CONFIG_CROSS_MEMORY_ATTACH adds couple syscalls: process_vm_readv and
process_vm_writev, it's a kind of IPC for copying data between processes.
Currently this option is placed inside "Processor type and features".
This patch moves it into "General setup" (where all other arch-independed
syscalls and ipc features are placed) and changes prompt string to less
cryptic.
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Christopher Yeoh <cyeoh@au1.ibm.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently hugepage migration is available for all archs which support
pmd-level hugepage, but testing is done only for x86_64 and there're
bugs for other archs. So to avoid breaking such archs, this patch
limits the availability strictly to x86_64 until developers of other
archs get interested in enabling this feature.
Simply disabling hugepage migration on non-x86_64 archs is not enough to
fix the reported problem where sys_move_pages() hits the BUG_ON() in
follow_page(FOLL_GET), so let's fix this by checking if hugepage
migration is supported in vma_migratable().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the physmem list to the memblock structure. This list only exists
if HAVE_MEMBLOCK_PHYS_MAP is selected and contains the unmodified
list of physically available memory. It differs from the memblock
memory list as it always contains all memory ranges even if the
memory has been restricted, e.g. by use of the mem= kernel parameter.
Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch affects only architectures where the stack grows upwards
(currently parisc and metag only). On those do not hardcode the maximum
initial stack size to 1GB for 32-bit processes, but make it configurable
via a config option.
The main problem with the hardcoded stack size is, that we have two
memory regions which grow upwards: stack and heap. To keep most of the
memory available for heap in a flexmap memory layout, it makes no sense
to hard allocate up to 1GB of the memory for stack which can't be used
as heap then.
This patch makes the stack size for 32-bit processes configurable and
uses 80MB as default value which has been in use during the last few
years on parisc and which hasn't showed any problems yet.
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: linux-parisc@vger.kernel.org
Cc: linux-metag@vger.kernel.org
Cc: John David Anglin <dave.anglin@bell.net>
This patch creates a generic implementation of early_ioremap() support
based on the existing x86 implementation. early_ioremp() is useful for
early boot code which needs to temporarily map I/O or memory regions
before normal mapping functions such as ioremap() are available.
Some architectures have optional MMU. In the no-MMU case, the remap
functions simply return the passed in physical address and the unmap
functions do nothing.
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no reason to enable split page table lock if don't have page
tables.
It also triggers build error at least on ARM since we don't define
pmd_page() for !MMU.
In file included from arch/arm/kernel/asm-offsets.c:14:0:
include/linux/mm.h: In function 'pte_lockptr':
include/linux/mm.h:1392:2: error: implicit declaration of function 'pmd_page' [-Werror=implicit-function-declaration]
include/linux/mm.h:1392:2: warning: passing argument 1 of 'ptlock_ptr' makes pointer from integer without a cast [enabled by default]
include/linux/mm.h:1384:27: note: expected 'struct page *' but argument is of type 'int'
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The help text for CONFIG_PGTABLE_MAPPING has an incorrect URL. While
we're at it, remove the unnecessary footnote notation.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves zsmalloc under mm directory.
Before that, description will explain why we have needed custom
allocator.
Zsmalloc is a new slab-based memory allocator for storing compressed
pages. It is designed for low fragmentation and high allocation success
rate on large object, but <= PAGE_SIZE allocations.
zsmalloc differs from the kernel slab allocator in two primary ways to
achieve these design goals.
zsmalloc never requires high order page allocations to back slabs, or
"size classes" in zsmalloc terms. Instead it allows multiple
single-order pages to be stitched together into a "zspage" which backs
the slab. This allows for higher allocation success rate under memory
pressure.
Also, zsmalloc allows objects to span page boundaries within the zspage.
This allows for lower fragmentation than could be had with the kernel
slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the
kernel slab allocator, if a page compresses to 60% of it original size,
the memory savings gained through compression is lost in fragmentation
because another object of the same size can't be stored in the leftover
space.
This ability to span pages results in zsmalloc allocations not being
directly addressable by the user. The user is given an
non-dereferencable handle in response to an allocation request. That
handle must be mapped, using zs_map_object(), which returns a pointer to
the mapped region that can be used. The mapping is necessary since the
object data may reside in two different noncontigious pages.
The zsmalloc fulfills the allocation needs for zram perfectly
[sjenning@linux.vnet.ibm.com: borrow Seth's quote]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eliminate the following (rand)config warning by adding missing PROC_FS
dependency:
warning: (HWPOISON_INJECT && MEM_SOFT_DIRTY) selects PROC_PAGE_MONITOR which has unmet direct dependencies (PROC_FS && MMU)
Signed-off-by: Sima Baymani <sima.baymani@gmail.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull trivial tree updates from Jiri Kosina:
"Usual earth-shaking, news-breaking, rocket science pile from
trivial.git"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits)
doc: usb: Fix typo in Documentation/usb/gadget_configs.txt
doc: add missing files to timers/00-INDEX
timekeeping: Fix some trivial typos in comments
mm: Fix some trivial typos in comments
irq: Fix some trivial typos in comments
NUMA: fix typos in Kconfig help text
mm: update 00-INDEX
doc: Documentation/DMA-attributes.txt fix typo
DRM: comment: `halve' -> `half'
Docs: Kconfig: `devlopers' -> `developers'
doc: typo on word accounting in kprobes.c in mutliple architectures
treewide: fix "usefull" typo
treewide: fix "distingush" typo
mm/Kconfig: Grammar s/an/a/
kexec: Typo s/the/then/
Documentation/kvm: Update cpuid documentation for steal time and pv eoi
treewide: Fix common typo in "identify"
__page_to_pfn: Fix typo in comment
Correct some typos for word frequency
clk: fixed-factor: Fix a trivial typo
...
If split page table lock is in use, we embed the lock into struct page
of table's page. We have to disable split lock, if spinlock_t is too
big be to be embedded, like when DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC
enabled.
This patch add support for dynamic allocation of split page table lock
if we can't embed it to struct page.
page->ptl is unsigned long now and we use it as spinlock_t if
sizeof(spinlock_t) <= sizeof(long), otherwise it's pointer to spinlock_t.
The spinlock_t allocated in pgtable_page_ctor() for PTE table and in
pgtable_pmd_page_ctor() for PMD table. All other helpers converted to
support dynamically allocated page->ptl.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The basic idea is the same as with PTE level: the lock is embedded into
struct page of table's page.
We can't use mm->pmd_huge_pte to store pgtables for THP, since we don't
take mm->page_table_lock anymore. Let's reuse page->lru of table's page
for that.
pgtable_pmd_page_ctor() returns true, if initialization is successful
and false otherwise. Current implementation never fails, but assumption
that constructor can fail will help to port it to -rt where spinlock_t
is rather huge and cannot be embedded into struct page -- dynamic
allocation is required.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The hot-Pluggable field in SRAT specifies which memory is hotpluggable.
As we mentioned before, if hotpluggable memory is used by the kernel, it
cannot be hot-removed. So memory hotplug users may want to set all
hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it.
Memory hotplug users may also set a node as movable node, which has
ZONE_MOVABLE only, so that the whole node can be hot-removed.
But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the
kernel cannot use memory in movable nodes. This will cause NUMA
performance down. And other users may be unhappy.
