Clang can assemble these files just fine; this is a relic from the top
level Makefile conditionally adding this. We no longer need --prefix,
--gcc-toolchain, or -Qunused-arguments flags either with this change, so
remove those too.
To test building:
$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- \
CROSS_COMPILE_COMPAT=arm-linux-gnueabi- make LLVM=1 LLVM_IAS=1 \
defconfig arch/arm64/kernel/vdso32/
Suggested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210420174427.230228-1-ndesaulniers@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* for-next/misc:
: Miscellaneous patches
arm64/sve: Add compile time checks for SVE hooks in generic functions
arm64/kernel/probes: Use BUG_ON instead of if condition followed by BUG.
arm64/sve: Remove redundant system_supports_sve() tests
arm64: mte: Remove unused mte_assign_mem_tag_range()
arm64: Add __init section marker to some functions
arm64/sve: Rework SVE access trap to convert state in registers
docs: arm64: Fix a grammar error
arm64: smp: Add missing prototype for some smp.c functions
arm64: setup: name `tcr` register
arm64: setup: name `mair` register
arm64: stacktrace: Move start_backtrace() out of the header
arm64: barrier: Remove spec_bar() macro
arm64: entry: remove test_irqs_unmasked macro
ARM64: enable GENERIC_FIND_FIRST_BIT
arm64: defconfig: Use DEBUG_INFO_REDUCED
* for-next/kselftest:
: Various kselftests for arm64
kselftest: arm64: Add BTI tests
kselftest/arm64: mte: Report filename on failing temp file creation
kselftest/arm64: mte: Fix clang warning
kselftest/arm64: mte: Makefile: Fix clang compilation
kselftest/arm64: mte: Output warning about failing compiler
kselftest/arm64: mte: Use cross-compiler if specified
kselftest/arm64: mte: Fix MTE feature detection
kselftest/arm64: mte: common: Fix write() warnings
kselftest/arm64: mte: user_mem: Fix write() warning
kselftest/arm64: mte: ksm_options: Fix fscanf warning
kselftest/arm64: mte: Fix pthread linking
kselftest/arm64: mte: Fix compilation with native compiler
* for-next/xntable:
: Add hierarchical XN permissions for all page tables
arm64: mm: use XN table mapping attributes for user/kernel mappings
arm64: mm: use XN table mapping attributes for the linear region
arm64: mm: add missing P4D definitions and use them consistently
* for-next/vdso:
: Minor improvements to the compat vdso and sigpage
arm64: compat: Poison the compat sigpage
arm64: vdso: Avoid ISB after reading from cntvct_el0
arm64: compat: Allow signal page to be remapped
arm64: vdso: Remove redundant calls to flush_dcache_page()
arm64: vdso: Use GFP_KERNEL for allocating compat vdso and signal pages
* for-next/fiq:
: Support arm64 FIQ controller registration
arm64: irq: allow FIQs to be handled
arm64: Always keep DAIF.[IF] in sync
arm64: entry: factor irq triage logic into macros
arm64: irq: rework root IRQ handler registration
arm64: don't use GENERIC_IRQ_MULTI_HANDLER
genirq: Allow architectures to override set_handle_irq() fallback
* for-next/epan:
: Support for Enhanced PAN (execute-only permissions)
arm64: Support execute-only permissions with Enhanced PAN
* for-next/kasan-vmalloc:
: Support CONFIG_KASAN_VMALLOC on arm64
arm64: Kconfig: select KASAN_VMALLOC if KANSAN_GENERIC is enabled
arm64: kaslr: support randomized module area with KASAN_VMALLOC
arm64: Kconfig: support CONFIG_KASAN_VMALLOC
arm64: kasan: abstract _text and _end to KERNEL_START/END
arm64: kasan: don't populate vmalloc area for CONFIG_KASAN_VMALLOC
* for-next/fgt-boot-init:
: Booting clarifications and fine grained traps setup
arm64: Require that system registers at all visible ELs be initialized
arm64: Disable fine grained traps on boot
arm64: Document requirements for fine grained traps at boot
* for-next/vhe-only:
: Dealing with VHE-only CPUs (a.k.a. M1)
arm64: Get rid of CONFIG_ARM64_VHE
arm64: Cope with CPUs stuck in VHE mode
arm64: cpufeature: Allow early filtering of feature override
* arm64/for-next/perf:
arm64: perf: Remove redundant initialization in perf_event.c
perf/arm_pmu_platform: Clean up with dev_printk
perf/arm_pmu_platform: Fix error handling
perf/arm_pmu_platform: Use dev_err_probe() for IRQ errors
docs: perf: Address some html build warnings
docs: perf: Add new description on HiSilicon uncore PMU v2
drivers/perf: hisi: Add support for HiSilicon PA PMU driver
drivers/perf: hisi: Add support for HiSilicon SLLC PMU driver
drivers/perf: hisi: Update DDRC PMU for programmable counter
drivers/perf: hisi: Add new functions for HHA PMU
drivers/perf: hisi: Add new functions for L3C PMU
drivers/perf: hisi: Add PMU version for uncore PMU drivers.
