In 8619e5bdee ("/dev/mem: Bail out upon SIGKILL."), /dev/mem became
killable, and that commit noted:
Theoretically, reading/writing /dev/mem and /dev/kmem can become
"interruptible". But this patch chose "killable". Future patch will
make them "interruptible" so that we can revert to "killable" if
some program regressed.
So now we take the next step in making it "interruptible", by changing
fatal_signal_pending() into signal_pending().
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20220407122638.490660-1-Jason@zx2c4.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 6f98a4bfee.
It turns out we still can't do this. Way too many platforms that don't
have any real source of randomness at boot and no jitter entropy because
they don't even have a cycle counter.
As reported by Guenter Roeck:
"This causes a large number of qemu boot test failures for various
architectures (arm, m68k, microblaze, sparc32, xtensa are the ones I
observed).
Common denominator is that boot hangs at 'Saving random seed:'"
This isn't hugely unexpected - we tried it, it failed, so now we'll
revert it.
Link: https://lore.kernel.org/all/20220322155820.GA1745955@roeck-us.net/
Reported-and-bisected-by: Guenter Roeck <linux@roeck-us.net>
Cc: Jason Donenfeld <Jason@zx2c4.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This topic has come up countless times, and usually doesn't go anywhere.
This time I thought I'd bring it up with a slightly narrower focus,
updated for some developments over the last three years: we finally can
make /dev/urandom always secure, in light of the fact that our RNG is
now always seeded.
Ever since Linus' 50ee7529ec ("random: try to actively add entropy
rather than passively wait for it"), the RNG does a haveged-style jitter
dance around the scheduler, in order to produce entropy (and credit it)
for the case when we're stuck in wait_for_random_bytes(). How ever you
feel about the Linus Jitter Dance is beside the point: it's been there
for three years and usually gets the RNG initialized in a second or so.
As a matter of fact, this is what happens currently when people use
getrandom(). It's already there and working, and most people have been
using it for years without realizing.
So, given that the kernel has grown this mechanism for seeding itself
from nothing, and that this procedure happens pretty fast, maybe there's
no point any longer in having /dev/urandom give insecure bytes. In the
past we didn't want the boot process to deadlock, which was
understandable. But now, in the worst case, a second goes by, and the
problem is resolved. It seems like maybe we're finally at a point when
we can get rid of the infamous "urandom read hole".
The one slight drawback is that the Linus Jitter Dance relies on random_
get_entropy() being implemented. The first lines of try_to_generate_
entropy() are:
stack.now = random_get_entropy();
if (stack.now == random_get_entropy())
return;
On most platforms, random_get_entropy() is simply aliased to get_cycles().
The number of machines without a cycle counter or some other
implementation of random_get_entropy() in 2022, which can also run a
mainline kernel, and at the same time have a both broken and out of date
userspace that relies on /dev/urandom never blocking at boot is thought
to be exceedingly low. And to be clear: those museum pieces without
cycle counters will continue to run Linux just fine, and even
/dev/urandom will be operable just like before; the RNG just needs to be
seeded first through the usual means, which should already be the case
now.
On systems that really do want unseeded randomness, we already offer
getrandom(GRND_INSECURE), which is in use by, e.g., systemd for seeding
their hash tables at boot. Nothing in this commit would affect
GRND_INSECURE, and it remains the means of getting those types of random
numbers.
This patch goes a long way toward eliminating a long overdue userspace
crypto footgun. After several decades of endless user confusion, we will
finally be able to say, "use any single one of our random interfaces and
you'll be fine. They're all the same. It doesn't matter." And that, I
think, is really something. Finally all of those blog posts and
disagreeing forums and contradictory articles will all become correct
about whatever they happened to recommend, and along with it, a whole
class of vulnerabilities eliminated.
With very minimal downside, we're finally in a position where we can
make this change.