So we need a way to allow users to enable and disable this functionality.
In this patch, we introduce movable_node boot option to allow users to
choose to not to consume hotpluggable memory at early boot time and later
we can set it as ZONE_MOVABLE.
To achieve this, the movable_node boot option will control the memblock
allocation direction. That said, after memblock is ready, before SRAT is
parsed, we should allocate memory near the kernel image as we explained in
the previous patches. So if movable_node boot option is set, the kernel
does the following:
1. After memblock is ready, make memblock allocate memory bottom up.
2. After SRAT is parsed, make memblock behave as default, allocate memory
top down.
Users can specify "movable_node" in kernel commandline to enable this
functionality. For those who don't use memory hotplug or who don't want
to lose their NUMA performance, just don't specify anything. The kernel
will work as before.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previous commit 46723bfa540... introduced a new config option
HAVE_BOOTMEM_INFO_NODE that ended up breaking memory hot-remove for ppc
when sparse vmemmap is not defined.
This patch defines HAVE_BOOTMEM_INFO_NODE for ppc and adds the call to
register_page_bootmem_info_node. Without this we get a BUG_ON for memory
hot remove in put_page_bootmem().
This also adds a stub for register_page_bootmem_memmap to allow ppc to build
with sparse vmemmap defined. Leaving this as a stub is fine since the same
vmemmap addresses are also handled in vmemmap_populate and as such are
properly mapped.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: <stable@vger.kernel.org> [v3.9+]
MIGRATION must depend on MMU, or allmodconfig for the nommu sh
architecture fails to build:
CC mm/migrate.o
mm/migrate.c: In function 'remove_migration_pte':
mm/migrate.c:134:3: error: implicit declaration of function 'pmd_trans_huge' [-Werror=implicit-function-declaration]
if (pmd_trans_huge(*pmd))
^
mm/migrate.c:149:2: error: implicit declaration of function 'is_swap_pte' [-Werror=implicit-function-declaration]
if (!is_swap_pte(pte))
^
...
Also let CMA depend on MMU, or when NOMMU, if we select CMA, it will
select MIGRATION by force.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zswap is a thin backend for frontswap that takes pages that are in the
process of being swapped out and attempts to compress them and store
them in a RAM-based memory pool. This can result in a significant I/O
reduction on the swap device and, in the case where decompressing from
RAM is faster than reading from the swap device, can also improve
workload performance.
It also has support for evicting swap pages that are currently
compressed in zswap to the swap device on an LRU(ish) basis. This
functionality makes zswap a true cache in that, once the cache is full,
the oldest pages can be moved out of zswap to the swap device so newer
pages can be compressed and stored in zswap.
This patch adds the zswap driver to mm/
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Jenifer Hopper <jhopper@us.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Joe Perches <joe@perches.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zbud is an special purpose allocator for storing compressed pages. It
is designed to store up to two compressed pages per physical page.
While this design limits storage density, it has simple and
deterministic reclaim properties that make it preferable to a higher
density approach when reclaim will be used.
zbud works by storing compressed pages, or "zpages", together in pairs
in a single memory page called a "zbud page". The first buddy is "left
justifed" at the beginning of the zbud page, and the last buddy is
"right justified" at the end of the zbud page. The benefit is that if
either buddy is freed, the freed buddy space, coalesced with whatever
slack space that existed between the buddies, results in the largest
possible free region within the zbud page.
zbud also provides an attractive lower bound on density. The ratio of
zpages to zbud pages can not be less than 1. This ensures that zbud can
never "do harm" by using more pages to store zpages than the
uncompressed zpages would have used on their own.
This implementation is a rewrite of the zbud allocator internally used
by zcache in the driver/staging tree. The rewrite was necessary to
remove some of the zcache specific elements that were ingrained
throughout and provide a generic allocation interface that can later be
used by zsmalloc and others.
This patch adds zbud to mm/ for later use by zswap.
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Jenifer Hopper <jhopper@us.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Joe Perches <joe@perches.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Bob Liu <bob.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The soft-dirty is a bit on a PTE which helps to track which pages a task
writes to. In order to do this tracking one should
1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs)
2. Wait some time.
3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries)
To do this tracking, the writable bit is cleared from PTEs when the
soft-dirty bit is. Thus, after this, when the task tries to modify a
page at some virtual address the #PF occurs and the kernel sets the
soft-dirty bit on the respective PTE.
Note, that although all the task's address space is marked as r/o after
the soft-dirty bits clear, the #PF-s that occur after that are processed
fast. This is so, since the pages are still mapped to physical memory,
and thus all the kernel does is finds this fact out and puts back
writable, dirty and soft-dirty bits on the PTE.
Another thing to note, is that when mremap moves PTEs they are marked
with soft-dirty as well, since from the user perspective mremap modifies
the virtual memory at mremap's new address.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want to use CMA for allocating hash page table and real mode area for
PPC64. Hence move DMA contiguous related changes into a seperate config
so that ppc64 can enable CMA without requiring DMA contiguous.
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[removed defconfig changes]
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Ever since commit 45f035ab9b ("CONFIG_HOTPLUG should be always on"),
it has been basically impossible to build a kernel with CONFIG_HOTPLUG
turned off. Remove all the remaining references to it.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Doug Thompson <dougthompson@xmission.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are times when HIGHMEM is enabled, but we don't prefer
CONFIG_BOUNCE to be enabled. CONFIG_BOUNCE can reduce the block device
throughput, and this is not ideal for machines where we don't gain much
by enabling it. So provide an option to deselect CONFIG_BOUNCE. The
observation was made while measuring eMMC throughput using iozone on an
ARM device with 1GB RAM.
Signed-off-by: Vinayak Menon <vinayakm.list@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 887cbce0ad ("arch Kconfig: centralise ARCH_NO_VIRT_TO_BUS")
I introduced the config sybmol HAVE_VIRT_TO_BUS and selected that where
needed. I am not sure what I was thinking. Instead, just directly
select VIRT_TO_BUS where it is needed.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change it to CONFIG_HAVE_VIRT_TO_BUS and set it in all architecures
that already provide virt_to_bus().
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: H Hartley Sweeten <hartleys@visionengravers.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For removing memmap region of sparse-vmemmap which is allocated bootmem,
memmap region of sparse-vmemmap needs to be registered by
get_page_bootmem(). So the patch searches pages of virtual mapping and
registers the pages by get_page_bootmem().
NOTE: register_page_bootmem_memmap() is not implemented for ia64,
ppc, s390, and sparc. So introduce CONFIG_HAVE_BOOTMEM_INFO_NODE
and revert register_page_bootmem_info_node() when platform doesn't
support it.
It's implemented by adding a new Kconfig option named
CONFIG_HAVE_BOOTMEM_INFO_NODE, which will be automatically selected
by memory-hotplug feature fully supported archs(currently only on
x86_64).
Since we have 2 config options called MEMORY_HOTPLUG and
MEMORY_HOTREMOVE used for memory hot-add and hot-remove separately,
and codes in function register_page_bootmem_info_node() are only
used for collecting infomation for hot-remove, so reside it under
MEMORY_HOTREMOVE.
Besides page_isolation.c selected by MEMORY_ISOLATION under
MEMORY_HOTPLUG is also such case, move it too.
