Commit Graph

1375 Commits

Author SHA1 Message Date
Alex Shi d7e3aba583 mm/memcg: revise the using condition of lock_page_lruvec function series
lock_page_lruvec() and its variants are safe to use under the same
conditions as commit_charge(): add lock_page_memcg() to the comment.

Polished with Hugh Dickins' suggestions, thanks!

Link: https://lkml.kernel.org/r/1608614453-10739-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song fff66b79a1 mm: memcontrol: make the slab calculation consistent
Although the ratio of the slab is one, we also should read the ratio from
the related memory_stats instead of hard-coding.  And the local variable
of size is already the value of slab_unreclaimable.  So we do not need to
read again.

To do this we need some code like below:

if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
-	size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
-	       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
+       VM_BUG_ON(i < 1);
+       VM_BUG_ON(memory_stats[i - 1].idx != NR_SLAB_RECLAIMABLE_B);
+	size += memcg_page_state(memcg, memory_stats[i - 1].idx) *
+		memory_stats[i - 1].ratio;

It requires a series of VM_BUG_ONs or comments to ensure these two items
are actually adjacent and in the right order.  So it would probably be
easier to implement this using a wrapper that has a big switch() for unit
conversion.

More details about this discussion can refer to:

    https://lore.kernel.org/patchwork/patch/1348611/

This would fix the ratio inconsistency and get rid of the order
guarantee.

Link: https://lkml.kernel.org/r/20201228164110.2838-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song 57b2847d3c mm: memcontrol: convert NR_SHMEM_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_SHMEM_THPS account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song bf9ecead53 mm: memcontrol: convert NR_FILE_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with if hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_FILE_THPS account to pages.  This patch is consistent
with 8f182270df ("mm/swap.c: flush lru pvecs on compound page arrival").
Doing this also can make the unit of vmstat counters more unified.
Finally, the unit of the vmstat counters are pages, kB and bytes.  The
B/KB suffix can tell us that the unit is bytes or kB.  The rest which is
without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song 69473e5de8 mm: memcontrol: convert NR_ANON_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_ANON_THPS account to pages.  This patch is consistent
with 8f182270df ("mm/swap.c: flush lru pvecs on compound page arrival").
Doing this also can make the unit of vmstat counters more unified.
Finally, the unit of the vmstat counters are pages, kB and bytes.  The
B/KB suffix can tell us that the unit is bytes or kB.  The rest which is
without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song b0ba3bff3e mm: memcontrol: fix NR_ANON_THPS accounting in charge moving
Patch series "Convert all THP vmstat counters to pages", v6.

This patch series is aimed to convert all THP vmstat counters to pages.

The unit of some vmstat counters are pages, some are bytes, some are
HPAGE_PMD_NR, and some are KiB. When we want to expose these vmstat
counters to the userspace, we have to know the unit of the vmstat counters
is which one. When the unit is bytes or kB, both clearly distinguishable
by the B/KB suffix. But for the THP vmstat counters, we may make mistakes.

For example, the below is some bug fix for the THP vmstat counters:

  - 7de2e9f195 ("mm: memcontrol: correct the NR_ANON_THPS counter of hierarchical memcg")
  - The first commit in this series ("fix NR_ANON_THPS accounting in charge moving")

This patch series can make the code clear. And make all the unit of the THP
vmstat counters in pages. Finally, the unit of the vmstat counters are
pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes
or kB. The rest which is without suffix are pages.

In this series, I changed the following vmstat counters unit from HPAGE_PMD_NR
to pages. However, there is no change to the print format of output to user
space.

  - NR_ANON_THPS
  - NR_FILE_THPS
  - NR_SHMEM_THPS
  - NR_SHMEM_PMDMAPPED
  - NR_FILE_PMDMAPPED

Doing this also can make the statistics more accuracy for the THP vmstat
counters. This series is consistent with 8f182270df ("mm/swap.c: flush lru
pvecs on compound page arrival").

Because we use struct per_cpu_nodestat to cache the vmstat counters, which
leads to inaccurate statistics especially THP vmstat counters. In the systems
with hundreds of processors it can be GBs of memory. For example, for a 96
CPUs system, the threshold is the maximum number of 125. And the per cpu
counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth of
memory in one go) so skipping the batching seems like sensible. Although every
THP stats update overflows the per-cpu counter, resorting to atomic global
updates. But it can make the statistics more accuracy for the THP vmstat
counters. From this point of view, I think that do this converting is
reasonable.

Thanks Hugh for mentioning this. This was inspired by Johannes and Roman.
Thanks to them.

This patch (of 7):

The unit of NR_ANON_THPS is HPAGE_PMD_NR already.  So it should inc/dec by
one rather than nr_pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20201228164110.2838-2-songmuchun@bytedance.com
Fixes: 468c398233 ("mm: memcontrol: switch to native NR_ANON_THPS counter")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song f3344adf38 mm: memcontrol: optimize per-lruvec stats counter memory usage
The vmstat threshold is 32 (MEMCG_CHARGE_BATCH), Actually the threshold
can be as big as MEMCG_CHARGE_BATCH * PAGE_SIZE.  It still fits into s32.
So introduce struct batched_lruvec_stat to optimize memory usage.

The size of struct lruvec_stat is 304 bytes on 64 bit systems.  As it is a
per-cpu structure.  So with this patch, we can save 304 / 2 * ncpu bytes
per-memcg per-node where ncpu is the number of the possible CPU.  If there
are c memory cgroup (include dying cgroup) and n NUMA node in the system.
Finally, we can save (152 * ncpu * c * n) bytes.

[akpm@linux-foundation.org: fix typo in comment]

Link: https://lkml.kernel.org/r/20201210042121.39665-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Chris Down <chris@chrisdown.name>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Roman Gushchin 2e9bd48315 mm: memcg/slab: pre-allocate obj_cgroups for slab caches with SLAB_ACCOUNT
In general it's unknown in advance if a slab page will contain accounted
objects or not.  In order to avoid memory waste, an obj_cgroup vector is
allocated dynamically when a need to account of a new object arises.  Such
approach is memory efficient, but requires an expensive cmpxchg() to set
up the memcg/objcgs pointer, because an allocation can race with a
different allocation on another cpu.

But in some common cases it's known for sure that a slab page will contain
accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT
flag set.  It includes such popular objects like vm_area_struct, anon_vma,
task_struct, etc.

In such cases we can pre-allocate the objcgs vector and simple assign it
to the page without any atomic operations, because at this early stage the
page is not visible to anyone else.

A very simplistic benchmark (allocating 10000000 64-bytes objects in a
row) shows ~15% win.  In the real life it seems that most workloads are
not very sensitive to the speed of (accounted) slab allocations.

[guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes]
  Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com
[akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch]

Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Linus Torvalds 7d6beb71da idmapped-mounts-v5.12
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
 ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
 4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
 =yPaw
 -----END PGP SIGNATURE-----

Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull idmapped mounts from Christian Brauner:
 "This introduces idmapped mounts which has been in the making for some
  time. Simply put, different mounts can expose the same file or
  directory with different ownership. This initial implementation comes
  with ports for fat, ext4 and with Christoph's port for xfs with more
  filesystems being actively worked on by independent people and
  maintainers.

  Idmapping mounts handle a wide range of long standing use-cases. Here
  are just a few:

   - Idmapped mounts make it possible to easily share files between
     multiple users or multiple machines especially in complex
     scenarios. For example, idmapped mounts will be used in the
     implementation of portable home directories in
     systemd-homed.service(8) where they allow users to move their home
     directory to an external storage device and use it on multiple
     computers where they are assigned different uids and gids. This
     effectively makes it possible to assign random uids and gids at
     login time.

   - It is possible to share files from the host with unprivileged
     containers without having to change ownership permanently through
     chown(2).

   - It is possible to idmap a container's rootfs and without having to
     mangle every file. For example, Chromebooks use it to share the
     user's Download folder with their unprivileged containers in their
     Linux subsystem.

   - It is possible to share files between containers with
     non-overlapping idmappings.

   - Filesystem that lack a proper concept of ownership such as fat can
     use idmapped mounts to implement discretionary access (DAC)
     permission checking.

   - They allow users to efficiently changing ownership on a per-mount
     basis without having to (recursively) chown(2) all files. In
     contrast to chown (2) changing ownership of large sets of files is
     instantenous with idmapped mounts. This is especially useful when
     ownership of a whole root filesystem of a virtual machine or
     container is changed. With idmapped mounts a single syscall
     mount_setattr syscall will be sufficient to change the ownership of
     all files.

   - Idmapped mounts always take the current ownership into account as
     idmappings specify what a given uid or gid is supposed to be mapped
     to. This contrasts with the chown(2) syscall which cannot by itself
     take the current ownership of the files it changes into account. It
     simply changes the ownership to the specified uid and gid. This is
     especially problematic when recursively chown(2)ing a large set of
     files which is commong with the aforementioned portable home
     directory and container and vm scenario.

   - Idmapped mounts allow to change ownership locally, restricting it
     to specific mounts, and temporarily as the ownership changes only
     apply as long as the mount exists.

  Several userspace projects have either already put up patches and
  pull-requests for this feature or will do so should you decide to pull
  this:

   - systemd: In a wide variety of scenarios but especially right away
     in their implementation of portable home directories.

         https://systemd.io/HOME_DIRECTORY/

   - container runtimes: containerd, runC, LXD:To share data between
     host and unprivileged containers, unprivileged and privileged
     containers, etc. The pull request for idmapped mounts support in
     containerd, the default Kubernetes runtime is already up for quite
     a while now: https://github.com/containerd/containerd/pull/4734

   - The virtio-fs developers and several users have expressed interest
     in using this feature with virtual machines once virtio-fs is
     ported.

   - ChromeOS: Sharing host-directories with unprivileged containers.

  I've tightly synced with all those projects and all of those listed
  here have also expressed their need/desire for this feature on the
  mailing list. For more info on how people use this there's a bunch of
  talks about this too. Here's just two recent ones:

      https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
      https://fosdem.org/2021/schedule/event/containers_idmap/

  This comes with an extensive xfstests suite covering both ext4 and
  xfs:

      https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts

  It covers truncation, creation, opening, xattrs, vfscaps, setid
  execution, setgid inheritance and more both with idmapped and
  non-idmapped mounts. It already helped to discover an unrelated xfs
  setgid inheritance bug which has since been fixed in mainline. It will
  be sent for inclusion with the xfstests project should you decide to
  merge this.

  In order to support per-mount idmappings vfsmounts are marked with
  user namespaces. The idmapping of the user namespace will be used to
  map the ids of vfs objects when they are accessed through that mount.
  By default all vfsmounts are marked with the initial user namespace.
  The initial user namespace is used to indicate that a mount is not
  idmapped. All operations behave as before and this is verified in the
  testsuite.

  Based on prior discussions we want to attach the whole user namespace
  and not just a dedicated idmapping struct. This allows us to reuse all
  the helpers that already exist for dealing with idmappings instead of
  introducing a whole new range of helpers. In addition, if we decide in
  the future that we are confident enough to enable unprivileged users
  to setup idmapped mounts the permission checking can take into account
  whether the caller is privileged in the user namespace the mount is
  currently marked with.

  The user namespace the mount will be marked with can be specified by
  passing a file descriptor refering to the user namespace as an
  argument to the new mount_setattr() syscall together with the new
  MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
  of extensibility.

  The following conditions must be met in order to create an idmapped
  mount:

   - The caller must currently have the CAP_SYS_ADMIN capability in the
     user namespace the underlying filesystem has been mounted in.

   - The underlying filesystem must support idmapped mounts.

   - The mount must not already be idmapped. This also implies that the
     idmapping of a mount cannot be altered once it has been idmapped.

   - The mount must be a detached/anonymous mount, i.e. it must have
     been created by calling open_tree() with the OPEN_TREE_CLONE flag
     and it must not already have been visible in the filesystem.

  The last two points guarantee easier semantics for userspace and the
  kernel and make the implementation significantly simpler.

  By default vfsmounts are marked with the initial user namespace and no
  behavioral or performance changes are observed.

  The manpage with a detailed description can be found here:

      1d7b902e28

  In order to support idmapped mounts, filesystems need to be changed
  and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
  patches to convert individual filesystem are not very large or
  complicated overall as can be seen from the included fat, ext4, and
  xfs ports. Patches for other filesystems are actively worked on and
  will be sent out separately. The xfstestsuite can be used to verify
  that port has been done correctly.

  The mount_setattr() syscall is motivated independent of the idmapped
  mounts patches and it's been around since July 2019. One of the most
  valuable features of the new mount api is the ability to perform
  mounts based on file descriptors only.

  Together with the lookup restrictions available in the openat2()
  RESOLVE_* flag namespace which we added in v5.6 this is the first time
  we are close to hardened and race-free (e.g. symlinks) mounting and
  path resolution.

  While userspace has started porting to the new mount api to mount
  proper filesystems and create new bind-mounts it is currently not
  possible to change mount options of an already existing bind mount in
  the new mount api since the mount_setattr() syscall is missing.

  With the addition of the mount_setattr() syscall we remove this last
  restriction and userspace can now fully port to the new mount api,
  covering every use-case the old mount api could. We also add the
  crucial ability to recursively change mount options for a whole mount
  tree, both removing and adding mount options at the same time. This
  syscall has been requested multiple times by various people and
  projects.