drivers/perf: hisi: Refactor code for more uncore PMUs
drivers/perf: hisi: Remove unnecessary check of counter index
drivers/perf: Simplify the SMMUv3 PMU event attributes
drivers/perf: convert sysfs sprintf family to sysfs_emit
drivers/perf: convert sysfs scnprintf family to sysfs_emit_at() and sysfs_emit()
drivers/perf: convert sysfs snprintf family to sysfs_emit
* for-next/neon-softirqs-disabled:
: Run kernel mode SIMD with softirqs disabled
arm64: fpsimd: run kernel mode NEON with softirqs disabled
arm64: assembler: introduce wxN aliases for wN registers
arm64: assembler: remove conditional NEON yield macros
The FPSIMD code was relying on IS_ENABLED() checks in system_suppors_sve()
to cause the compiler to delete references to SVE functions in some places,
add explicit IS_ENABLED() checks back.
Fixes: ef9c5d0979 ("arm64/sve: Remove redundant system_supports_sve() tests")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210415121742.36628-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel does not use any keys besides IA so we don't need to
install IB/DA/DB/GA on kernel exit if we arrange to install them
on task switch instead, which we can expect to happen an order of
magnitude less often.
Furthermore we can avoid installing the user IA in the case where the
user task has IA disabled and just leave the kernel IA installed. This
also lets us avoid needing to install IA on kernel entry.
On an Apple M1 under a hypervisor, the overhead of kernel entry/exit
has been measured to be reduced by 15.6ns in the case where IA is
enabled, and 31.9ns in the case where IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/Ieddf6b580d23c9e0bed45a822dabe72d2ffc9a8e
Link: https://lore.kernel.org/r/2d653d055f38f779937f2b92f8ddd5cf9e4af4f4.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This change introduces a prctl that allows the user program to control
which PAC keys are enabled in a particular task. The main reason
why this is useful is to enable a userspace ABI that uses PAC to
sign and authenticate function pointers and other pointers exposed
outside of the function, while still allowing binaries conforming
to the ABI to interoperate with legacy binaries that do not sign or
authenticate pointers.
The idea is that a dynamic loader or early startup code would issue
this prctl very early after establishing that a process may load legacy
binaries, but before executing any PAC instructions.
This change adds a small amount of overhead to kernel entry and exit
due to additional required instruction sequences.
On a DragonBoard 845c (Cortex-A75) with the powersave governor, the
overhead of similar instruction sequences was measured as 4.9ns when
simulating the common case where IA is left enabled, or 43.7ns when
simulating the uncommon case where IA is disabled. These numbers can
be seen as the worst case scenario, since in more realistic scenarios
a better performing governor would be used and a newer chip would be
used that would support PAC unlike Cortex-A75 and would be expected
to be faster than Cortex-A75.
