btrfs_drop_extents is always called with a range lock held on the inode.
But, it may operate on extents outside that range as it drops and splits
them.
This patch adds a per-inode mutex that is held while calling
btrfs_drop_extents and while inserting new extents into the tree. It
prevents races from two procs working against adjacent ranges in the tree.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Checksum items are not inserted until the entire ordered extent is on disk,
but individual pages might be clean and available for reclaim long before
the whole extent is on disk.
In order to allow those pages to be freed, we need to be able to search
the list of ordered extents to find the checksum that is going to be inserted
in the tree. This way if the page needs to be read back in before
the checksums are in the btree, we'll be able to verify the checksum on
the page.
This commit adds the ability to search the pending ordered extents for
a given offset in the file, and changes btrfs_releasepage to allow
ordered pages to be freed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_commit_transaction has to loop waiting for any writers in the
transaction to finish before it can proceed. btrfs_start_transaction
should be polite and not join a transaction that is in the process
of being finished off.
There are a few places that can't wait, basically the ones doing IO that
might be needed to finish the transaction. For them, btrfs_join_transaction
is added.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This changes the ordered data code to update i_size after the extent
is on disk. An on disk i_size is maintained in the in-memory btrfs inode
structures, and this is updated as extents finish.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Higher layers sometimes call set_page_dirty without asking the filesystem
to help. This causes many problems for the data=ordered and cow code.
This commit detects pages that haven't been properly setup for IO and
kicks off an async helper to deal with them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The old data=ordered code would force commit to wait until
all the data extents from the transaction were fully on disk. This
introduced large latencies into the commit and stalled new writers
in the transaction for a long time.
The new code changes the way data allocations and extents work:
* When delayed allocation is filled, data extents are reserved, and
the extent bit EXTENT_ORDERED is set on the entire range of the extent.
A struct btrfs_ordered_extent is allocated an inserted into a per-inode
rbtree to track the pending extents.
* As each page is written EXTENT_ORDERED is cleared on the bytes corresponding
to that page.
* When all of the bytes corresponding to a single struct btrfs_ordered_extent
are written, The previously reserved extent is inserted into the FS
btree and into the extent allocation trees. The checksums for the file
data are also updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_find_dead_roots called btrfs_read_fs_root_no_radix, which
means we end up calling btrfs_search_slot with a path already held.
The fix is to remember the key inside btrfs_find_dead_roots and drop
the path.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This calls unlock_up sooner in btrfs_search_slot in order to decrease the
amount of work done with the higher level tree locks held.
Also, it changes btrfs_tree_lock to spin for a big against the page lock
before scheduling. This makes a big difference in context switch rate under
highly contended workloads.
Longer term, a better locking structure is needed than the page lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btree defragger wasn't making forward progress because the new key wasn't
being saved by the btrfs_search_forward function.
This also disables the automatic btree defrag, it wasn't scaling well to
huge filesystems. The auto-defrag needs to be done differently.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This makes it possible for callers to check for extent_buffers in cache
without deadlocking against any btree locks held.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The online btree defragger is simplified and rewritten to use
standard btree searches instead of a walk up / down mechanism.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This creates one kthread for commits and one kthread for
deleting old snapshots. All the work queues are removed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The existing throttle mechanism was often not sufficient to prevent
new writers from coming in and making a given transaction run forever.
This adds an explicit wait at the end of most operations so they will
allow the current transaction to close.
There is no wait inside file_write, inode updates, or cow filling, all which
have different deadlock possibilities.
This is a temporary measure until better asynchronous commit support is
added. This code leads to stalls as it waits for data=ordered
writeback, and it really needs to be fixed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Allocations may need to read in block groups from the extent allocation tree,
which will require a tree search and take locks on the extent allocation
tree. But, those locks might already be held in other places, leading
to deadlocks.
Since the alloc_mutex serializes everything right now, it is safe to
skip the btree locking while caching block groups. A better fix will be
to either create a recursive lock or find a way to back off existing
locks while caching block groups.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows us to delete an unlinked inode with dirty pages from the list
instead of forcing commit to write these out before deleting the inode.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
One lock per btree block can make for significant congestion if everyone
has to wait for IO at the high levels of the btree. This drops
locks held by a path when doing reads during a tree search.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Extent alloctions are still protected by a large alloc_mutex.
Objectid allocations are covered by a objectid mutex
Other btree operations are protected by a lock on individual btree nodes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The allocation trees and the chunk trees are serialized via their own
dedicated mutexes. This means allocation location is still not very
fine grained.
The main FS btree is protected by locks on each block in the btree. Locks
are taken top / down, and as processing finishes on a given level of the
tree, the lock is released after locking the lower level.