[mhocko@suse.cz: put register_page_bootmem_memmap inside CONFIG_MEMORY_HOTPLUG_SPARSE]
[linfeng@cn.fujitsu.com: introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node()]
[mhocko@suse.cz: remove the arch specific functions without any implementation]
[linfeng@cn.fujitsu.com: mm/Kconfig: move auto selects from MEMORY_HOTPLUG to MEMORY_HOTREMOVE as needed]
[rientjes@google.com: fix defined but not used warning]
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Wu Jianguo <wujianguo@huawei.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc patches from Andrew Morton:
- Florian has vanished so I appear to have become fbdev maintainer
again :(
- Joel and Mark are distracted to welcome to the new OCFS2 maintainer
- The backlight queue
- Small core kernel changes
- lib/ updates
- The rtc queue
- Various random bits
* akpm: (164 commits)
rtc: rtc-davinci: use devm_*() functions
rtc: rtc-max8997: use devm_request_threaded_irq()
rtc: rtc-max8907: use devm_request_threaded_irq()
rtc: rtc-da9052: use devm_request_threaded_irq()
rtc: rtc-wm831x: use devm_request_threaded_irq()
rtc: rtc-tps80031: use devm_request_threaded_irq()
rtc: rtc-lp8788: use devm_request_threaded_irq()
rtc: rtc-coh901331: use devm_clk_get()
rtc: rtc-vt8500: use devm_*() functions
rtc: rtc-tps6586x: use devm_request_threaded_irq()
rtc: rtc-imxdi: use devm_clk_get()
rtc: rtc-cmos: use dev_warn()/dev_dbg() instead of printk()/pr_debug()
rtc: rtc-pcf8583: use dev_warn() instead of printk()
rtc: rtc-sun4v: use pr_warn() instead of printk()
rtc: rtc-vr41xx: use dev_info() instead of printk()
rtc: rtc-rs5c313: use pr_err() instead of printk()
rtc: rtc-at91rm9200: use dev_dbg()/dev_err() instead of printk()/pr_debug()
rtc: rtc-rs5c372: use dev_dbg()/dev_warn() instead of printk()/pr_debug()
rtc: rtc-ds2404: use dev_err() instead of printk()
rtc: rtc-efi: use dev_err()/dev_warn()/pr_err() instead of printk()
...
This provides a band-aid to provide stable page writes on jbd without
needing to backport the fixed locking and page writeback bit handling
schemes of jbd2. The band-aid works by using bounce buffers to snapshot
page contents instead of waiting.
For those wondering about the ext3 bandage -- fixing the jbd locking
(which was done as part of ext4dev years ago) is a lot of surgery, and
setting PG_writeback on data pages when we actually hold the page lock
dropped ext3 performance by nearly an order of magnitude. If we're
going to migrate iscsi and raid to use stable page writes, the
complaints about high latency will likely return. We might as well
centralize their page snapshotting thing to one place.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Tested-by: Andy Lutomirski <luto@amacapital.net>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ron Minnich <rminnich@sandia.gov>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The CONFIG_EXPERIMENTAL config item has not carried much meaning for a
while now and is almost always enabled by default. As agreed during the
Linux kernel summit, remove it from any "depends on" lines in Kconfigs.
CC: Andrew Morton <akpm@linux-foundation.org>
CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Jan Beulich <JBeulich@novell.com>
CC: Mel Gorman <mel@csn.ul.ie>
CC: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add help info for CONFIG_MOVABLE_NODE and permit its selection.
This option allows the user to online all memory of a node as movable
memory. So that the whole node can be hotplugged. Users who don't use
the hotplug feature are also fine with this option on since they won't
online memory as movable.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
[akpm@linux-foundation.org: tweak help text]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc VM changes from Andrew Morton:
"The rest of most-of-MM. The other MM bits await a slab merge.
This patch includes the addition of a huge zero_page. Not a
performance boost but it an save large amounts of physical memory in
some situations.
Also a bunch of Fujitsu engineers are working on memory hotplug.
Which, as it turns out, was badly broken. About half of their patches
are included here; the remainder are 3.8 material."
However, this merge disables CONFIG_MOVABLE_NODE, which was totally
broken. We don't add new features with "default y", nor do we add
Kconfig questions that are incomprehensible to most people without any
help text. Does the feature even make sense without compaction or
memory hotplug?
* akpm: (54 commits)
mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic()
mm/memory.c: remove unused code from do_wp_page()
asm-generic, mm: pgtable: consolidate zero page helpers
mm/hugetlb.c: fix warning on freeing hwpoisoned hugepage
hwpoison, hugetlbfs: fix RSS-counter warning
hwpoison, hugetlbfs: fix "bad pmd" warning in unmapping hwpoisoned hugepage
mm: protect against concurrent vma expansion
memcg: do not check for mm in __mem_cgroup_count_vm_event
tmpfs: support SEEK_DATA and SEEK_HOLE (reprise)
mm: provide more accurate estimation of pages occupied by memmap
fs/buffer.c: remove redundant initialization in alloc_page_buffers()
fs/buffer.c: do not inline exported function
writeback: fix a typo in comment
mm: introduce new field "managed_pages" to struct zone
mm, oom: remove statically defined arch functions of same name
mm, oom: remove redundant sleep in pagefault oom handler
mm, oom: cleanup pagefault oom handler
memory_hotplug: allow online/offline memory to result movable node
numa: add CONFIG_MOVABLE_NODE for movable-dedicated node
mm, memcg: avoid unnecessary function call when memcg is disabled
...
We need a node which only contains movable memory. This feature is very
important for node hotplug. If a node has normal/highmem, the memory may
be used by the kernel and can't be offlined. If the node only contains
movable memory, we can offline the memory and the node.
All are prepared, we can actually introduce N_MEMORY.
add CONFIG_MOVABLE_NODE make we can use it for movable-dedicated node
[akpm@linux-foundation.org: fix Kconfig text]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory fragmentation introduced by ballooning might reduce significantly
the number of 2MB contiguous memory blocks that can be used within a guest,
thus imposing performance penalties associated with the reduced number of
transparent huge pages that could be used by the guest workload.
This patch introduces a common interface to help a balloon driver on
making its page set movable to compaction, and thus allowing the system
to better leverage the compation efforts on memory defragmentation.
[akpm@linux-foundation.org: use PAGE_FLAGS_CHECK_AT_PREP, s/__balloon_page_flags/page_flags_cleared/, small cleanups]
[rientjes@google.com: allow balloon compaction for any system with memory compaction enabled, which is the defconfig]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that lumpy reclaim has been removed, compaction is the only way left
to free up contiguous memory areas. It is time to just enable
CONFIG_COMPACTION by default.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup patch in preparation for transparent hugepage support on s390.
Adding new architectures to the TRANSPARENT_HUGEPAGE config option can
make the "depends" line rather ugly, like "depends on (X86 || (S390 &&
64BIT)) && MMU".
This patch adds a HAVE_ARCH_TRANSPARENT_HUGEPAGE instead. x86 already has
MMU "def_bool y", so the MMU check is superfluous there and
HAVE_ARCH_TRANSPARENT_HUGEPAGE can be selected in arch/x86/Kconfig.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/page_alloc.c has some memory isolation functions but they are used only
when we enable CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}. So let's make
it configurable by new CONFIG_MEMORY_ISOLATION so that it can reduce
binary size and we can check it simple by CONFIG_MEMORY_ISOLATION, not if
defined CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some environments, dramatic performance savings may be obtained because
swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk.