On an Apple M1 under a hypervisor, the overhead of the entry/exit
instruction sequences introduced by this patch was measured as 0.3ns
in the case where IA is left enabled, and 33.0ns in the case where
IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ibc41a5e6a76b275efbaa126b31119dc197b927a5
Link: https://lore.kernel.org/r/d6609065f8f40397a4124654eb68c9f490b4d477.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently there are a number of places in the SVE code where we check both
system_supports_sve() and TIF_SVE. This is a bit redundant given that we
should never get into a situation where we have set TIF_SVE without having
SVE support and it is not clear that silently ignoring a mistakenly set
TIF_SVE flag is the most sensible error handling approach. For now let's
just drop the system_supports_sve() checks since this will at least reduce
overhead a little.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210412172320.3315-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Kernel mode NEON can be used in task or softirq context, but only in
a non-nesting manner, i.e., softirq context is only permitted if the
interrupt was not taken at a point where the kernel was using the NEON
in task context.
This means all users of kernel mode NEON have to be aware of this
limitation, and either need to provide scalar fallbacks that may be much
slower (up to 20x for AES instructions) and potentially less safe, or
use an asynchronous interface that defers processing to a later time
when the NEON is guaranteed to be available.
Given that grabbing and releasing the NEON is cheap, we can relax this
restriction, by increasing the granularity of kernel mode NEON code, and
always disabling softirq processing while the NEON is being used in task
context.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210302090118.30666-4-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The AArch64 asm syntax has this slightly tedious property that the names
used in mnemonics to refer to registers depend on whether the opcode in
question targets the entire 64-bits (xN), or only the least significant
8, 16 or 32 bits (wN). When writing parameterized code such as macros,
this can be annoying, as macro arguments don't lend themselves to
indexed lookups, and so generating a reference to wN in a macro that
receives xN as an argument is problematic.
For instance, an upcoming patch that modifies the implementation of the
cond_yield macro to be able to refer to 32-bit registers would need to
modify invocations such as
cond_yield 3f, x8
to
cond_yield 3f, 8
so that the second argument can be token pasted after x or w to emit the
correct register reference. Unfortunately, this interferes with the self
documenting nature of the first example, where the second argument is
obviously a register, whereas in the second example, one would need to
go and look at the code to find out what '8' means.
So let's fix this by defining wxN aliases for all xN registers, which
resolve to the 32-bit alias of each respective 64-bit register. This
allows the macro implementation to paste the xN reference after a w to
obtain the correct register name.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210302090118.30666-3-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The users of the conditional NEON yield macros have all been switched to
the simplified cond_yield macro, and so the NEON specific ones can be
removed.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210302090118.30666-2-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This change adds KASAN-KUnit tests support for the async HW_TAGS mode.
In async mode, tag fault aren't being generated synchronously when a
bad access happens, but are instead explicitly checked for by the kernel.
As each KASAN-KUnit test expect a fault to happen before the test is over,
check for faults as a part of the test handler.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-10-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When MTE async mode is enabled TFSR_EL1 contains the accumulative
asynchronous tag check faults for EL1 and EL0.
During the suspend/resume operations the firmware might perform some
operations that could change the state of the register resulting in
a spurious tag check fault report.
Report asynchronous tag faults before suspend and clear the TFSR_EL1
register after resume to prevent this to happen.
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-9-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MTE provides a mode that asynchronously updates the TFSR_EL1 register
when a tag check exception is detected.
To take advantage of this mode the kernel has to verify the status of
the register at:
1. Context switching
2. Return to user/EL0 (Not required in entry from EL0 since the kernel
did not run)
3. Kernel entry from EL1
4. Kernel exit to EL1
If the register is non-zero a trace is reported.
Add the required features for EL1 detection and reporting.
Note: ITFSB bit is set in the SCTLR_EL1 register hence it guaranties that
the indirect writes to TFSR_EL1 are synchronized at exception entry to
EL1. On the context switch path the synchronization is guarantied by the
dsb() in __switch_to().
