Commit Graph

35 Commits

Author SHA1 Message Date
Kiran Kumar Modukuri f29507ce66 fscache: Fix reference overput in fscache_attach_object() error handling
When a cookie is allocated that causes fscache_object structs to be
allocated, those objects are initialised with the cookie pointer, but
aren't blessed with a ref on that cookie unless the attachment is
successfully completed in fscache_attach_object().

If attachment fails because the parent object was dying or there was a
collision, fscache_attach_object() returns without incrementing the cookie
counter - but upon failure of this function, the object is released which
then puts the cookie, whether or not a ref was taken on the cookie.

Fix this by taking a ref on the cookie when it is assigned in
fscache_object_init(), even when we're creating a root object.


Analysis from Kiran Kumar:

This bug has been seen in 4.4.0-124-generic #148-Ubuntu kernel

BugLink: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1776277

fscache cookie ref count updated incorrectly during fscache object
allocation resulting in following Oops.

kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/internal.h:321!
kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639!

[Cause]
Two threads are trying to do operate on a cookie and two objects.

(1) One thread tries to unmount the filesystem and in process goes over a
    huge list of objects marking them dead and deleting the objects.
    cookie->usage is also decremented in following path:

      nfs_fscache_release_super_cookie
       -> __fscache_relinquish_cookie
        ->__fscache_cookie_put
        ->BUG_ON(atomic_read(&cookie->usage) <= 0);

(2) A second thread tries to lookup an object for reading data in following
    path:

    fscache_alloc_object
    1) cachefiles_alloc_object
        -> fscache_object_init
           -> assign cookie, but usage not bumped.
    2) fscache_attach_object -> fails in cant_attach_object because the
         cookie's backing object or cookie's->parent object are going away
    3) fscache_put_object
        -> cachefiles_put_object
          ->fscache_object_destroy
            ->fscache_cookie_put
               ->BUG_ON(atomic_read(&cookie->usage) <= 0);

[NOTE from dhowells] It's unclear as to the circumstances in which (2) can
take place, given that thread (1) is in nfs_kill_super(), however a
conflicting NFS mount with slightly different parameters that creates a
different superblock would do it.  A backtrace from Kiran seems to show
that this is a possibility:

    kernel BUG at/build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639!
    ...
    RIP: __fscache_cookie_put+0x3a/0x40 [fscache]
    Call Trace:
     __fscache_relinquish_cookie+0x87/0x120 [fscache]
     nfs_fscache_release_super_cookie+0x2d/0xb0 [nfs]
     nfs_kill_super+0x29/0x40 [nfs]
     deactivate_locked_super+0x48/0x80
     deactivate_super+0x5c/0x60
     cleanup_mnt+0x3f/0x90
     __cleanup_mnt+0x12/0x20
     task_work_run+0x86/0xb0
     exit_to_usermode_loop+0xc2/0xd0
     syscall_return_slowpath+0x4e/0x60
     int_ret_from_sys_call+0x25/0x9f

[Fix] Bump up the cookie usage in fscache_object_init, when it is first
being assigned a cookie atomically such that the cookie is added and bumped
up if its refcount is not zero.  Remove the assignment in
fscache_attach_object().

[Testcase]
I have run ~100 hours of NFS stress tests and not seen this bug recur.

[Regression Potential]
 - Limited to fscache/cachefiles.

Fixes: ccc4fc3d11 ("FS-Cache: Implement the cookie management part of the netfs API")
Signed-off-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2018-07-25 14:49:00 +01:00
Matthew Wilcox e5a9554196 fscache: use appropriate radix tree accessors
Don't open-code accesses to data structure internals.

Link: http://lkml.kernel.org/r/20180313132639.17387-7-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:39 -07:00
David Howells ec0328e46d fscache: Maintain a catalogue of allocated cookies
Maintain a catalogue of allocated cookies so that cookie collisions can be
handled properly.  For the moment, this just involves printing a warning
and returning a NULL cookie to the caller of fscache_acquire_cookie(), but
in future it might make sense to wait for the old cookie to finish being
cleaned up.

This requires the cookie key to be stored attached to the cookie so that we
still have the key available if the netfs relinquishes the cookie.  This is
done by an earlier patch.

The catalogue also renders redundant fscache_netfs_list (used for checking
for duplicates), so that can be removed.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
2018-04-06 14:05:14 +01:00
David Howells ee1235a9a0 fscache: Pass object size in rather than calling back for it
Pass the object size in to fscache_acquire_cookie() and
fscache_write_page() rather than the netfs providing a callback by which it
can be received.  This makes it easier to update the size of the object
when a new page is written that extends the object.

The current object size is also passed by fscache to the check_aux
function, obviating the need to store it in the aux data.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
2018-04-06 14:05:14 +01:00
David Howells 402cb8dda9 fscache: Attach the index key and aux data to the cookie
Attach copies of the index key and auxiliary data to the fscache cookie so
that:

 (1) The callbacks to the netfs for this stuff can be eliminated.  This
     can simplify things in the cache as the information is still
     available, even after the cache has relinquished the cookie.

 (2) Simplifies the locking requirements of accessing the information as we
     don't have to worry about the netfs object going away on us.