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Guo Ren <guoren@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Joshua Kinard <kumba@gentoo.org>
Cc: David Laight <David.Laight@aculab.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Lennart Poettering <mzxreary@0pointer.de>
Cc: Konstantin Ryabitsev <konstantin@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Make read_iter_zero() to honor IOCB_NOWAIT, so /dev/zero can be
advertised as FMODE_NOWAIT. It's useful for io_uring, which needs it to
apply certain optimisations when doing I/O against the device.
Set FMODE_NOWAIT for /dev/null as well, it never waits and therefore
trivially meets the criteria.
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/f11090f97ddc2b2ce49ea1211258658ddfbc5563.1631127867.git.asml.silence@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Patch series "drivers/char: remove /dev/kmem for good".
Exploring /dev/kmem and /dev/mem in the context of memory hot(un)plug and
memory ballooning, I started questioning the existence of /dev/kmem.
Comparing it with the /proc/kcore implementation, it does not seem to be
able to deal with things like
a) Pages unmapped from the direct mapping (e.g., to be used by secretmem)
-> kern_addr_valid(). virt_addr_valid() is not sufficient.
b) Special cases like gart aperture memory that is not to be touched
-> mem_pfn_is_ram()
Unless I am missing something, it's at least broken in some cases and might
fault/crash the machine.
Looks like its existence has been questioned before in 2005 and 2010 [1],
after ~11 additional years, it might make sense to revive the discussion.
CONFIG_DEVKMEM is only enabled in a single defconfig (on purpose or by
mistake?). All distributions disable it: in Ubuntu it has been disabled
for more than 10 years, in Debian since 2.6.31, in Fedora at least
starting with FC3, in RHEL starting with RHEL4, in SUSE starting from
15sp2, and OpenSUSE has it disabled as well.
1) /dev/kmem was popular for rootkits [2] before it got disabled
basically everywhere. Ubuntu documents [3] "There is no modern user of
/dev/kmem any more beyond attackers using it to load kernel rootkits.".
RHEL documents in a BZ [5] "it served no practical purpose other than to
serve as a potential security problem or to enable binary module drivers
to access structures/functions they shouldn't be touching"
2) /proc/kcore is a decent interface to have a controlled way to read
kernel memory for debugging puposes. (will need some extensions to
deal with memory offlining/unplug, memory ballooning, and poisoned
pages, though)
3) It might be useful for corner case debugging [1]. KDB/KGDB might be a
better fit, especially, to write random memory; harder to shoot
yourself into the foot.
4) "Kernel Memory Editor" [4] hasn't seen any updates since 2000 and seems
to be incompatible with 64bit [1]. For educational purposes,
/proc/kcore might be used to monitor value updates -- or older
kernels can be used.
5) It's broken on arm64, and therefore, completely disabled there.
Looks like it's essentially unused and has been replaced by better
suited interfaces for individual tasks (/proc/kcore, KDB/KGDB). Let's
just remove it.
[1] https://lwn.net/Articles/147901/
[2] https://www.linuxjournal.com/article/10505
[3] https://wiki.ubuntu.com/Security/Features#A.2Fdev.2Fkmem_disabled
[4] https://sourceforge.net/projects/kme/
[5] https://bugzilla.redhat.com/show_bug.cgi?id=154796
