly take and release
the pool spinlock, especially in the RDSEED loop.
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
On PREEMPT_RT, it's problematic to take spinlocks from hard irq
handlers. We can fix this by deferring to a workqueue the dumping of
the fast pool into the input pool.
We accomplish this with some careful rules on fast_pool->count:
- When it's incremented to >= 64, we schedule the work.
- If the top bit is set, we never schedule the work, even if >= 64.
- The worker is responsible for setting it back to 0 when it's done.
There are two small issues around using workqueues for this purpose that
we work around.
The first issue is that mix_interrupt_randomness() might be migrated to
another CPU during CPU hotplug. This issue is rectified by checking that
it hasn't been migrated (after disabling irqs). If it has been migrated,
then we set the count to zero, so that when the CPU comes online again,
it can requeue the work. As part of this, we switch to using an
atomic_t, so that the increment in the irq handler doesn't wipe out the
zeroing if the CPU comes back online while this worker is running.
The second issue is that, though relatively minor in effect, we probably
want to make sure we get a consistent view of the pool onto the stack,
in case it's interrupted by an irq while reading. To do this, we don't
reenable irqs until after the copy. There are only 18 instructions
between the cli and sti, so this is a pretty tiny window.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Sultan Alsawaf <sultan@kerneltoast.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Now that we've re-documented the various sections, we can remove the
outdated text here and replace it with a high-level overview.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This pulls all of the sysctl-focused functions into the sixth labeled
section.
No functional changes.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This pulls all of the userspace read/write-focused functions into the
fifth labeled section.
No functional changes.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This pulls all of the entropy collection-focused functions into the
fourth labeled section.
No functional changes.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>