  There is a simple tool available at

      https://github.com/brauner/mount-idmapped

  that allows to create idmapped mounts so people can play with this
  patch series. I'll add support for the regular mount binary should you
  decide to pull this in the following weeks:

  Here's an example to a simple idmapped mount of another user's home
  directory:

	u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt

	u1001@f2-vm:/$ ls -al /home/ubuntu/
	total 28
	drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
	drwxr-xr-x 4 root   root   4096 Oct 28 04:00 ..
	-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
	-rw-r--r-- 1 ubuntu ubuntu  220 Feb 25  2020 .bash_logout
	-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25  2020 .bashrc
	-rw-r--r-- 1 ubuntu ubuntu  807 Feb 25  2020 .profile
	-rw-r--r-- 1 ubuntu ubuntu    0 Oct 16 16:11 .sudo_as_admin_successful
	-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo

	u1001@f2-vm:/$ ls -al /mnt/
	total 28
	drwxr-xr-x  2 u1001 u1001 4096 Oct 28 22:07 .
	drwxr-xr-x 29 root  root  4096 Oct 28 22:01 ..
	-rw-------  1 u1001 u1001 3154 Oct 28 22:12 .bash_history
	-rw-r--r--  1 u1001 u1001  220 Feb 25  2020 .bash_logout
	-rw-r--r--  1 u1001 u1001 3771 Feb 25  2020 .bashrc
	-rw-r--r--  1 u1001 u1001  807 Feb 25  2020 .profile
	-rw-r--r--  1 u1001 u1001    0 Oct 16 16:11 .sudo_as_admin_successful
	-rw-------  1 u1001 u1001 1144 Oct 28 00:43 .viminfo

	u1001@f2-vm:/$ touch /mnt/my-file

	u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file

	u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file

	u1001@f2-vm:/$ ls -al /mnt/my-file
	-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file

	u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
	-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file

	u1001@f2-vm:/$ getfacl /mnt/my-file
	getfacl: Removing leading '/' from absolute path names
	# file: mnt/my-file
	# owner: u1001
	# group: u1001
	user::rw-
	user:u1001:rwx
	group::rw-
	mask::rwx
	other::r--

	u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
	getfacl: Removing leading '/' from absolute path names
	# file: home/ubuntu/my-file
	# owner: ubuntu
	# group: ubuntu
	user::rw-
	user:ubuntu:rwx
	group::rw-
	mask::rwx
	other::r--"

* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
  xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
  xfs: support idmapped mounts
  ext4: support idmapped mounts
  fat: handle idmapped mounts
  tests: add mount_setattr() selftests
  fs: introduce MOUNT_ATTR_IDMAP
  fs: add mount_setattr()
  fs: add attr_flags_to_mnt_flags helper
  fs: split out functions to hold writers
  namespace: only take read lock in do_reconfigure_mnt()
  mount: make {lock,unlock}_mount_hash() static
  namespace: take lock_mount_hash() directly when changing flags
  nfs: do not export idmapped mounts
  overlayfs: do not mount on top of idmapped mounts
  ecryptfs: do not mount on top of idmapped mounts
  ima: handle idmapped mounts
  apparmor: handle idmapped mounts
  fs: make helpers idmap mount aware
  exec: handle idmapped mounts
  would_dump: handle idmapped mounts
  ...
2021-02-23 13:39:45 -08:00
Johannes Weiner e82553c10b Revert "mm: memcontrol: avoid workload stalls when lowering memory.high"
This reverts commit 536d3bf261, as it can
cause writers to memory.high to get stuck in the kernel forever,
performing page reclaim and consuming excessive amounts of CPU cycles.

Before the patch, a write to memory.high would first put the new limit
in place for the workload, and then reclaim the requested delta.  After
the patch, the kernel tries to reclaim the delta before putting the new
limit into place, in order to not overwhelm the workload with a sudden,
large excess over the limit.  However, if reclaim is actively racing
with new allocations from the uncurbed workload, it can keep the write()
working inside the kernel indefinitely.

This is causing problems in Facebook production.  A privileged
system-level daemon that adjusts memory.high for various workloads
running on a host can get unexpectedly stuck in the kernel and
essentially turn into a sort of involuntary kswapd for one of the
workloads.  We've observed that daemon busy-spin in a write() for
minutes at a time, neglecting its other duties on the system, and
expending privileged system resources on behalf of a workload.

To remedy this, we have first considered changing the reclaim logic to
break out after a couple of loops - whether the workload has converged
to the new limit or not - and bound the write() call this way.  However,
the root cause that inspired the sequence change in the first place has
been fixed through other means, and so a revert back to the proven
limit-setting sequence, also used by memory.max, is preferable.

The sequence was changed to avoid extreme latencies in the workload when
the limit was lowered: the sudden, large excess created by the limit
lowering would erroneously trigger the penalty sleeping code that is
meant to throttle excessive growth from below.  Allocating threads could
end up sleeping long after the write() had already reclaimed the delta
for which they were being punished.

However, erroneous throttling also caused problems in other scenarios at
around the same time.  This resulted in commit b3ff92916a ("mm, memcg:
reclaim more aggressively before high allocator throttling"), included
in the same release as the offending commit.  When allocating threads
now encounter large excess caused by a racing write() to memory.high,
instead of entering punitive sleeps, they will simply be tasked with
helping reclaim down the excess, and will be held no longer than it
takes to accomplish that.  This is in line with regular limit
enforcement - i.e.  if the workload allocates up against or over an
otherwise unchanged limit from below.

With the patch breaking userspace, and the root cause addressed by other
means already, revert it again.

Link: https://lkml.kernel.org/r/20210122184341.292461-1-hannes@cmpxchg.org
Fixes: 536d3bf261 ("mm: memcontrol: avoid workload stalls when lowering memory.high")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: <stable@vger.kernel.org>	[5.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-09 17:26:44 -08:00
Roman Gushchin 3de7d4f25a mm: memcg/slab: optimize objcg stock draining
Imran Khan reported a 16% regression in hackbench results caused by the
commit f2fe7b09a5 ("mm: memcg/slab: charge individual slab objects
instead of pages").  The regression is noticeable in the case of a
consequent allocation of several relatively large slab objects, e.g.
skb's.  As soon as the amount of stocked bytes exceeds PAGE_SIZE,
drain_obj_stock() and __memcg_kmem_uncharge() are called, and it leads
to a number of atomic operations in page_counter_uncharge().

The corresponding call graph is below (provided by Imran Khan):

  |__alloc_skb
  |    |
  |    |__kmalloc_reserve.isra.61
  |    |    |
  |    |    |__kmalloc_node_track_caller
  |    |    |    |
  |    |    |    |slab_pre_alloc_hook.constprop.88
  |    |    |     obj_cgroup_charge
  |    |    |    |    |
  |    |    |    |    |__memcg_kmem_charge
  |    |    |    |    |    |
  |    |    |    |    |    |page_counter_try_charge
  |    |    |    |    |
  |    |    |    |    |refill_obj_stock
  |    |    |    |    |    |
  |    |    |    |    |    |drain_obj_stock.isra.68
  |    |    |    |    |    |    |
  |    |    |    |    |    |    |__memcg_kmem_uncharge
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |page_counter_uncharge
  |    |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |    |page_counter_cancel
  |    |    |    |
  |    |    |    |
  |    |    |    |__slab_alloc
  |    |    |    |    |
  |    |    |    |    |___slab_alloc
  |    |    |    |    |
  |    |    |    |slab_post_alloc_hook

Instead of directly uncharging the accounted kernel memory, it's
possible to refill the generic page-sized per-cpu stock instead.  It's a
much faster operation, especially on a default hierarchy.  As a bonus,
__memcg_kmem_uncharge_page() will also get faster, so the freeing of
page-sized kernel allocations (e.g.  large kmallocs) will become faster.

A similar change has been done earlier for the socket memory by the
commit 475d0487a2 ("mm: memcontrol: use per-cpu stocks for socket
memory uncharging").

Link: https://lkml.kernel.org/r/20210106042239.2860107-1-guro@fb.com
Fixes: f2fe7b09a5 ("mm: memcg/slab: charge individual slab objects instead of pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Imran Khan <imran.f.khan@oracle.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutn <mkoutny@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-01-24 09:20:52 -08:00
Christian Brauner 02f92b3868
fs: add file and path permissions helpers
Add two simple helpers to check permissions on a file and path
respectively and convert over some callers. It simplifies quite a few
codepaths and also reduces the churn in later patches quite a bit.
Christoph also correctly points out that this makes codepaths (e.g.
ioctls) way easier to follow that would otherwise have to do more
complex argument passing than necessary.

Link: https://lore.kernel.org/r/20210121131959.646623-4-christian.brauner@ubuntu.com
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-24 14:27:16 +01:00
Hui Su 9a1ac2288c mm/memcontrol:rewrite mem_cgroup_page_lruvec()
mem_cgroup_page_lruvec() in memcontrol.c and mem_cgroup_lruvec() in
memcontrol.h is very similar except for the param(page and memcg) which
also can be convert to each other.

So rewrite mem_cgroup_page_lruvec() with mem_cgroup_lruvec().

[alex.shi@linux.alibaba.com: add missed warning in mem_cgroup_lruvec]
  Link: https://lkml.kernel.org/r/94f17bb7-ec61-5b72-3555-fabeb5a4d73b@linux.alibaba.com
[lstoakes@gmail.com: warn on missing memcg on mem_cgroup_page_lruvec()]
  Link: https://lkml.kernel.org/r/20201125112202.387009-1-lstoakes@gmail.com

Link: https://lkml.kernel.org/r/20201108143731.GA74138@rlk
Signed-off-by: Hui Su <sh_def@163.com>
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-19 11:18:37 -08:00
Alex Shi a405588862 mm/memcg: warning on !memcg after readahead page charged
Add VM_WARN_ON_ONCE_PAGE() macro.

Since readahead page is charged on memcg too, in theory we don't have to
check this exception now.  Before safely remove them all, add a warning
for the unexpected !memcg.

Link: https://lkml.kernel.org/r/1604283436-18880-3-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-19 11:18:37 -08:00
Alex Shi 76358ab547 mm/memcg: bail early from swap accounting if memcg disabled
Patch series "bail out early for memcg disable".

These 2 patches are indepenedent from per memcg lru lock, and may
encounter unexpected warning, so let's move out them from per memcg
lru locking patchset.

This patch (of 2):

We could bail out early when memcg wasn't enabled.

Link: https://lkml.kernel.org/r/1604283436-18880-1-git-send-email-alex.shi@linux.alibaba.com
Link: https://lkml.kernel.org/r/1604283436-18880-2-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-19 11:18:37 -08:00
Linus Torvalds 5b200f5789 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "More MM work: a memcg scalability improvememt"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  mm/lru: revise the comments of lru_lock
  mm/lru: introduce relock_page_lruvec()
  mm/lru: replace pgdat lru_lock with lruvec lock
  mm/swap.c: serialize memcg changes in pagevec_lru_move_fn
  mm/compaction: do page isolation first in compaction
  mm/lru: introduce TestClearPageLRU()
  mm/mlock: remove __munlock_isolate_lru_page()
  mm/mlock: remove lru_lock on TestClearPageMlocked
  mm/vmscan: remove lruvec reget in move_pages_to_lru
  mm/lru: move lock into lru_note_cost
  mm/swap.c: fold vm event PGROTATED into pagevec_move_tail_fn
  mm/memcg: add debug checking in lock_page_memcg
  mm: page_idle_get_page() does not need lru_lock
  mm/rmap: stop store reordering issue on page->mapping
  mm/vmscan: remove unnecessary lruvec adding
  mm/thp: narrow lru locking
  mm/thp: simplify lru_add_page_tail()
  mm/thp: use head for head page in lru_add_page_tail()
  mm/thp: move lru_add_page_tail() to huge_memory.c
2020-12-15 14:55:10 -08:00
Alex Shi 6168d0da2b mm/lru: replace pgdat lru_lock with lruvec lock
This patch moves per node lru_lock into lruvec, thus bring a lru_lock for
each of memcg per node.  So on a large machine, each of memcg don't have
to suffer from per node pgdat->lru_lock competition.  They could go fast
with their self lru_lock.

After move memcg charge before lru inserting, page isolation could
serialize page's memcg, then per memcg lruvec lock is stable and could
replace per node lru lock.

In isolate_migratepages_block(), compact_unlock_should_abort and
lock_page_lruvec_irqsave are open coded to work with compact_control.
Also add a debug func in locking which may give some clues if there are
sth out of hands.

Daniel Jordan's testing show 62% improvement on modified readtwice case on
his 2P * 10 core * 2 HT broadwell box.
https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/

Hugh Dickins helped on the patch polish, thanks!

[alex.shi@linux.alibaba.com: fix comment typo]
  Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com
[alex.shi@linux.alibaba.com: use page_memcg()]
  Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com

Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rong Chen <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:04 -08:00
Alex Shi 20ad50d678 mm/memcg: add debug checking in lock_page_memcg
Add a debug checking in lock_page_memcg, then we could get alarm if
anything wrong here.

Link: https://lkml.kernel.org/r/1604566549-62481-9-git-send-email-alex.shi@linux.alibaba.com
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:03 -08:00
Linus Torvalds d635a69dd4 Networking updates for 5.11
Core:
 
  - support "prefer busy polling" NAPI operation mode, where we defer softirq
    for some time expecting applications to periodically busy poll
 
  - AF_XDP: improve efficiency by more batching and hindering
            the adjacency cache prefetcher
 
  - af_packet: make packet_fanout.arr size configurable up to 64K
 
  - tcp: optimize TCP zero copy receive in presence of partial or unaligned
         reads making zero copy a performance win for much smaller messages
 
  - XDP: add bulk APIs for returning / freeing frames
 
  - sched: support fragmenting IP packets as they come out of conntrack
 
  - net: allow virtual netdevs to forward UDP L4 and fraglist GSO skbs
 
 BPF:
 
  - BPF switch from crude rlimit-based to memcg-based memory accounting
 
  - BPF type format information for kernel modules and related tracing
    enhancements
 
  - BPF implement task local storage for BPF LSM
 
  - allow the FENTRY/FEXIT/RAW_TP tracing programs to use bpf_sk_storage
 
 Protocols:
 
  - mptcp: improve multiple xmit streams support, memory accounting and
           many smaller improvements
 
  - TLS: support CHACHA20-POLY1305 cipher
 
  - seg6: add support for SRv6 End.DT4/DT6 behavior
 
  - sctp: Implement RFC 6951: UDP Encapsulation of SCTP
 
  - ppp_generic: add ability to bridge channels directly
 
  - bridge: Connectivity Fault Management (CFM) support as is defined in
            IEEE 802.1Q section 12.14.
 