 (3) The cache can do lazy updating of the coherency information on disk.
     As long as the cache is flushed before reboot/poweroff, there's no
     need to update the coherency info on disk every time it changes.

 (4) Cookies can be hashed or put in a tree as the index key is easily
     available.  This allows:

     (a) Checks for duplicate cookies can be made at the top fscache layer
     	 rather than down in the bowels of the cache backend.

     (b) Caching can be added to a netfs object that has a cookie if the
     	 cache is brought online after the netfs object is allocated.

A certain amount of space is made in the cookie for inline copies of the
data, but if it won't fit there, extra memory will be allocated for it.

The downside of this is that live cache operation requires more memory.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
2018-04-04 13:41:28 +01:00
David Howells 08c2e3d087 fscache: Add more tracepoints
Add more tracepoints to fscache, including:

 (*) fscache_page - Tracks netfs pages known to fscache.

 (*) fscache_check_page - Tracks the netfs querying whether a page is
     pending storage.

 (*) fscache_wake_cookie - Tracks cookies being woken up after a page
     completes/aborts storage in the cache.

 (*) fscache_op - Tracks operations being initialised.

 (*) fscache_wrote_page - Tracks return of the backend write_page op.

 (*) fscache_gang_lookup - Tracks lookup of pages to be stored in the write
     operation.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-04 13:41:27 +01:00
David Howells a18feb5576 fscache: Add tracepoints
Add some tracepoints to fscache:

 (*) fscache_cookie - Tracks a cookie's usage count.

 (*) fscache_netfs - Logs registration of a network filesystem, including
     the pointer to the cookie allocated.

 (*) fscache_acquire - Logs cookie acquisition.

 (*) fscache_relinquish - Logs cookie relinquishment.

 (*) fscache_enable - Logs enablement of a cookie.

 (*) fscache_disable - Logs disablement of a cookie.

 (*) fscache_osm - Tracks execution of states in the object state machine.

and cachefiles:

 (*) cachefiles_ref - Tracks a cachefiles object's usage count.

 (*) cachefiles_lookup - Logs result of lookup_one_len().

 (*) cachefiles_mkdir - Logs result of vfs_mkdir().

 (*) cachefiles_create - Logs result of vfs_create().

 (*) cachefiles_unlink - Logs calls to vfs_unlink().

 (*) cachefiles_rename - Logs calls to vfs_rename().

 (*) cachefiles_mark_active - Logs an object becoming active.

 (*) cachefiles_wait_active - Logs a wait for an old object to be
     destroyed.

 (*) cachefiles_mark_inactive - Logs an object becoming inactive.

 (*) cachefiles_mark_buried - Logs the burial of an object.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-04 13:41:27 +01:00
David Howells d0fb31ecda fscache: Detect multiple relinquishment of a cookie
Report if an fscache cookie is relinquished multiple times by the netfs.

Signed-off-by: David <dhowells@redhat.com>
2018-04-04 13:41:26 +01:00
Peter Zijlstra dc5d4afbb0 sched/wait, fs/fscache: Convert wait_on_atomic_t() usage to the new wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.

No change in functionality.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-20 08:23:21 +01:00
David Howells 5e4def2038 Pass mode to wait_on_atomic_t() action funcs and provide default actions
Make wait_on_atomic_t() pass the TASK_* mode onto its action function as an
extra argument and make it 'unsigned int throughout.

Also, consolidate a bunch of identical action functions into a default
function that can do the appropriate thing for the mode.

Also, change the argument name in the bit_wait*() function declarations to
reflect the fact that it's the mode and not the bit number.

[Peter Z gives this a grudging ACK, but thinks that the whole atomic_t wait
should be done differently, though he's not immediately sure as to how]

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
cc: Ingo Molnar <mingo@kernel.org>
2017-11-13 15:38:16 +00:00
David Howells 6bdded59c8 fscache: Clear outstanding writes when disabling a cookie
fscache_disable_cookie() needs to clear the outstanding writes on the
cookie it's disabling because they cannot be completed after.

Without this, fscache_nfs_open_file() gets stuck because it disables the
cookie when the file is opened for writing but can't uncache the pages till
afterwards - otherwise there's a race between the open routine and anyone
who already has it open R/O and is still reading from it.

Looking in /proc/pid/stack of the offending process shows:

[<ffffffffa0142883>] __fscache_wait_on_page_write+0x82/0x9b [fscache]
[<ffffffffa014336e>] __fscache_uncache_all_inode_pages+0x91/0xe1 [fscache]
[<ffffffffa01740fa>] nfs_fscache_open_file+0x59/0x9e [nfs]
[<ffffffffa01ccf41>] nfs4_file_open+0x17f/0x1b8 [nfsv4]
[<ffffffff8117350e>] do_dentry_open+0x16d/0x2b7
[<ffffffff811743ac>] vfs_open+0x5c/0x65
[<ffffffff81184185>] path_openat+0x785/0x8fb
[<ffffffff81184343>] do_filp_open+0x48/0x9e
[<ffffffff81174710>] do_sys_open+0x13b/0x1cb
[<ffffffff811747b9>] SyS_open+0x19/0x1b
[<ffffffff81001c44>] do_syscall_64+0x80/0x17a
[<ffffffff8165c2da>] return_from_SYSCALL_64+0x0/0x7a
[<ffffffffffffffff>] 0xffffffffffffffff

Reported-by: Jianhong Yin <jiyin@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 13:23:09 -05:00
Mel Gorman d0164adc89 mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts.  They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve".  __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".