This tag provides the basic infrastructure along with some changes to the
existing backends.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJPsorBAAoJEFjIrFwIi8fJcz8H/RBXCtFo0kiJmRked3nMAIDO
/2zN/q/Qawsg9aeoGlP7G8hQi9PMipbhQj3ixHyCTMv0zMbH988GXbBce+gIcg6e
TOQi7xXAuPEwLizmSpiTv84XzN5bMgu1oJXEqIXw0EIpuZAmp+9m/o3WBwEAtyxi
B+hvjE7eZM8f75K3lxs6sOtmIcERj9zqmT933Y8+i9iiuRyGMey2SyKtvVLbYZ+j
HroFMUi0so5TzxT/cpkRiHu0U75c651o+LV00zh7InMqbwyRsWlKTf53k8Q/q2WP
I7dVmfItwN/TpOrYTfxglYFlbYuUP35ziFvZ2trd6hcs9RK8OuKw+OmBLReHTtc=
=x9Vp
-----END PGP SIGNATURE-----
Merge tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm
Pull frontswap feature from Konrad Rzeszutek Wilk:
"Frontswap provides a "transcendent memory" interface for swap pages.
In some environments, dramatic performance savings may be obtained
because swapped pages are saved in RAM (or a RAM-like device) instead
of a swap disk. This tag provides the basic infrastructure along with
some changes to the existing backends."
Fix up trivial conflict in mm/Makefile due to removal of swap token code
changing a line next to the new frontswap entry.
This pull request came in before the merge window even opened, it got
delayed to after the merge window by me just wanting to make sure it had
actual users. Apparently IBM is using this on their embedded side, and
Jan Beulich says that it's already made available for SLES and OpenSUSE
users.
Also acked by Rik van Riel, and Konrad points to other people liking it
too. So in it goes.
By Dan Magenheimer (4) and Konrad Rzeszutek Wilk (2)
via Konrad Rzeszutek Wilk
* tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm:
frontswap: s/put_page/store/g s/get_page/load
MAINTAINER: Add myself for the frontswap API
mm: frontswap: config and doc files
mm: frontswap: core frontswap functionality
mm: frontswap: core swap subsystem hooks and headers
mm: frontswap: add frontswap header file
Add a Kconfig option to allow people who don't want cross memory attach to
not have it included in their build.
Signed-off-by: Chris Yeoh <yeohc@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The MIGRATE_CMA migration type has two main characteristics:
(i) only movable pages can be allocated from MIGRATE_CMA
pageblocks and (ii) page allocator will never change migration
type of MIGRATE_CMA pageblocks.
This guarantees (to some degree) that page in a MIGRATE_CMA page
block can always be migrated somewhere else (unless there's no
memory left in the system).
It is designed to be used for allocating big chunks (eg. 10MiB)
of physically contiguous memory. Once driver requests
contiguous memory, pages from MIGRATE_CMA pageblocks may be
migrated away to create a contiguous block.
To minimise number of migrations, MIGRATE_CMA migration type
is the last type tried when page allocator falls back to other
migration types when requested.
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
This patch 4of4 adds configuration and documentation files including a FAQ.
[v14: updated docs/FAQ to use zcache and RAMster as examples]
[v10: no change]
[v9: akpm@linux-foundation.org: sysfs->debugfs; no longer need Doc/ABI file]
[v8: rebase to 3.0-rc4]
[v7: rebase to 3.0-rc3]
[v6: rebase to 3.0-rc1]
[v5: change config default to n]
[v4: rebase to 2.6.39]
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Acked-by: Jan Beulich <JBeulich@novell.com>
Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Rik Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Conflicts & resolutions:
* arch/x86/xen/setup.c
dc91c728fd "xen: allow extra memory to be in multiple regions"
24aa07882b "memblock, x86: Replace memblock_x86_reserve/free..."
conflicted on xen_add_extra_mem() updates. The resolution is
trivial as the latter just want to replace
memblock_x86_reserve_range() with memblock_reserve().
* drivers/pci/intel-iommu.c
166e9278a3 "x86/ia64: intel-iommu: move to drivers/iommu/"
5dfe8660a3 "bootmem: Replace work_with_active_regions() with..."
conflicted as the former moved the file under drivers/iommu/.
Resolved by applying the chnages from the latter on the moved
file.
* mm/Kconfig
6661672053 "memblock: add NO_BOOTMEM config symbol"
c378ddd53f "memblock, x86: Make ARCH_DISCARD_MEMBLOCK a config option"
conflicted trivially. Both added config options. Just
letting both add their own options resolves the conflict.
* mm/memblock.c
d1f0ece6cd "mm/memblock.c: small function definition fixes"
ed7b56a799 "memblock: Remove memblock_memory_can_coalesce()"
confliected. The former updates function removed by the
latter. Resolution is trivial.
Signed-off-by: Tejun Heo <tj@kernel.org>
With the NO_BOOTMEM symbol added architectures may now use the following
syntax to tell that they do not need bootmem:
select NO_BOOTMEM
This is much more convinient than adding a new kconfig symbol which was
otherwise required.
Adding this symbol does not conflict with the architctures that already
define their own symbol.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
From 6839454ae63f1eb21e515c10229ca95c22955fec Mon Sep 17 00:00:00 2001
From: Tejun Heo <tj@kernel.org>
Date: Thu, 14 Jul 2011 11:22:17 +0200
Make ARCH_DISCARD_MEMBLOCK a config option so that it can be handled
together with other MEMBLOCK options.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110714094603.GH3455@htj.dyndns.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
From 83103b92f3234ec830852bbc5c45911bd6cbdb20 Mon Sep 17 00:00:00 2001
From: Tejun Heo <tj@kernel.org>
Date: Thu, 14 Jul 2011 11:22:16 +0200
Add optional region->nid which can be enabled by arch using
CONFIG_HAVE_MEMBLOCK_NODE_MAP. When enabled, memblock also carries
NUMA node information and replaces early_node_map[].
Newly added memblocks have MAX_NUMNODES as nid. Arch can then call
memblock_set_node() to set node information. memblock takes care of
merging and node affine allocations w.r.t. node information.
When MEMBLOCK_NODE_MAP is enabled, early_node_map[], related data
structures and functions to manipulate and iterate it are disabled.
memblock version of __next_mem_pfn_range() is provided such that
for_each_mem_pfn_range() behaves the same and its users don't have to
be updated.
-v2: Yinghai spotted section mismatch caused by missing
__init_memblock in memblock_set_node(). Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110714094342.GF3455@htj.dyndns.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This third patch of eight in this cleancache series provides
the core code for cleancache that interfaces between the hooks in
VFS and individual filesystems and a cleancache backend. It also
includes build and config patches.
Two new files are added: mm/cleancache.c and include/linux/cleancache.h.
Note that CONFIG_CLEANCACHE can default to on; in systems that do
not provide a cleancache backend, all hooks devolve to a simple
check of a global enable flag, so performance impact should
be negligible but can be reduced to zero impact if config'ed off.