 Drivers:
 
  - mlx5: make use of the new auxiliary bus to organize the driver internals
 
  - mlx5: more accurate port TX timestamping support
 
  - mlxsw:
    - improve the efficiency of offloaded next hop updates by using
      the new nexthop object API
    - support blackhole nexthops
    - support IEEE 802.1ad (Q-in-Q) bridging
 
  - rtw88: major bluetooth co-existance improvements
 
  - iwlwifi: support new 6 GHz frequency band
 
  - ath11k: Fast Initial Link Setup (FILS)
 
  - mt7915: dual band concurrent (DBDC) support
 
  - net: ipa: add basic support for IPA v4.5
 
 Refactor:
 
  - a few pieces of in_interrupt() cleanup work from Sebastian Andrzej Siewior
 
  - phy: add support for shared interrupts; get rid of multiple driver
         APIs and have the drivers write a full IRQ handler, slight growth
 	of driver code should be compensated by the simpler API which
 	also allows shared IRQs
 
  - add common code for handling netdev per-cpu counters
 
  - move TX packet re-allocation from Ethernet switch tag drivers to
    a central place
 
  - improve efficiency and rename nla_strlcpy
 
  - number of W=1 warning cleanups as we now catch those in a patchwork
    build bot
 
 Old code removal:
 
  - wan: delete the DLCI / SDLA drivers
 
  - wimax: move to staging
 
  - wifi: remove old WDS wifi bridging support
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl/YXmUACgkQMUZtbf5S
 IrvSQBAAgOrt4EFopEvVqlTHZbqI45IEqgtXS+YWmlgnjZCgshyMj8q1yK1zzane
 qYxr/NNJ9kV3FdtaynmmHPgEEEfR5kJ/D3B2BsxYDkaDDrD0vbNsBGw+L+/Gbhxl
 N/5l/9FjLyLY1D+EErknuwR5XGuQ6BSDVaKQMhYOiK2hgdnAAI4hszo8Chf6wdD0
 XDBslQ7vpD/05r+eMj0IkS5dSAoGOIFXUxhJ5dqrDbRHiKsIyWqA3PLbYemfAhxI
 s2XckjfmSgGE3FKL8PSFu+EcfHbJQQjLcULJUnqgVcdwEEtRuE9ggEi52nZRXMWM
 4e8sQJAR9Fx7pZy0G1xfS149j6iPU5LjRlU9TNSpVABz14Vvvo3gEL6gyIdsz+xh
 hMN7UBdp0FEaP028CXoIYpaBesvQqj0BSndmee8qsYAtN6j+QKcM2AOSr7JN1uMH
 C/86EDoGAATiEQIVWJvnX5MPmlAoblyLA+RuVhmxkIBx2InGXkFmWqRkXT5l4jtk
 LVl8/TArR4alSQqLXictXCjYlCm9j5N4zFFtEVasSYi7/ZoPfgRNWT+lJ2R8Y+Zv
 +htzGaFuyj6RJTVeFQMrkl3whAtBamo2a0kwg45NnxmmXcspN6kJX1WOIy82+MhD
 Yht7uplSs7MGKA78q/CDU0XBeGjpABUvmplUQBIfrR/jKLW2730=
 =GXs1
 -----END PGP SIGNATURE-----

Merge tag 'net-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:
 "Core:

   - support "prefer busy polling" NAPI operation mode, where we defer
     softirq for some time expecting applications to periodically busy
     poll

   - AF_XDP: improve efficiency by more batching and hindering the
     adjacency cache prefetcher

   - af_packet: make packet_fanout.arr size configurable up to 64K

   - tcp: optimize TCP zero copy receive in presence of partial or
     unaligned reads making zero copy a performance win for much smaller
     messages

   - XDP: add bulk APIs for returning / freeing frames

   - sched: support fragmenting IP packets as they come out of conntrack

   - net: allow virtual netdevs to forward UDP L4 and fraglist GSO skbs

  BPF:

   - BPF switch from crude rlimit-based to memcg-based memory accounting

   - BPF type format information for kernel modules and related tracing
     enhancements

   - BPF implement task local storage for BPF LSM

   - allow the FENTRY/FEXIT/RAW_TP tracing programs to use
     bpf_sk_storage

  Protocols:

   - mptcp: improve multiple xmit streams support, memory accounting and
     many smaller improvements

   - TLS: support CHACHA20-POLY1305 cipher

   - seg6: add support for SRv6 End.DT4/DT6 behavior

   - sctp: Implement RFC 6951: UDP Encapsulation of SCTP

   - ppp_generic: add ability to bridge channels directly

   - bridge: Connectivity Fault Management (CFM) support as is defined
     in IEEE 802.1Q section 12.14.

  Drivers:

   - mlx5: make use of the new auxiliary bus to organize the driver
     internals

   - mlx5: more accurate port TX timestamping support

   - mlxsw:
      - improve the efficiency of offloaded next hop updates by using
        the new nexthop object API
      - support blackhole nexthops
      - support IEEE 802.1ad (Q-in-Q) bridging

   - rtw88: major bluetooth co-existance improvements

   - iwlwifi: support new 6 GHz frequency band

   - ath11k: Fast Initial Link Setup (FILS)

   - mt7915: dual band concurrent (DBDC) support

   - net: ipa: add basic support for IPA v4.5

  Refactor:

   - a few pieces of in_interrupt() cleanup work from Sebastian Andrzej
     Siewior

   - phy: add support for shared interrupts; get rid of multiple driver
     APIs and have the drivers write a full IRQ handler, slight growth
     of driver code should be compensated by the simpler API which also
     allows shared IRQs

   - add common code for handling netdev per-cpu counters

   - move TX packet re-allocation from Ethernet switch tag drivers to a
     central place

   - improve efficiency and rename nla_strlcpy

   - number of W=1 warning cleanups as we now catch those in a patchwork
     build bot

  Old code removal:

   - wan: delete the DLCI / SDLA drivers

   - wimax: move to staging

   - wifi: remove old WDS wifi bridging support"

* tag 'net-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1922 commits)
  net: hns3: fix expression that is currently always true
  net: fix proc_fs init handling in af_packet and tls
  nfc: pn533: convert comma to semicolon
  af_vsock: Assign the vsock transport considering the vsock address flags
  af_vsock: Set VMADDR_FLAG_TO_HOST flag on the receive path
  vsock_addr: Check for supported flag values
  vm_sockets: Add VMADDR_FLAG_TO_HOST vsock flag
  vm_sockets: Add flags field in the vsock address data structure
  net: Disable NETIF_F_HW_TLS_TX when HW_CSUM is disabled
  tcp: Add logic to check for SYN w/ data in tcp_simple_retransmit
  net: mscc: ocelot: install MAC addresses in .ndo_set_rx_mode from process context
  nfc: s3fwrn5: Release the nfc firmware
  net: vxget: clean up sparse warnings
  mlxsw: spectrum_router: Use eXtended mezzanine to offload IPv4 router
  mlxsw: spectrum: Set KVH XLT cache mode for Spectrum2/3
  mlxsw: spectrum_router_xm: Introduce basic XM cache flushing
  mlxsw: reg: Add Router LPM Cache Enable Register
  mlxsw: reg: Add Router LPM Cache ML Delete Register
  mlxsw: spectrum_router_xm: Implement L-value tracking for M-index
  mlxsw: reg: Add XM Router M Table Register
  ...
2020-12-15 13:22:29 -08:00
Shakeel Butt f0c0c115fb mm: memcontrol: account pagetables per node
For many workloads, pagetable consumption is significant and it makes
sense to expose it in the memory.stat for the memory cgroups.  However at
the moment, the pagetables are accounted per-zone.  Converting them to
per-node and using the right interface will correctly account for the
memory cgroups as well.

[akpm@linux-foundation.org: export __mod_lruvec_page_state to modules for arch/mips/kvm/]

Link: https://lkml.kernel.org/r/20201130212541.2781790-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Shakeel Butt c47d5032ed mm: move lruvec stats update functions to vmstat.h
Patch series "memcg: add pagetable comsumption to memory.stat", v2.

Many workloads consumes significant amount of memory in pagetables.  One
specific use-case is the user space network driver which mmaps the
application memory to provide zero copy transfer.  This driver can consume
a large amount memory in page tables.  This patch series exposes the
pagetable comsumption for each memory cgroup.

This patch (of 2):

This does not change any functionality and only move the functions which
update the lruvec stats to vmstat.h from memcontrol.h.  The main reason
for this patch is to be able to use these functions in the page table
contructor function which is defined in mm.h and we can not include the
memcontrol.h in that file.  Also this is a better place for this interface
in general.  The lruvec abstraction, while invented for memcg, isn't
specific to memcg at all.

Link: https://lkml.kernel.org/r/20201130212541.2781790-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Alex Shi 7f41506baa mm/memcg: remove incorrect comment
Swapcache readahead pages are charged before being used, so it is unlikely
that they will be migrated before charging.  Remove the incorrect comment.

Link: https://lkml.kernel.org/r/1605864930-49405-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Kaixu Xia 5ab92901fe mm: memcontrol: sssign boolean values to a bool variable
Fix the following coccinelle warnings:

  mm/memcontrol.c:7341:2-22: WARNING: Assignment of 0/1 to bool variable
  mm/memcontrol.c:7343:2-22: WARNING: Assignment of 0/1 to bool variable

Link: https://lkml.kernel.org/r/1604737495-6418-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reported-by: Tosk Robot <tencent_os_robot@tencent.com>
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Muchun Song da3ceeff92 mm: memcg/slab: rename *_lruvec_slab_state to *_lruvec_kmem_state
The *_lruvec_slab_state is also suitable for pages allocated from buddy,
not just for the slab objects.  But the function name seems to tell us
that only slab object is applicable.  So we can rename the keyword of slab
to kmem.

Link: https://lkml.kernel.org/r/20201117085249.24319-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Lukas Bulwahn fe6960cb38 mm: memcg: remove obsolete memcg_has_children()
Commit 2ef1bf118c40 ("mm: memcg: deprecate the non-hierarchical mode")
removed the only use of memcg_has_children() in
mem_cgroup_hierarchy_write() as part of the feature deprecation.

Hence, since then, make CC=clang W=1 warns:

  mm/memcontrol.c:3421:20: warning: unused function 'memcg_has_children' [-Wunused-function]

Simply remove this obsolete unused function.

Link: https://lkml.kernel.org/r/20201116055043.20886-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Roman Gushchin bef8620cd8 mm: memcg: deprecate the non-hierarchical mode
Patch series "mm: memcg: deprecate cgroup v1 non-hierarchical mode", v1.

The non-hierarchical cgroup v1 mode is a legacy of early days
of the memory controller and doesn't bring any value today.
However, it complicates the code and creates many edge cases
all over the memory controller code.

It's a good time to deprecate it completely. This patchset removes
the internal logic, adjusts the user interface and updates
the documentation. The alt patch removes some bits of the cgroup
core code, which become obsolete.

Michal Hocko said:
  "All that we know today is that we have a warning in place to complain
   loudly when somebody relies on use_hierarchy=0 with a deeper
   hierarchy. For all those years we have seen _zero_ reports that would
   describe a sensible usecase.

   Moreover we (SUSE) have backported this warning into old distribution
   kernels (since 3.0 based kernels) to extend the coverage and didn't
   hear even for users who adopt new kernels only very slowly. The only
   report we have seen so far was a LTP test suite which doesn't really
   reflect any real life usecase"

This patch (of 3):

The non-hierarchical cgroup v1 mode is a legacy of early days of the
memory controller and doesn't bring any value today.  However, it
complicates the code and creates many edge cases all over the memory
controller code.

It's a good time to deprecate it completely.

Functionally this patch enabled is by default for all cgroups and forbids
switching it off.  Nothing changes if cgroup v2 is used: hierarchical mode
was enforced from scratch.

To protect the ABI memory.use_hierarchy interface is preserved with a
limited functionality: reading always returns "1", writing of "1" passes
silently, writing of any other value fails with -EINVAL and a warning to
dmesg (on the first occasion).

Link: https://lkml.kernel.org/r/20201110220800.929549-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201110220800.929549-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Roman Gushchin a7cb874bff mm: memcg: fix obsolete code comments
This patch fixes/removes some obsolete comments in the code related
to the kernel memory accounting:

 - kmem_cache->memcg_params.memcg_caches has been removed by commit
   9855609bde ("mm: memcg/slab: use a single set of kmem_caches for
   all accounted allocations")

 - memcg->kmemcg_id is not used as a gate for kmem accounting since
   commit 0b8f73e104 ("mm: memcontrol: clean up alloc, online,
   offline, free functions")

Link: https://lkml.kernel.org/r/20201110184615.311974-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Alex Shi a5eb011afe mm/memcg: update page struct member in comments
The page->mem_cgroup member is replaced by memcg_data, and add a helper
page_memcg() for it.  Need to update comments to avoid confusing.

Link: https://lkml.kernel.org/r/1491c150-1cc0-6062-08ea-9c891548a3bc@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Muchun Song eefbfa7fd6 mm: memcg/slab: fix use after free in obj_cgroup_charge
The rcu_read_lock/unlock only can guarantee that the memcg will not be
freed, but it cannot guarantee the success of css_get to memcg.

If the whole process of a cgroup offlining is completed between reading a
objcg->memcg pointer and bumping the css reference on another CPU, and
there are exactly 0 external references to this memory cgroup (how we get
to the obj_cgroup_charge() then?), css_get() can change the ref counter
from 0 back to 1.

Link: https://lkml.kernel.org/r/20201028035013.99711-2-songmuchun@bytedance.com
Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:39 -08:00
Muchun Song 2f7659a314 mm: memcg/slab: fix return of child memcg objcg for root memcg
Consider the following memcg hierarchy.

                    root
                   /    \
                  A      B

If we failed to get the reference on objcg of memcg A, the
get_obj_cgroup_from_current can return the wrong objcg for the root
memcg.

Link: https://lkml.kernel.org/r/20201029164429.58703-1-songmuchun@bytedance.com
Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Adrian Reber <areber@redhat.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:39 -08:00
Miaohe Lin 378876b0e3 mm: memcontrol: eliminate redundant check in __mem_cgroup_insert_exceeded()
The mz->usage_in_excess >= mz_node->usage_in_excess check is exactly the
else case of mz->usage_in_excess < mz_node->usage_in_excess.  So we could
replace else if (mz->usage_in_excess >= mz_node->usage_in_excess) with
else equally.  Also drop the comment which doesn't really explain much.

Link: https://lkml.kernel.org/r/20201012131607.10656-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:39 -08:00
Muchun Song 1a984c4e82 mm: memcontrol: remove unused mod_memcg_obj_state()
Since commit 991e767385 ("mm: memcontrol: account kernel stack per
node") there is no user of the mod_memcg_obj_state().  So just remove
it.

Also rework type of the idx parameter of the mod_objcg_state() from int
to enum node_stat_item.

Link: https://lkml.kernel.org/r/20201013153504.92602-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:39 -08:00
Johannes Weiner b8eddff888 mm: memcontrol: add file_thp, shmem_thp to memory.stat
As huge page usage in the page cache and for shmem files proliferates in
our production environment, the performance monitoring team has asked for
per-cgroup stats on those pages.

