Commit Graph

44 Commits

Author SHA1 Message Date
Tom Herbert b8921ca83e ip4ip6: Support for GSO/GRO
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:17 -04:00
Tom Herbert 815d22e55b ip6ip6: Support for GSO/GRO
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:17 -04:00
Tom Herbert 7e13318daa net: define gso types for IPx over IPv4 and IPv6
This patch defines two new GSO definitions SKB_GSO_IPXIP4 and
SKB_GSO_IPXIP6 along with corresponding NETIF_F_GSO_IPXIP4 and
NETIF_F_GSO_IPXIP6. These are used to described IP in IP
tunnel and what the outer protocol is. The inner protocol
can be deduced from other GSO types (e.g. SKB_GSO_TCPV4 and
SKB_GSO_TCPV6). The GSO types of SKB_GSO_IPIP and SKB_GSO_SIT
are removed (these are both instances of SKB_GSO_IPXIP4).
SKB_GSO_IPXIP6 will be used when support for GSO with IP
encapsulation over IPv6 is added.

Signed-off-by: Tom Herbert <tom@herbertland.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:15 -04:00
Tom Herbert 5c7cdf339a gso: Remove arbitrary checks for unsupported GSO
In several gso_segment functions there are checks of gso_type against
a seemingly arbitrary list of SKB_GSO_* flags. This seems like an
attempt to identify unsupported GSO types, but since the stack is
the one that set these GSO types in the first place this seems
unnecessary to do. If a combination isn't valid in the first
place that stack should not allow setting it.

This is a code simplication especially for add new GSO types.

Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:15 -04:00
Alexander Duyck 802ab55adc GSO: Support partial segmentation offload
This patch adds support for something I am referring to as GSO partial.
The basic idea is that we can support a broader range of devices for
segmentation if we use fixed outer headers and have the hardware only
really deal with segmenting the inner header.  The idea behind the naming
is due to the fact that everything before csum_start will be fixed headers,
and everything after will be the region that is handled by hardware.

With the current implementation it allows us to add support for the
following GSO types with an inner TSO_MANGLEID or TSO6 offload:
NETIF_F_GSO_GRE
NETIF_F_GSO_GRE_CSUM
NETIF_F_GSO_IPIP
NETIF_F_GSO_SIT
NETIF_F_UDP_TUNNEL
NETIF_F_UDP_TUNNEL_CSUM

In the case of hardware that already supports tunneling we may be able to
extend this further to support TSO_TCPV4 without TSO_MANGLEID if the
hardware can support updating inner IPv4 headers.

Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-14 16:23:41 -04:00
Alexander Duyck 1530545ed6 GRO: Add support for TCP with fixed IPv4 ID field, limit tunnel IP ID values
This patch does two things.

First it allows TCP to aggregate TCP frames with a fixed IPv4 ID field.  As
a result we should now be able to aggregate flows that were converted from
IPv6 to IPv4.  In addition this allows us more flexibility for future
implementations of segmentation as we may be able to use a fixed IP ID when
segmenting the flow.

The second thing this does is that it places limitations on the outer IPv4
ID header in the case of tunneled frames.  Specifically it forces the IP ID
to be incrementing by 1 unless the DF bit is set in the outer IPv4 header.
This way we can avoid creating overlapping series of IP IDs that could
possibly be fragmented if the frame goes through GRO and is then
resegmented via GSO.

Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-14 16:23:41 -04:00
Alexander Duyck cbc53e08a7 GSO: Add GSO type for fixed IPv4 ID
This patch adds support for TSO using IPv4 headers with a fixed IP ID
field.  This is meant to allow us to do a lossless GRO in the case of TCP
flows that use a fixed IP ID such as those that convert IPv6 header to IPv4
headers.

In addition I am adding a feature that for now I am referring to TSO with
IP ID mangling.  Basically when this flag is enabled the device has the
option to either output the flow with incrementing IP IDs or with a fixed
IP ID regardless of what the original IP ID ordering was.  This is useful
in cases where the DF bit is set and we do not care if the original IP ID
value is maintained.

Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-14 16:23:40 -04:00
Tom Herbert a6024562ff udp: Add GRO functions to UDP socket
This patch adds GRO functions (gro_receive and gro_complete) to UDP
sockets. udp_gro_receive is changed to perform socket lookup on a
packet. If a socket is found the related GRO functions are called.