The dsb(nsh) in mte_check_tfsr_exit() is provisional pending
confirmation by the architects.
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-8-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
mte_enable_kernel_*() are not needed if KASAN_HW is disabled.
Add ash defines around the functions to conditionally compile the
functions.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-7-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
load_unaligned_zeropad() and __get/put_kernel_nofault() functions can
read past some buffer limits which may include some MTE granule with a
different tag.
When MTE async mode is enabled, the load operation crosses the boundaries
and the next granule has a different tag the PE sets the TFSR_EL1.TF1 bit
as if an asynchronous tag fault is happened.
Enable Tag Check Override (TCO) in these functions before the load and
disable it afterwards to prevent this to happen.
Note: The same condition can be hit in MTE sync mode but we deal with it
through the exception handling.
In the current implementation, mte_async_mode flag is set only at boot
time but in future kasan might acquire some runtime features that
that change the mode dynamically, hence we disable it when sync mode is
selected for future proof.
Cc: Will Deacon <will@kernel.org>
Reported-by: Branislav Rankov <Branislav.Rankov@arm.com>
Tested-by: Branislav Rankov <Branislav.Rankov@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-6-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arch_enable_tagging() was left in memory.h after the introduction of
async mode to not break the bysectability of the KASAN KUNIT tests.
Remove the function now that KASAN has been fully converted.
Cc: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-4-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MTE provides an asynchronous mode for detecting tag exceptions. In
particular instead of triggering a fault the arm64 core updates a
register which is checked by the kernel after the asynchronous tag
check fault has occurred.
Add support for MTE asynchronous mode.
The exception handling mechanism will be added with a future patch.
Note: KASAN HW activates async mode via kasan.mode kernel parameter.
The default mode is set to synchronous.
The code that verifies the status of TFSR_EL1 will be added with a
future patch.
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-2-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CONFIG_ARM64_VHE was introduced with ARMv8.1 (some 7 years ago),
and has been enabled by default for almost all that time.
Given that newer systems that are VHE capable are finally becoming
available, and that some systems are even incapable of not running VHE,
drop the configuration altogether.
Anyone willing to stick to non-VHE on VHE hardware for obscure
reasons should use the 'kvm-arm.mode=nvhe' command-line option.
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210408131010.1109027-4-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It seems that the CPUs part of the SoC known as Apple M1 have the
terrible habit of being stuck with HCR_EL2.E2H==1, in violation
of the architecture.
Try and work around this deplorable state of affairs by detecting
the stuck bit early and short-circuit the nVHE dance. Additional
filtering code ensures that attempts at switching to nVHE from
the command-line are also ignored.
It is still unknown whether there are many more such nuggets
to be found...
Reported-by: Hector Martin <marcan@marcan.st>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210408131010.1109027-3-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some CPUs are broken enough that some overrides need to be rejected
at the earliest opportunity. In some cases, that's right at cpu
feature override time.
Provide the necessary infrastructure to filter out overrides,
and to report such filtered out overrides to the core cpufeature code.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210408131010.1109027-2-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The arm64 FEAT_FGT extension introduces a set of traps to EL2 for accesses
to small sets of registers and instructions from EL1 and EL0. Currently
Linux makes no use of this feature, ensure that it is not active at boot by
disabling the traps during EL2 setup.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210401180942.35815-3-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
mte_assign_mem_tag_range() was added in commit 85f49cae4d
("arm64: mte: add in-kernel MTE helpers") in 5.11 but moved out of
mte.S by commit 2cb3427642 ("arm64: kasan: simplify and inline
MTE functions") in 5.12 and renamed to mte_set_mem_tag_range().
2cb3427642 did not delete the old function prototypes in mte.h.
Remove the unused prototype from mte.h.
Cc: Will Deacon <will@kernel.org>
Reported-by: Derrick McKee <derrick.mckee@gmail.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210407133817.23053-1-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
They are not needed after booting, so mark them as __init to move them
to the .init section.