We already track and export anon_thp per cgroup.  We already track file
THP and shmem THP per node, so making them per-cgroup is only a matter of
switching from node to lruvec counters.  All callsites are in places where
the pages are charged and locked, so page->memcg is stable.

[hannes@cmpxchg.org: add documentation]
  Link: https://lkml.kernel.org/r/20201026174029.GC548555@cmpxchg.org

Link: https://lkml.kernel.org/r/20201022151844.489337-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:39 -08:00
Jakub Kicinski a1dd1d8697 Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:

====================
pull-request: bpf-next 2020-12-03

The main changes are:

1) Support BTF in kernel modules, from Andrii.

2) Introduce preferred busy-polling, from Björn.

3) bpf_ima_inode_hash() and bpf_bprm_opts_set() helpers, from KP Singh.

4) Memcg-based memory accounting for bpf objects, from Roman.

5) Allow bpf_{s,g}etsockopt from cgroup bind{4,6} hooks, from Stanislav.

* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (118 commits)
  selftests/bpf: Fix invalid use of strncat in test_sockmap
  libbpf: Use memcpy instead of strncpy to please GCC
  selftests/bpf: Add fentry/fexit/fmod_ret selftest for kernel module
  selftests/bpf: Add tp_btf CO-RE reloc test for modules
  libbpf: Support attachment of BPF tracing programs to kernel modules
  libbpf: Factor out low-level BPF program loading helper
  bpf: Allow to specify kernel module BTFs when attaching BPF programs
  bpf: Remove hard-coded btf_vmlinux assumption from BPF verifier
  selftests/bpf: Add CO-RE relocs selftest relying on kernel module BTF
  selftests/bpf: Add support for marking sub-tests as skipped
  selftests/bpf: Add bpf_testmod kernel module for testing
  libbpf: Add kernel module BTF support for CO-RE relocations
  libbpf: Refactor CO-RE relocs to not assume a single BTF object
  libbpf: Add internal helper to load BTF data by FD
  bpf: Keep module's btf_data_size intact after load
  bpf: Fix bpf_put_raw_tracepoint()'s use of __module_address()
  selftests/bpf: Add Userspace tests for TCP_WINDOW_CLAMP
  bpf: Adds support for setting window clamp
  samples/bpf: Fix spelling mistake "recieving" -> "receiving"
  bpf: Fix cold build of test_progs-no_alu32
  ...
====================

Link: https://lore.kernel.org/r/20201204021936.85653-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-04 07:48:12 -08:00
Roman Gushchin 18b2db3b03 mm: Convert page kmemcg type to a page memcg flag
PageKmemcg flag is currently defined as a page type (like buddy, offline,
table and guard).  Semantically it means that the page was accounted as a
kernel memory by the page allocator and has to be uncharged on the
release.

As a side effect of defining the flag as a page type, the accounted page
can't be mapped to userspace (look at page_has_type() and comments above).
In particular, this blocks the accounting of vmalloc-backed memory used
by some bpf maps, because these maps do map the memory to userspace.

One option is to fix it by complicating the access to page->mapcount,
which provides some free bits for page->page_type.

But it's way better to move this flag into page->memcg_data flags.
Indeed, the flag makes no sense without enabled memory cgroups and memory
cgroup pointer set in particular.

This commit replaces PageKmemcg() and __SetPageKmemcg() with
PageMemcgKmem() and an open-coded OR operation setting the memcg pointer
with the MEMCG_DATA_KMEM bit.  __ClearPageKmemcg() can be simple deleted,
as the whole memcg_data is zeroed at once.

As a bonus, on !CONFIG_MEMCG build the PageMemcgKmem() check will be
compiled out.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-5-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-5-guro@fb.com
2020-12-02 18:28:06 -08:00
Roman Gushchin 270c6a7146 mm: memcontrol/slab: Use helpers to access slab page's memcg_data
To gather all direct accesses to struct page's memcg_data field in one
place, let's introduce 3 new helpers to use in the slab accounting code:

  struct obj_cgroup **page_objcgs(struct page *page);
  struct obj_cgroup **page_objcgs_check(struct page *page);
  bool set_page_objcgs(struct page *page, struct obj_cgroup **objcgs);

They are similar to the corresponding API for generic pages, except that
the setter can return false, indicating that the value has been already
set from a different thread.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20201027001657.3398190-3-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-3-guro@fb.com
2020-12-02 18:28:06 -08:00
Roman Gushchin bcfe06bf26 mm: memcontrol: Use helpers to read page's memcg data
Patch series "mm: allow mapping accounted kernel pages to userspace", v6.

Currently a non-slab kernel page which has been charged to a memory cgroup
can't be mapped to userspace.  The underlying reason is simple: PageKmemcg
flag is defined as a page type (like buddy, offline, etc), so it takes a
bit from a page->mapped counter.  Pages with a type set can't be mapped to
userspace.

But in general the kmemcg flag has nothing to do with mapping to
userspace.  It only means that the page has been accounted by the page
allocator, so it has to be properly uncharged on release.

Some bpf maps are mapping the vmalloc-based memory to userspace, and their
memory can't be accounted because of this implementation detail.

This patchset removes this limitation by moving the PageKmemcg flag into
one of the free bits of the page->mem_cgroup pointer.  Also it formalizes
accesses to the page->mem_cgroup and page->obj_cgroups using new helpers,
adds several checks and removes a couple of obsolete functions.  As the
result the code became more robust with fewer open-coded bit tricks.

This patch (of 4):

Currently there are many open-coded reads of the page->mem_cgroup pointer,
as well as a couple of read helpers, which are barely used.

It creates an obstacle on a way to reuse some bits of the pointer for
storing additional bits of information.  In fact, we already do this for
slab pages, where the last bit indicates that a pointer has an attached
vector of objcg pointers instead of a regular memcg pointer.

This commits uses 2 existing helpers and introduces a new helper to
converts all read sides to calls of these helpers:
  struct mem_cgroup *page_memcg(struct page *page);
  struct mem_cgroup *page_memcg_rcu(struct page *page);
  struct mem_cgroup *page_memcg_check(struct page *page);

page_memcg_check() is intended to be used in cases when the page can be a
slab page and have a memcg pointer pointing at objcg vector.  It does
check the lowest bit, and if set, returns NULL.  page_memcg() contains a
VM_BUG_ON_PAGE() check for the page not being a slab page.

To make sure nobody uses a direct access, struct page's
mem_cgroup/obj_cgroups is converted to unsigned long memcg_data.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
2020-12-02 18:28:05 -08:00
Muchun Song 8faeb1ffd7 mm: memcg/slab: fix root memcg vmstats
If we reparent the slab objects to the root memcg, when we free the slab
object, we need to update the per-memcg vmstats to keep it correct for
the root memcg.  Now this at least affects the vmstat of
NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is
smaller than the PAGE_SIZE.

David said:
 "I assume that without this fix that the root memcg's vmstat would
  always be inflated if we reparented"

Fixes: ec9f02384f ("mm: workingset: fix vmstat counters for shadow nodes")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: <stable@vger.kernel.org>	[5.3+]
Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-22 10:48:22 -08:00
Roman Gushchin 8de15e920d mm: memcg: link page counters to root if use_hierarchy is false
Richard reported a warning which can be reproduced by running the LTP
madvise6 test (cgroup v1 in the non-hierarchical mode should be used):

  WARNING: CPU: 0 PID: 12 at mm/page_counter.c:57 page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156)
  Modules linked in:
  CPU: 0 PID: 12 Comm: kworker/0:1 Not tainted 5.9.0-rc7-22-default #77
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-48-gd9c812d-rebuilt.opensuse.org 04/01/2014
  Workqueue: events drain_local_stock
  RIP: 0010:page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156)
  Call Trace:
    __memcg_kmem_uncharge (mm/memcontrol.c:3022)
    drain_obj_stock (./include/linux/rcupdate.h:689 mm/memcontrol.c:3114)
    drain_local_stock (mm/memcontrol.c:2255)
    process_one_work (./arch/x86/include/asm/jump_label.h:25 ./include/linux/jump_label.h:200 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2274)
    worker_thread (./include/linux/list.h:282 kernel/workqueue.c:2416)
    kthread (kernel/kthread.c:292)
    ret_from_fork (arch/x86/entry/entry_64.S:300)

The problem occurs because in the non-hierarchical mode non-root page
counters are not linked to root page counters, so the charge is not
propagated to the root memory cgroup.

After the removal of the original memory cgroup and reparenting of the
object cgroup, the root cgroup might be uncharged by draining a objcg
stock, for example.  It leads to an eventual underflow of the charge and
triggers a warning.

Fix it by linking all page counters to corresponding root page counters
in the non-hierarchical mode.

Please note, that in the non-hierarchical mode all objcgs are always
reparented to the root memory cgroup, even if the hierarchy has more
than 1 level.  This patch doesn't change it.

The patch also doesn't affect how the hierarchical mode is working,
which is the only sane and truly supported mode now.

Thanks to Richard for reporting, debugging and providing an alternative
version of the fix!

Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Reported-by: <ltp@lists.linux.it>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201026231326.3212225-1-guro@fb.com
Debugged-by: Richard Palethorpe <rpalethorpe@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02 12:14:18 -08:00
zhongjiang-ali 7de2e9f195 mm: memcontrol: correct the NR_ANON_THPS counter of hierarchical memcg
memcg_page_state will get the specified number in hierarchical memcg, It
should multiply by HPAGE_PMD_NR rather than an page if the item is
NR_ANON_THPS.

[akpm@linux-foundation.org: fix printk warning]
[akpm@linux-foundation.org: use u64 cast, per Michal]

Fixes: 468c398233 ("mm: memcontrol: switch to native NR_ANON_THPS counter")
Signed-off-by: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/1603722395-72443-1-git-send-email-zhongjiang-ali@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02 12:14:18 -08:00
Roman Gushchin 4127c6504f mm: kmem: enable kernel memcg accounting from interrupt contexts
If a memcg to charge can be determined (using remote charging API), there
are no reasons to exclude allocations made from an interrupt context from
the accounting.

Such allocations will pass even if the resulting memcg size will exceed
the hard limit, but it will affect the application of the memory pressure
and an inability to put the workload under the limit will eventually
trigger the OOM.

To use active_memcg() helper, memcg_kmem_bypass() is moved back to
memcontrol.c.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin 37d5985c00 mm: kmem: prepare remote memcg charging infra for interrupt contexts
Remote memcg charging API uses current->active_memcg to store the
currently active memory cgroup, which overwrites the memory cgroup of the
current process.  It works well for normal contexts, but doesn't work for
interrupt contexts: indeed, if an interrupt occurs during the execution of
a section with an active memcg set, all allocations inside the interrupt
will be charged to the active memcg set (given that we'll enable
accounting for allocations from an interrupt context).  But because the
interrupt might have no relation to the active memcg set outside, it's
obviously wrong from the accounting prospective.

To resolve this problem, let's add a global percpu int_active_memcg
variable, which will be used to store an active memory cgroup which will
be used from interrupt contexts.  set_active_memcg() will transparently
use current->active_memcg or int_active_memcg depending on the context.

To make the read part simple and transparent for the caller, let's
introduce two new functions:
  - struct mem_cgroup *active_memcg(void),
  - struct mem_cgroup *get_active_memcg(void).

They are returning the active memcg if it's set, hiding all implementation
details: where to get it depending on the current context.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin 67f0286498 mm: kmem: remove redundant checks from get_obj_cgroup_from_current()
There are checks for current->mm and current->active_memcg in
get_obj_cgroup_from_current(), but these checks are redundant:
memcg_kmem_bypass() called just above performs same checks.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin 279c3393e2 mm: kmem: move memcg_kmem_bypass() calls to get_mem/obj_cgroup_from_current()
Patch series "mm: kmem: kernel memory accounting in an interrupt context".

This patchset implements memcg-based memory accounting of allocations made
from an interrupt context.

Historically, such allocations were passed unaccounted mostly because
charging the memory cgroup of the current process wasn't an option.  Also
performance reasons were likely a reason too.

The remote charging API allows to temporarily overwrite the currently
active memory cgroup, so that all memory allocations are accounted towards
some specified memory cgroup instead of the memory cgroup of the current
process.

This patchset extends the remote charging API so that it can be used from
an interrupt context.  Then it removes the fence that prevented the
accounting of allocations made from an interrupt context.  It also
contains a couple of optimizations/code refactorings.

This patchset doesn't directly enable accounting for any specific
allocations, but prepares the code base for it.  The bpf memory accounting
will likely be the first user of it: a typical example is a bpf program
parsing an incoming network packet, which allocates an entry in hashmap
map to store some information.

This patch (of 4):

Currently memcg_kmem_bypass() is called before obtaining the current
memory/obj cgroup using get_mem/obj_cgroup_from_current().  Moving
memcg_kmem_bypass() into get_mem/obj_cgroup_from_current() reduces the
number of call sites and allows further code simplifications.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-1-guro@fb.com
Link: http://lkml.kernel.org/r/20200827225843.1270629-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin b87d8cefe4 mm, memcg: rework remote charging API to support nesting
Currently the remote memcg charging API consists of two functions:
memalloc_use_memcg() and memalloc_unuse_memcg(), which set and clear the
memcg value, which overwrites the memcg of the current task.

  memalloc_use_memcg(target_memcg);
  <...>
  memalloc_unuse_memcg();

It works perfectly for allocations performed from a normal context,
however an attempt to call it from an interrupt context or just nest two
remote charging blocks will lead to an incorrect accounting.  On exit from
the inner block the active memcg will be cleared instead of being
restored.

  memalloc_use_memcg(target_memcg);

  memalloc_use_memcg(target_memcg_2);
    <...>
    memalloc_unuse_memcg();

    Error: allocation here are charged to the memcg of the current
    process instead of target_memcg.

  memalloc_unuse_memcg();

This patch extends the remote charging API by switching to a single
function: struct mem_cgroup *set_active_memcg(struct mem_cgroup *memcg),
which sets the new value and returns the old one.  So a remote charging
block will look like:

  old_memcg = set_active_memcg(target_memcg);
  <...>
  set_active_memcg(old_memcg);

This patch is heavily based on the patch by Johannes Weiner, which can be
found here: https://lkml.org/lkml/2020/5/28/806 .