Over time, callers had a requirement to not block when fallback options
were available.  Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.

This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative.  High priority users continue to use
__GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.

This patch then converts a number of sites

o __GFP_ATOMIC is used by callers that are high priority and have memory
  pools for those requests. GFP_ATOMIC uses this flag.

o Callers that have a limited mempool to guarantee forward progress clear
  __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
  into this category where kswapd will still be woken but atomic reserves
  are not used as there is a one-entry mempool to guarantee progress.

o Callers that are checking if they are non-blocking should use the
  helper gfpflags_allow_blocking() where possible. This is because
  checking for __GFP_WAIT as was done historically now can trigger false
  positives. Some exceptions like dm-crypt.c exist where the code intent
  is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
  flag manipulations.

o Callers that built their own GFP flags instead of starting with GFP_KERNEL
  and friends now also need to specify __GFP_KSWAPD_RECLAIM.

The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.

The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL.  They may
now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
David Howells d3b97ca4a9 FS-Cache: The operation cancellation method needs calling in more places
Any time an incomplete operation is cancelled, the operation cancellation
function needs to be called to clean up.  This is currently being passed
directly to some of the functions that might want to call it, but not all.

Instead, pass the cancellation method pointer to the fscache_operation_init()
and have that cache it in the operation struct.  Further, plug in a dummy
cancellation handler if the caller declines to set one as this allows us to
call the function unconditionally (the extra overhead isn't worth bothering
about as we don't expect to be calling this typically).

The cancellation method must thence be called everywhere the CANCELLED state
is set.  Note that we call it *before* setting the CANCELLED state such that
the method can use the old state value to guide its operation.

fscache_do_cancel_retrieval() needs moving higher up in the sources so that
the init function can use it now.

Without this, the following oops may be seen:

	FS-Cache: Assertion failed
	FS-Cache: 3 == 0 is false
	------------[ cut here ]------------
	kernel BUG at ../fs/fscache/page.c:261!
	...
	RIP: 0010:[<ffffffffa0089c1b>]  fscache_release_retrieval_op+0x77/0x100
	 [<ffffffffa008853d>] fscache_put_operation+0x114/0x2da
	 [<ffffffffa008b8c2>] __fscache_read_or_alloc_pages+0x358/0x3b3
	 [<ffffffffa00b761f>] __nfs_readpages_from_fscache+0x59/0xbf [nfs]
	 [<ffffffffa00b06c5>] nfs_readpages+0x10c/0x185 [nfs]
	 [<ffffffff81124925>] ? alloc_pages_current+0x119/0x13e
	 [<ffffffff810ee5fd>] ? __page_cache_alloc+0xfb/0x10a
	 [<ffffffff810f87f8>] __do_page_cache_readahead+0x188/0x22c
	 [<ffffffff810f8b3a>] ondemand_readahead+0x29e/0x2af
	 [<ffffffff810f8c92>] page_cache_sync_readahead+0x38/0x3a
	 [<ffffffff810ef337>] generic_file_read_iter+0x1a2/0x55a
	 [<ffffffffa00a9dff>] ? nfs_revalidate_mapping+0xd6/0x288 [nfs]
	 [<ffffffffa00a6a23>] nfs_file_read+0x49/0x70 [nfs]
	 [<ffffffff811363be>] new_sync_read+0x78/0x9c
	 [<ffffffff81137164>] __vfs_read+0x13/0x38
	 [<ffffffff8113721e>] vfs_read+0x95/0x121
	 [<ffffffff811372f6>] SyS_read+0x4c/0x8a
	 [<ffffffff81557a52>] system_call_fastpath+0x12/0x17

The assertion is showing that the remaining number of pages (n_pages) is not 0
when the operation is being released.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jeff.layton@primarydata.com>
2015-04-02 14:28:53 +01:00
David Howells 8702152630 FS-Cache: fscache_object_is_dead() has wrong logic, kill it
fscache_object_is_dead() returns true only if the object is marked dead and
the cache got an I/O error.  This should be a logical OR instead.  Since two
of the callers got split up into handling for separate subcases, expand the
other callers and kill the function.  This is probably the right thing to do
anyway since one of the subcases isn't about the object at all, but rather
about the cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jeff.layton@primarydata.com>
2015-04-02 14:28:53 +01:00
NeilBrown 743162013d sched: Remove proliferation of wait_on_bit() action functions
The current "wait_on_bit" interface requires an 'action'
function to be provided which does the actual waiting.
There are over 20 such functions, many of them identical.
Most cases can be satisfied by one of just two functions, one
which uses io_schedule() and one which just uses schedule().

So:
 Rename wait_on_bit and        wait_on_bit_lock to
        wait_on_bit_action and wait_on_bit_lock_action
 to make it explicit that they need an action function.

 Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
 which are *not* given an action function but implicitly use
 a standard one.
 The decision to error-out if a signal is pending is now made
 based on the 'mode' argument rather than being encoded in the action
 function.