Signed-off-by: Jisheng Zhang <Jisheng.Zhang@synaptics.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20210330135449.4dcffd7f@xhacker.debian
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When we enable SVE usage in userspace after taking a SVE access trap we
need to ensure that the portions of the register state that are not
shared with the FPSIMD registers are zeroed. Currently we do this by
forcing the FPSIMD registers to be saved to the task struct and converting
them there. This is wasteful in the common case where the task state is
loaded into the registers and we will immediately return to userspace
since we can initialise the SVE state directly in registers instead of
accessing multiple copies of the register state in memory.
Instead in that common case do the conversion in the registers and
update the task metadata so that we can return to userspace without
spilling the register state to memory unless there is some other reason
to do so.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210312190313.24598-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The initialization of value in function armv8pmu_read_hw_counter()
and armv8pmu_read_counter() seem redundant, as they are soon updated.
So, We can remove them.
Signed-off-by: Qi Liu <liuqi115@huawei.com>
Link: https://lore.kernel.org/r/1617275801-1980-1-git-send-email-liuqi115@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
Before this patch, someone who wants to use VMAP_STACK when
KASAN_GENERIC enabled must explicitly select KASAN_VMALLOC.
>From Will's suggestion [1]:
> I would _really_ like to move to VMAP stack unconditionally, and
> that would effectively force KASAN_VMALLOC to be set if KASAN is in use
Because VMAP_STACK now depends on either HW_TAGS or KASAN_VMALLOC if
KASAN enabled, in order to make VMAP_STACK selected unconditionally,
we bind KANSAN_GENERIC and KASAN_VMALLOC together.
Note that SW_TAGS supports neither VMAP_STACK nor KASAN_VMALLOC now,
so this is the first step to make VMAP_STACK selected unconditionally.
Bind KANSAN_GENERIC and KASAN_VMALLOC together is supposed to cost more
memory at runtime, thus the alternative is using SW_TAGS KASAN instead.
[1]: https://lore.kernel.org/lkml/20210204150100.GE20815@willie-the-truck/
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Link: https://lore.kernel.org/r/20210324040522.15548-6-lecopzer.chen@mediatek.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
After KASAN_VMALLOC works in arm64, we can randomize module region
into vmalloc area now.
Test:
VMALLOC area ffffffc010000000 fffffffdf0000000
before the patch:
module_alloc_base/end ffffffc008b80000 ffffffc010000000
after the patch:
module_alloc_base/end ffffffdcf4bed000 ffffffc010000000
And the function that insmod some modules is fine.
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Link: https://lore.kernel.org/r/20210324040522.15548-5-lecopzer.chen@mediatek.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Arm64 provides defined macro for KERNEL_START and KERNEL_END,
thus replace them by the abstration instead of using _text and _end.
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210324040522.15548-3-lecopzer.chen@mediatek.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Linux support KAsan for VMALLOC since commit 3c5c3cfb9e
("kasan: support backing vmalloc space with real shadow memory")
Like how the MODULES_VADDR does now, just not to early populate
the VMALLOC_START between VMALLOC_END.
Before:
MODULE_VADDR: no mapping, no zero shadow at init
VMALLOC_VADDR: backed with zero shadow at init
After:
MODULE_VADDR: no mapping, no zero shadow at init
VMALLOC_VADDR: no mapping, no zero shadow at init
Thus the mapping will get allocated on demand by the core function
of KASAN_VMALLOC.
----------- vmalloc_shadow_start
| |
| |
| | <= non-mapping
| |
| |
|-----------|
|///////////|<- kimage shadow with page table mapping.
|-----------|
| |
| | <= non-mapping
| |
------------- vmalloc_shadow_end
|00000000000|
|00000000000| <= Zero shadow
|00000000000|
------------- KASAN_SHADOW_END
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210324040522.15548-2-lecopzer.chen@mediatek.com
[catalin.marinas@arm.com: add a build check on VMALLOC_START != MODULES_END]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In commit eb631bb5bf
("arm64: Support arch_irq_work_raise() via self IPIs") a new
function "arch_irq_work_raise" was added without a prototype.