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Schatzberg <dschatzberg@fb.com>
Link: https://lkml.kernel.org/r/20200821212056.3769116-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Ralph Campbell 9a137153fc mm/memcg: fix device private memcg accounting
The code in mc_handle_swap_pte() checks for non_swap_entry() and returns
NULL before checking is_device_private_entry() so device private pages are
never handled.  Fix this by checking for non_swap_entry() after handling
device private swap PTEs.

I assume the memory cgroup accounting would be off somehow when moving
a process to another memory cgroup.  Currently, the device private page
is charged like a normal anonymous page when allocated and is uncharged
when the page is freed so I think that path is OK.

Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com
xFixes: c733a82874 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:31 -07:00
Miaohe Lin 7a52d4d88a mm: memcontrol: reword obsolete comment of mem_cgroup_unmark_under_oom()
Since commit 79dfdaccd1 ("memcg: make oom_lock 0 and 1 based rather than
counter"), the mem_cgroup_unmark_under_oom() is added and the comment of
the mem_cgroup_oom_unlock() is moved here.  But this comment make no sense
here because mem_cgroup_oom_lock() does not operate on under_oom field.
So we reword the comment as this would be helpful.  [Thanks Michal Hocko
for rewording this comment.]

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/20200930095336.21323-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Muchun Song 5f9a4f4a70 mm: memcontrol: add the missing numa_stat interface for cgroup v2
In the cgroup v1, we have a numa_stat interface.  This is useful for
providing visibility into the numa locality information within an memcg
since the pages are allowed to be allocated from any physical node.  One
of the use cases is evaluating application performance by combining this
information with the application's CPU allocation.  But the cgroup v2 does
not.  So this patch adds the missing information.

Suggested-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lkml.kernel.org/r/20200916100030.71698-2-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long bd0b230fe1 mm/memcg: unify swap and memsw page counters
The swap page counter is v2 only while memsw is v1 only.  As v1 and v2
controllers cannot be active at the same time, there is no point to keep
both swap and memsw page counters in mem_cgroup.  The previous patch has
made sure that memsw page counter is updated and accessed only when in v1
code paths.  So it is now safe to alias the v1 memsw page counter to v2
swap page counter.  This saves 14 long's in the size of mem_cgroup.  This
is a saving of 112 bytes for 64-bit archs.

While at it, also document which page counters are used in v1 and/or v2.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-4-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long 8d387a5f17 mm/memcg: simplify mem_cgroup_get_max()
mem_cgroup_get_max() used to get memory+swap max from both the v1 memsw
and v2 memory+swap page counters & return the maximum of these 2 values.
This is redundant and it is more efficient to just get either the v1 or
the v2 values depending on which one is currently in use.

[longman@redhat.com: v4]
  Link: https://lkml.kernel.org/r/20200914150928.7841-1-longman@redhat.com

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long f9f84ec56f mm/memcg: clean up obsolete enum charge_type
Patch series "mm/memcg: Miscellaneous cleanups and streamlining", v2.

This patch (of 3):

Since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") and
commit 00501b531c ("mm: memcontrol: rewrite charge API") in v3.17, the
enum charge_type was no longer used anywhere.  However, the enum itself
was not removed at that time.  Remove the obsolete enum charge_type now.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20200914024452.19167-2-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Miaohe Lin 05bdc520b3 mm: memcontrol: correct the comment of mem_cgroup_iter()
Since commit bbec2e1517 ("mm: rename page_counter's count/limit into
usage/max"), the arg @reclaim has no priority field anymore.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/20200913094129.44558-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Roman Gushchin 19b629c979 mm: memcg/slab: fix racy access to page->mem_cgroup in mem_cgroup_from_obj()
mem_cgroup_from_obj() checks the lowest bit of the page->mem_cgroup
pointer to determine if the page has an attached obj_cgroup vector instead
of a regular memcg pointer.  If it's not set, it simple returns the
page->mem_cgroup value as a struct mem_cgroup pointer.

The commit 10befea91b ("mm: memcg/slab: use a single set of kmem_caches
for all allocations") changed the moment when this bit is set: if
previously it was set on the allocation of the slab page, now it can be
set well after, when the first accounted object is allocated on this page.

It opened a race: if page->mem_cgroup is set concurrently after the first
page_has_obj_cgroups(page) check, a pointer to the obj_cgroups array can
be returned as a memory cgroup pointer.

A simple check for page->mem_cgroup pointer for NULL before the
page_has_obj_cgroups() check fixes the race.  Indeed, if the pointer is
not NULL, it's either a simple mem_cgroup pointer or a pointer to
obj_cgroup vector.  The pointer can be asynchronously changed from NULL to
(obj_cgroup_vec | 0x1UL), but can't be changed from a valid memcg pointer
to objcg vector or back.

If the object passed to mem_cgroup_from_obj() is a slab object and
page->mem_cgroup is NULL, it means that the object is not accounted, so
the function must return NULL.

I've discovered the race looking at the code, so far I haven't seen it in
the wild.

Fixes: 10befea91b ("mm: memcg/slab: use a single set of kmem_caches for all allocations")
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: https://lkml.kernel.org/r/20200910022435.2773735-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Gustavo A. R. Silva 61e604e636 mm: memcontrol: use the preferred form for passing the size of a structure type
Use the preferred form for passing the size of a structure type.  The
alternative form where the structure type is spelled out hurts readability
and introduces an opportunity for a bug when the object type is changed
but the corresponding object identifier to which the sizeof operator is
applied is not.

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/773e013ff2f07fe2a0b47153f14dea054c0c04f1.1596214831.git.gustavoars@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Gustavo A. R. Silva e90342e6d2 mm: memcontrol: use flex_array_size() helper in memcpy()
Make use of the flex_array_size() helper to calculate the size of a
flexible array member within an enclosing structure.

This helper offers defense-in-depth against potential integer overflows,
while at the same time makes it explicitly clear that we are dealing with
a flexible array member.

Also, remove unnecessary braces.

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/ddd60dae2d9aea1ccdd2be66634815c93696125e.1596214831.git.gustavoars@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Matthew Wilcox (Oracle) f5df8635c5 mm: use find_get_incore_page in memcontrol
The current code does not protect against swapoff of the underlying
swap device, so this is a bug fix as well as a worthwhile reduction in
code complexity.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Link: https://lkml.kernel.org/r/20200910183318.20139-3-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:29 -07:00
Linus Torvalds 3ad11d7ac8 block-5.10-2020-10-12
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+EWUgQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpnoxEADCVSNBRkpV0OVkOEC3wf8EGhXhk01Jnjtl
 u5Mg2V55hcgJ0thQxBV/V28XyqmsEBrmAVi0Yf8Vr9Qbq4Ze08Wae4ChS4rEOyh1
 jTcGYWx5aJB3ChLvV/HI0nWQ3bkj03mMrL3SW8rhhf5DTyKHsVeTenpx42Qu/FKf
 fRzi09FSr3Pjd0B+EX6gunwJnlyXQC5Fa4AA0GhnXJzAznANXxHkkcXu8a6Yw75x
 e28CfhIBliORsK8sRHLoUnPpeTe1vtxCBhBMsE+gJAj9ZUOWMzvNFIPP4FvfawDy
 6cCQo2m1azJ/IdZZCDjFUWyjh+wxdKMp+NNryEcoV+VlqIoc3n98rFwrSL+GIq5Z
 WVwEwq+AcwoMCsD29Lu1ytL2PQ/RVqcJP5UheMrbL4vzefNfJFumQVZLIcX0k943
 8dFL2QHL+H/hM9Dx5y5rjeiWkAlq75v4xPKVjh/DHb4nehddCqn/+DD5HDhNANHf
 c1kmmEuYhvLpIaC4DHjE6DwLh8TPKahJjwsGuBOTr7D93NUQD+OOWsIhX6mNISIl
 FFhP8cd0/ZZVV//9j+q+5B4BaJsT+ZtwmrelKFnPdwPSnh+3iu8zPRRWO+8P8fRC
 YvddxuJAmE6BLmsAYrdz6Xb/wqfyV44cEiyivF0oBQfnhbtnXwDnkDWSfJD1bvCm
 ZwfpDh2+Tg==
 =LzyE
 -----END PGP SIGNATURE-----

Merge tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - Series of merge handling cleanups (Baolin, Christoph)

 - Series of blk-throttle fixes and cleanups (Baolin)

 - Series cleaning up BDI, seperating the block device from the
   backing_dev_info (Christoph)

 - Removal of bdget() as a generic API (Christoph)

 - Removal of blkdev_get() as a generic API (Christoph)

 - Cleanup of is-partition checks (Christoph)

 - Series reworking disk revalidation (Christoph)

 - Series cleaning up bio flags (Christoph)

 - bio crypt fixes (Eric)

 - IO stats inflight tweak (Gabriel)

 - blk-mq tags fixes (Hannes)

 - Buffer invalidation fixes (Jan)

 - Allow soft limits for zone append (Johannes)

 - Shared tag set improvements (John, Kashyap)

 - Allow IOPRIO_CLASS_RT for CAP_SYS_NICE (Khazhismel)

 - DM no-wait support (Mike, Konstantin)

 - Request allocation improvements (Ming)

 - Allow md/dm/bcache to use IO stat helpers (Song)

 - Series improving blk-iocost (Tejun)

 - Various cleanups (Geert, Damien, Danny, Julia, Tetsuo, Tian, Wang,
   Xianting, Yang, Yufen, yangerkun)

* tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block: (191 commits)
  block: fix uapi blkzoned.h comments
  blk-mq: move cancel of hctx->run_work to the front of blk_exit_queue
  blk-mq: get rid of the dead flush handle code path
  block: get rid of unnecessary local variable
  block: fix comment and add lockdep assert
  blk-mq: use helper function to test hw stopped
  block: use helper function to test queue register
  block: remove redundant mq check
  block: invoke blk_mq_exit_sched no matter whether have .exit_sched
  percpu_ref: don't refer to ref->data if it isn't allocated
  block: ratelimit handle_bad_sector() message
  blk-throttle: Re-use the throtl_set_slice_end()
  blk-throttle: Open code __throtl_de/enqueue_tg()
  blk-throttle: Move service tree validation out of the throtl_rb_first()
  blk-throttle: Move the list operation after list validation
  blk-throttle: Fix IO hang for a corner case
  blk-throttle: Avoid tracking latency if low limit is invalid
  blk-throttle: Avoid getting the current time if tg->last_finish_time is 0
  blk-throttle: Remove a meaningless parameter for throtl_downgrade_state()
  block: Remove redundant 'return' statement
  ...
2020-10-13 12:12:44 -07:00
Muchun Song 8d3fe09d8d mm: memcontrol: fix missing suffix of workingset_restore
We forget to add the suffix to the workingset_restore string, so fix it.

And also update the documentation of cgroup-v2.rst.

Fixes: 170b04b7ae ("mm/workingset: prepare the workingset detection infrastructure for anon LRU")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lkml.kernel.org/r/20200916100030.71698-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26 10:33:57 -07:00
Christoph Hellwig f56753ac2a bdi: replace BDI_CAP_NO_{WRITEBACK,ACCT_DIRTY} with a single flag
Replace the two negative flags that are always used together with a
single positive flag that indicates the writeback capability instead
of two related non-capabilities.  Also remove the pointless wrappers
to just check the flag.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-09-24 13:43:39 -06:00
Michal Hocko f1796544a0 memcg: fix use-after-free in uncharge_batch
syzbot has reported an use-after-free in the uncharge_batch path

  BUG: KASAN: use-after-free in instrument_atomic_write include/linux/instrumented.h:71 [inline]
  BUG: KASAN: use-after-free in atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline]
  BUG: KASAN: use-after-free in atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline]
  BUG: KASAN: use-after-free in page_counter_cancel mm/page_counter.c:54 [inline]
  BUG: KASAN: use-after-free in page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155
  Write of size 8 at addr ffff8880371c0148 by task syz-executor.0/9304

  CPU: 0 PID: 9304 Comm: syz-executor.0 Not tainted 5.8.0-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Call Trace:
    __dump_stack lib/dump_stack.c:77 [inline]
    dump_stack+0x1f0/0x31e lib/dump_stack.c:118
    print_address_description+0x66/0x620 mm/kasan/report.c:383
    __kasan_report mm/kasan/report.c:513 [inline]
    kasan_report+0x132/0x1d0 mm/kasan/report.c:530
    check_memory_region_inline mm/kasan/generic.c:183 [inline]
    check_memory_region+0x2b5/0x2f0 mm/kasan/generic.c:192
    instrument_atomic_write include/linux/instrumented.h:71 [inline]
    atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline]
    atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline]
    page_counter_cancel mm/page_counter.c:54 [inline]
    page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155
    uncharge_batch+0x6c/0x350 mm/memcontrol.c:6764
    uncharge_page+0x115/0x430 mm/memcontrol.c:6796
    uncharge_list mm/memcontrol.c:6835 [inline]
    mem_cgroup_uncharge_list+0x70/0xe0 mm/memcontrol.c:6877
    release_pages+0x13a2/0x1550 mm/swap.c:911
    tlb_batch_pages_flush mm/mmu_gather.c:49 [inline]
    tlb_flush_mmu_free mm/mmu_gather.c:242 [inline]
    tlb_flush_mmu+0x780/0x910 mm/mmu_gather.c:249
    tlb_finish_mmu+0xcb/0x200 mm/mmu_gather.c:328
    exit_mmap+0x296/0x550 mm/mmap.c:3185
    __mmput+0x113/0x370 kernel/fork.c:1076
    exit_mm+0x4cd/0x550 kernel/exit.c:483
    do_exit+0x576/0x1f20 kernel/exit.c:793
    do_group_exit+0x161/0x2d0 kernel/exit.c:903
    get_signal+0x139b/0x1d30 kernel/signal.c:2743
    arch_do_signal+0x33/0x610 arch/x86/kernel/signal.c:811
    exit_to_user_mode_loop kernel/entry/common.c:135 [inline]
    exit_to_user_mode_prepare+0x8d/0x1b0 kernel/entry/common.c:166
    syscall_exit_to_user_mode+0x5e/0x1a0 kernel/entry/common.c:241
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Commit 1a3e1f4096 ("mm: memcontrol: decouple reference counting from
page accounting") reworked the memcg lifetime to be bound the the struct
page rather than charges.  It also removed the css_put_many from
uncharge_batch and that is causing the above splat.

uncharge_batch() is supposed to uncharge accumulated charges for all
pages freed from the same memcg.  The queuing is done by uncharge_page
which however drops the memcg reference after it adds charges to the
batch.  If the current page happens to be the last one holding the
reference for its memcg then the memcg is OK to go and the next page to
be freed will trigger batched uncharge which needs to access the memcg
which is gone already.