Link: https://lkml.kernel.org/r/20210324102351.6932-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210324102351.6932-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Alexander A. Klimov" <grandmaster@al2klimov.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Andrey Zhizhikin <andrey.zhizhikin@leica-geosystems.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Corentin Labbe <clabbe@baylibre.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Gregory Clement <gregory.clement@bootlin.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hillf Danton <hdanton@sina.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: James Troup <james.troup@canonical.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <kasong@redhat.com>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: openrisc@lists.librecores.org
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Pavel Machek (CIP)" <pavel@denx.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Pierre Morel <pmorel@linux.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rich Felker <dalias@libc.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Cc: sparclinux@vger.kernel.org
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Theodore Dubois <tblodt@icloud.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: William Cohen <wcohen@redhat.com>
Cc: Xiaoming Ni <nixiaoming@huawei.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- replace mm/frame_vector.c by get_user_pages in misc/habana and
drm/exynos drivers, then move that into media as it's sole user
- close race in generic_access_phys
- s390 pci ioctl fix of this series landed in 5.11 already
- properly revoke iomem mappings (/dev/mem, pci files)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEb4nG6jLu8Y5XI+PfTA9ye/CYqnEFAmAzgywACgkQTA9ye/CY
qnFPbA//RUHB5bD7vwnEglfJhonKSi/Vt3dNQwUI+pCFK8muWvvPyTkGXKjjT2dI
uAOY2F23wymtIexV3fNLgnMez7kMcupOLkdxJic4GiO+HJn1jnkshdX7/dGtUW7O
G3yfnf/D27i912tT3j6PN7dVnasAYYtndCgImM027Zigzn4ibY+02tnzd5XTj1F8
yq8Swx88oqF8v10HxfpF3RLShqT3S17mFmd9dTv0GkZX497Pe75O44XcXzkD33Bj
wasH2Tz8gMEQx6TNAGlJe13dzDHReh2cG0z2r+6PTA6KnaMMxbEIImHNuhWOmHb/
nf8Jpu9uMOLzB+3hG3TzISTDBhAgPfoJ8Ov40VJCWMtCVBnyMyPJr28Oobb8Dj3V
SXvjSVlLeobOLt+E9vAS+Rmas07LCGBdNP9sexxV7S/sveSQ5W+FptaQW03EghwA
nBYEUC68WqpX99lJCFPmv5zmy5xkecjpU6mLHZljtV1ORzktqWZdVhmC8njHMAMY
Hi/emnPxEX1FpOD38rr7F9KUUSsy4t/ZaCgVaLcxCcbglCHXSHC41R09p9TBRSJo
G6Lksjyj4aa+UL5dZDAtLY0shg0bv2u93dGQNaDAC+uzj6D0ErBBzDK570zBKjp/
75+nqezJlD0d7I6rOl6FwiEYeSrYXJxYEveKVUr8CnH6sfeBlwo=
=lQoR
-----END PGP SIGNATURE-----
Merge tag 'topic/iomem-mmap-vs-gup-2021-02-22' of git://anongit.freedesktop.org/drm/drm
Pull follow_pfn() updates from Daniel Vetter:
"Fixes around VM_FPNMAP and follow_pfn:
- replace mm/frame_vector.c by get_user_pages in misc/habana and
drm/exynos drivers, then move that into media as it's sole user
- close race in generic_access_phys
- s390 pci ioctl fix of this series landed in 5.11 already
- properly revoke iomem mappings (/dev/mem, pci files)"
* tag 'topic/iomem-mmap-vs-gup-2021-02-22' of git://anongit.freedesktop.org/drm/drm:
PCI: Revoke mappings like devmem
PCI: Also set up legacy files only after sysfs init
sysfs: Support zapping of binary attr mmaps
resource: Move devmem revoke code to resource framework
/dev/mem: Only set filp->f_mapping
PCI: Obey iomem restrictions for procfs mmap
mm: Close race in generic_access_phys
media: videobuf2: Move frame_vector into media subsystem
mm/frame-vector: Use FOLL_LONGTERM
misc/habana: Use FOLL_LONGTERM for userptr
misc/habana: Stop using frame_vector helpers
drm/exynos: Use FOLL_LONGTERM for g2d cmdlists
drm/exynos: Stop using frame_vector helpers
MIPS can now use the default uncached_access like other archs.
Signed-off-by: Yanteng Si <siyanteng@loongson.cn>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
We want all iomem mmaps to consistently revoke ptes when the kernel
takes over and CONFIG_IO_STRICT_DEVMEM is enabled. This includes the
pci bar mmaps available through procfs and sysfs, which currently do
not revoke mappings.
To prepare for this, move the code from the /dev/kmem driver to
kernel/resource.c.
