Commit Graph

17 Commits

Author SHA1 Message Date
Linus Torvalds b6a7828502 modules-6.4-rc1
The summary of the changes for this pull requests is:
 
  * Song Liu's new struct module_memory replacement
  * Nick Alcock's MODULE_LICENSE() removal for non-modules
  * My cleanups and enhancements to reduce the areas where we vmalloc
    module memory for duplicates, and the respective debug code which
    proves the remaining vmalloc pressure comes from userspace.
 
 Most of the changes have been in linux-next for quite some time except
 the minor fixes I made to check if a module was already loaded
 prior to allocating the final module memory with vmalloc and the
 respective debug code it introduces to help clarify the issue. Although
 the functional change is small it is rather safe as it can only *help*
 reduce vmalloc space for duplicates and is confirmed to fix a bootup
 issue with over 400 CPUs with KASAN enabled. I don't expect stable
 kernels to pick up that fix as the cleanups would have also had to have
 been picked up. Folks on larger CPU systems with modules will want to
 just upgrade if vmalloc space has been an issue on bootup.
 
 Given the size of this request, here's some more elaborate details
 on this pull request.
 
 The functional change change in this pull request is the very first
 patch from Song Liu which replaces the struct module_layout with a new
 struct module memory. The old data structure tried to put together all
 types of supported module memory types in one data structure, the new
 one abstracts the differences in memory types in a module to allow each
 one to provide their own set of details. This paves the way in the
 future so we can deal with them in a cleaner way. If you look at changes
 they also provide a nice cleanup of how we handle these different memory
 areas in a module. This change has been in linux-next since before the
 merge window opened for v6.3 so to provide more than a full kernel cycle
 of testing. It's a good thing as quite a bit of fixes have been found
 for it.
 
 Jason Baron then made dynamic debug a first class citizen module user by
 using module notifier callbacks to allocate / remove module specific
 dynamic debug information.
 
 Nick Alcock has done quite a bit of work cross-tree to remove module
 license tags from things which cannot possibly be module at my request
 so to:
 
   a) help him with his longer term tooling goals which require a
      deterministic evaluation if a piece a symbol code could ever be
      part of a module or not. But quite recently it is has been made
      clear that tooling is not the only one that would benefit.
      Disambiguating symbols also helps efforts such as live patching,
      kprobes and BPF, but for other reasons and R&D on this area
      is active with no clear solution in sight.
 
   b) help us inch closer to the now generally accepted long term goal
      of automating all the MODULE_LICENSE() tags from SPDX license tags
 
 In so far as a) is concerned, although module license tags are a no-op
 for non-modules, tools which would want create a mapping of possible
 modules can only rely on the module license tag after the commit
 8b41fc4454 ("kbuild: create modules.builtin without Makefile.modbuiltin
 or tristate.conf").  Nick has been working on this *for years* and
 AFAICT I was the only one to suggest two alternatives to this approach
 for tooling. The complexity in one of my suggested approaches lies in
 that we'd need a possible-obj-m and a could-be-module which would check
 if the object being built is part of any kconfig build which could ever
 lead to it being part of a module, and if so define a new define
 -DPOSSIBLE_MODULE [0]. A more obvious yet theoretical approach I've
 suggested would be to have a tristate in kconfig imply the same new
 -DPOSSIBLE_MODULE as well but that means getting kconfig symbol names
 mapping to modules always, and I don't think that's the case today. I am
 not aware of Nick or anyone exploring either of these options. Quite
 recently Josh Poimboeuf has pointed out that live patching, kprobes and
 BPF would benefit from resolving some part of the disambiguation as
 well but for other reasons. The function granularity KASLR (fgkaslr)
 patches were mentioned but Joe Lawrence has clarified this effort has
 been dropped with no clear solution in sight [1].
 