However for this first commit, it defaults to off.
Details and a FAQ can be found in Documentation/vm/cleancache.txt
Credits: Cleancache_ops design derived from Jeremy Fitzhardinge
design for tmem
[v8: dan.magenheimer@oracle.com: fix exportfs call affecting btrfs]
[v8: akpm@linux-foundation.org: use static inline function, not macro]
[v7: dan.magenheimer@oracle.com: cleanup sysfs and remove cleancache prefix]
[v6: JBeulich@novell.com: robustly handle buggy fs encode_fh actor definition]
[v5: jeremy@goop.org: clean up global usage and static var names]
[v5: jeremy@goop.org: simplify init hook and any future fs init changes]
[v5: hch@infradead.org: cleaner non-global interface for ops registration]
[v4: adilger@sun.com: interface must support exportfs FS's]
[v4: hch@infradead.org: interface must support 64-bit FS on 32-bit kernel]
[v3: akpm@linux-foundation.org: use one ops struct to avoid pointer hops]
[v3: akpm@linux-foundation.org: document and ensure PageLocked reqts are met]
[v3: ngupta@vflare.org: fix success/fail codes, change funcs to void]
[v2: viro@ZenIV.linux.org.uk: use sane types]
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Reviewed-by: Jeremy Fitzhardinge <jeremy@goop.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Andreas Dilger <adilger@sun.com>
Acked-by: Jan Beulich <JBeulich@novell.com>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik Van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
Commit 5d6892407 ("thp: select CONFIG_COMPACTION if TRANSPARENT_HUGEPAGE
enabled") causes this warning during the configuration process:
warning: (TRANSPARENT_HUGEPAGE) selects COMPACTION which has unmet
direct dependencies (EXPERIMENTAL && HUGETLB_PAGE && MMU)
COMPACTION doesn't depend on HUGETLB_PAGE, it doesn't depend on THP
either, it is also useful for regular alloc_pages(order > 0) including
the very kernel stack during fork (THREAD_ORDER = 1). It's always
better to enable COMPACTION.
The warning should be an error because we would end up with MIGRATION
not selected, and COMPACTION wouldn't work without migration (despite it
seems to build with an inline migrate_pages returning -ENOSYS).
I'd also like to remove EXPERIMENTAL: compaction has been in the kernel
for some releases (for full safety the default remains disabled which I
think is enough).
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Luca Tettamanti <kronos.it@gmail.com>
Tested-by: Luca Tettamanti <kronos.it@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With transparent hugepage support we need compaction for the "defrag"
sysfs controls to be effective.
At the moment THP hangs the system if COMPACTION isn't selected, as
without COMPACTION lumpy reclaim wouldn't be entirely disabled. So at the
moment it's not orthogonal. When lumpy will be removed from the VM I can
remove the select COMPACTION in theory, but then 99% of THP users would be
still doing a mistake in disabling compaction, even if the mistake won't
return in fatal runtime but just slightly degraded performance. So from a
theoretical standpoing forcing the below select is not needed (the
dependency isn't strict nor at compile time nor at runtime) but from a
practical standpoint it is safer.
If anybody really wants THP to run without compaction, it'd be such a
weird setup that editing the Kconfig file to allow it will be surely not a
problem.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow to choose between the always|madvise default for page faults and
khugepaged at config time. madvise guarantees zero risk of higher memory
footprint for applications (applications using madvise(MADV_HUGEPAGE)
won't risk to use any more memory by backing their virtual regions with
hugepages).
Initially set the default to N and don't depend on EMBEDDED.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for transparent hugepages to x86 32bit.
Share the same VM_ bitflag for VM_MAPPED_COPY. mm/nommu.c will never
support transparent hugepages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: update comments to reflect that percpu allocations are always zero-filled
percpu: Optimize __get_cpu_var()
x86, percpu: Optimize this_cpu_ptr
percpu: clear memory allocated with the km allocator
percpu: fix build breakage on s390 and cleanup build configuration tests
percpu: use percpu allocator on UP too
percpu: reduce PCPU_MIN_UNIT_SIZE to 32k
vmalloc: pcpu_get/free_vm_areas() aren't needed on UP
Fixed up trivial conflicts in include/linux/percpu.h
COMPACTION enables MIGRATION, but MIGRATION spawns a warning if numa or
memhotplug aren't selected. However MIGRATION doesn't depend on them. I
guess it's just trying to be strict doing a double check on who's enabling
it, but it doesn't know that compaction also enables MIGRATION.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On UP, percpu allocations were redirected to kmalloc. This has the
following problems.
* For certain amount of allocations (determined by
PERCPU_DYNAMIC_EARLY_SLOTS and PERCPU_DYNAMIC_EARLY_SIZE), percpu
allocator can be used before the usual kernel memory allocator is
brought online. On SMP, this is used to initialize the kernel
memory allocator.
* percpu allocator honors alignment upto PAGE_SIZE but kmalloc()
doesn't. For example, workqueue makes use of larger alignments for
cpu_workqueues.
Currently, users of percpu allocators need to handle UP differently,
which is somewhat fragile and ugly. Other than small amount of
memory, there isn't much to lose by enabling percpu allocator on UP.
It can simply use kernel memory based chunk allocation which was added
for SMP archs w/o MMUs.
This patch removes mm/percpu_up.c, builds mm/percpu.c on UP too and
makes UP build use percpu-km. As percpu addresses and kernel
addresses are always identity mapped and static percpu variables don't
need any special treatment, nothing is arch dependent and mm/percpu.c
implements generic setup_per_cpu_areas() for UP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
via following scripts
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/lmb/memblock/g' \
-e 's/LMB/MEMBLOCK/g' \
$FILES
for N in $(find . -name lmb.[ch]); do
M=$(echo $N | sed 's/lmb/memblock/g')
mv $N $M
done
and remove some wrong change like lmbench and dlmb etc.
also move memblock.c from lib/ to mm/
Suggested-by: Ingo Molnar <mingo@elte.hu>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CONFIG_MIGRATION currently depends on CONFIG_NUMA or on the architecture
being able to hot-remove memory. The main users of page migration such as
sys_move_pages(), sys_migrate_pages() and cpuset process migration are
only beneficial on NUMA so it makes sense.
As memory compaction will operate within a zone and is useful on both NUMA
and non-NUMA systems, this patch allows CONFIG_MIGRATION to be set if the
user selects CONFIG_COMPACTION as an option.
[akpm@linux-foundation.org: Depend on CONFIG_HUGETLB_PAGE]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
early_res: Need to save the allocation name in drop_range_partial()
sparsemem: Fix compilation on PowerPC
early_res: Add free_early_partial()
x86: Fix non-bootmem compilation on PowerPC
core: Move early_res from arch/x86 to kernel/
x86: Add find_fw_memmap_area
Move round_up/down to kernel.h
x86: Make 32bit support NO_BOOTMEM
early_res: Enhance check_and_double_early_res
x86: Move back find_e820_area to e820.c
x86: Add find_early_area_size
x86: Separate early_res related code from e820.c
x86: Move bios page reserve early to head32/64.c
sparsemem: Put mem map for one node together.
sparsemem: Put usemap for one node together
x86: Make 64 bit use early_res instead of bootmem before slab
x86: Only call dma32_reserve_bootmem 64bit !CONFIG_NUMA
x86: Make early_node_mem get mem > 4 GB if possible
x86: Dynamically increase early_res array size
x86: Introduce max_early_res and early_res_count
...