 All instances of the old wait_on_bit and wait_on_bit_lock which
 can use the new version have been changed accordingly and their
 action functions have been discarded.
 wait_on_bit{_lock} does not return any specific error code in the
 event of a signal so the caller must check for non-zero and
 interpolate their own error code as appropriate.

The wait_on_bit() call in __fscache_wait_on_invalidate() was
ambiguous as it specified TASK_UNINTERRUPTIBLE but used
fscache_wait_bit_interruptible as an action function.
David Howells confirms this should be uniformly
"uninterruptible"

The main remaining user of wait_on_bit{,_lock}_action is NFS
which needs to use a freezer-aware schedule() call.

A comment in fs/gfs2/glock.c notes that having multiple 'action'
functions is useful as they display differently in the 'wchan'
field of 'ps'. (and /proc/$PID/wchan).
As the new bit_wait{,_io} functions are tagged "__sched", they
will not show up at all, but something higher in the stack.  So
the distinction will still be visible, only with different
function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
gfs2/glock.c case).

Since first version of this patch (against 3.15) two new action
functions appeared, on in NFS and one in CIFS.  CIFS also now
uses an action function that makes the same freezer aware
schedule call as NFS.

Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 15:10:39 +02:00
Fabian Frederick 36dfd116ed fs/fscache: convert printk to pr_foo()
All printk converted to pr_foo() except internal.h: printk(KERN_DEBUG

Coalesce formats.

Add pr_fmt

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:51 -07:00
David Howells 94d30ae90a FS-Cache: Provide the ability to enable/disable cookies
Provide the ability to enable and disable fscache cookies.  A disabled cookie
will reject or ignore further requests to:

	Acquire a child cookie
	Invalidate and update backing objects
	Check the consistency of a backing object
	Allocate storage for backing page
	Read backing pages
	Write to backing pages

but still allows:

	Checks/waits on the completion of already in-progress objects
	Uncaching of pages
	Relinquishment of cookies

Two new operations are provided:

 (1) Disable a cookie:

	void fscache_disable_cookie(struct fscache_cookie *cookie,
				    bool invalidate);

     If the cookie is not already disabled, this locks the cookie against other
     dis/enablement ops, marks the cookie as being disabled, discards or
     invalidates any backing objects and waits for cessation of activity on any
     associated object.

     This is a wrapper around a chunk split out of fscache_relinquish_cookie(),
     but it reinitialises the cookie such that it can be reenabled.

     All possible failures are handled internally.  The caller should consider
     calling fscache_uncache_all_inode_pages() afterwards to make sure all page
     markings are cleared up.

 (2) Enable a cookie:

	void fscache_enable_cookie(struct fscache_cookie *cookie,
				   bool (*can_enable)(void *data),
				   void *data)

     If the cookie is not already enabled, this locks the cookie against other
     dis/enablement ops, invokes can_enable() and, if the cookie is not an
     index cookie, will begin the procedure of acquiring backing objects.

     The optional can_enable() function is passed the data argument and returns
     a ruling as to whether or not enablement should actually be permitted to
     begin.

     All possible failures are handled internally.  The cookie will only be
     marked as enabled if provisional backing objects are allocated.

A later patch will introduce these to NFS.  Cookie enablement during nfs_open()
is then contingent on i_writecount <= 0.  can_enable() checks for a race
between open(O_RDONLY) and open(O_WRONLY/O_RDWR).  This simplifies NFS's cookie
handling and allows us to get rid of open(O_RDONLY) accidentally introducing
caching to an inode that's open for writing already.

One operation has its API modified:

 (3) Acquire a cookie.

	struct fscache_cookie *fscache_acquire_cookie(
		struct fscache_cookie *parent,
		const struct fscache_cookie_def *def,
		void *netfs_data,
		bool enable);

     This now has an additional argument that indicates whether the requested
     cookie should be enabled by default.  It doesn't need the can_enable()
     function because the caller must prevent multiple calls for the same netfs
     object and it doesn't need to take the enablement lock because no one else
     can get at the cookie before this returns.

Signed-off-by: David Howells <dhowells@redhat.com
2013-09-27 18:40:25 +01:00
David Howells 8fb883f3e3 FS-Cache: Add use/unuse/wake cookie wrappers
Add wrapper functions for dealing with cookie->n_active:

 (*) __fscache_use_cookie() to increment it.

 (*) __fscache_unuse_cookie() to decrement and test against zero.

 (*) __fscache_wake_unused_cookie() to wake up anyone waiting for it to reach
     zero.

The second and third are split so that the third can be done after cookie->lock
has been released in case the waiter wakes up whilst we're still holding it and
tries to get it.

We will need to wake-on-zero once the cookie disablement patch is applied
because it will then be possible to see n_active become zero without the cookie
being relinquished.

Also move the cookie usement out of fscache_attr_changed_op() and into
fscache_attr_changed() and the operation struct so that cookie disablement
will be able to track it.

Whilst we're at it, only increment n_active if we're about to do
fscache_submit_op() so that we don't have to deal with undoing it if anything
earlier fails.  Possibly this should be moved into fscache_submit_op() which
could look at FSCACHE_OP_UNUSE_COOKIE.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-27 18:40:25 +01:00
Milosz Tanski 9c89d62948 fscache: check consistency does not decrement refcount
__fscache_check_consistency() does not decrement the count of operations
active after it finishes in the success case. This leads to a hung tasks on
cookie de-registration (commonly in inode eviction).