This features obsoletes using UDP offload infrastructure for GRO
(udp_offload). This has the advantage of not being limited to provide
offload on a per port basis, GRO is now applied to whatever individual
UDP sockets are bound to.  This also allows the possbility of
"application defined GRO"-- that is we can attach something like
a BPF program to a UDP socket to perfrom GRO on an application
layer protocol.

Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-07 16:53:29 -04:00
Jesse Gross fac8e0f579 tunnels: Don't apply GRO to multiple layers of encapsulation.
When drivers express support for TSO of encapsulated packets, they
only mean that they can do it for one layer of encapsulation.
Supporting additional levels would mean updating, at a minimum,
more IP length fields and they are unaware of this.

No encapsulation device expresses support for handling offloaded
encapsulated packets, so we won't generate these types of frames
in the transmit path. However, GRO doesn't have a check for
multiple levels of encapsulation and will attempt to build them.

UDP tunnel GRO actually does prevent this situation but it only
handles multiple UDP tunnels stacked on top of each other. This
generalizes that solution to prevent any kind of tunnel stacking
that would cause problems.

Fixes: bf5a755f ("net-gre-gro: Add GRE support to the GRO stack")
Signed-off-by: Jesse Gross <jesse@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-20 16:33:40 -04:00
Eric Dumazet feec0cb3f2 ipv6: gro: support sit protocol
Tom Herbert added SIT support to GRO with commit
19424e052f ("sit: Add gro callbacks to sit_offload"),
later reverted by Herbert Xu.

The problem came because Tom patch was building GRO
packets without proper meta data : If packets were locally
delivered, we would not care.

But if packets needed to be forwarded, GSO engine was not
able to segment individual segments.

With the following patch, we correctly set skb->encapsulation
and inner network header. We also update gso_type.

Tested:

Server :
netserver
modprobe dummy
ifconfig dummy0 8.0.0.1 netmask 255.255.255.0 up
arp -s 8.0.0.100 4e:32:51:04:47:e5
iptables -I INPUT -s 10.246.7.151 -j TEE --gateway 8.0.0.100
ifconfig sixtofour0
sixtofour0 Link encap:IPv6-in-IPv4
          inet6 addr: 2002:af6:798::1/128 Scope:Global
          inet6 addr: 2002:af6:798::/128 Scope:Global
          UP RUNNING NOARP  MTU:1480  Metric:1
          RX packets:411169 errors:0 dropped:0 overruns:0 frame:0
          TX packets:409414 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:20319631739 (20.3 GB)  TX bytes:29529556 (29.5 MB)

Client :
netperf -H 2002:af6:798::1 -l 1000 &

Checked on server traffic copied on dummy0 and verify segments were
properly rebuilt, with proper IP headers, TCP checksums...

tcpdump on eth0 shows proper GRO aggregation takes place.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21 19:36:11 -07:00
Herbert Xu fdbf5b097b Revert "sit: Add gro callbacks to sit_offload"
This patch reverts 19424e052f ("sit:
Add gro callbacks to sit_offload") because it generates packets
that cannot be handled even by our own GSO.

Reported-by: Wolfgang Walter <linux@stwm.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-20 16:52:28 -07:00
Ian Morris 53b24b8f94 ipv6: coding style: comparison for inequality with NULL
The ipv6 code uses a mixture of coding styles. In some instances check for NULL
pointer is done as x != NULL and sometimes as x. x is preferred according to
checkpatch and this patch makes the code consistent by adopting the latter
form.

No changes detected by objdiff.

Signed-off-by: Ian Morris <ipm@chirality.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-31 13:51:54 -04:00
David S. Miller 60b7379dc5 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2014-11-29 20:47:48 -08:00
Alexander Duyck b6fef4c6b8 ipv6: Do not treat a GSO_TCPV4 request from UDP tunnel over IPv6 as invalid
This patch adds SKB_GSO_TCPV4 to the list of supported GSO types handled by
the IPv6 GSO offloads.  Without this change VXLAN tunnels running over IPv6
do not currently handle IPv4 TCP TSO requests correctly and end up handing
the non-segmented frame off to the device.

Below is the before and after for a simple netperf TCP_STREAM test between
two endpoints tunneling IPv4 over a VXLAN tunnel running on IPv6 on top of
a 1Gb/s network adapter.