The end result of a search is now a path where only the lowest level
is locked. Releasing or freeing the path drops any locks held.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If a bio submission is after a lock holder waiting for the bio
on the work queue, it is possible to deadlock. Move the bios
into their own pool.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
As mentioned in the comment next to it btrfs_ioctl_trans_start can
do bad damage to filesystems and thus should be limited to privilegued
users.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Split the ioctl handling out of inode.c into a file of it's own.
Also fix up checkpatch.pl warnings for the moved code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
mount -o thread_pool_size changes the default, which is
min(num_cpus + 2, 8). Larger thread pools would make more sense on
very large disk arrays.
This mount option controls the max size of each thread pool. There
are multiple thread pools, so the total worker count will be larger
than the mount option.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This changes the worker thread pool to maintain a list of idle threads,
avoiding a complex search for a good thread to wake up.
Threads have two states:
idle - we try to reuse the last thread used in hopes of improving the batching
ratios
busy - each time a new work item is added to a busy task, the task is
rotated to the end of the line.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
max_inline=0 used to force the max_inline size to one sector instead. Now
it properly disables inline data items, while still being able to read
any that happen to exist on disk.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs has been using workqueues to spread the checksumming load across
other CPUs in the system. But, workqueues only schedule work on the
same CPU that queued the work, giving them a limited benefit for systems with
higher CPU counts.
This code adds a generic facility to schedule work with pools of kthreads,
and changes the bio submission code to queue bios up. The queueing is
important to make sure large numbers of procs on the system don't
turn streaming workloads into random workloads by sending IO down
concurrently.
The end result of all of this is much higher performance (and CPU usage) when
doing checksumming on large machines. Two worker pools are created,
one for writes and one for endio processing. The two could deadlock if
we tried to service both from a single pool.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Allows to specify one or multiple device=/dev/foo options during mount
so that ioctls on the control device can be avoided. Especially useful
when trying to mount a multi-device setup as root.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Also adds lots of comments to describe what's going on here.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
use normal kbuild syntax to build acl.o conditinally and remove comment
out lines.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These ioctls let a user application hold a transaction open while it
performs a series of operations. A final ioctl does a sync on the fs
(closing the current transaction). This is the main requirement for
Ceph's OSD to be able to keep the data it's storing in a btrfs volume
consistent, and AFAICS it works just fine. The application would do
something like
fd = ::open("some/file", O_RDONLY);
::ioctl(fd, BTRFS_IOC_TRANS_START);
/* do a bunch of stuff */
::ioctl(fd, BTRFS_IOC_TRANS_END);
or just
::close(fd);
And to ensure it commits to disk,
::ioctl(fd, BTRFS_IOC_SYNC);
When a transaction is held open, the trans_handle is attached to the
struct file (via private_data) so that it will get cleaned up if the
process dies unexpectedly. A held transaction is also ended on fsync() to
avoid a deadlock.
A misbehaving application could also deliberately hold a transaction open,
effectively locking up the FS, so it may make sense to restrict something
like this to root or something.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The acl code is not yet complete, and the xattr handlers are causing
problems for cp -p on some distros.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We need to invalidate an existing dcache entry after creating a new
snapshot or subvolume, because a negative dache entry will stop us from
accessing the new snapshot or subvolume.
---
ctree.h | 23 +++++++++++++++++++++++
inode.c | 4 ++++
transaction.c | 4 ++++
3 files changed, 31 insertions(+)
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When a new transaction was started, the code would incorrectly
set the pointer in fs_info before all the data structures were setup.
fsync heavy workloads hit races on the setup of the ordered inode spinlock
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This avoids IO stalls and poorly ordered IO from inline writers mixing in
with the async submission queue
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Force chunk allocation when find_free_extent has to do a full scan
* Record the max key at the start of defrag so it doesn't run forever
* Block groups might not be contiguous, make a forward search for the
next block group in extent-tree.c
* Get rid of extra checks for total fs size
* Fix relocate_one_reference to avoid relocating the same file data block
twice when referenced by an older transaction
* Use the open device count when allocating chunks so that we don't
try to allocate from devices that don't exist
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The async submit workqueue was absorbing too many requests, leading to long
stalls where the async submitters were stalling.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The extent_io writepage calls needed an extra check for discarding
pages that started on th last byte in the file.
btrfs_truncate_page needed checks to make sure the page was still part
of the file after reading it, and most importantly, needed to wait for
all IO to the page to finish before freeing the corresponding extents on
disk.
Signed-off-by: Chris Mason <chris.mason@oracle.com>