INFO: task kworker/1:2:4214 blocked for more than 120 seconds.
kworker/1:2     D ffff880443513fc0     0  4214      2 0x00000000
Workqueue: ceph-msgr con_work [libceph]
  ...
Call Trace:
 [<ffffffff81569fc6>] ? _raw_spin_unlock_irqrestore+0x16/0x20
 [<ffffffffa0016570>] ? fscache_wait_bit_interruptible+0x30/0x30 [fscache]
 [<ffffffff81568d09>] schedule+0x29/0x70
 [<ffffffffa001657e>] fscache_wait_atomic_t+0xe/0x20 [fscache]
 [<ffffffff815665cf>] out_of_line_wait_on_atomic_t+0x9f/0xe0
 [<ffffffff81083560>] ? autoremove_wake_function+0x40/0x40
 [<ffffffffa0015a9c>] __fscache_relinquish_cookie+0x15c/0x310 [fscache]
 [<ffffffffa00a4fae>] ceph_fscache_unregister_inode_cookie+0x3e/0x50 [ceph]
 [<ffffffffa007e373>] ceph_destroy_inode+0x33/0x200 [ceph]
 [<ffffffff811c13ae>] ? __fsnotify_inode_delete+0xe/0x10
 [<ffffffff8119ba1c>] destroy_inode+0x3c/0x70
 [<ffffffff8119bb69>] evict+0x119/0x1b0

Signed-off-by: Milosz Tanski <milosz@adfin.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Sage Weil <sage@inktank.com>
2013-09-10 09:04:46 -07:00
David Howells da9803bc88 FS-Cache: Add interface to check consistency of a cached object
Extend the fscache netfs API so that the netfs can ask as to whether a cache
object is up to date with respect to its corresponding netfs object:

	int fscache_check_consistency(struct fscache_cookie *cookie)

This will call back to the netfs to check whether the auxiliary data associated
with a cookie is correct.  It returns 0 if it is and -ESTALE if it isn't; it
may also return -ENOMEM and -ERESTARTSYS.

The backends now have to implement a mandatory operation pointer:

	int (*check_consistency)(struct fscache_object *object)

that corresponds to the above API call.  FS-Cache takes care of pinning the
object and the cookie in memory and managing this call with respect to the
object state.

Original-author: Hongyi Jia <jiayisuse@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hongyi Jia <jiayisuse@gmail.com>
cc: Milosz Tanski <milosz@adfin.com>
2013-09-06 09:17:30 +01:00
David Howells 1362729b16 FS-Cache: Simplify cookie retention for fscache_objects, fixing oops
Simplify the way fscache cache objects retain their cookie.  The way I
implemented the cookie storage handling made synchronisation a pain (ie. the
object state machine can't rely on the cookie actually still being there).

Instead of the the object being detached from the cookie and the cookie being
freed in __fscache_relinquish_cookie(), we defer both operations:

 (*) The detachment of the object from the list in the cookie now takes place
     in fscache_drop_object() and is thus governed by the object state machine
     (fscache_detach_from_cookie() has been removed).

 (*) The release of the cookie is now in fscache_object_destroy() - which is
     called by the cache backend just before it frees the object.

This means that the fscache_cookie struct is now available to the cache all the
way through from ->alloc_object() to ->drop_object() and ->put_object() -
meaning that it's no longer necessary to take object->lock to guarantee access.

However, __fscache_relinquish_cookie() doesn't wait for the object to go all
the way through to destruction before letting the netfs proceed.  That would
massively slow down the netfs.  Since __fscache_relinquish_cookie() leaves the
cookie around, in must therefore break all attachments to the netfs - which
includes ->def, ->netfs_data and any outstanding page read/writes.

To handle this, struct fscache_cookie now has an n_active counter:

 (1) This starts off initialised to 1.

 (2) Any time the cache needs to get at the netfs data, it calls
     fscache_use_cookie() to increment it - if it is not zero.  If it was zero,
     then access is not permitted.

 (3) When the cache has finished with the data, it calls fscache_unuse_cookie()
     to decrement it.  This does a wake-up on it if it reaches 0.

 (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to
     reach 0.  The initialisation to 1 in step (1) ensures that we only get
     wake ups when we're trying to get rid of the cookie.

This leaves __fscache_relinquish_cookie() a lot simpler.


***
This fixes a problem in the current code whereby if fscache_invalidate() is
followed sufficiently quickly by fscache_relinquish_cookie() then it is
possible for __fscache_relinquish_cookie() to have detached the cookie from the
object and cleared the pointer before a thread is dispatched to process the
invalidation state in the object state machine.

Since the pending write clearance was deferred to the invalidation state to
make it asynchronous, we need to either wait in relinquishment for the stores
tree to be cleared in the invalidation state or we need to handle the clearance
in relinquishment.

Further, if the relinquishment code does clear the tree, then the invalidation
state need to make the clearance contingent on still having the cookie to hand
(since that's where the tree is rooted) and we have to prevent the cookie from
disappearing for the duration.