Add vmemmap_alloc_block_buf for mem map only.
It will fallback to the old way if it cannot get a block that big.
Before this patch, when a node have 128g ram installed, memmap are
split into two parts or more.
[ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1
[ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1
[ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0
[ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0
[ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0
[ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2
[ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2
[ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2
[ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3
[ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3
[ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4
[ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4
[ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5
[ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5
[ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5
[ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6
[ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6
[ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6
[ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7
[ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7
after patch will get
[ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0
[ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1
[ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2
[ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3
[ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4
[ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5
[ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6
[ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7
-v2: change buf to vmemmap_buf instead according to Ingo
also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo
-v3: according to Andrew, use sizeof(name) instead of hard coded 15
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
We previously had 2 quicklists, one for the PGD case and one for PTEs.
Now that the PGD/PMD cases are handled through slab caches due to the
multi-level configurability, only the PTE quicklist remains. As such,
reduce NR_QUICK to its appropriate size and bump down the PTE quicklist
index.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The injector filter requires stable_page_flags() which is supplied
by procfs. So make it dependent on that.
Also add ifdefs around the filter code in memory-failure.c so that
when the filter is disabled due to missing dependencies the whole
code still builds.
Reported-by: Ingo Molnar
Signed-off-by: Andi Kleen <ak@linux.intel.com>
In NOMMU mode clamp dac_mmap_min_addr to zero to cause the tests on it to be
skipped by the compiler. We do this as the minimum mmap address doesn't make
any sense in NOMMU mode.
mmap_min_addr and round_hint_to_min() can be discarded entirely in NOMMU mode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
When specified, only poison pages if ((page_flags & mask) == value).
- corrupt-filter-flags-mask
- corrupt-filter-flags-value
This allows stress testing of many kinds of pages.
Strictly speaking, the buddy pages requires taking zone lock, to avoid
setting PG_hwpoison on a "was buddy but now allocated to someone" page.
However we can just do nothing because we set PG_locked in the beginning,
this prevents the page allocator from allocating it to someone. (It will
BUG() on the unexpected PG_locked, which is fine for hwpoison testing.)
[AK: Add select PROC_PAGE_MONITOR to satisfy dependency]
CC: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Now that ksm pages are swappable, and the known holes plugged, remove
mention of unswappable kernel pages from KSM documentation and comments.
Remove the totalram_pages/4 initialization of max_kernel_pages. In fact,
remove max_kernel_pages altogether - we can reinstate it if removal turns
out to break someone's script; but if we later want to limit KSM's memory
usage, limiting the stable nodes would not be an effective approach.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_DEBUG_SPINLOCK adds 12 or 16 bytes to a 32- or 64-bit spinlock_t,
and CONFIG_DEBUG_LOCK_ALLOC adds another 12 or 24 bytes to it: lockdep
enables both of those, and CONFIG_LOCK_STAT adds 8 or 16 bytes to that.
When 2.6.15 placed the split page table lock inside struct page (usually
sized 32 or 56 bytes), only CONFIG_DEBUG_SPINLOCK was a possibility, and
we ignored the enlargement (but fitted in CONFIG_GENERIC_LOCKBREAK's 4 by
letting the spinlock_t occupy both page->private and page->mapping).
Should these debugging options be allowed to double the size of a struct
page, when only one minority use of the page (as a page table) needs to
fit a spinlock in there? Perhaps not.
Take the easy way out: switch off SPLIT_PTLOCK_CPUS when DEBUG_SPINLOCK or
DEBUG_LOCK_ALLOC is in force. I've sometimes tried to be cleverer,
kmallocing a cacheline for the spinlock when it doesn't fit, but given up
each time. Falling back to mm->page_table_lock (as we do when ptlock is
not split) lets lockdep check out the strictest path anyway.
And now that some arches allow 8192 cpus, use 999999 for infinity.
(What has this got to do with KSM swapping? It doesn't care about the
size of struct page, but may care about random junk in page->mapping - to
be explained separately later.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove three degrees of obfuscation, left over from when we had
CONFIG_UNEVICTABLE_LRU. MLOCK_PAGES is CONFIG_HAVE_MLOCKED_PAGE_BIT is
CONFIG_HAVE_MLOCK is CONFIG_MMU. rmap.o (and memory-failure.o) are only
built when CONFIG_MMU, so don't need such conditions at all.
Somehow, I feel no compulsion to remove the CONFIG_HAVE_MLOCK* lines from
169 defconfigs: leave those to evolve in due course.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow memory hotplug and hibernation in the same kernel
Memory hotplug and hibernation were exclusive in Kconfig. This is
obviously a problem for distribution kernels who want to support both in
the same image.
After some discussions with Rafael and others the only problem is with
parallel memory hotadd or removal while a hibernation operation is in
process. It was also working for s390 before.
This patch removes the Kconfig level exclusion, and simply makes the
memory add / remove functions grab the pm_mutex to exclude against
hibernation.
Fixes a regression - old kernels didn't exclude memory hotadd and
hibernation.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
powerpc/ppc64: Use preempt_schedule_irq instead of preempt_schedule
powerpc: Minor cleanup to lib/Kconfig.debug
powerpc: Minor cleanup to sound/ppc/Kconfig
powerpc: Minor cleanup to init/Kconfig
powerpc: Limit memory hotplug support to PPC64 Book-3S machines
powerpc: Limit hugetlbfs support to PPC64 Book-3S machines
powerpc: Fix compile errors found by new ppc64e_defconfig
powerpc: Add a Book-3E 64-bit defconfig
powerpc/booke: Fix xmon single step on PowerPC Book-E
powerpc: Align vDSO base address
powerpc: Fix segment mapping in vdso32
powerpc/iseries: Remove compiler version dependent hack
powerpc/perf_events: Fix priority of MSR HV vs PR bits
powerpc/5200: Update defconfigs
drivers/serial/mpc52xx_uart.c: Use UPIO_MEM rather than SERIAL_IO_MEM
powerpc/boot/dts: drop obsolete 'fsl5200-clocking'
of: Remove nested function
mpc5200: support for the MAN mpc5200 based board mucmc52
mpc5200: support for the MAN mpc5200 based board uc101
Currently, sparsemem is only available if EXPERIMENTAL is enabled.
However, it hasn't ever been marked experimental.
It's been about four years since sparsemem was merged, and we have
platforms which depend on it; allow architectures to decide whether
sparsemem should be the default memory model.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adjust the max_kernel_pages default to a quarter of totalram_pages,
instead of nr_free_buffer_pages() / 4: the KSM pages themselves come from
highmem, and even on a 16GB PAE machine, 4GB of KSM pages would only be
pinning 32MB of lowmem with their rmap_items, so no need for the more
obscure calculation (nor for its own special init function).
There is no way for the user to switch KSM on if CONFIG_SYSFS is not
enabled, so in that case default run to KSM_RUN_MERGE.
Update KSM Documentation and Kconfig to reflect the new defaults.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This build failure triggers:
In file included from include/linux/suspend.h:8,
from arch/x86/kernel/asm-offsets_32.c:11,
from arch/x86/kernel/asm-offsets.c:2:
include/linux/mm.h:503:2: error: #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
Because due to the hwpoison page flag we ran out of page
flags on 32-bit.