 In the meantime removing module license tags from code which could never
 be modules is welcomed for both objectives mentioned above. Some
 developers have also welcomed these changes as it has helped clarify
 when a module was never possible and they forgot to clean this up,
 and so you'll see quite a bit of Nick's patches in other pull
 requests for this merge window. I just picked up the stragglers after
 rc3. LWN has good coverage on the motivation behind this work [2] and
 the typical cross-tree issues he ran into along the way. The only
 concrete blocker issue he ran into was that we should not remove the
 MODULE_LICENSE() tags from files which have no SPDX tags yet, even if
 they can never be modules. Nick ended up giving up on his efforts due
 to having to do this vetting and backlash he ran into from folks who
 really did *not understand* the core of the issue nor were providing
 any alternative / guidance. I've gone through his changes and dropped
 the patches which dropped the module license tags where an SPDX
 license tag was missing, it only consisted of 11 drivers.  To see
 if a pull request deals with a file which lacks SPDX tags you
 can just use:
 
   ./scripts/spdxcheck.py -f \
 	$(git diff --name-only commid-id | xargs echo)
 
 You'll see a core module file in this pull request for the above,
 but that's not related to his changes. WE just need to add the SPDX
 license tag for the kernel/module/kmod.c file in the future but
 it demonstrates the effectiveness of the script.
 
 Most of Nick's changes were spread out through different trees,
 and I just picked up the slack after rc3 for the last kernel was out.
 Those changes have been in linux-next for over two weeks.
 
 The cleanups, debug code I added and final fix I added for modules
 were motivated by David Hildenbrand's report of boot failing on
 a systems with over 400 CPUs when KASAN was enabled due to running
 out of virtual memory space. Although the functional change only
 consists of 3 lines in the patch "module: avoid allocation if module is
 already present and ready", proving that this was the best we can
 do on the modules side took quite a bit of effort and new debug code.
 
 The initial cleanups I did on the modules side of things has been
 in linux-next since around rc3 of the last kernel, the actual final
 fix for and debug code however have only been in linux-next for about a
 week or so but I think it is worth getting that code in for this merge
 window as it does help fix / prove / evaluate the issues reported
 with larger number of CPUs. Userspace is not yet fixed as it is taking
 a bit of time for folks to understand the crux of the issue and find a
 proper resolution. Worst come to worst, I have a kludge-of-concept [3]
 of how to make kernel_read*() calls for modules unique / converge them,
 but I'm currently inclined to just see if userspace can fix this
 instead.
 
 [0] https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/
 [1] https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com
 [2] https://lwn.net/Articles/927569/
 [3] https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRG4m0SHG1jZ3JvZkBr
 ZXJuZWwub3JnAAoJEM4jHQowkoinQ2oP/0xlvKwJg6Ey8fHZF0qv8VOskE80zoLF
 hMazU3xfqLA+1TQvouW1YBxt3jwS3t1Ehs+NrV+nY9Yzcm0MzRX/n3fASJVe7nRr
 oqWWQU+voYl5Pw1xsfdp6C8IXpBQorpYby3Vp0MAMoZyl2W2YrNo36NV488wM9KC
 jD4HF5Z6xpnPSZTRR7AgW9mo7FdAtxPeKJ76Bch7lH8U6omT7n36WqTw+5B1eAYU
 YTOvrjRs294oqmWE+LeebyiOOXhH/yEYx4JNQgCwPdxwnRiGJWKsk5va0hRApqF/
 WW8dIqdEnjsa84lCuxnmWgbcPK8cgmlO0rT0DyneACCldNlldCW1LJ0HOwLk9pea
 p3JFAsBL7TKue4Tos6I7/4rx1ufyBGGIigqw9/VX5g0Iif+3BhWnqKRfz+p9wiMa
 Fl7cU6u7yC68CHu1HBSisK16cYMCPeOnTSd89upHj8JU/t74O6k/ARvjrQ9qmNUt
 c5U+OY+WpNJ1nXQydhY/yIDhFdYg8SSpNuIO90r4L8/8jRQYXNG80FDd1UtvVDuy
 eq0r2yZ8C0XHSlOT9QHaua/tWV/aaKtyC/c0hDRrigfUrq8UOlGujMXbUnrmrWJI
 tLJLAc7ePWAAoZXGSHrt0U27l029GzLwRdKqJ6kkDANVnTeOdV+mmBg9zGh3/Mp6
 agiwdHUMVN7X
 =56WK
 -----END PGP SIGNATURE-----

Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux

Pull module updates from Luis Chamberlain:
 "The summary of the changes for this pull requests is:

   - Song Liu's new struct module_memory replacement

   - Nick Alcock's MODULE_LICENSE() removal for non-modules

   - My cleanups and enhancements to reduce the areas where we vmalloc
     module memory for duplicates, and the respective debug code which
     proves the remaining vmalloc pressure comes from userspace.

  Most of the changes have been in linux-next for quite some time except
  the minor fixes I made to check if a module was already loaded prior
  to allocating the final module memory with vmalloc and the respective
  debug code it introduces to help clarify the issue. Although the
  functional change is small it is rather safe as it can only *help*
  reduce vmalloc space for duplicates and is confirmed to fix a bootup
  issue with over 400 CPUs with KASAN enabled. I don't expect stable
  kernels to pick up that fix as the cleanups would have also had to
  have been picked up. Folks on larger CPU systems with modules will
  want to just upgrade if vmalloc space has been an issue on bootup.

  Given the size of this request, here's some more elaborate details:

  The functional change change in this pull request is the very first
  patch from Song Liu which replaces the 'struct module_layout' with a
  new 'struct module_memory'. The old data structure tried to put
  together all types of supported module memory types in one data
  structure, the new one abstracts the differences in memory types in a
  module to allow each one to provide their own set of details. This
  paves the way in the future so we can deal with them in a cleaner way.
  If you look at changes they also provide a nice cleanup of how we
  handle these different memory areas in a module. This change has been
  in linux-next since before the merge window opened for v6.3 so to
  provide more than a full kernel cycle of testing. It's a good thing as
  quite a bit of fixes have been found for it.

  Jason Baron then made dynamic debug a first class citizen module user
  by using module notifier callbacks to allocate / remove module
  specific dynamic debug information.

  Nick Alcock has done quite a bit of work cross-tree to remove module
  license tags from things which cannot possibly be module at my request
  so to:

   a) help him with his longer term tooling goals which require a
      deterministic evaluation if a piece a symbol code could ever be
      part of a module or not. But quite recently it is has been made
      clear that tooling is not the only one that would benefit.
      Disambiguating symbols also helps efforts such as live patching,
      kprobes and BPF, but for other reasons and R&D on this area is
      active with no clear solution in sight.

   b) help us inch closer to the now generally accepted long term goal
      of automating all the MODULE_LICENSE() tags from SPDX license tags

  In so far as a) is concerned, although module license tags are a no-op
  for non-modules, tools which would want create a mapping of possible
  modules can only rely on the module license tag after the commit
  8b41fc4454 ("kbuild: create modules.builtin without
  Makefile.modbuiltin or tristate.conf").

  Nick has been working on this *for years* and AFAICT I was the only
  one to suggest two alternatives to this approach for tooling. The
  complexity in one of my suggested approaches lies in that we'd need a
  possible-obj-m and a could-be-module which would check if the object
  being built is part of any kconfig build which could ever lead to it
  being part of a module, and if so define a new define
  -DPOSSIBLE_MODULE [0].

  A more obvious yet theoretical approach I've suggested would be to
  have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
  well but that means getting kconfig symbol names mapping to modules
  always, and I don't think that's the case today. I am not aware of
  Nick or anyone exploring either of these options. Quite recently Josh
  Poimboeuf has pointed out that live patching, kprobes and BPF would
  benefit from resolving some part of the disambiguation as well but for
  other reasons. The function granularity KASLR (fgkaslr) patches were
  mentioned but Joe Lawrence has clarified this effort has been dropped
  with no clear solution in sight [1].