Recv   Send    Send
Socket Socket  Message  Elapsed
Size   Size    Size     Time     Throughput
bytes  bytes   bytes    secs.    10^6bits/sec

 87380  16384  16384    10.29       0.88      Before
 87380  16384  16384    10.03     895.69      After

Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-23 14:18:11 -05:00
Pravin B Shelar 59b93b41e7 net: Remove MPLS GSO feature.
Device can export MPLS GSO support in dev->mpls_features same way
it export vlan features in dev->vlan_features. So it is safe to
remove NETIF_F_GSO_MPLS redundant flag.

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
2014-11-05 23:52:33 -08:00
Tom Herbert e585f23636 udp: Changes to udp_offload to support remote checksum offload
Add a new GSO type, SKB_GSO_TUNNEL_REMCSUM, which indicates remote
checksum offload being done (in this case inner checksum must not
be offloaded to the NIC).

Added logic in __skb_udp_tunnel_segment to handle remote checksum
offload case.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-05 16:30:03 -05:00
Florian Westphal 1e16aa3ddf net: gso: use feature flag argument in all protocol gso handlers
skb_gso_segment() has a 'features' argument representing offload features
available to the output path.

A few handlers, e.g. GRE, instead re-fetch the features of skb->dev and use
those instead of the provided ones when handing encapsulation/tunnels.

Depending on dev->hw_enc_features of the output device skb_gso_segment() can
then return NULL even when the caller has disabled all GSO feature bits,
as segmentation of inner header thinks device will take care of segmentation.

This e.g. affects the tbf scheduler, which will silently drop GRE-encap GSO skbs
that did not fit the remaining token quota as the segmentation does not work
when device supports corresponding hw offload capabilities.

Cc: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-20 12:38:12 -04:00
Li RongQing fc6fb41cd6 ipv6: fix a potential use after free in ip6_offload.c
pskb_may_pull() maybe change skb->data and make opth pointer oboslete,
so set the opth again

Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-18 13:04:08 -04:00
Tom Herbert 53e5039896 net: Remove gso_send_check as an offload callback
The send_check logic was only interesting in cases of TCP offload and
UDP UFO where the checksum needed to be initialized to the pseudo
header checksum. Now we've moved that logic into the related
gso_segment functions so gso_send_check is no longer needed.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:22:47 -04:00
Tom Herbert 19424e052f sit: Add gro callbacks to sit_offload
Add ipv6_gro_receive and ipv6_gro_complete to sit_offload to
support GRO.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 21:29:33 -07:00
Tom Herbert 03d56daafe ipv6: Clear flush_id to make GRO work
In TCP gro we check flush_id which is derived from the IP identifier.
In IPv4 gro path the flush_id is set with the expectation that every
matched packet increments IP identifier. In IPv6, the flush_id is
never set and thus is uinitialized. What's worse is that in IPv6
over IPv4 encapsulation, the IP identifier is taken from the outer
header which is currently not incremented on every packet for Linux
stack, so GRO in this case never matches packets (identifier is
not increasing).

This patch clears flush_id for every time for a matched packet in
IPv6 gro_receive. We need to do this each time to overwrite the
setting that would be done in IPv4 gro_receive per the outer
header in IPv6 over Ipv4 encapsulation.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 21:29:33 -07:00
Ian Morris 67ba4152e8 ipv6: White-space cleansing : Line Layouts
This patch makes no changes to the logic of the code but simply addresses
coding style issues as detected by checkpatch.

Both objdump and diff -w show no differences.

A number of items are addressed in this patch:
* Multiple spaces converted to tabs
* Spaces before tabs removed.
* Spaces in pointer typing cleansed (char *)foo etc.
* Remove space after sizeof
* Ensure spacing around comparators such as if statements.

Signed-off-by: Ian Morris <ipm@chirality.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-24 22:37:52 -07:00
Tom Herbert 4749c09c37 gre: Call gso_make_checksum
Call gso_make_checksum. This should have the benefit of using a
checksum that may have been previously computed for the packet.

This also adds NETIF_F_GSO_GRE_CSUM to differentiate devices that
offload GRE GSO with and without the GRE checksum offloaed.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-04 22:46:38 -07:00
Tom Herbert 0f4f4ffa7b net: Add GSO support for UDP tunnels with checksum
Added a new netif feature for GSO_UDP_TUNNEL_CSUM. This indicates
that a device is capable of computing the UDP checksum in the
encapsulating header of a UDP tunnel.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-04 22:46:38 -07:00
Eric Dumazet 4de462ab63 ipv6: gro: fix CHECKSUM_COMPLETE support
When GRE support was added in linux-3.14, CHECKSUM_COMPLETE handling
broke on GRE+IPv6 because we did not update/use the appropriate csum :

GRO layer is supposed to use/update NAPI_GRO_CB(skb)->csum instead of
skb->csum

Tested using a GRE tunnel and IPv6 traffic. GRO aggregation now happens
at the first level (ethernet device) instead of being done in gre
tunnel. Native IPv6+TCP is still properly aggregated.