Fix the issue by taking a reference for the memcg in the current batch.

Fixes: 1a3e1f4096 ("mm: memcontrol: decouple reference counting from page accounting")
Reported-by: syzbot+b305848212deec86eabe@syzkaller.appspotmail.com
Reported-by: syzbot+b5ea6fb6f139c8b9482b@syzkaller.appspotmail.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Link: https://lkml.kernel.org/r/20200820090341.GC5033@dhcp22.suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-05 12:14:29 -07:00
Matthew Wilcox (Oracle) 6c357848b4 mm: replace hpage_nr_pages with thp_nr_pages
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.

[akpm@linux-foundation.org: fix mm/migrate.c]

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Johannes Weiner 9f45717924 mm: memcontrol: fix warning when allocating the root cgroup
Commit 3e38e0aaca ("mm: memcg: charge memcg percpu memory to the
parent cgroup") adds memory tracking to the memcg kernel structures
themselves to make cgroups liable for the memory they are consuming
through the allocation of child groups (which can be significant).

This code is a bit awkward as it's spread out through several functions:
The outermost function does memalloc_use_memcg(parent) to set up
current->active_memcg, which designates which cgroup to charge, and the
inner functions pass GFP_ACCOUNT to request charging for specific
allocations.  To make sure this dependency is satisfied at all times -
to make sure we don't randomly charge whoever is calling the functions -
the inner functions warn on !current->active_memcg.

However, this triggers a false warning when the root memcg itself is
allocated.  No parent exists in this case, and so current->active_memcg
is rightfully NULL.  It's a false positive, not indicative of a bug.

Delete the warnings for now, we can revisit this later.

Fixes: 3e38e0aaca ("mm: memcg: charge memcg percpu memory to the parent cgroup")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-13 12:15:21 -07:00
Randy Dunlap ac5ddd0fce mm/memcontrol.c: delete duplicated words
Drop the repeated word "down".

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-6-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:58 -07:00
Joonsoo Kim 170b04b7ae mm/workingset: prepare the workingset detection infrastructure for anon LRU
To prepare the workingset detection for anon LRU, this patch splits
workingset event counters for refault, activate and restore into anon and
file variants, as well as the refaults counter in struct lruvec.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Roman Gushchin 3e38e0aaca mm: memcg: charge memcg percpu memory to the parent cgroup
Memory cgroups are using large chunks of percpu memory to store vmstat
data.  Yet this memory is not accounted at all, so in the case when there
are many (dying) cgroups, it's not exactly clear where all the memory is.

Because the size of memory cgroup internal structures can dramatically
exceed the size of object or page which is pinning it in the memory, it's
not a good idea to simply ignore it.  It actually breaks the isolation
between cgroups.

Let's account the consumed percpu memory to the parent cgroup.

[guro@fb.com: add WARN_ON_ONCE()s, per Johannes]
  Link: http://lkml.kernel.org/r/20200811170611.GB1507044@carbon.DHCP.thefacebook.com

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Waiman Long <longman@redhat.com>
Cc: Bixuan Cui <cuibixuan@huawei.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200623184515.4132564-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Roman Gushchin 772616b031 mm: memcg/percpu: per-memcg percpu memory statistics
Percpu memory can represent a noticeable chunk of the total memory
consumption, especially on big machines with many CPUs.  Let's track
percpu memory usage for each memcg and display it in memory.stat.

A percpu allocation is usually scattered over multiple pages (and nodes),
and can be significantly smaller than a page.  So let's add a byte-sized
counter on the memcg level: MEMCG_PERCPU_B.  Byte-sized vmstat infra
created for slabs can be perfectly reused for percpu case.

[guro@fb.com: v3]
  Link: http://lkml.kernel.org/r/20200623184515.4132564-4-guro@fb.com

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Waiman Long <longman@redhat.com>
Cc: Bixuan Cui <cuibixuan@huawei.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200608230819.832349-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Johannes Weiner e22c6ed90a mm: memcontrol: don't count limit-setting reclaim as memory pressure
When an outside process lowers one of the memory limits of a cgroup (or
uses the force_empty knob in cgroup1), direct reclaim is performed in the
context of the write(), in order to directly enforce the new limit and
have it being met by the time the write() returns.

Currently, this reclaim activity is accounted as memory pressure in the
cgroup that the writer(!) belongs to.  This is unexpected.  It
specifically causes problems for senpai
(https://github.com/facebookincubator/senpai), which is an agent that
routinely adjusts the memory limits and performs associated reclaim work
in tens or even hundreds of cgroups running on the host.  The cgroup that
senpai is running in itself will report elevated levels of memory
pressure, even though it itself is under no memory shortage or any sort of
distress.

Move the psi annotation from the central cgroup reclaim function to
callsites in the allocation context, and thereby no longer count any
limit-setting reclaim as memory pressure.  If the newly set limit causes
the workload inside the cgroup into direct reclaim, that of course will
continue to count as memory pressure.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200728135210.379885-2-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:26 -07:00
Johannes Weiner 19ce33acbb mm: memcontrol: restore proper dirty throttling when memory.high changes
Commit 8c8c383c04 ("mm: memcontrol: try harder to set a new
memory.high") inadvertently removed a callback to recalculate the
writeback cache size in light of a newly configured memory.high limit.

Without letting the writeback cache know about a potentially heavily
reduced limit, it may permit too many dirty pages, which can cause
unnecessary reclaim latencies or even avoidable OOM situations.

This was spotted while reading the code, it hasn't knowingly caused any
problems in practice so far.

Fixes: 8c8c383c04 ("mm: memcontrol: try harder to set a new memory.high")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200728135210.379885-1-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:26 -07:00
Yafang Shao 1378b37d03 memcg, oom: check memcg margin for parallel oom
Memcg oom killer invocation is synchronized by the global oom_lock and
tasks are sleeping on the lock while somebody is selecting the victim or
potentially race with the oom_reaper is releasing the victim's memory.
This can result in a pointless oom killer invocation because a waiter
might be racing with the oom_reaper

        P1              oom_reaper              P2
                        oom_reap_task           mutex_lock(oom_lock)
                                                out_of_memory # no victim because we have one already
                        __oom_reap_task_mm      mute_unlock(oom_lock)
 mutex_lock(oom_lock)
                        set MMF_OOM_SKIP
 select_bad_process
 # finds a new victim

The page allocator prevents from this race by trying to allocate after the
lock can be acquired (in __alloc_pages_may_oom) which acts as a last
minute check.  Moreover page allocator simply doesn't block on the
oom_lock and simply retries the whole reclaim process.

Memcg oom killer should do the last minute check as well.  Call
mem_cgroup_margin to do that.  Trylock on the oom_lock could be done as
well but this doesn't seem to be necessary at this stage.

[mhocko@kernel.org: commit log]

Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/1594735034-19190-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down 45c7f7e1ef mm, memcg: decouple e{low,min} state mutations from protection checks
mem_cgroup_protected currently is both used to set effective low and min
and return a mem_cgroup_protection based on the result.  As a user, this
can be a little unexpected: it appears to be a simple predicate function,
if not for the big warning in the comment above about the order in which
it must be executed.

This change makes it so that we separate the state mutations from the
actual protection checks, which makes it more obvious where we need to be
careful mutating internal state, and where we are simply checking and
don't need to worry about that.

[mhocko@suse.com - don't check protection on root memcgs]

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: http://lkml.kernel.org/r/ff3f915097fcee9f6d7041c084ef92d16aaeb56a.1594638158.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Yafang Shao 22f7496f0b mm, memcg: avoid stale protection values when cgroup is above protection
Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4.

This series contains a fix for a edge case in my earlier protection
calculation patches, and a patch to make the area overall a little more
robust to hopefully help avoid this in future.

This patch (of 2):

A cgroup can have both memory protection and a memory limit to isolate it
from its siblings in both directions - for example, to prevent it from
being shrunk below 2G under high pressure from outside, but also from
growing beyond 4G under low pressure.

Commit 9783aa9917 ("mm, memcg: proportional memory.{low,min} reclaim")
implemented proportional scan pressure so that multiple siblings in excess
of their protection settings don't get reclaimed equally but instead in
accordance to their unprotected portion.

During limit reclaim, this proportionality shouldn't apply of course:
there is no competition, all pressure is from within the cgroup and should
be applied as such.  Reclaim should operate at full efficiency.

However, mem_cgroup_protected() never expected anybody to look at the
effective protection values when it indicated that the cgroup is above its
protection.  As a result, a query during limit reclaim may return stale
protection values that were calculated by a previous reclaim cycle in
which the cgroup did have siblings.

When this happens, reclaim is unnecessarily hesitant and potentially slow
to meet the desired limit.  In theory this could lead to premature OOM
kills, although it's not obvious this has occurred in practice.

Workaround the problem by special casing reclaim roots in
mem_cgroup_protection.  These memcgs are never participating in the
reclaim protection because the reclaim is internal.

We have to ignore effective protection values for reclaim roots because
mem_cgroup_protected might be called from racing reclaim contexts with
different roots.  Calculation is relying on root -> leaf tree traversal
therefore top-down reclaim protection invariants should hold.  The only
exception is the reclaim root which should have effective protection set
to 0 but that would be problematic for the following setup:

 Let's have global and A's reclaim in parallel:
  |
  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
  |\
  | C (low = 1G, usage = 2.5G)
  B (low = 1G, usage = 0.5G)

 for A reclaim we have
 B.elow = B.low
 C.elow = C.low

 For the global reclaim
 A.elow = A.low
 B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 C.elow = min(C.usage, C.low)

 With the effective values resetting we have A reclaim
 A.elow = 0
 B.elow = B.low
 C.elow = C.low

 and global reclaim could see the above and then
 B.elow = C.elow = 0 because children_low_usage > A.elow

Which means that protected memcgs would get reclaimed.

In future we would like to make mem_cgroup_protected more robust against
racing reclaim contexts but that is likely more complex solution than this
simple workaround.

[hannes@cmpxchg.org - large part of the changelog]
[mhocko@suse.com - workaround explanation]
[chris@chrisdown.name - retitle]

Fixes: 9783aa9917 ("mm, memcg: proportional memory.{low,min} reclaim")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/cover.1594638158.git.chris@chrisdown.name
Link: http://lkml.kernel.org/r/044fb8ecffd001c7905d27c0c2ad998069fdc396.1594638158.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down d977aa939f mm, memcg: unify reclaim retry limits with page allocator
Reclaim retries have been set to 5 since the beginning of time in
commit 66e1707bc3 ("Memory controller: add per cgroup LRU and
reclaim").  However, we now have a generally agreed-upon standard for
page reclaim: MAX_RECLAIM_RETRIES (currently 16), added many years later
in commit 0a0337e0d1 ("mm, oom: rework oom detection").

In the absence of a compelling reason to declare an OOM earlier in memcg
context than page allocator context, it seems reasonable to supplant
MEM_CGROUP_RECLAIM_RETRIES with MAX_RECLAIM_RETRIES, making the page
allocator and memcg internals more similar in semantics when reclaim
fails to produce results, avoiding premature OOMs or throttling.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/da557856c9c7654308eaff4eedc1952a95e8df5f.1594640214.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down b3ff92916a mm, memcg: reclaim more aggressively before high allocator throttling
Patch series "mm, memcg: reclaim harder before high throttling", v2.

This patch (of 2):

In Facebook production, we've seen cases where cgroups have been put into
allocator throttling even when they appear to have a lot of slack file
caches which should be trivially reclaimable.

Looking more closely, the problem is that we only try a single cgroup
reclaim walk for each return to usermode before calculating whether or not
we should throttle.  This single attempt doesn't produce enough pressure
to shrink for cgroups with a rapidly growing amount of file caches prior
to entering allocator throttling.

As an example, we see that threads in an affected cgroup are stuck in
allocator throttling:

    # for i in $(cat cgroup.threads); do
    >     grep over_high "/proc/$i/stack"
    > done
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150

...however, there is no I/O pressure reported by PSI, despite a lot of
slack file pages:

    # cat memory.pressure
    some avg10=78.50 avg60=84.99 avg300=84.53 total=5702440903
    full avg10=78.50 avg60=84.99 avg300=84.53 total=5702116959
    # cat io.pressure
    some avg10=0.00 avg60=0.00 avg300=0.00 total=78051391
    full avg10=0.00 avg60=0.00 avg300=0.00 total=78049640
    # grep _file memory.stat
    inactive_file 1370939392
    active_file 661635072

This patch changes the behaviour to retry reclaim either until the current
task goes below the 10ms grace period, or we are making no reclaim
progress at all.  In the latter case, we enter reclaim throttling as
before.

To a user, there's no intuitive reason for the reclaim behaviour to differ
from hitting memory.high as part of a new allocation, as opposed to
hitting memory.high because someone lowered its value.  As such this also
brings an added benefit: it unifies the reclaim behaviour between the two.

There's precedent for this behaviour: we already do reclaim retries when
writing to memory.{high,max}, in max reclaim, and in the page allocator
itself.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/cover.1594640214.git.chris@chrisdown.name
Link: http://lkml.kernel.org/r/a4e23b59e9ef499b575ae73a8120ee089b7d3373.1594640214.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 536d3bf261 mm: memcontrol: avoid workload stalls when lowering memory.high
Memory.high limit is implemented in a way such that the kernel penalizes
all threads which are allocating a memory over the limit.  Forcing all
threads into the synchronous reclaim and adding some artificial delays
allows to slow down the memory consumption and potentially give some time
for userspace oom handlers/resource control agents to react.

It works nicely if the memory usage is hitting the limit from below,
however it works sub-optimal if a user adjusts memory.high to a value way
below the current memory usage.  It basically forces all workload threads
(doing any memory allocations) into the synchronous reclaim and sleep.
This makes the workload completely unresponsive for a long period of time
and can also lead to a system-wide contention on lru locks.  It can happen
even if the workload is not actually tight on memory and has, for example,
a ton of cold pagecache.

In the current implementation writing to memory.high causes an atomic
update of page counter's high value followed by an attempt to reclaim
enough memory to fit into the new limit.  To fix the problem described
above, all we need is to change the order of execution: try to push the
memory usage under the limit first, and only then set the new high limit.