  In the meantime removing module license tags from code which could
  never be modules is welcomed for both objectives mentioned above. Some
  developers have also welcomed these changes as it has helped clarify
  when a module was never possible and they forgot to clean this up, and
  so you'll see quite a bit of Nick's patches in other pull requests for
  this merge window. I just picked up the stragglers after rc3. LWN has
  good coverage on the motivation behind this work [2] and the typical
  cross-tree issues he ran into along the way. The only concrete blocker
  issue he ran into was that we should not remove the MODULE_LICENSE()
  tags from files which have no SPDX tags yet, even if they can never be
  modules. Nick ended up giving up on his efforts due to having to do
  this vetting and backlash he ran into from folks who really did *not
  understand* the core of the issue nor were providing any alternative /
  guidance. I've gone through his changes and dropped the patches which
  dropped the module license tags where an SPDX license tag was missing,
  it only consisted of 11 drivers. To see if a pull request deals with a
  file which lacks SPDX tags you can just use:

    ./scripts/spdxcheck.py -f \
	$(git diff --name-only commid-id | xargs echo)

  You'll see a core module file in this pull request for the above, but
  that's not related to his changes. WE just need to add the SPDX
  license tag for the kernel/module/kmod.c file in the future but it
  demonstrates the effectiveness of the script.

  Most of Nick's changes were spread out through different trees, and I
  just picked up the slack after rc3 for the last kernel was out. Those
  changes have been in linux-next for over two weeks.

  The cleanups, debug code I added and final fix I added for modules
  were motivated by David Hildenbrand's report of boot failing on a
  systems with over 400 CPUs when KASAN was enabled due to running out
  of virtual memory space. Although the functional change only consists
  of 3 lines in the patch "module: avoid allocation if module is already
  present and ready", proving that this was the best we can do on the
  modules side took quite a bit of effort and new debug code.

  The initial cleanups I did on the modules side of things has been in
  linux-next since around rc3 of the last kernel, the actual final fix
  for and debug code however have only been in linux-next for about a
  week or so but I think it is worth getting that code in for this merge
  window as it does help fix / prove / evaluate the issues reported with
  larger number of CPUs. Userspace is not yet fixed as it is taking a
  bit of time for folks to understand the crux of the issue and find a
  proper resolution. Worst come to worst, I have a kludge-of-concept [3]
  of how to make kernel_read*() calls for modules unique / converge
  them, but I'm currently inclined to just see if userspace can fix this
  instead"

Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]

* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
  module: add debugging auto-load duplicate module support
  module: stats: fix invalid_mod_bytes typo
  module: remove use of uninitialized variable len
  module: fix building stats for 32-bit targets
  module: stats: include uapi/linux/module.h
  module: avoid allocation if module is already present and ready
  module: add debug stats to help identify memory pressure
  module: extract patient module check into helper
  modules/kmod: replace implementation with a semaphore
  Change DEFINE_SEMAPHORE() to take a number argument
  module: fix kmemleak annotations for non init ELF sections
  module: Ignore L0 and rename is_arm_mapping_symbol()
  module: Move is_arm_mapping_symbol() to module_symbol.h
  module: Sync code of is_arm_mapping_symbol()
  scripts/gdb: use mem instead of core_layout to get the module address
  interconnect: remove module-related code
  interconnect: remove MODULE_LICENSE in non-modules
  zswap: remove MODULE_LICENSE in non-modules
  zpool: remove MODULE_LICENSE in non-modules
  x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
  ...
2023-04-27 16:36:55 -07:00
Nick Alcock 87efd0d382 soc: apple: apple-pmgr-pwrstate: remove MODULE_LICENSE in non-modules
Since commit 8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.

So remove it in the files in this commit, none of which can be built as
modules.

Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Eric Curtin <ecurtin@redhat.com>
Acked-by: Sven Peter <sven@svenpeter.dev>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Hector Martin <marcan@marcan.st>
Cc: Sven Peter <sven@svenpeter.dev>
Cc: Philipp Zabel <p.zabel@pengutronix.de>
Cc: asahi@lists.linux.dev
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-04-13 13:13:50 -07:00
Martin Povišer bdfe6de269 soc: apple: rtkit: Crop syslog messages
Crop trailing whitespace, null, and newline characters in syslog
messages received from coprocessors. Notably DCP sends its messages
including a trailing newline, so prior to this change we would end up
cluttering the kernel log by repeated newlines at the end of messages.