During review Jason spotted that barriers are used somewhat
inconsistently. Fix that up while we shuffle this code, since it
doesn't have an actual impact at runtime. Otherwise no semantic and
behavioural changes intended, just code extraction and adjusting
comments and names.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: linux-mm@kvack.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-samsung-soc@vger.kernel.org
Cc: linux-media@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20201127164131.2244124-11-daniel.vetter@ffwll.ch
When we care about pagecache maintenance, we need to make sure that
both f_mapping and i_mapping point at the right mapping.
But for iomem mappings we only care about the virtual/pte side of
things, so f_mapping is enough. Also setting inode->i_mapping was
confusing me as a driver maintainer, since in e.g. drivers/gpu we
don't do that. Per Dan this seems to be copypasta from places which do
care about pagecache consistency, but not needed. Hence remove it for
slightly less confusion.
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: linux-mm@kvack.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-samsung-soc@vger.kernel.org
Cc: linux-media@vger.kernel.org
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20201127164131.2244124-10-daniel.vetter@ffwll.ch
Reported the cleared bytes in case of a partial clear_user instead
of -EFAULT, and remove a pointless conditional, as cleared must be
non-zero by the time we hit the signal_pending check.
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20200907082700.2057137-1-hch@lst.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Christophe reported a major speedup due to avoiding the iov_iter
overhead, so just add this trivial function. Note that /dev/zero
already implements both an iter and non-iter writes so this just
makes it more symmetric.
Tested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20200903155922.1111551-1-hch@lst.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
WRITE_ONCE() isn't the correct way to publish a pointer to a data
structure, since it doesn't include a write memory barrier. Therefore
other tasks may see that the pointer has been set but not see that the
pointed-to memory has finished being initialized yet. Instead a
primitive with "release" semantics is needed.
Use smp_store_release() for this.
The use of READ_ONCE() on the read side is still potentially correct if
there's no control dependency, i.e. if all memory being "published" is
transitively reachable via the pointer itself. But this pairing is
somewhat confusing and error-prone. So just upgrade the read side to
smp_load_acquire() so that it clearly pairs with smp_store_release().
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 3234ac664a ("/dev/mem: Revoke mappings when a driver claims the region")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Cc: stable <stable@vger.kernel.org>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20200716060553.24618-1-ebiggers@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Close the hole of holding a mapping over kernel driver takeover event of
a given address range.
Commit 90a545e981 ("restrict /dev/mem to idle io memory ranges")
introduced CONFIG_IO_STRICT_DEVMEM with the goal of protecting the
kernel against scenarios where a /dev/mem user tramples memory that a
kernel driver owns. However, this protection only prevents *new* read(),
write() and mmap() requests. Established mappings prior to the driver
calling request_mem_region() are left alone.
Especially with persistent memory, and the core kernel metadata that is
stored there, there are plentiful scenarios for a /dev/mem user to
violate the expectations of the driver and cause amplified damage.
Teach request_mem_region() to find and shoot down active /dev/mem
mappings that it believes it has successfully claimed for the exclusive
use of the driver. Effectively a driver call to request_mem_region()
becomes a hole-punch on the /dev/mem device.
The typical usage of unmap_mapping_range() is part of
truncate_pagecache() to punch a hole in a file, but in this case the
implementation is only doing the "first half" of a hole punch. Namely it
is just evacuating current established mappings of the "hole", and it
relies on the fact that /dev/mem establishes mappings in terms of
absolute physical address offsets. Once existing mmap users are
invalidated they can attempt to re-establish the mapping, or attempt to
continue issuing read(2) / write(2) to the invalidated extent, but they
will then be subject to the CONFIG_IO_STRICT_DEVMEM checking that can
block those subsequent accesses.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fixes: 90a545e981 ("restrict /dev/mem to idle io memory ranges")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/159009507306.847224.8502634072429766747.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
syzbot found that a thread can stall for minutes inside read_mem() or
write_mem() after that thread was killed by SIGKILL [1]. Reading from
iomem areas of /dev/mem can be slow, depending on the hardware.
While reading 2GB at one read() is legal, delaying termination of killed
thread for minutes is bad. Thus, allow reading/writing /dev/mem and
/dev/kmem to be preemptible and killable.