Dont turn on hwpoison on 32-bit NUMA (it's rare in any
case).
Also clean up the Kconfig dependencies in the generic MM
code by introducing ARCH_SUPPORTS_MEMORY_FAILURE.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
Add Documentation/vm/ksm.txt: how to use the Kernel Samepage Merging feature
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch presents the mm interface to a dummy version of ksm.c, for
better scrutiny of that interface: the real ksm.c follows later.
When CONFIG_KSM is not set, madvise(2) reject MADV_MERGEABLE and
MADV_UNMERGEABLE with EINVAL, since that seems more helpful than
pretending that they can be serviced. But when CONFIG_KSM=y, accept them
even if KSM is not currently running, and even on areas which KSM will not
touch (e.g. hugetlb or shared file or special driver mappings).
Like other madvices, report ENOMEM despite success if any area in the
range is unmapped, and use EAGAIN to report out of memory.
Define vma flag VM_MERGEABLE to identify an area on which KSM may try
merging pages: leave it to ksm_madvise() to decide whether to set it.
Define mm flag MMF_VM_MERGEABLE to identify an mm which might contain
VM_MERGEABLE areas, to minimize callouts when forking or exiting.
Based upon earlier patches by Chris Wright and Izik Eidus.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Useful for some testing scenarios, although specific testing is often
done better through MADV_POISON
This can be done with the x86 level MCE injector too, but this interface
allows it to do independently from low level x86 changes.
v2: Add module license (Haicheng Li)
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Add the high level memory handler that poisons pages
that got corrupted by hardware (typically by a two bit flip in a DIMM
or a cache) on the Linux level. The goal is to prevent everyone
from accessing these pages in the future.
This done at the VM level by marking a page hwpoisoned
and doing the appropriate action based on the type of page
it is.
The code that does this is portable and lives in mm/memory-failure.c
To quote the overview comment:
High level machine check handler. Handles pages reported by the
hardware as being corrupted usually due to a 2bit ECC memory or cache
failure.
This focuses on pages detected as corrupted in the background.
When the current CPU tries to consume corruption the currently
running process can just be killed directly instead. This implies
that if the error cannot be handled for some reason it's safe to
just ignore it because no corruption has been consumed yet. Instead
when that happens another machine check will happen.
Handles page cache pages in various states. The tricky part
here is that we can access any page asynchronous to other VM
users, because memory failures could happen anytime and anywhere,
possibly violating some of their assumptions. This is why this code
has to be extremely careful. Generally it tries to use normal locking
rules, as in get the standard locks, even if that means the
error handling takes potentially a long time.
Some of the operations here are somewhat inefficient and have non
linear algorithmic complexity, because the data structures have not
been optimized for this case. This is in particular the case
for the mapping from a vma to a process. Since this case is expected
to be rare we hope we can get away with this.
There are in principle two strategies to kill processes on poison:
- just unmap the data and wait for an actual reference before
killing
- kill as soon as corruption is detected.
Both have advantages and disadvantages and should be used
in different situations. Right now both are implemented and can
be switched with a new sysctl vm.memory_failure_early_kill
The default is early kill.
The patch does some rmap data structure walking on its own to collect
processes to kill. This is unusual because normally all rmap data structure
knowledge is in rmap.c only. I put it here for now to keep
everything together and rmap knowledge has been seeping out anyways
Includes contributions from Johannes Weiner, Chris Mason, Fengguang Wu,
Nick Piggin (who did a lot of great work) and others.
Cc: npiggin@suse.de
Cc: riel@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
* 'x86-pat-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, pat: Fix cacheflush address in change_page_attr_set_clr()
mm: remove !NUMA condition from PAGEFLAGS_EXTENDED condition set
x86: Fix earlyprintk=dbgp for machines without NX
x86, pat: Sanity check remap_pfn_range for RAM region
x86, pat: Lookup the protection from memtype list on vm_insert_pfn()
x86, pat: Add lookup_memtype to get the current memtype of a paddr
x86, pat: Use page flags to track memtypes of RAM pages
x86, pat: Generalize the use of page flag PG_uncached
x86, pat: Add rbtree to do quick lookup in memtype tracking
x86, pat: Add PAT reserve free to io_mapping* APIs
x86, pat: New i/f for driver to request memtype for IO regions
x86, pat: ioremap to follow same PAT restrictions as other PAT users
x86, pat: Keep identity maps consistent with mmaps even when pat_disabled
x86, mtrr: make mtrr_aps_delayed_init static bool
x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
generic-ipi: Allow cpus not yet online to call smp_call_function with irqs disabled
x86: Fix an incorrect argument of reserve_bootmem()
x86: Fix system crash when loading with "reservetop" parameter
CONFIG_PAGEFLAGS_EXTENDED disables a trick to conserve pageflags.
This trick is indended to be enabled when the pressure on page flags
is very high.
The previous condition was:
- depends on 64BIT || SPARSEMEM_VMEMMAP || !NUMA || !SPARSEMEM
... however, the sparsemem code already has a way to crowd out the
node number from the pageflags, which means that !NUMA actually
doesn't contribute to hard pageflags exhaustion.
This is required for the new PG_uncached flag to not cause pageflags
exhaustion on x86_32 + PAE + SPARSEMEM + !NUMA.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
LKML-Reference: <4A9828F4.4040905@zytor.com>
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Suresh Siddha <suresh.siddha@intel.com>
Currently SELinux enforcement of controls on the ability to map low memory
is determined by the mmap_min_addr tunable. This patch causes SELinux to
ignore the tunable and instead use a seperate Kconfig option specific to how
much space the LSM should protect.
The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
permissions will always protect the amount of low memory designated by
CONFIG_LSM_MMAP_MIN_ADDR.
This allows users who need to disable the mmap_min_addr controls (usual reason
being they run WINE as a non-root user) to do so and still have SELinux
controls preventing confined domains (like a web server) from being able to
map some area of low memory.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
* akpm: (182 commits)
fbdev: bf54x-lq043fb: use kzalloc over kmalloc/memset
fbdev: *bfin*: fix __dev{init,exit} markings
fbdev: *bfin*: drop unnecessary calls to memset
fbdev: bfin-t350mcqb-fb: drop unused local variables
fbdev: blackfin has __raw I/O accessors, so use them in fb.h
fbdev: s1d13xxxfb: add accelerated bitblt functions
tcx: use standard fields for framebuffer physical address and length
fbdev: add support for handoff from firmware to hw framebuffers
intelfb: fix a bug when changing video timing
fbdev: use framebuffer_release() for freeing fb_info structures
radeon: P2G2CLK_ALWAYS_ONb tested twice, should 2nd be P2G2CLK_DAC_ALWAYS_ONb?
s3c-fb: CPUFREQ frequency scaling support
s3c-fb: fix resource releasing on error during probing
carminefb: fix possible access beyond end of carmine_modedb[]
acornfb: remove fb_mmap function
mb862xxfb: use CONFIG_OF instead of CONFIG_PPC_OF
mb862xxfb: restrict compliation of platform driver to PPC
Samsung SoC Framebuffer driver: add Alpha Channel support
atmel-lcdc: fix pixclock upper bound detection
offb: use framebuffer_alloc() to allocate fb_info struct
...