Signed-off-by: Martin Povišer <povik+lin@cutebit.org>
Reviewed-by: Hector Martin <marcan@marcan.st>
Signed-off-by: Hector Martin <marcan@marcan.st>
2023-03-28 19:59:34 +09:00
Asahi Lina 223444882d soc: apple: rtkit: Fix buffer address field width
The buffer address field is missing two bits. This matters for the GPU,
which uses upper-half 64-bit addresses on the ASC and those get sign
extended from the mailbox message field, so the right number of high
bits need to be set.

Signed-off-by: Asahi Lina <lina@asahilina.net>
Reviewed-by: Sven Peter <sven@svenpeter.dev>
Signed-off-by: Hector Martin <marcan@marcan.st>
2023-03-28 19:45:00 +09:00
Asahi Lina 4ec98e6db9
soc: apple: rtkit: Do not copy the reg state structure to the stack
The register state struct is 848 bytes, which ends up bloating the
apple_rtkit_crashlog_dump_regs stack frame beyond 1024 on some
32-bit platforms, triggering compile warnings.

This doesn't matter for 64BIT/ARM64, but there's also no good reason to
copy the structure to the stack in this case. We can use __packed to
avoid alignment issues, there are no double-read hazards, and this is a
fatal error path so performance does not matter.

Fixes: 22991d8d57 ("soc: apple: rtkit: Add register dump decoding to crashlog")
Signed-off-by: Asahi Lina <lina@asahilina.net>
Reviewed-by: Eric Curtin <ecurtin@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2023-02-13 20:20:34 +01:00
Asahi Lina 22991d8d57 soc: apple: rtkit: Add register dump decoding to crashlog
When the coprocessor crashes, it's useful to get a proper register dump
so we can find out what the firmware was doing. Add a decoder for this.

Originally this had ESR decoding by reusing the ARM64 arch header for
this, but that introduces some module linking and cross-arch compilation
issues, so let's leave that out for now.

Reviewed-by: Sven Peter <sven@svenpeter.dev>
Reviewed-by: Eric Curtin <ecurtin@redhat.com>
Signed-off-by: Asahi Lina <lina@asahilina.net>
Signed-off-by: Hector Martin <marcan@marcan.st>
2023-01-31 20:44:47 +09:00
Asahi Lina b3892860f5 soc: apple: rtkit: Export non-devm init/free functions
While we normally encourage devm usage by drivers, some consumers (and
in particular the upcoming Rust abstractions) might want to manually
manage memory. Export the raw functions to make this possible.

Signed-off-by: Asahi Lina <lina@asahilina.net>
Reviewed-by: Sven Peter <sven@svenpeter.dev>
Reviewed-by: Eric Curtin <ecurtin@redhat.com>
Signed-off-by: Hector Martin <marcan@marcan.st>
2023-01-31 20:40:14 +09:00
Hector Martin c289d5bce8 soc: apple: apple-pmgr-pwrstate: Switch to IRQ-safe mode
This requires changing the reset path locking primitives to the spinlock
path in genpd, instead of the mutex path.

Reviewed-by: Eric Curtin <ecurtin@redhat.com>
Reviewed-by: Sven Peter <sven@svenpeter.dev>
Signed-off-by: Hector Martin <marcan@marcan.st>
2023-01-31 20:37:07 +09:00
Hector Martin 40eaa8c0cb soc: apple: rtkit: Add apple_rtkit_idle() function
This is yet another low power mode, used by DCP.