[ 1335.912419][T20577] read_mem: sz=4096 count=2134565632
[ 1335.943194][T20577] read_mem: sz=4096 count=2134561536
[ 1335.978280][T20577] read_mem: sz=4096 count=2134557440
[ 1336.011147][T20577] read_mem: sz=4096 count=2134553344
[ 1336.041897][T20577] read_mem: sz=4096 count=2134549248
Theoretically, reading/writing /dev/mem and /dev/kmem can become
"interruptible". But this patch chose "killable". Future patch will make
them "interruptible" so that we can revert to "killable" if some program
regressed.
[1] https://syzkaller.appspot.com/bug?id=a0e3436829698d5824231251fad9d8e998f94f5e
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: stable <stable@vger.kernel.org>
Reported-by: syzbot <syzbot+8ab2d0f39fb79fe6ca40@syzkaller.appspotmail.com>
Link: https://lore.kernel.org/r/1566825205-10703-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Allowing users to read and write to core kernel memory makes it possible
for the kernel to be subverted, avoiding module loading restrictions, and
also to steal cryptographic information.
Disallow /dev/mem and /dev/kmem from being opened this when the kernel has
been locked down to prevent this.
Also disallow /dev/port from being opened to prevent raw ioport access and
thus DMA from being used to accomplish the same thing.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level
hardware bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of
the crazy out-of-tree drivers that have been floating around
for years, combined with some really hacky userspace
implementations. This is only for GNSS receivers, but you
have to start somewhere, and this is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and existing
drivers.
Full details of everything is in the shortlog.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCW3g7ew8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykfBgCeOG0RkSI92XVZe0hs/QYFW9kk8JYAnRBf3Qpm
cvW7a+McOoKz/MGmEKsi
=TNfn
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level hardware
bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of the
crazy out-of-tree drivers that have been floating around for years,
combined with some really hacky userspace implementations. This is
only for GNSS receivers, but you have to start somewhere, and this
is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and
existing drivers.
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (255 commits)
android: binder: Rate-limit debug and userspace triggered err msgs
fsi: sbefifo: Bump max command length
fsi: scom: Fix NULL dereference
misc: mic: SCIF Fix scif_get_new_port() error handling
misc: cxl: changed asterisk position
genwqe: card_base: Use true and false for boolean values
misc: eeprom: assignment outside the if statement
uio: potential double frees if __uio_register_device() fails
eeprom: idt_89hpesx: clean up an error pointer vs NULL inconsistency
misc: ti-st: Fix memory leak in the error path of probe()
android: binder: Show extra_buffers_size in trace
firmware: vpd: Fix section enabled flag on vpd_section_destroy
platform: goldfish: Retire pdev_bus
goldfish: Use dedicated macros instead of manual bit shifting
goldfish: Add missing includes to goldfish.h
mux: adgs1408: new driver for Analog Devices ADGS1408/1409 mux
dt-bindings: mux: add adi,adgs1408
Drivers: hv: vmbus: Cleanup synic memory free path
Drivers: hv: vmbus: Remove use of slow_virt_to_phys()
Drivers: hv: vmbus: Reset the channel callback in vmbus_onoffer_rescind()
...
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As done for /proc/kcore in
commit df04abfd18 ("fs/proc/kcore.c: Add bounce buffer for ktext data")
this adds a bounce buffer when reading memory via /dev/mem. This
is needed to allow kernel text memory to be read out when built with
CONFIG_HARDENED_USERCOPY (which refuses to read out kernel text) and
without CONFIG_STRICT_DEVMEM (which would have refused to read any RAM
contents at all).
Since this build configuration isn't common (most systems with
CONFIG_HARDENED_USERCOPY also have CONFIG_STRICT_DEVMEM), this also tries
to inform Kconfig about the recommended settings.
This patch is modified from Brad Spengler/PaX Team's changes to /dev/mem
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Fixes: f5509cc18d ("mm: Hardened usercopy")
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
One thing /dev/mem access APIs should verify is that there's no way
that excessively large pfn's can leak into the high bits of the
page table entry.