Fixes: bf5a755f5e ("net-gre-gro: Add GRE support to the GRO stack")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Jerry Chu <hkchu@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-21 17:18:47 -04:00
Hannes Frederic Sowa 91a48a2e85 ipv4: ipv6: better estimate tunnel header cut for correct ufo handling
Currently the UFO fragmentation process does not correctly handle inner
UDP frames.

(The following tcpdumps are captured on the parent interface with ufo
disabled while tunnel has ufo enabled, 2000 bytes payload, mtu 1280,
both sit device):

IPv6:
16:39:10.031613 IP (tos 0x0, ttl 64, id 3208, offset 0, flags [DF], proto IPv6 (41), length 1300)
    192.168.122.151 > 1.1.1.1: IP6 (hlim 64, next-header Fragment (44) payload length: 1240) 2001::1 > 2001::8: frag (0x00000001:0|1232) 44883 > distinct: UDP, length 2000
16:39:10.031709 IP (tos 0x0, ttl 64, id 3209, offset 0, flags [DF], proto IPv6 (41), length 844)
    192.168.122.151 > 1.1.1.1: IP6 (hlim 64, next-header Fragment (44) payload length: 784) 2001::1 > 2001::8: frag (0x00000001:0|776) 58979 > 46366: UDP, length 5471

We can see that fragmentation header offset is not correctly updated.
(fragmentation id handling is corrected by 916e4cf46d ("ipv6: reuse
ip6_frag_id from ip6_ufo_append_data")).

IPv4:
16:39:57.737761 IP (tos 0x0, ttl 64, id 3209, offset 0, flags [DF], proto IPIP (4), length 1296)
    192.168.122.151 > 1.1.1.1: IP (tos 0x0, ttl 64, id 57034, offset 0, flags [none], proto UDP (17), length 1276)
    192.168.99.1.35961 > 192.168.99.2.distinct: UDP, length 2000
16:39:57.738028 IP (tos 0x0, ttl 64, id 3210, offset 0, flags [DF], proto IPIP (4), length 792)
    192.168.122.151 > 1.1.1.1: IP (tos 0x0, ttl 64, id 57035, offset 0, flags [none], proto UDP (17), length 772)
    192.168.99.1.13531 > 192.168.99.2.20653: UDP, length 51109

In this case fragmentation id is incremented and offset is not updated.

First, I aligned inet_gso_segment and ipv6_gso_segment:
* align naming of flags
* ipv6_gso_segment: setting skb->encapsulation is unnecessary, as we
  always ensure that the state of this flag is left untouched when
  returning from upper gso segmenation function
* ipv6_gso_segment: move skb_reset_inner_headers below updating the
  fragmentation header data, we don't care for updating fragmentation
  header data
* remove currently unneeded comment indicating skb->encapsulation might
  get changed by upper gso_segment callback (gre and udp-tunnel reset
  encapsulation after segmentation on each fragment)

If we encounter an IPIP or SIT gso skb we now check for the protocol ==
IPPROTO_UDP and that we at least have already traversed another ip(6)
protocol header.

The reason why we have to special case GSO_IPIP and GSO_SIT is that
we reset skb->encapsulation to 0 while skb_mac_gso_segment the inner
protocol of GSO_UDP_TUNNEL or GSO_GRE packets.

Reported-by: Wolfgang Walter <linux@stwm.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Tom Herbert <therbert@google.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-25 18:27:06 -05:00
Jerry Chu bf5a755f5e net-gre-gro: Add GRE support to the GRO stack
This patch built on top of Commit 299603e837
("net-gro: Prepare GRO stack for the upcoming tunneling support") to add
the support of the standard GRE (RFC1701/RFC2784/RFC2890) to the GRO
stack. It also serves as an example for supporting other encapsulation
protocols in the GRO stack in the future.

The patch supports version 0 and all the flags (key, csum, seq#) but
will flush any pkt with the S (seq#) flag. This is because the S flag
is not support by GSO, and a GRO pkt may end up in the forwarding path,
thus requiring GSO support to break it up correctly.