Reported-by: Domas Mituzas <domas@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Link: http://lkml.kernel.org/r/20200709194718.189231-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Shakeel Butt 991e767385 mm: memcontrol: account kernel stack per node
Currently the kernel stack is being accounted per-zone.  There is no need
to do that.  In addition due to being per-zone, memcg has to keep a
separate MEMCG_KERNEL_STACK_KB.  Make the stat per-node and deprecate
MEMCG_KERNEL_STACK_KB as memcg_stat_item is an extension of
node_stat_item.  In addition localize the kernel stack stats updates to
account_kernel_stack().

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200630161539.1759185-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 10befea91b mm: memcg/slab: use a single set of kmem_caches for all allocations
Instead of having two sets of kmem_caches: one for system-wide and
non-accounted allocations and the second one shared by all accounted
allocations, we can use just one.

The idea is simple: space for obj_cgroup metadata can be allocated on
demand and filled only for accounted allocations.

It allows to remove a bunch of code which is required to handle kmem_cache
clones for accounted allocations.  There is no more need to create them,
accumulate statistics, propagate attributes, etc.  It's a quite
significant simplification.

Also, because the total number of slab_caches is reduced almost twice (not
all kmem_caches have a memcg clone), some additional memory savings are
expected.  On my devvm it additionally saves about 3.5% of slab memory.

[guro@fb.com: fix build on MIPS]
  Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 272911a4ad mm: memcg/slab: remove memcg_kmem_get_cache()
The memcg_kmem_get_cache() function became really trivial, so let's just
inline it into the single call point: memcg_slab_pre_alloc_hook().

It will make the code less bulky and can also help the compiler to
generate a better code.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin d797b7d054 mm: memcg/slab: simplify memcg cache creation
Because the number of non-root kmem_caches doesn't depend on the number of
memory cgroups anymore and is generally not very big, there is no more
need for a dedicated workqueue.

Also, as there is no more need to pass any arguments to the
memcg_create_kmem_cache() except the root kmem_cache, it's possible to
just embed the work structure into the kmem_cache and avoid the dynamic
allocation of the work structure.

This will also simplify the synchronization: for each root kmem_cache
there is only one work.  So there will be no more concurrent attempts to
create a non-root kmem_cache for a root kmem_cache: the second and all
following attempts to queue the work will fail.

On the kmem_cache destruction path there is no more need to call the
expensive flush_workqueue() and wait for all pending works to be finished.
Instead, cancel_work_sync() can be used to cancel/wait for only one work.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 9855609bde mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
This is fairly big but mostly red patch, which makes all accounted slab
allocations use a single set of kmem_caches instead of creating a separate
set for each memory cgroup.

Because the number of non-root kmem_caches is now capped by the number of
root kmem_caches, there is no need to shrink or destroy them prematurely.
They can be perfectly destroyed together with their root counterparts.
This allows to dramatically simplify the management of non-root
kmem_caches and delete a ton of code.

This patch performs the following changes:
1) introduces memcg_params.memcg_cache pointer to represent the
   kmem_cache which will be used for all non-root allocations
2) reuses the existing memcg kmem_cache creation mechanism
   to create memcg kmem_cache on the first allocation attempt
3) memcg kmem_caches are named <kmemcache_name>-memcg,
   e.g. dentry-memcg
4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache
   or schedule it's creation and return the root cache
5) removes almost all non-root kmem_cache management code
   (separate refcounter, reparenting, shrinking, etc)
6) makes slab debugfs to display root_mem_cgroup css id and never
   show :dead and :deact flags in the memcg_slabinfo attribute.

Following patches in the series will simplify the kmem_cache creation.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 0f876e4dc5 mm: memcg/slab: move memcg_kmem_bypass() to memcontrol.h
To make the memcg_kmem_bypass() function available outside of the
memcontrol.c, let's move it to memcontrol.h.  The function is small and
nicely fits into static inline sort of functions.

It will be used from the slab code.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-12-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin 4330a26bc4 mm: memcg/slab: deprecate memory.kmem.slabinfo
Deprecate memory.kmem.slabinfo.

An empty file will be presented if corresponding config options are
enabled.

The interface is implementation dependent, isn't present in cgroup v2, and
is generally useful only for core mm debugging purposes.  In other words,
it doesn't provide any value for the absolute majority of users.

A drgn-based replacement can be found in
tools/cgroup/memcg_slabinfo.py.  It does support cgroup v1 and v2,
mimics memory.kmem.slabinfo output and also allows to get any
additional information without a need to recompile the kernel.

If a drgn-based solution is too slow for a task, a bpf-based tracing tool
can be used, which can easily keep track of all slab allocations belonging
to a memory cgroup.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin 964d4bd370 mm: memcg/slab: save obj_cgroup for non-root slab objects
Store the obj_cgroup pointer in the corresponding place of
page->obj_cgroups for each allocated non-root slab object.  Make sure that
each allocated object holds a reference to obj_cgroup.

Objcg pointer is obtained from the memcg->objcg dereferencing in
memcg_kmem_get_cache() and passed from pre_alloc_hook to post_alloc_hook.
Then in case of successful allocation(s) it's getting stored in the
page->obj_cgroups vector.

The objcg obtaining part look a bit bulky now, but it will be simplified
by next commits in the series.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-9-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin 286e04b8ed mm: memcg/slab: allocate obj_cgroups for non-root slab pages
Allocate and release memory to store obj_cgroup pointers for each non-root
slab page. Reuse page->mem_cgroup pointer to store a pointer to the
allocated space.

This commit temporarily increases the memory footprint of the kernel memory
accounting. To store obj_cgroup pointers we'll need a place for an
objcg_pointer for each allocated object. However, the following patches
in the series will enable sharing of slab pages between memory cgroups,
which will dramatically increase the total slab utilization. And the final
memory footprint will be significantly smaller than before.

To distinguish between obj_cgroups and memcg pointers in case when it's
not obvious which one is used (as in page_cgroup_ino()), let's always set
the lowest bit in the obj_cgroup case. The original obj_cgroups
pointer is marked to be ignored by kmemleak, which otherwise would
report a memory leak for each allocated vector.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-8-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin bf4f059954 mm: memcg/slab: obj_cgroup API
Obj_cgroup API provides an ability to account sub-page sized kernel
objects, which potentially outlive the original memory cgroup.

The top-level API consists of the following functions:
  bool obj_cgroup_tryget(struct obj_cgroup *objcg);
  void obj_cgroup_get(struct obj_cgroup *objcg);
  void obj_cgroup_put(struct obj_cgroup *objcg);

  int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
  void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);

  struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg);
  struct obj_cgroup *get_obj_cgroup_from_current(void);

Object cgroup is basically a pointer to a memory cgroup with a per-cpu
reference counter.  It substitutes a memory cgroup in places where it's
necessary to charge a custom amount of bytes instead of pages.

All charged memory rounded down to pages is charged to the corresponding
memory cgroup using __memcg_kmem_charge().

It implements reparenting: on memcg offlining it's getting reattached to
the parent memory cgroup.  Each online memory cgroup has an associated
active object cgroup to handle new allocations and the list of all
attached object cgroups.  On offlining of a cgroup this list is reparented
and for each object cgroup in the list the memcg pointer is swapped to the
parent memory cgroup.  It prevents long-living objects from pinning the
original memory cgroup in the memory.

The implementation is based on byte-sized per-cpu stocks.  A sub-page
sized leftover is stored in an atomic field, which is a part of obj_cgroup
object.  So on cgroup offlining the leftover is automatically reparented.

memcg->objcg is rcu protected.  objcg->memcg is a raw pointer, which is
always pointing at a memory cgroup, but can be atomically swapped to the
parent memory cgroup.  So a user must ensure the lifetime of the
cgroup, e.g.  grab rcu_read_lock or css_set_lock.

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200623174037.3951353-7-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Johannes Weiner 1a3e1f4096 mm: memcontrol: decouple reference counting from page accounting
The reference counting of a memcg is currently coupled directly to how
many 4k pages are charged to it.  This doesn't work well with Roman's new
slab controller, which maintains pools of objects and doesn't want to keep
an extra balance sheet for the pages backing those objects.

This unusual refcounting design (reference counts usually track pointers
to an object) is only for historical reasons: memcg used to not take any
css references and simply stalled offlining until all charges had been
reparented and the page counters had dropped to zero.  When we got rid of
the reparenting requirement, the simple mechanical translation was to take
a reference for every charge.

More historical context can be found in commit e8ea14cc6e ("mm:
memcontrol: take a css reference for each charged page"), commit
64f2199389 ("mm: memcontrol: remove obsolete kmemcg pinning tricks") and
commit b2052564e6 ("mm: memcontrol: continue cache reclaim from offlined
groups").

The new slab controller exposes the limitations in this scheme, so let's
switch it to a more idiomatic reference counting model based on actual
kernel pointers to the memcg:

- The per-cpu stock holds a reference to the memcg its caching

- User pages hold a reference for their page->mem_cgroup. Transparent
  huge pages will no longer acquire tail references in advance, we'll
  get them if needed during the split.

- Kernel pages hold a reference for their page->mem_cgroup

- Pages allocated in the root cgroup will acquire and release css
  references for simplicity. css_get() and css_put() optimize that.

- The current memcg_charge_slab() already hacked around the per-charge
  references; this change gets rid of that as well.

- tcp accounting will handle reference in mem_cgroup_sk_{alloc,free}

Roman:
1) Rebased on top of the current mm tree: added css_get() in
   mem_cgroup_charge(), dropped mem_cgroup_try_charge() part
2) I've reformatted commit references in the commit log to make
   checkpatch.pl happy.

[hughd@google.com: remove css_put_many() from __mem_cgroup_clear_mc()]
  Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007302011450.2347@eggly.anvils

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200623174037.3951353-6-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin d42f3245c7 mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert
NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes.

To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and
NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB).

Internally global and per-node counters are stored in pages, however memcg
and lruvec counters are stored in bytes.  This scheme may look weird, but
only for now.  As soon as slab pages will be shared between multiple
cgroups, global and node counters will reflect the total number of slab
pages.  However memcg and lruvec counters will be used for per-memcg slab
memory tracking, which will take separate kernel objects in the account.
Keeping global and node counters in pages helps to avoid additional
overhead.

The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it
will fit into atomic_long_t we use for vmstats.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin ea426c2a7d mm: memcg: prepare for byte-sized vmstat items
To implement per-object slab memory accounting, we need to convert slab
vmstat counters to bytes.  Actually, out of 4 levels of counters: global,
per-node, per-memcg and per-lruvec only two last levels will require
byte-sized counters.  It's because global and per-node counters will be
counting the number of slab pages, and per-memcg and per-lruvec will be
counting the amount of memory taken by charged slab objects.

Converting all vmstat counters to bytes or even all slab counters to bytes
would introduce an additional overhead.  So instead let's store global and
per-node counters in pages, and memcg and lruvec counters in bytes.

To make the API clean all access helpers (both on the read and write
sides) are dealing with bytes.

To avoid back-and-forth conversions a new flavor of read-side helpers is
introduced, which always returns values in pages: node_page_state_pages()
and global_node_page_state_pages().

Actually new helpers are just reading raw values.  Old helpers are simple
wrappers, which will complain on an attempt to read byte value, because at
the moment no one actually needs bytes.

Thanks to Johannes Weiner for the idea of having the byte-sized API on top
of the page-sized internal storage.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin eedc4e5a14 mm: memcg: factor out memcg- and lruvec-level changes out of __mod_lruvec_state()
Patch series "The new cgroup slab memory controller", v7.

The patchset moves the accounting from the page level to the object level.
It allows to share slab pages between memory cgroups.  This leads to a
significant win in the slab utilization (up to 45%) and the corresponding
drop in the total kernel memory footprint.  The reduced number of
unmovable slab pages should also have a positive effect on the memory
fragmentation.

The patchset makes the slab accounting code simpler: there is no more need
in the complicated dynamic creation and destruction of per-cgroup slab
caches, all memory cgroups use a global set of shared slab caches.  The
lifetime of slab caches is not more connected to the lifetime of memory
cgroups.

The more precise accounting does require more CPU, however in practice the
difference seems to be negligible.  We've been using the new slab
controller in Facebook production for several months with different
workloads and haven't seen any noticeable regressions.  What we've seen
were memory savings in order of 1 GB per host (it varied heavily depending
on the actual workload, size of RAM, number of CPUs, memory pressure,
etc).

The third version of the patchset added yet another step towards the
simplification of the code: sharing of slab caches between accounted and
non-accounted allocations.  It comes with significant upsides (most
noticeable, a complete elimination of dynamic slab caches creation) but
not without some regression risks, so this change sits on top of the
patchset and is not completely merged in.  So in the unlikely event of a
noticeable performance regression it can be reverted separately.

The slab memory accounting works in exactly the same way for SLAB and
SLUB.  With both allocators the new controller shows significant memory
savings, with SLUB the difference is bigger.  On my 16-core desktop
machine running Fedora 32 the size of the slab memory measured after the
start of the system was lower by 58% and 38% with SLUB and SLAB
correspondingly.

As an estimation of a potential CPU overhead, below are results of
slab_bulk_test01 test, kindly provided by Jesper D.  Brouer.  He also
helped with the evaluation of results.

The test can be found here: https://github.com/netoptimizer/prototype-kernel/
The smallest number in each row should be picked for a comparison.

SLUB-patched - bulk-API
 - SLUB-patched : bulk_quick_reuse objects=1 : 187 -  90 - 224  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=2 : 110 -  53 - 133  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=3 :  88 -  95 -  42  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=4 :  91 -  85 -  36  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=8 :  32 -  66 -  32  cycles(tsc)

SLUB-original -  bulk-API
 - SLUB-original: bulk_quick_reuse objects=1 :  87 -  87 - 142  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=2 :  52 -  53 -  53  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=3 :  42 -  42 -  91  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=4 :  91 -  37 -  37  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=8 :  31 -  79 -  76  cycles(tsc)

SLAB-patched -  bulk-API
 - SLAB-patched : bulk_quick_reuse objects=1 :  67 -  67 - 140  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=2 :  55 -  46 -  46  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=3 :  93 -  94 -  39  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=4 :  35 -  88 -  85  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=8 :  30 -  30 -  30  cycles(tsc)

SLAB-original-  bulk-API
 - SLAB-original: bulk_quick_reuse objects=1 : 143 - 136 -  67  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=2 :  45 -  46 -  46  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=3 :  38 -  39 -  39  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=4 :  35 -  87 -  87  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=8 :  29 -  66 -  30  cycles(tsc)

This patch (of 19):

To convert memcg and lruvec slab counters to bytes there must be a way to
change these counters without touching node counters.  Factor out
__mod_memcg_lruvec_state() out of __mod_lruvec_state().