In particular, if people can use "very large physical page addresses"
through /dev/mem to set the bits past bit 58 - SOFTW4 and permission
key bits and NX bit, that could *really* confuse the kernel.
We had an earlier attempt:
ce56a86e2a ("x86/mm: Limit mmap() of /dev/mem to valid physical addresses")
... which turned out to be too restrictive (breaking mem=... bootups for example) and
had to be reverted in:
90edaac627 ("Revert "x86/mm: Limit mmap() of /dev/mem to valid physical addresses"")
This v2 attempt modifies the original patch and makes sure that mmap(/dev/mem)
limits the pfns so that it at least fits in the actual pteval_t architecturally:
- Make sure mmap_mem() actually validates that the offset fits in phys_addr_t
( This may be indirectly true due to some other check, but it's not
entirely obvious. )
- Change valid_mmap_phys_addr_range() to just use phys_addr_valid()
on the top byte
( Top byte is sufficient, because mmap_mem() has already checked that
it cannot wrap. )
- Add a few comments about what the valid_phys_addr_range() vs.
valid_mmap_phys_addr_range() difference is.
Signed-off-by: Craig Bergstrom <craigb@google.com>
[ Fixed the checks and added comments. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ Collected the discussion and patches into a commit. ]
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hans Verkuil <hans.verkuil@cisco.com>
Cc: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: Sean Young <sean@mess.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/CA+55aFyEcOMb657vWSmrM13OxmHxC-XxeBmNis=DwVvpJUOogQ@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A recent fix to /dev/mem prevents mappings from wrapping around the end
of physical address space. However, the check was written in a way that
also prevents a mapping reaching just up to the end of physical address
space, which may be a valid use case (especially on 32-bit systems).
This patch fixes it by checking the last mapped address (instead of the
first address behind that) for overflow.
Fixes: b299cde245 ("drivers: char: mem: Check for address space wraparound with mmap()")
Cc: <stable@vger.kernel.org>
Reported-by: Nico Huber <nico.h@gmx.de>
Signed-off-by: Julius Werner <jwerner@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
/dev/mem currently allows mmap() mappings that wrap around the end of
the physical address space, which should probably be illegal. It
circumvents the existing STRICT_DEVMEM permission check because the loop
immediately terminates (as the start address is already higher than the
end address). On the x86_64 architecture it will then cause a panic
(from the BUG(start >= end) in arch/x86/mm/pat.c:reserve_memtype()).
This patch adds an explicit check to make sure offset + size will not
wrap around in the physical address type.
Signed-off-by: Julius Werner <jwerner@chromium.org>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Under CONFIG_STRICT_DEVMEM, reading System RAM through /dev/mem is
disallowed. However, on x86, the first 1MB was always allowed for BIOS
and similar things, regardless of it actually being System RAM. It was
possible for heap to end up getting allocated in low 1MB RAM, and then
read by things like x86info or dd, which would trip hardened usercopy:
usercopy: kernel memory exposure attempt detected from ffff880000090000 (dma-kmalloc-256) (4096 bytes)
This changes the x86 exception for the low 1MB by reading back zeros for
System RAM areas instead of blindly allowing them. More work is needed to
extend this to mmap, but currently mmap doesn't go through usercopy, so
hardened usercopy won't Oops the kernel.
Reported-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Tested-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
When borrowing the pfn_valid() check from mmap_kmem(), somebody managed
to get physical and virtual addresses spectacularly muddled up, such
that we've ended up with checks for one being the other. Whilst this
does indeed prevent out-of-bounds accesses crashing, on most systems
it also prevents the more desirable use-case of working at all ever.
Check the *virtual* offset correctly for what it is. Furthermore, do
so in the right place - a read or write may span multiple pages, so a
single up-front check is insufficient. High memory accesses already
have a similar validity check just before the copy_to_user() call, so
just make the low memory path fully consistent with that.