This can lead to an oops like the following:

BUG: unable to handle kernel NULL pointer dereference at 000000000000000c
...
RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30
...
CR2: 000000000000000c ...
...
Process kslowd002 (...)
....
Call Trace:
 [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache]
 [<ffffffff810096f0>] ? __switch_to+0xd0/0x320
 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150
 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180
 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache]
 [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0
 [<ffffffff8110e233>] slow_work_execute+0x233/0x310
 [<ffffffff8110e515>] slow_work_thread+0x205/0x360
 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40
 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360
 [<ffffffff81096936>] kthread+0x96/0xa0
 [<ffffffff8100c0ca>] child_rip+0xa/0x20
 [<ffffffff810968a0>] ? kthread+0x0/0xa0
 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20

The parameter to fscache_invalidate_writes() was object->cookie which is NULL.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
David Howells caaef6900b FS-Cache: Fix object state machine to have separate work and wait states
Fix object state machine to have separate work and wait states as that makes
it easier to envision.

There are now three kinds of state:

 (1) Work state.  This is an execution state.  No event processing is performed
     by a work state.  The function attached to a work state returns a pointer
     indicating the next state to which the OSM should transition.  Returning
     NO_TRANSIT repeats the current state, but goes back to the scheduler
     first.

 (2) Wait state.  This is an event processing state.  No execution is
     performed by a wait state.  Wait states are just tables of "if event X
     occurs, clear it and transition to state Y".  The dispatcher returns to
     the scheduler if none of the events in which the wait state has an
     interest are currently pending.

 (3) Out-of-band state.  This is a special work state.  Transitions to normal
     states can be overridden when an unexpected event occurs (eg. I/O error).
     Instead the dispatcher disables and clears the OOB event and transits to
     the specified work state.  This then acts as an ordinary work state,
     though object->state points to the overridden destination.  Returning
     NO_TRANSIT resumes the overridden transition.

In addition, the states have names in their definitions, so there's no need for
tables of state names.  Further, the EV_REQUEUE event is no longer necessary as
that is automatic for work states.

Since the states are now separate structs rather than values in an enum, it's
not possible to use comparisons other than (non-)equality between them, so use
some object->flags to indicate what phase an object is in.

The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one
(EV_KILL).  An object flag now carries the information about retirement.

Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged
into an KILL_OBJECT state and additional states have been added for handling
waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS).

A state has also been added for synchronising with parent object initialisation
(WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY).

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
David Howells 493f7bc114 FS-Cache: Wrap checks on object state
Wrap checks on object state (mostly outside of fs/fscache/object.c) with
inline functions so that the mechanism can be replaced.

Some of the state checks within object.c are left as-is as they will be
replaced.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
Sasha Levin b67bfe0d42 hlist: drop the node parameter from iterators
I'm not sure why, but the hlist for each entry iterators were conceived

        list_for_each_entry(pos, head, member)

The hlist ones were greedy and wanted an extra parameter:

        hlist_for_each_entry(tpos, pos, head, member)

Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.

Besides the semantic patch, there was some manual work required:

 - Fix up the actual hlist iterators in linux/list.h
 - Fix up the declaration of other iterators based on the hlist ones.
 - A very small amount of places were using the 'node' parameter, this
 was modified to use 'obj->member' instead.
 - Coccinelle didn't handle the hlist_for_each_entry_safe iterator
 properly, so those had to be fixed up manually.

The semantic patch which is mostly the work of Peter Senna Tschudin is here:

@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;

type T;
expression a,c,d,e;
identifier b;
statement S;
@@

-T b;
    <+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
    ...+>

[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-27 19:10:24 -08:00
David Howells ef778e7ae6 FS-Cache: Provide proper invalidation
Provide a proper invalidation method rather than relying on the netfs retiring
the cookie it has and getting a new one.  The problem with this is that isn't
easy for the netfs to make sure that it has completed/cancelled all its
outstanding storage and retrieval operations on the cookie it is retiring.

Instead, have the cache provide an invalidation method that will cancel or wait
for all currently outstanding operations before invalidating the cache, and
will cause new operations to queue up behind that.  Whilst invalidation is in
progress, some requests will be rejected until the cache can stack a barrier on
the operation queue to cause new operations to be deferred behind it.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 22:04:07 +00:00
David Howells ef46ed888e FS-Cache: Make cookie relinquishment wait for outstanding reads
Make fscache_relinquish_cookie() log a warning and wait if there are any
outstanding reads left on the cookie it was given.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 21:58:25 +00:00
David Howells 0f972b5696 FS-Cache: Check that there are no read ops when cookie relinquished
Check that the netfs isn't trying to relinquish a cookie that still has read
operations in progress upon it.  If there are, then give log a warning and BUG.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 21:58:25 +00:00
David Howells 2175bb06dc FS-Cache: Add a retirement stat counter
Add a stat counter to count retirement events rather than ordinary release
events (the retire argument to fscache_relinquish_cookie()).

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:38 +00:00
David Howells 1bccf513ac FS-Cache: Fix lock misorder in fscache_write_op()
FS-Cache has two structs internally for keeping track of the internal state of
a cached file: the fscache_cookie struct, which represents the netfs's state,
and fscache_object struct, which represents the cache's state.  Each has a
pointer that points to the other (when both are in existence), and each has a
spinlock for pointer maintenance.