Currently the "packet_offload" structure only contains L3 (ETH_P_IP/
ETH_P_IPV6) GRO offload support so the encapped pkts are limited to
IP pkts (i.e., w/o L2 hdr). But support for other protocol type can
be easily added, so is the support for GRE variations like NVGRE.

The patch also support csum offload. Specifically if the csum flag is on
and the h/w is capable of checksumming the payload (CHECKSUM_COMPLETE),
the code will take advantage of the csum computed by the h/w when
validating the GRE csum.

Note that commit 60769a5dcd "ipv4: gre:
add GRO capability" already introduces GRO capability to IPv4 GRE
tunnels, using the gro_cells infrastructure. But GRO is done after
GRE hdr has been removed (i.e., decapped). The following patch applies
GRO when pkts first come in (before hitting the GRE tunnel code). There
is some performance advantage for applying GRO as early as possible.
Also this approach is transparent to other subsystem like Open vSwitch
where GRE decap is handled outside of the IP stack hence making it
harder for the gro_cells stuff to apply. On the other hand, some NICs
are still not capable of hashing on the inner hdr of a GRE pkt (RSS).
In that case the GRO processing of pkts from the same remote host will
all happen on the same CPU and the performance may be suboptimal.

I'm including some rough preliminary performance numbers below. Note
that the performance will be highly dependent on traffic load, mix as
usual. Moreover it also depends on NIC offload features hence the
following is by no means a comprehesive study. Local testing and tuning
will be needed to decide the best setting.

All tests spawned 50 copies of netperf TCP_STREAM and ran for 30 secs.
(super_netperf 50 -H 192.168.1.18 -l 30)

An IP GRE tunnel with only the key flag on (e.g., ip tunnel add gre1
mode gre local 10.246.17.18 remote 10.246.17.17 ttl 255 key 123)
is configured.

The GRO support for pkts AFTER decap are controlled through the device
feature of the GRE device (e.g., ethtool -K gre1 gro on/off).

1.1 ethtool -K gre1 gro off; ethtool -K eth0 gro off
thruput: 9.16Gbps
CPU utilization: 19%

1.2 ethtool -K gre1 gro on; ethtool -K eth0 gro off
thruput: 5.9Gbps
CPU utilization: 15%

1.3 ethtool -K gre1 gro off; ethtool -K eth0 gro on
thruput: 9.26Gbps
CPU utilization: 12-13%

1.4 ethtool -K gre1 gro on; ethtool -K eth0 gro on
thruput: 9.26Gbps
CPU utilization: 10%

The following tests were performed on a different NIC that is capable of
csum offload. I.e., the h/w is capable of computing IP payload csum
(CHECKSUM_COMPLETE).

2.1 ethtool -K gre1 gro on (hence will use gro_cells)

2.1.1 ethtool -K eth0 gro off; csum offload disabled
thruput: 8.53Gbps
CPU utilization: 9%

2.1.2 ethtool -K eth0 gro off; csum offload enabled
thruput: 8.97Gbps
CPU utilization: 7-8%

2.1.3 ethtool -K eth0 gro on; csum offload disabled
thruput: 8.83Gbps
CPU utilization: 5-6%

2.1.4 ethtool -K eth0 gro on; csum offload enabled
thruput: 8.98Gbps
CPU utilization: 5%

2.2 ethtool -K gre1 gro off

2.2.1 ethtool -K eth0 gro off; csum offload disabled
thruput: 5.93Gbps
CPU utilization: 9%

2.2.2 ethtool -K eth0 gro off; csum offload enabled
thruput: 5.62Gbps
CPU utilization: 8%

2.2.3 ethtool -K eth0 gro on; csum offload disabled
thruput: 7.69Gbps
CPU utilization: 8%

2.2.4 ethtool -K eth0 gro on; csum offload enabled
thruput: 8.96Gbps
CPU utilization: 5-6%

Signed-off-by: H.K. Jerry Chu <hkchu@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-07 16:21:31 -05:00
Jerry Chu 810c23a355 net-ipv6: Fix alleged compiler warning in ipv6_exthdrs_len()
It was reported that Commit 299603e837
("net-gro: Prepare GRO stack for the upcoming tunneling support")
triggered a compiler warning in ipv6_exthdrs_len():

net/ipv6/ip6_offload.c: In function ‘ipv6_gro_complete’:
net/ipv6/ip6_offload.c:178:24: warning: ‘optlen’ may be used uninitialized in this function [-Wmaybe-u
    opth = (void *)opth + optlen;
    			^
    net/ipv6/ip6_offload.c:164:22: note: ‘optlen’ was declared here
    int len = 0, proto, optlen;
                        ^
Note that there was no real bug here - optlen was never uninitialized
before use. (Was the version of gcc I used smarter to not complain?)

Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: H.K. Jerry Chu <hkchu@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-15 23:55:04 -05:00
Hannes Frederic Sowa f52d81dc27 ipv6: fix compiler warning in ipv6_exthdrs_len
Commit 299603e837 ("net-gro: Prepare GRO
stack for the upcoming tunneling support") used an uninitialized variable
which leads to the following compiler warning:

net/ipv6/ip6_offload.c: In function ‘ipv6_gro_complete’:
net/ipv6/ip6_offload.c:178:24: warning: ‘optlen’ may be used uninitialized in this function [-Wmaybe-uninitialized]
    opth = (void *)opth + optlen;
                        ^
net/ipv6/ip6_offload.c:164:22: note: ‘optlen’ was declared here
  int len = 0, proto, optlen;
                      ^
Fix it up.

Cc: Jerry Chu <hkchu@google.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-14 02:01:27 -05:00
Jerry Chu 299603e837 net-gro: Prepare GRO stack for the upcoming tunneling support
This patch modifies the GRO stack to avoid the use of "network_header"
and associated macros like ip_hdr() and ipv6_hdr() in order to allow
an arbitary number of IP hdrs (v4 or v6) to be used in the
encapsulation chain. This lays the foundation for various IP
tunneling support (IP-in-IP, GRE, VXLAN, SIT,...) to be added later.

With this patch, the GRO stack traversing now is mostly based on
skb_gro_offset rather than special hdr offsets saved in skb (e.g.,
skb->network_header). As a result all but the top layer (i.e., the
the transport layer) must have hdrs of the same length in order for
a pkt to be considered for aggregation. Therefore when adding a new
encap layer (e.g., for tunneling), one must check and skip flows
(e.g., by setting NAPI_GRO_CB(p)->same_flow to 0) that have a
different hdr length.

Note that unlike the network header, the transport header can and
will continue to be set by the GRO code since there will be at
most one "transport layer" in the encap chain.

Signed-off-by: H.K. Jerry Chu <hkchu@google.com>
Suggested-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-12 13:47:53 -05:00
Eric Dumazet 61c1db7fae ipv6: sit: add GSO/TSO support
Now ipv6_gso_segment() is stackable, its relatively easy to
implement GSO/TSO support for SIT tunnels

Performance results, when segmentation is done after tunnel
device (as no NIC is yet enabled for TSO SIT support) :

Before patch :

lpq84:~# ./netperf -H 2002:af6:1153:: -Cc
MIGRATED TCP STREAM TEST from ::0 (::) port 0 AF_INET6 to 2002:af6:1153:: () port 0 AF_INET6
Recv   Send    Send                          Utilization       Service Demand
Socket Socket  Message  Elapsed              Send     Recv     Send    Recv
Size   Size    Size     Time     Throughput  local    remote   local   remote
bytes  bytes   bytes    secs.    10^6bits/s  % S      % S      us/KB   us/KB

 87380  16384  16384    10.00      3168.31   4.81     4.64     2.988   2.877

After patch :

lpq84:~# ./netperf -H 2002:af6:1153:: -Cc
MIGRATED TCP STREAM TEST from ::0 (::) port 0 AF_INET6 to 2002:af6:1153:: () port 0 AF_INET6
Recv   Send    Send                          Utilization       Service Demand
Socket Socket  Message  Elapsed              Send     Recv     Send    Recv
Size   Size    Size     Time     Throughput  local    remote   local   remote
bytes  bytes   bytes    secs.    10^6bits/s  % S      % S      us/KB   us/KB

 87380  16384  16384    10.00      5525.00   7.76     5.17     2.763   1.840

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-21 18:49:39 -04:00
Eric Dumazet d3e5e0062d ipv6: gso: make ipv6_gso_segment() stackable
In order to support GSO on SIT tunnels, we need to make
inet_gso_segment() stackable.