Reviewed-by: Eric Curtin <ecurtin@redhat.com>
Reviewed-by: Sven Peter <sven@svenpeter.dev>
Signed-off-by: Hector Martin <marcan@marcan.st>
2023-01-31 20:35:47 +09:00
Sven Peter 5acf07ff25 soc: apple: rtkit: Stop casting function pointer signatures
Fixes: 9bd1d9a0d8 ("soc: apple: Add RTKit IPC library")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sven Peter <sven@svenpeter.dev>
Signed-off-by: Hector Martin <marcan@marcan.st>
2022-11-28 20:34:09 +09:00
Sven Peter 422d0b860d soc: apple: sart: Stop casting function pointer signatures
Fixes: b170143ae1 ("soc: apple: Add SART driver")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sven Peter <sven@svenpeter.dev>
Signed-off-by: Hector Martin <marcan@marcan.st>
2022-11-28 20:34:09 +09:00
Hector Martin f5a5e83379 soc: apple: rtkit: Add apple_rtkit_poll
This allows a client to receive messages in atomic context, by polling.

Signed-off-by: Hector Martin <marcan@marcan.st>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Sven Peter <sven@svenpeter.dev>
Reviewed-by: Eric Curtin <ecurtin@redhat.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2022-09-17 19:53:29 +02:00
Sven Peter b170143ae1 soc: apple: Add SART driver
The NVMe co-processor on the Apple M1 uses a DMA address filter called
SART for some DMA transactions. This adds a simple driver used to
configure the memory regions from which DMA transactions are allowed.

Unlike a real IOMMU, SART does not support any pagetables and can't be
implemented inside the IOMMU subsystem using iommu_ops.

It also can't be implemented using dma_map_ops since not all DMA
transactions of the NVMe controller are filtered by SART.
Instead, most buffers have to be registered using the integrated NVMe
IOMMU and we can't have two separate dma_map_ops implementations for a
single device.

Co-developed-by: Hector Martin <marcan@marcan.st>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hector Martin <marcan@marcan.st>
Signed-off-by: Sven Peter <sven@svenpeter.dev>
2022-05-02 17:24:45 +02:00
Sven Peter 9bd1d9a0d8 soc: apple: Add RTKit IPC library
Apple SoCs such as the M1 come with multiple embedded co-processors
running proprietary firmware. Communication with those is established
over a simple mailbox using the RTKit IPC protocol.

This cannot be implemented inside the mailbox subsystem since on top
of communication over channels we also need support for starting,
hibernating and resetting these co-processors. We also need to
handle shared memory allocations differently depending on the
co-processor and don't want to split that across multiple drivers.

Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sven Peter <sven@svenpeter.dev>
2022-05-01 16:55:06 +02:00
Hector Martin 8e136c5ea4 soc: apple: apple-pmgr-pwrstate: Do not build as a module
This doesn't make any sense as a module since it is a critical device,
and it turns out of_phandle_iterator_args was not exported so the module
version doesn't build anyway.

Fixes: 6df9d38f91 ("soc: apple: Add driver for Apple PMGR power state controls")
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Sven Peter <sven@svenpeter.dev>
Signed-off-by: Hector Martin <marcan@marcan.st>
2021-12-15 20:36:05 +09:00
Hector Martin cc1fe1e54b soc: apple: apple-pmgr-pwrstate: Add auto-PM min level support
This is seemingly required for DCP/DCPEXT, without which they refuse to
boot properly. They need to be set to minimum state 4 (clock gated).

Reviewed-by: Sven Peter <sven@svenpeter.dev>
Signed-off-by: Hector Martin <marcan@marcan.st>
2021-12-12 10:32:10 +09:00
Hector Martin 6df9d38f91 soc: apple: Add driver for Apple PMGR power state controls
Implements genpd and reset providers for downstream devices. Each
instance of the driver binds to a single register and represents a
single SoC power domain.

The driver does not currently implement all features (clockgate-only
state, misc flags), but we declare the respective registers for
documentation purposes. These features will be added as they become
useful for downstream devices.

This also creates the apple/soc tree and Kconfig submenu.

Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Hector Martin <marcan@marcan.st>
2021-12-07 13:13:13 +09:00