Since netfs operations approach these structures from the cookie side, they get
the cookie lock first, then the object lock.  Cache operations, on the other
hand, approach from the object side, and get the object lock first.  It is not
then permitted for a cache operation to get the cookie lock whilst it is
holding the object lock lest deadlock occur; instead, it must do one of two
things:

 (1) increment the cookie usage counter, drop the object lock and then get both
     locks in order, or

 (2) simply hold the object lock as certain parts of the cookie may not be
     altered whilst the object lock is held.

It is also not permitted to follow either pointer without holding the lock at
the end you start with.  To break the pointers between the cookie and the
object, both locks must be held.

fscache_write_op(), however, violates the locking rules: It attempts to get the
cookie lock without (a) checking that the cookie pointer is a valid pointer,
and (b) holding the object lock to protect the cookie pointer whilst it follows
it.  This is so that it can access the pending page store tree without
interference from __fscache_write_page().

This is fixed by splitting the cookie lock, such that the page store tracking
tree is protected by its own lock, and checking that the cookie pointer is
non-NULL before we attempt to follow it whilst holding the object lock.

The new lock is subordinate to both the cookie lock and the object lock, and so
should be taken after those.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:25 +00:00
David Howells b34df792b4 FS-Cache: Use radix tree preload correctly in tracking of pages to be stored
__fscache_write_page() attempts to load the radix tree preallocation pool for
the CPU it is on before calling radix_tree_insert(), as the insertion must be
done inside a pair of spinlocks.

Use of the preallocation pool, however, is contingent on the radix tree being
initialised without __GFP_WAIT specified.  __fscache_acquire_cookie() was
passing GFP_NOFS to INIT_RADIX_TREE() - but that includes __GFP_WAIT.

The solution is to AND out __GFP_WAIT.

Additionally, the banner comment to radix_tree_preload() is altered to make
note of this prerequisite.  Possibly there should be a WARN_ON() too.

Without this fix, I have seen the following recursive deadlock caused by
radix_tree_insert() attempting to allocate memory inside the spinlocked
region, which resulted in FS-Cache being called back into to release memory -
which required the spinlock already held.

=============================================
[ INFO: possible recursive locking detected ]
2.6.32-rc6-cachefs #24
---------------------------------------------
nfsiod/7916 is trying to acquire lock:
 (&cookie->lock){+.+.-.}, at: [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]

but task is already holding lock:
 (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]

other info that might help us debug this:
5 locks held by nfsiod/7916:
 #0:  (nfsiod){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
 #1:  (&task->u.tk_work#2){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
 #2:  (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]
 #3:  (&object->lock#2){+.+.-.}, at: [<ffffffffa0076b07>] __fscache_write_page+0x197/0x3f3 [fscache]
 #4:  (&cookie->stores_lock){+.+...}, at: [<ffffffffa0076b0f>] __fscache_write_page+0x19f/0x3f3 [fscache]

stack backtrace:
Pid: 7916, comm: nfsiod Not tainted 2.6.32-rc6-cachefs #24
Call Trace:
 [<ffffffff8105ac7f>] __lock_acquire+0x1649/0x16e3
 [<ffffffff81059ded>] ? __lock_acquire+0x7b7/0x16e3
 [<ffffffff8100e27d>] ? dump_trace+0x248/0x257
 [<ffffffff8105ad70>] lock_acquire+0x57/0x6d
 [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
 [<ffffffff8135467c>] _spin_lock+0x2c/0x3b
 [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
 [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]
 [<ffffffffa0077eb7>] ? __fscache_check_page_write+0x0/0x71 [fscache]
 [<ffffffffa00b4755>] nfs_fscache_release_page+0x86/0xc4 [nfs]
 [<ffffffffa00907f0>] nfs_release_page+0x3c/0x41 [nfs]
 [<ffffffff81087ffb>] try_to_release_page+0x32/0x3b
 [<ffffffff81092c2b>] shrink_page_list+0x316/0x4ac
 [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
 [<ffffffff8135451b>] ? _spin_unlock_irq+0x2b/0x31
 [<ffffffff81093153>] shrink_inactive_list+0x392/0x67c
 [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
 [<ffffffff810934ca>] shrink_list+0x8d/0x8f
 [<ffffffff81093744>] shrink_zone+0x278/0x33c
 [<ffffffff81052c70>] ? ktime_get_ts+0xad/0xba
 [<ffffffff8109453b>] try_to_free_pages+0x22e/0x392
 [<ffffffff8109184c>] ? isolate_pages_global+0x0/0x212
 [<ffffffff8108e16b>] __alloc_pages_nodemask+0x3dc/0x5cf
 [<ffffffff810ae24a>] cache_alloc_refill+0x34d/0x6c1
 [<ffffffff811bcf74>] ? radix_tree_node_alloc+0x52/0x5c
 [<ffffffff810ae929>] kmem_cache_alloc+0xb2/0x118
 [<ffffffff811bcf74>] radix_tree_node_alloc+0x52/0x5c
 [<ffffffff811bcfd5>] radix_tree_insert+0x57/0x19c
 [<ffffffffa0076b53>] __fscache_write_page+0x1e3/0x3f3 [fscache]
 [<ffffffffa00b4248>] __nfs_readpage_to_fscache+0x58/0x11e [nfs]
 [<ffffffffa009bb77>] nfs_readpage_release+0x34/0x9b [nfs]
 [<ffffffffa009c0d9>] nfs_readpage_release_full+0x32/0x4b [nfs]
 [<ffffffffa0006cff>] rpc_release_calldata+0x12/0x14 [sunrpc]
 [<ffffffffa0006e2d>] rpc_free_task+0x59/0x61 [sunrpc]
 [<ffffffffa0006f03>] rpc_async_release+0x10/0x12 [sunrpc]
 [<ffffffff810482e5>] worker_thread+0x1ef/0x2e2
 [<ffffffff81048290>] ? worker_thread+0x19a/0x2e2
 [<ffffffff81352433>] ? thread_return+0x3e/0x101
 [<ffffffffa0006ef3>] ? rpc_async_release+0x0/0x12 [sunrpc]
 [<ffffffff8104bff5>] ? autoremove_wake_function+0x0/0x34
 [<ffffffff81058d25>] ? trace_hardirqs_on+0xd/0xf
 [<ffffffff810480f6>] ? worker_thread+0x0/0x2e2
 [<ffffffff8104bd21>] kthread+0x7a/0x82
 [<ffffffff8100beda>] child_rip+0xa/0x20
 [<ffffffff8100b87c>] ? restore_args+0x0/0x30
 [<ffffffff8104c2b9>] ? add_wait_queue+0x15/0x44
 [<ffffffff8104bca7>] ? kthread+0x0/0x82
 [<ffffffff8100bed0>] ? child_rip+0x0/0x20