It should not assume network header starts right after mac
header.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-21 18:49:39 -04:00
Eric Dumazet cb32f511a7 ipip: add GSO/TSO support
Now inet_gso_segment() is stackable, its relatively easy to
implement GSO/TSO support for IPIP

Performance results, when segmentation is done after tunnel
device (as no NIC is yet enabled for TSO IPIP support) :

Before patch :

lpq83:~# ./netperf -H 7.7.9.84 -Cc
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.9.84 () port 0 AF_INET
Recv   Send    Send                          Utilization       Service Demand
Socket Socket  Message  Elapsed              Send     Recv     Send    Recv
Size   Size    Size     Time     Throughput  local    remote   local   remote
bytes  bytes   bytes    secs.    10^6bits/s  % S      % S      us/KB   us/KB

 87380  16384  16384    10.00      3357.88   5.09     3.70     2.983   2.167

After patch :

lpq83:~# ./netperf -H 7.7.9.84 -Cc
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.9.84 () port 0 AF_INET
Recv   Send    Send                          Utilization       Service Demand
Socket Socket  Message  Elapsed              Send     Recv     Send    Recv
Size   Size    Size     Time     Throughput  local    remote   local   remote
bytes  bytes   bytes    secs.    10^6bits/s  % S      % S      us/KB   us/KB

 87380  16384  16384    10.00      7710.19   4.52     6.62     1.152   1.687

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-19 19:36:19 -04:00
Eric Dumazet b917eb155c ipv6: gso: remove redundant locking
ipv6_gso_send_check() and ipv6_gso_segment() are called by
skb_mac_gso_segment() under rcu lock, no need to use
rcu_read_lock() / rcu_read_unlock()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-19 19:14:14 -04:00
Cong Wang d949d826c0 ipv6: Add generic UDP Tunnel segmentation
Similar to commit 7313626745
(tunneling: Add generic Tunnel segmentation)

This patch adds generic tunneling offloading support for
IPv6-UDP based tunnels.

This can be used by tunneling protocols like VXLAN.

Cc: Jesse Gross <jesse@nicira.com>
Cc: Pravin B Shelar <pshelar@nicira.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-31 22:30:01 -04:00
Simon Horman 0d89d2035f MPLS: Add limited GSO support
In the case where a non-MPLS packet is received and an MPLS stack is
added it may well be the case that the original skb is GSO but the
NIC used for transmit does not support GSO of MPLS packets.

The aim of this code is to provide GSO in software for MPLS packets
whose skbs are GSO.

SKB Usage:

When an implementation adds an MPLS stack to a non-MPLS packet it should do
the following to skb metadata:

* Set skb->inner_protocol to the old non-MPLS ethertype of the packet.
  skb->inner_protocol is added by this patch.

* Set skb->protocol to the new MPLS ethertype of the packet.

* Set skb->network_header to correspond to the
  end of the L3 header, including the MPLS label stack.

I have posted a patch, "[PATCH v3.29] datapath: Add basic MPLS support to
kernel" which adds MPLS support to the kernel datapath of Open vSwtich.
That patch sets the above requirements in datapath/actions.c:push_mpls()
and was used to exercise this code.  The datapath patch is against the Open
vSwtich tree but it is intended that it be added to the Open vSwtich code
present in the mainline Linux kernel at some point.

Features:

I believe that the approach that I have taken is at least partially
consistent with the handling of other protocols.  Jesse, I understand that
you have some ideas here.  I am more than happy to change my implementation.

This patch adds dev->mpls_features which may be used by devices
to advertise features supported for MPLS packets.

A new NETIF_F_MPLS_GSO feature is added for devices which support
hardware MPLS GSO offload.  Currently no devices support this
and MPLS GSO always falls back to software.

Alternate Implementation:

One possible alternate implementation is to teach netif_skb_features()
and skb_network_protocol() about MPLS, in a similar way to their
understanding of VLANs. I believe this would avoid the need
for net/mpls/mpls_gso.c and in particular the calls to
__skb_push() and __skb_push() in mpls_gso_segment().

I have decided on the implementation in this patch as it should
not introduce any overhead in the case where mpls_gso is not compiled
into the kernel or inserted as a module.

MPLS GSO suggested by Jesse Gross.
Based in part on "v4 GRE: Add TCP segmentation offload for GRE"
by Pravin B Shelar.

Cc: Jesse Gross <jesse@nicira.com>
Cc: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-27 22:50:59 -07:00
Pravin B Shelar 7313626745 tunneling: Add generic Tunnel segmentation.
Adds generic tunneling offloading support for IPv4-UDP based
tunnels.
GSO type is added to request this offload for a skb.
netdev feature NETIF_F_UDP_TUNNEL is added for hardware offloaded
udp-tunnel support. Currently no device supports this feature,
software offload is used.