In commit d914d4d497
("arm64: Implement panic_smp_self_stop()") a new
function "panic_smp_self_stop" was added without a prototype.
We get the following warnings on W=1:
arch/arm64/kernel/smp.c:842:6: warning: no previous prototype
for ‘arch_irq_work_raise’ [-Wmissing-prototypes]
arch/arm64/kernel/smp.c:862:6: warning: no previous prototype
for ‘panic_smp_self_stop’ [-Wmissing-prototypes]
Fix the warnings by:
1. Adding the prototype for 'arch_irq_work_raise' in irq_work.h
2. Adding the prototype for 'panic_smp_self_stop' in smp.h
Signed-off-by: Chen Lifu <chenlifu@huawei.com>
Link: https://lore.kernel.org/r/20210329034343.183974-1-chenlifu@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In __cpu_setup we conditionally manipulate the TCR_EL1 value in x10
after previously using x10 as a scratch register for unrelated temporary
variables.
To make this a bit clearer, let's move the TCR_EL1 value into a named
register `tcr`. To simplify the register allocation, this is placed in
the highest available caller-saved scratch register, tcr.
Following the example of `mair`, we initialise the register with the
default value prior to any feature discovery, and write it to MAIR_EL1
after all feature discovery is complete, which allows us to simplify the
featuere discovery code.
The existing `mte_tcr` register is no longer needed, and is replaced by
the use of x10 as a temporary, matching the rest of the MTE feature
discovery assembly in __cpu_setup. As x20 is no longer used, the
function is now AAPCS compliant, as we've generally aimed for in our
assembly functions.
There should be no functional change as as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210326180137.43119-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In __cpu_setup we conditionally manipulate the MAIR_EL1 value in x5
before later reusing x5 as a scratch register for unrelated temporary
variables.
To make this a bit clearer, let's move the MAIR_EL1 value into a named
register `mair`. To simplify the register allocation, this is placed in
the highest available caller-saved scratch register, x17. As it is no
longer clobbered by other usage, we can write the value to MAIR_EL1 at
the end of the function as we do for TCR_EL1 rather than part-way though
feature discovery.
There should be no functional change as as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210326180137.43119-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently start_backtrace() is a static inline function in the header.
Since it really shouldn't be sufficiently performance critical that we
actually need to have it inlined move it into a C file, this will save
anyone else scratching their head about why it is defined in the header.
As far as I can see it's only there because it was factored out of the
various callers.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210319174022.33051-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Enhanced Privileged Access Never (EPAN) allows Privileged Access Never
to be used with Execute-only mappings.
Absence of such support was a reason for 24cecc3774 ("arm64: Revert
support for execute-only user mappings"). Thus now it can be revisited
and re-enabled.
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210312173811.58284-2-vladimir.murzin@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The spec_bar() macro was introduced in
commit bd4fb6d270 ("arm64: Add support for SB barrier and patch in over DSB; ISB sequences")
as a way for C to insert a speculation barrier and was then
used in one single place: set_fs().
Later on
commit 3d2403fd10 ("arm64: uaccess: remove set_fs()")
deleted set_fs() altogether and as noted in the commit
on the new path the regular sb() assembly macro will
be used.
Delete the remnant.
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210325141304.1607595-1-linus.walleij@linaro.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We haven't needed the test_irqs_unmasked macro since commit:
105fc33520 ("arm64: entry: move el1 irq/nmi logic to C")
... and as we convert more of the entry logic to C it is decreasingly
likely we'll need it in future, so let's remove the unused macro.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210323181201.18889-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On contemporary platforms we don't use FIQ, and treat any stray FIQ as a
fatal event. However, some platforms have an interrupt controller wired
to FIQ, and need to handle FIQ as part of regular operation.