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-1-guro@fb.com
Link: http://lkml.kernel.org/r/20200623174037.3951353-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin d648bcc7fe mm: kmem: make memcg_kmem_enabled() irreversible
Historically the kernel memory accounting was an opt-in feature, which
could be enabled for individual cgroups.  But now it's not true, and it's
on by default both on cgroup v1 and cgroup v2.  And as long as a user has
at least one non-root memory cgroup, the kernel memory accounting is on.
So in most setups it's either always on (if memory cgroups are in use and
kmem accounting is not disabled), either always off (otherwise).

memcg_kmem_enabled() is used in many places to guard the kernel memory
accounting code.  If memcg_kmem_enabled() can reverse from returning true
to returning false (as now), we can't rely on it on release paths and have
to check if it was on before.

If we'll make memcg_kmem_enabled() irreversible (always returning true
after returning it for the first time), it'll make the general logic more
simple and robust.  It also will allow to guard some checks which
otherwise would stay unguarded.

Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200702180926.1330769-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Linus Torvalds 99ea1521a0 Remove uninitialized_var() macro for v5.9-rc1
- Clean up non-trivial uses of uninitialized_var()
 - Update documentation and checkpatch for uninitialized_var() removal
 - Treewide removal of uninitialized_var()
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl8oYLQWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJsfjEACvf0D3WL3H7sLHtZ2HeMwOgAzq
 il08t6vUscINQwiIIK3Be43ok3uQ1Q+bj8sr2gSYTwunV2IYHFferzgzhyMMno3o
 XBIGd1E+v1E4DGBOiRXJvacBivKrfvrdZ7AWiGlVBKfg2E0fL1aQbe9AYJ6eJSbp
 UGqkBkE207dugS5SQcwrlk1tWKUL089lhDAPd7iy/5RK76OsLRCJFzIerLHF2ZK2
 BwvA+NWXVQI6pNZ0aRtEtbbxwEU4X+2J/uaXH5kJDszMwRrgBT2qoedVu5LXFPi8
 +B84IzM2lii1HAFbrFlRyL/EMueVFzieN40EOB6O8wt60Y4iCy5wOUzAdZwFuSTI
 h0xT3JI8BWtpB3W+ryas9cl9GoOHHtPA8dShuV+Y+Q2bWe1Fs6kTl2Z4m4zKq56z
 63wQCdveFOkqiCLZb8s6FhnS11wKtAX4czvXRXaUPgdVQS1Ibyba851CRHIEY+9I
 AbtogoPN8FXzLsJn7pIxHR4ADz+eZ0dQ18f2hhQpP6/co65bYizNP5H3h+t9hGHG
 k3r2k8T+jpFPaddpZMvRvIVD8O2HvJZQTyY6Vvneuv6pnQWtr2DqPFn2YooRnzoa
 dbBMtpon+vYz6OWokC5QNWLqHWqvY9TmMfcVFUXE4AFse8vh4wJ8jJCNOFVp8On+
 drhmmImUr1YylrtVOw==
 =xHmk
 -----END PGP SIGNATURE-----

Merge tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull uninitialized_var() macro removal from Kees Cook:
 "This is long overdue, and has hidden too many bugs over the years. The
  series has several "by hand" fixes, and then a trivial treewide
  replacement.

   - Clean up non-trivial uses of uninitialized_var()

   - Update documentation and checkpatch for uninitialized_var() removal

   - Treewide removal of uninitialized_var()"

* tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  compiler: Remove uninitialized_var() macro
  treewide: Remove uninitialized_var() usage
  checkpatch: Remove awareness of uninitialized_var() macro
  mm/debug_vm_pgtable: Remove uninitialized_var() usage
  f2fs: Eliminate usage of uninitialized_var() macro
  media: sur40: Remove uninitialized_var() usage
  KVM: PPC: Book3S PR: Remove uninitialized_var() usage
  clk: spear: Remove uninitialized_var() usage
  clk: st: Remove uninitialized_var() usage
  spi: davinci: Remove uninitialized_var() usage
  ide: Remove uninitialized_var() usage
  rtlwifi: rtl8192cu: Remove uninitialized_var() usage
  b43: Remove uninitialized_var() usage
  drbd: Remove uninitialized_var() usage
  x86/mm/numa: Remove uninitialized_var() usage
  docs: deprecated.rst: Add uninitialized_var()
2020-08-04 13:49:43 -07:00
Hugh Dickins 8d22a93510 mm/memcg: fix refcount error while moving and swapping
It was hard to keep a test running, moving tasks between memcgs with
move_charge_at_immigrate, while swapping: mem_cgroup_id_get_many()'s
refcount is discovered to be 0 (supposedly impossible), so it is then
forced to REFCOUNT_SATURATED, and after thousands of warnings in quick
succession, the test is at last put out of misery by being OOM killed.

This is because of the way moved_swap accounting was saved up until the
task move gets completed in __mem_cgroup_clear_mc(), deferred from when
mem_cgroup_move_swap_account() actually exchanged old and new ids.
Concurrent activity can free up swap quicker than the task is scanned,
bringing id refcount down 0 (which should only be possible when
offlining).

Just skip that optimization: do that part of the accounting immediately.

Fixes: 615d66c37c ("mm: memcontrol: fix memcg id ref counter on swap charge move")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007071431050.4726@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Bhupesh Sharma 82ff165cd3 mm/memcontrol: fix OOPS inside mem_cgroup_get_nr_swap_pages()
Prabhakar reported an OOPS inside mem_cgroup_get_nr_swap_pages()
function in a corner case seen on some arm64 boards when kdump kernel
runs with "cgroup_disable=memory" passed to the kdump kernel via
bootargs.

The root-cause behind the same is that currently mem_cgroup_swap_init()
function is implemented as a subsys_initcall() call instead of a
core_initcall(), this means 'cgroup_memory_noswap' still remains set to
the default value (false) even when memcg is disabled via
"cgroup_disable=memory" boot parameter.

This may result in premature OOPS inside mem_cgroup_get_nr_swap_pages()
function in corner cases:

  Unable to handle kernel NULL pointer dereference at virtual address 0000000000000188
  Mem abort info:
    ESR = 0x96000006
    EC = 0x25: DABT (current EL), IL = 32 bits
    SET = 0, FnV = 0
    EA = 0, S1PTW = 0
  Data abort info:
    ISV = 0, ISS = 0x00000006
    CM = 0, WnR = 0
  [0000000000000188] user address but active_mm is swapper
  Internal error: Oops: 96000006 [#1] SMP
  Modules linked in:
  <..snip..>
  Call trace:
    mem_cgroup_get_nr_swap_pages+0x9c/0xf4
    shrink_lruvec+0x404/0x4f8
    shrink_node+0x1a8/0x688
    do_try_to_free_pages+0xe8/0x448
    try_to_free_pages+0x110/0x230
    __alloc_pages_slowpath.constprop.106+0x2b8/0xb48
    __alloc_pages_nodemask+0x2ac/0x2f8
    alloc_page_interleave+0x20/0x90
    alloc_pages_current+0xdc/0xf8
    atomic_pool_expand+0x60/0x210
    __dma_atomic_pool_init+0x50/0xa4
    dma_atomic_pool_init+0xac/0x158
    do_one_initcall+0x50/0x218
    kernel_init_freeable+0x22c/0x2d0
    kernel_init+0x18/0x110
    ret_from_fork+0x10/0x18
  Code: aa1403e3 91106000 97f82a27 14000011 (f940c663)
  ---[ end trace 9795948475817de4 ]---
  Kernel panic - not syncing: Fatal exception
  Rebooting in 10 seconds..

Fixes: eccb52e788 ("mm: memcontrol: prepare swap controller setup for integration")
Reported-by: Prabhakar Kushwaha <pkushwaha@marvell.com>
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/r/1593641660-13254-2-git-send-email-bhsharma@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Kees Cook 3f649ab728 treewide: Remove uninitialized_var() usage
Using uninitialized_var() is dangerous as it papers over real bugs[1]
(or can in the future), and suppresses unrelated compiler warnings
(e.g. "unused variable"). If the compiler thinks it is uninitialized,
either simply initialize the variable or make compiler changes.

In preparation for removing[2] the[3] macro[4], remove all remaining
needless uses with the following script:

git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \
	xargs perl -pi -e \
		's/\buninitialized_var\(([^\)]+)\)/\1/g;
		 s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;'

drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid
pathological white-space.

No outstanding warnings were found building allmodconfig with GCC 9.3.0
for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64,
alpha, and m68k.

[1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/
[2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/
[4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/

Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5
Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB
Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers
Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs
Signed-off-by: Kees Cook <keescook@chromium.org>
2020-07-16 12:35:15 -07:00
Chris Down 03960e3318 mm/memcontrol.c: prevent missed memory.low load tears
Looks like one of these got missed when massaging in f86b810c26 ("mm,
memcg: prevent memory.low load/store tearing") with other linux-mm
changes.

Link: http://lkml.kernel.org/r/20200612174437.GA391453@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Reported-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Muchun Song 3a98990ae2 mm/memcontrol.c: add missed css_put()
We should put the css reference when memory allocation failed.

Link: http://lkml.kernel.org/r/20200614122653.98829-1-songmuchun@bytedance.com
Fixes: f0a3a24b53 ("mm: memcg/slab: rework non-root kmem_cache lifecycle management")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Johannes Weiner cd324edce5 mm: memcontrol: handle div0 crash race condition in memory.low
Tejun reports seeing rare div0 crashes in memory.low stress testing:

  RIP: 0010:mem_cgroup_calculate_protection+0xed/0x150
  Code: 0f 46 d1 4c 39 d8 72 57 f6 05 16 d6 42 01 40 74 1f 4c 39 d8 76 1a 4c 39 d1 76 15 4c 29 d1 4c 29 d8 4d 29 d9 31 d2 48 0f af c1 <49> f7 f1 49 01 c2 4c 89 96 38 01 00 00 5d c3 48 0f af c7 31 d2 49
  RSP: 0018:ffffa14e01d6fcd0 EFLAGS: 00010246
  RAX: 000000000243e384 RBX: 0000000000000000 RCX: 0000000000008f4b
  RDX: 0000000000000000 RSI: ffff8b89bee84000 RDI: 0000000000000000
  RBP: ffffa14e01d6fcd0 R08: ffff8b89ca7d40f8 R09: 0000000000000000
  R10: 0000000000000000 R11: 00000000006422f7 R12: 0000000000000000
  R13: ffff8b89d9617000 R14: ffff8b89bee84000 R15: ffffa14e01d6fdb8
  FS:  0000000000000000(0000) GS:ffff8b8a1f1c0000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f93b1fc175b CR3: 000000016100a000 CR4: 0000000000340ea0
  Call Trace:
    shrink_node+0x1e5/0x6c0
    balance_pgdat+0x32d/0x5f0
    kswapd+0x1d7/0x3d0
    kthread+0x11c/0x160
    ret_from_fork+0x1f/0x30

This happens when parent_usage == siblings_protected.

We check that usage is bigger than protected, which should imply
parent_usage being bigger than siblings_protected.  However, we don't
read (or even update) these values atomically, and they can be out of
sync as the memory state changes under us.  A bit of fluctuation around
the target protection isn't a big deal, but we need to handle the div0
case.

Check the parent state explicitly to make sure we have a reasonable
positive value for the divisor.

Link: http://lkml.kernel.org/r/20200615140658.601684-1-hannes@cmpxchg.org
Fixes: 8a931f8013 ("mm: memcontrol: recursive memory.low protection")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Michel Lespinasse c1e8d7c6a7 mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Michel Lespinasse d8ed45c5dc mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap
locking API instead.

The change is generated using coccinelle with the following rule:

// spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir .

@@
expression mm;
@@
(
-init_rwsem
+mmap_init_lock
|
-down_write
+mmap_write_lock
|
-down_write_killable
+mmap_write_lock_killable
|
-down_write_trylock
+mmap_write_trylock
|
-up_write
+mmap_write_unlock
|
-downgrade_write
+mmap_write_downgrade
|
-down_read
+mmap_read_lock
|
-down_read_killable
+mmap_read_lock_killable
|
-down_read_trylock
+mmap_read_trylock
|
-up_read
+mmap_read_unlock
)
-(&mm->mmap_sem)
+(mm)

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Ethon Paul b8f2935f72 mm, memcg: fix some typos in memcontrol.c
There are some typos in comment, fix them.

s/responsiblity/responsibility
s/oflline/offline

Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200411064246.15781-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:24 -07:00
Johannes Weiner 1431d4d11a mm: base LRU balancing on an explicit cost model
Currently, scan pressure between the anon and file LRU lists is balanced
based on a mixture of reclaim efficiency and a somewhat vague notion of
"value" of having certain pages in memory over others.  That concept of
value is problematic, because it has caused us to count any event that
remotely makes one LRU list more or less preferrable for reclaim, even
when these events are not directly comparable and impose very different
costs on the system.  One example is referenced file pages that we still
deactivate and referenced anonymous pages that we actually rotate back to
the head of the list.

There is also conceptual overlap with the LRU algorithm itself.  By
rotating recently used pages instead of reclaiming them, the algorithm
already biases the applied scan pressure based on page value.  Thus, when
rebalancing scan pressure due to rotations, we should think of reclaim
cost, and leave assessing the page value to the LRU algorithm.

Lastly, considering both value-increasing as well as value-decreasing
events can sometimes cause the same type of event to be counted twice,
i.e.  how rotating a page increases the LRU value, while reclaiming it
succesfully decreases the value.  In itself this will balance out fine,
but it quietly skews the impact of events that are only recorded once.

The abstract metric of "value", the murky relationship with the LRU
algorithm, and accounting both negative and positive events make the
current pressure balancing model hard to reason about and modify.

This patch switches to a balancing model of accounting the concrete,
actually observed cost of reclaiming one LRU over another.  For now, that
cost includes pages that are scanned but rotated back to the list head.
Subsequent patches will add consideration for IO caused by refaulting of
recently evicted pages.

Replace struct zone_reclaim_stat with two cost counters in the lruvec, and
make everything that affects cost go through a new lru_note_cost()
function.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-9-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00