Reported-by: Jason A. Donenfeld <Jason@zx2c4.com>
CC: stable@vger.kernel.org
Fixes: 148a1bc843 ("drivers: char: mem: Check {read,write}_kmem() addresses")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Arriving at read_kmem() with an offset representing a bogus kernel
address (e.g. 0 from a simple "cat /dev/kmem") leads to copy_to_user
faulting on the kernel-side read.
x86_64 happens to get away with this since the optimised implementation
uses "rep movs*", thus the user write (which is allowed to fault) and
the kernel read are the same instruction, the kernel-side fault falls
into the user-side fixup handler and the chain of events which
transpires ends up returning an error as one might expect, even if it's
an inappropriate -EFAULT. On other architectures, though, the read is
not covered by the fixup entry for the write, and we get a big scary
"Unable to hande kernel paging request..." dump.
The more typical use-case of mmap_kmem() has always (within living
memory at least) returned -EIO for addresses which don't satisfy
pfn_valid(), so let's make that consistent across {read,write}_kem()
too.
Reported-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Provide a shmem_get_unmapped_area method in file_operations, called at
mmap time to decide the mapping address. It could be conditional on
CONFIG_TRANSPARENT_HUGEPAGE, but save #ifdefs in other places by making
it unconditional.
shmem_get_unmapped_area() first calls the usual mm->get_unmapped_area
(which we treat as a black box, highly dependent on architecture and
config and executable layout). Lots of conditions, and in most cases it
just goes with the address that chose; but when our huge stars are
rightly aligned, yet that did not provide a suitable address, go back to
ask for a larger arena, within which to align the mapping suitably.
There have to be some direct calls to shmem_get_unmapped_area(), not via
the file_operations: because of the way shmem_zero_setup() is called to
create a shmem object late in the mmap sequence, when MAP_SHARED is
requested with MAP_ANONYMOUS or /dev/zero. Though this only matters
when /proc/sys/vm/shmem_huge has been set.
Link: http://lkml.kernel.org/r/1466021202-61880-29-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently it's possible for broken (or malicious) userspace to flood a
kernel log indefinitely with messages a-la
Program dmidecode tried to access /dev/mem between f0000->100000
because range_is_allowed() is case of CONFIG_STRICT_DEVMEM being turned on
dumps this information each and every time devmem_is_allowed() fails.
Reportedly userspace that is able to trigger contignuous flow of these
messages exists.
It would be possible to rate limit this message, but that'd have a
questionable value; the administrator wouldn't get information about all
the failing accessess, so then the information would be both superfluous
and incomplete at the same time :)
Returning EPERM (which is what is actually happening) is enough indication
for userspace what has happened; no need to log this particular error as
some sort of special condition.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/alpine.LNX.2.00.1607081137020.24757@cbobk.fhfr.pm
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IS_ERR_VALUE macro should be used only with unsigned long type.
Specifically it works incorrectly with longer types.
The patch follows conclusion from discussion on LKML [1][2].
[1]: http://permalink.gmane.org/gmane.linux.kernel/2120927
[2]: http://permalink.gmane.org/gmane.linux.kernel/2150581
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Note that _these_ guys have ->read() and ->write() left in place - they are
eqiuvalent to what we'd get if we replaced those with NULL, but we are
talking about hot paths here.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Here's the big char/misc driver update for 3.20-rc1.
Lots of little things in here, all described in the changelog. Nothing
major or unusual, except maybe the binder selinux stuff, which was all
acked by the proper selinux people and they thought it best to come
through this tree.
All of this has been in linux-next with no reported issues for a while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlTgs80ACgkQMUfUDdst+yn86gCeMLbxANGExVLd+PR46GNsAUQb
SJ4AmgIqrkIz+5LCwZWM02ldbYhPeBVf
=lfmM
-----END PGP SIGNATURE-----
Merge tag 'char-misc-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char / misc patches from Greg KH:
"Here's the big char/misc driver update for 3.20-rc1.
Lots of little things in here, all described in the changelog.