So that we can support both cases dynamically, this patch updates the
FIQ exception handling code to operate the same way as the IRQ handling
code, with its own handle_arch_fiq handler. Where a root FIQ handler is
not registered, an unexpected FIQ exception will trigger the default FIQ
handler, which will panic() as today. Where a root FIQ handler is
registered, handling of the FIQ is deferred to that handler.
As el0_fiq_invalid_compat is supplanted by el0_fiq, the former is
removed. For !CONFIG_COMPAT builds we never expect to take an exception
from AArch32 EL0, so we keep the common el0_fiq_invalid handler.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Apple SoCs (A11 and newer) have some interrupt sources hardwired to the
FIQ line. We implement support for this by simply treating IRQs and FIQs
the same way in the interrupt vectors.
To support these systems, the FIQ mask bit needs to be kept in sync with
the IRQ mask bit, so both kinds of exceptions are masked together. No
other platforms should be delivering FIQ exceptions right now, and we
already unmask FIQ in normal process context, so this should not have an
effect on other systems - if spurious FIQs were arriving, they would
already panic the kernel.
Signed-off-by: Hector Martin <marcan@marcan.st>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll allow an FIQ handler to be registered, and
FIQ exceptions will need to be triaged very similarly to IRQ exceptions.
So that we can reuse the existing logic, this patch factors the IRQ
triage logic out into macros that can be reused for FIQ.
The macros are named to follow the elX_foo_handler scheme used by the C
exception handlers. For consistency with other top-level exception
handlers, the kernel_entry/kernel_exit logic is not moved into the
macros. As FIQ will use a different C handler, this handler name is
provided as an argument to the macros.
There should be no functional change as a result of this patch.
Signed-off-by: Marc Zyngier <maz@kernel.org>
[Mark: rework macros, commit message, rebase before DAIF rework]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If we accidentally unmask IRQs before we've registered a root IRQ
handler, handle_arch_irq will be NULL, and the IRQ exception handler
will branch to a bogus address.
To make this easier to debug, this patch initialises handle_arch_irq to
a default handler which will panic(), making such problems easier to
debug. When we add support for FIQ handlers, we can follow the same
approach.
When we add support for a root FIQ handler, it's possible to have root
IRQ handler without an root FIQ handler, and in theory the inverse is
also possible. To permit this, and to keep the IRQ/FIQ registration
logic similar, this patch removes the panic in the absence of a root IRQ
controller. Instead, set_handle_irq() logs when a handler is registered,
which is sufficient for debug purposes.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we want to allow irqchip drivers to register as
FIQ handlers, with a set_handle_fiq() function. To keep the IRQ/FIQ
paths similar, we want arm64 to provide both set_handle_irq() and
set_handle_fiq(), rather than using GENERIC_IRQ_MULTI_HANDLER for the
former.
This patch adds an arm64-specific implementation of set_handle_irq().
There should be no functional change as a result of this patch.
Signed-off-by: Marc Zyngier <maz@kernel.org>
[Mark: use a single handler pointer]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 9c698bff66 ("ARM: ensure the signal page contains defined contents")
poisoned the unused portions of the signal page for 32-bit Arm.
Implement the same poisoning for the compat signal page on arm64 rather
than using __GFP_ZERO.
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210318170738.7756-6-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We can avoid the expensive ISB instruction after reading the counter in
the vDSO gettime functions by creating a fake address hazard against a
dummy stack read, just like we do inside the kernel.
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210318170738.7756-5-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For compatability with 32-bit Arm, allow the compat signal page to be
remapped via mremap().
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210318170738.7756-4-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
flush_dcache_page() ensures that the 'PG_dcache_clean' flag for its
'page' argument is clear so that cache maintenance will be performed
if the page is mapped into userspace with execute permissions.
Newly allocated pages have this flag clear, so there is no need to call
flush_dcache_page() for the compat vdso or signal pages. Remove the
redundant calls.
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210318170738.7756-3-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There's no need to allocate the compat vDSO and signal pages using
GFP_ATOMIC allocations, so use GFP_KERNEL instead.
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210318170738.7756-2-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>