Manually fix up conflicts due to kmemcheck in mm/slab.c
This patch removes the dependency of mmap_min_addr on CONFIG_SECURITY.
It also sets a default mmap_min_addr of 4096.
mmapping of addresses below 4096 will only be possible for processes
with CAP_SYS_RAWIO.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Eric Paris <eparis@redhat.com>
Looks-ok-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
NOMMU mmap() has an option controlled by a sysctl variable that determines
whether the allocations made by do_mmap_private() should have the excess
space trimmed off and returned to the allocator. Make the initial setting
of this variable a Kconfig configuration option.
The reason there can be excess space is that the allocator only allocates
in power-of-2 size chunks, but mmap()'s can be made in sizes that aren't a
power of 2.
There are two alternatives:
(1) Keep the excess as dead space. The dead space then remains unused for the
lifetime of the mapping. Mappings of shared objects such as libc, ld.so
or busybox's text segment may retain their dead space forever.
(2) Return the excess to the allocator. This means that the dead space is
limited to less than a page per mapping, but it means that for a transient
process, there's more chance of fragmentation as the excess space may be
reused fairly quickly.
During the boot process, a lot of transient processes are created, and
this can cause a lot of fragmentation as the pagecache and various slabs
grow greatly during this time.
By turning off the trimming of excess space during boot and disabling
batching of frees, Coldfire can manage to boot.
A better way of doing things might be to have /sbin/init turn this option
off. By that point libc, ld.so and init - which are all long-duration
processes - have all been loaded and trimmed.
Reported-by: Lanttor Guo <lanttor.guo@freescale.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Lanttor Guo <lanttor.guo@freescale.com>
Cc: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Point the UNEVICTABLE_LRU config option at the documentation describing
the option.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make CONFIG_UNEVICTABLE_LRU available when CONFIG_MMU=n. There's no logical
reason it shouldn't be available, and it can be used for ramfs.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Greg Ungerer <gerg@snapgear.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Enrik Berkhan <Enrik.Berkhan@ge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mlock() facility does not exist for NOMMU since all mappings are
effectively locked anyway, so we don't make the bits available when
they're not useful.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Greg Ungerer <gerg@snapgear.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Enrik Berkhan <Enrik.Berkhan@ge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 8308c54d7e ("generic: redefine
resource_size_t as phys_addr_t") made CONFIG_RESOURCES_64BIT obsolete, but
didn't remove it. Remove it.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using "def_bool n" is pointless, simply using bool here appears more
appropriate.
Further, retaining such options that don't have a prompt and aren't
selected by anything seems also at least questionable.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a kernel-wide "phys_addr_t" which is guaranteed to be able to hold
any physical address. By default it equals the word size of the
architecture, but a 32-bit architecture can set ARCH_PHYS_ADDR_T_64BIT
if it needs a 64-bit phys_addr_t.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Out of line get_user_pages_fast fallback implementation, make it a weak
symbol, get rid of CONFIG_HAVE_GET_USER_PAGES_FAST.
Export the symbol to modules so lguest can use it.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement get_user_pages_fast without locking in the fastpath on x86.
Do an optimistic lockless pagetable walk, without taking mmap_sem or any
page table locks or even mmap_sem. Page table existence is guaranteed by
turning interrupts off (combined with the fact that we're always looking
up the current mm, means we can do the lockless page table walk within the
constraints of the TLB shootdown design). Basically we can do this
lockless pagetable walk in a similar manner to the way the CPU's pagetable
walker does not have to take any locks to find present ptes.
This patch (combined with the subsequent ones to convert direct IO to use
it) was found to give about 10% performance improvement on a 2 socket 8
core Intel Xeon system running an OLTP workload on DB2 v9.5
"To test the effects of the patch, an OLTP workload was run on an IBM
x3850 M2 server with 2 processors (quad-core Intel Xeon processors at
2.93 GHz) using IBM DB2 v9.5 running Linux 2.6.24rc7 kernel. Comparing
runs with and without the patch resulted in an overall performance
benefit of ~9.8%. Correspondingly, oprofiles showed that samples from
__up_read and __down_read routines that is seen during thread contention
for system resources was reduced from 2.8% down to .05%. Monitoring the
/proc/vmstat output from the patched run showed that the counter for
fast_gup contained a very high number while the fast_gup_slow value was
zero."
(fast_gup is the old name for get_user_pages_fast, fast_gup_slow is a
counter we had for the number of times the slowpath was invoked).
The main reason for the improvement is that DB2 has multiple threads each
issuing direct-IO. Direct-IO uses get_user_pages, and thus the threads
contend the mmap_sem cacheline, and can also contend on page table locks.
I would anticipate larger performance gains on larger systems, however I
think DB2 uses an adaptive mix of threads and processes, so it could be
that thread contention remains pretty constant as machine size increases.
In which case, we stuck with "only" a 10% gain.
The downside of using get_user_pages_fast is that if there is not a pte
with the correct permissions for the access, we end up falling back to
get_user_pages and so the get_user_pages_fast is a bit of extra work.
However this should not be the common case in most performance critical
code.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: Kconfig fix]
[akpm@linux-foundation.org: Makefile fix/cleanup]
[akpm@linux-foundation.org: warning fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We'd like to support CONFIG_MEMORY_HOTREMOVE on s390, which depends on
CONFIG_MIGRATION. So far, CONFIG_MIGRATION is only available with NUMA
support.
This patch makes CONFIG_MIGRATION selectable for architectures that define
ARCH_ENABLE_MEMORY_HOTREMOVE. When MIGRATION is enabled w/o NUMA, the
kernel won't compile because migrate_vmas() does not know about
vm_ops->migrate() and vma_migratable() does not know about policy_zone.
To fix this, those two functions can be restricted to '#ifdef CONFIG_NUMA'
because they are not being used w/o NUMA. vma_migratable() is moved over
from migrate.h to mempolicy.h.
[kosaki.motohiro@jp.fujitsu.com: build fix]
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: KOSAKI Motorhiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/hskinnemoen/avr32-2.6: (31 commits)
avr32: Fix typo of IFSR in a comment in the PIO header file
avr32: Power Management support ("standby" and "mem" modes)
avr32: Add system device for the internal interrupt controller (intc)
avr32: Add simple SRAM allocator
avr32: Enable SDRAMC clock at startup
rtc-at32ap700x: Enable wakeup
macb: Basic suspend/resume support
atmel_serial: Drain console TX shifter before suspending
atmel_serial: Fix build on avr32 with CONFIG_PM enabled
avr32: Use a quicklist for PTE allocation as well
avr32: Use a quicklist for PGD allocation
avr32: Cover the kernel page tables in the user PGDs
avr32: Store virtual addresses in the PGD
avr32: Remove useless zeroing of swapper_pg_dir at startup
avr32: Clean up and optimize the TLB operations
avr32: Rename at32ap.c -> pdc.c
avr32: Move setup_platform() into chip-specific file
avr32: Kill special exception handler sections
avr32: Kill unneeded #include <asm/pgalloc.h> from asm/mmu_context.h
avr32: Clean up time.c #includes
...