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:14 +00:00
David Howells 7e311a207d FS-Cache: Clear netfs pointers in cookie after detaching object, not before
Clear the pointers from the fscache_cookie struct to netfs private data after
clearing the pointer to the cookie from the fscache_object struct and
releasing the object lock, rather than before.

This allows the netfs private data pointers to be relied on simply by holding
the object lock, rather than having to hold the cookie lock.  This is makes
things simpler as the cookie lock has to be taken before the object lock, but
sometimes the object pointer is all that the code has.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:11 +00:00
David Howells 52bd75fdb1 FS-Cache: Add counters for entry/exit to/from cache operation functions
Count entries to and exits from cache operation table functions.  Maintain
these as a single counter that's added to or removed from as appropriate.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:08 +00:00
David Howells 4fbf4291aa FS-Cache: Allow the current state of all objects to be dumped
Allow the current state of all fscache objects to be dumped by doing:

	cat /proc/fs/fscache/objects

By default, all objects and all fields will be shown.  This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):

	keyctl add user fscache:objlist "<restrictions>" @s

The <restrictions> are:

	K	Show hexdump of object key (don't show if not given)
	A	Show hexdump of object aux data (don't show if not given)

And paired restrictions:

	C	Show objects that have a cookie
	c	Show objects that don't have a cookie
	B	Show objects that are busy
	b	Show objects that aren't busy
	W	Show objects that have pending writes
	w	Show objects that don't have pending writes
	R	Show objects that have outstanding reads
	r	Show objects that don't have outstanding reads
	S	Show objects that have slow work queued
	s	Show objects that don't have slow work queued

If neither side of a restriction pair is given, then both are implied.  For
example:

	keyctl add user fscache:objlist KB @s

shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data.  It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:04 +00:00
David Howells ccc4fc3d11 FS-Cache: Implement the cookie management part of the netfs API
Implement the cookie management part of the FS-Cache netfs client API.  The
documentation and API header file were added in a previous patch.

This patch implements the following three functions:

 (1) fscache_acquire_cookie().

     Acquire a cookie to represent an object to the netfs.  If the object in
     question is a non-index object, then that object and its parent indices
     will be created on disk at this point if they don't already exist.  Index
     creation is deferred because an index may reside in multiple caches.

 (2) fscache_relinquish_cookie().

     Retire or release a cookie previously acquired.  At this point, the
     object on disk may be destroyed.

 (3) fscache_update_cookie().

     Update the in-cache representation of a cookie.  This is used to update
     the auxiliary data for coherency management purposes.

With this patch it is possible to have a netfs instruct a cache backend to
look up, validate and create metadata on disk and to destroy it again.
The ability to actually store and retrieve data in the objects so created is
added in later patches.

Note that these functions will never return an error.  _All_ errors are
handled internally to FS-Cache.

The worst that can happen is that fscache_acquire_cookie() may return a NULL
pointer - which is considered a negative cookie pointer and can be passed back
to any function that takes a cookie without harm.  A negative cookie pointer
merely suppresses caching at that level.

The stub in linux/fscache.h will detect inline the negative cookie pointer and
abort the operation as fast as possible.  This means that the compiler doesn't
have to set up for a call in that case.

See the documentation in Documentation/filesystems/caching/netfs-api.txt for
more information.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells 955d00917f FS-Cache: Provide a slab for cookie allocation
Provide a slab from which can be allocated the FS-Cache cookies that will be
presented to the netfs.

Also provide a slab constructor and a function to recursively discard a cookie
and its ancestor chain.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00