Nothing major or unusual, except maybe the binder selinux stuff, which
was all acked by the proper selinux people and they thought it best to
come through this tree.
All of this has been in linux-next with no reported issues for a while"
* tag 'char-misc-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (90 commits)
coresight: fix function etm_writel_cp14() parameter order
coresight-etm: remove check for unknown Kconfig macro
coresight: fixing CPU hwid lookup in device tree
coresight: remove the unnecessary function coresight_is_bit_set()
coresight: fix the debug AMBA bus name
coresight: remove the extra spaces
coresight: fix the link between orphan connection and newly added device
coresight: remove the unnecessary replicator property
coresight: fix the replicator subtype value
pdfdocs: Fix 'make pdfdocs' failure for 'uio-howto.tmpl'
mcb: Fix error path of mcb_pci_probe
virtio/console: verify device has config space
ti-st: clean up data types (fix harmless memory corruption)
mei: me: release hw from reset only during the reset flow
mei: mask interrupt set bit on clean reset bit
extcon: max77693: Constify struct regmap_config
extcon: adc-jack: Release IIO channel on driver remove
extcon: Remove duplicated include from extcon-class.c
Drivers: hv: vmbus: hv_process_timer_expiration() can be static
Drivers: hv: vmbus: serialize Offer and Rescind offer
...
Since "BDI: Provide backing device capability information [try #3]" the
backing_dev_info structure also provides flags for the kind of mmap
operation available in a nommu environment, which is entirely unrelated
to it's original purpose.
Introduce a new nommu-only file operation to provide this information to
the nommu mmap code instead. Splitting this from the backing_dev_info
structure allows to remove lots of backing_dev_info instance that aren't
otherwise needed, and entirely gets rid of the concept of providing a
backing_dev_info for a character device. It also removes the need for
the mtd_inodefs filesystem.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Fixes "Missing a blank line after declarations" reported by
checkpatch.
This patch introduces no functional changes.
Signed-off-by: Rob Ward <robert.ward114@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Replaces the use of asm/uaccess.h with linux/uaccess.h.
Signed-off-by: Rob Ward <robert.ward114@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Simplify the use of CONFIG_DEVPORT by making the port_fops
so that it includes __maybe_unused.
This enabled the multiple #ifdef's used for this structure
to be removed and brings it in line with the use of CONFIG_DEVMEM
This change should introduce no functional changes.
Signed-off-by: Rob Ward <robert.ward114@googlemail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Simplify the use of CONFIG_DEVKMEM by making the kmem_fops
so that it is __maybe_unused.
This enabled the multiple #ifdef's used for this structure
to be removed and brings it in line with the use of CONFIG_DEVMEM
This change should introduce no functional changes.
Signed-off-by: Rob Ward <robert.ward114@googlemail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Adds Kconfig option CONFIG_DEVMEM that allows the
/dev/mem device to be disabled.
Option defaults to /dev/mem enabled.
Signed-off-by: Rob Ward <robert.ward114@googlemail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The xlate_dev_{kmem,mem}_ptr() functions take either a physical address
or a kernel virtual address, so data types should be phys_addr_t and
void *. They both return a kernel virtual address which is only ever
used in calls to copy_{from,to}_user(), so make variables that store it
void * rather than char * for consistency.
Also only define a weak unxlate_dev_mem_ptr() function if architectures
haven't overridden them in the asm/io.h header file.
Signed-off-by: Thierry Reding <treding@nvidia.com>
The loff_t type may be wider than phys_addr_t (e.g. on 32-bit systems).
Consequently, the file offset may be truncated in the assignment.
Currently, /dev/mem wraps around, which may cause applications to read
or write incorrect regions of memory by accident.
Let's follow POSIX file semantics here and return 0 when reading from
and -EFBIG when writing to an offset that cannot be represented by a
phys_addr_t.
Note that the conditional is optimized out by the compiler if loff_t
has the same size as phys_addr_t.
Signed-off-by: Petr Tesarik <ptesarik@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>