This can be used by tunneling protocols like VXLAN.

CC: Jesse Gross <jesse@nicira.com>
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-09 16:09:17 -05:00
Pravin B Shelar ec5f061564 net: Kill link between CSUM and SG features.
Earlier SG was unset if CSUM was not available for given device to
force skb copy to avoid sending inconsistent csum.
Commit c9af6db4c1 (net: Fix possible wrong checksum generation)
added explicit flag to force copy to fix this issue.  Therefore
there is no need to link SG and CSUM, following patch kills this
link between there two features.

This patch is also required following patch in series.

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-09 16:08:57 -05:00
Pravin B Shelar 68c3316311 v4 GRE: Add TCP segmentation offload for GRE
Following patch adds GRE protocol offload handler so that
skb_gso_segment() can segment GRE packets.
SKB GSO CB is added to keep track of total header length so that
skb_segment can push entire header. e.g. in case of GRE, skb_segment
need to push inner and outer headers to every segment.
New NETIF_F_GRE_GSO feature is added for devices which support HW
GRE TSO offload. Currently none of devices support it therefore GRE GSO
always fall backs to software GSO.

[ Compute pkt_len before ip_local_out() invocation. -DaveM ]

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-15 15:17:11 -05:00
Pravin B Shelar c9af6db4c1 net: Fix possible wrong checksum generation.
Patch cef401de7b (net: fix possible wrong checksum
generation) fixed wrong checksum calculation but it broke TSO by
defining new GSO type but not a netdev feature for that type.
net_gso_ok() would not allow hardware checksum/segmentation
offload of such packets without the feature.

Following patch fixes TSO and wrong checksum. This patch uses
same logic that Eric Dumazet used. Patch introduces new flag
SKBTX_SHARED_FRAG if at least one frag can be modified by
the user. but SKBTX_SHARED_FRAG flag is kept in skb shared
info tx_flags rather than gso_type.

tx_flags is better compared to gso_type since we can have skb with
shared frag without gso packet. It does not link SHARED_FRAG to
GSO, So there is no need to define netdev feature for this.

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-13 13:30:10 -05:00
Eric Dumazet cef401de7b net: fix possible wrong checksum generation
Pravin Shelar mentioned that GSO could potentially generate
wrong TX checksum if skb has fragments that are overwritten
by the user between the checksum computation and transmit.

He suggested to linearize skbs but this extra copy can be
avoided for normal tcp skbs cooked by tcp_sendmsg().

This patch introduces a new SKB_GSO_SHARED_FRAG flag, set
in skb_shinfo(skb)->gso_type if at least one frag can be
modified by the user.

Typical sources of such possible overwrites are {vm}splice(),
sendfile(), and macvtap/tun/virtio_net drivers.

Tested:

$ netperf -H 7.7.8.84
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
7.7.8.84 () port 0 AF_INET
Recv   Send    Send
Socket Socket  Message  Elapsed
Size   Size    Size     Time     Throughput
bytes  bytes   bytes    secs.    10^6bits/sec

 87380  16384  16384    10.00    3959.52

$ netperf -H 7.7.8.84 -t TCP_SENDFILE
TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 ()
port 0 AF_INET
Recv   Send    Send
Socket Socket  Message  Elapsed
Size   Size    Size     Time     Throughput
bytes  bytes   bytes    secs.    10^6bits/sec

 87380  16384  16384    10.00    3216.80

Performance of the SENDFILE is impacted by the extra allocation and
copy, and because we use order-0 pages, while the TCP_STREAM uses
bigger pages.

Reported-by: Pravin Shelar <pshelar@nicira.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-28 00:27:15 -05:00
Vlad Yasevich f191a1d17f net: Remove code duplication between offload structures
Move the offload callbacks into its own structure.

Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-15 17:39:51 -05:00
Vlad Yasevich c6b641a4c6 ipv6: Pull IPv6 GSO registration out of the module
Sing GSO support is now separate, pull it out of the module
and make it its own init call.
Remove the cleanup functions as they are no longer called.

Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-15 17:39:24 -05:00
Vlad Yasevich d1da932ed4 ipv6: Separate ipv6 offload support
Separate IPv6 offload functionality into its own file
in preparation for the move out of the module

Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-15 17:36:17 -05:00