We have some machines with multiple memory types like below, which have
one fast (DRAM) memory node and two slow (persistent memory) memory
nodes. According to current node demotion policy, if node 0 fills up,
its memory should be migrated to node 1, when node 1 fills up, its
memory will be migrated to node 2: node 0 -> node 1 -> node 2 ->stop.
But this is not efficient and suitbale memory migration route for our
machine with multiple slow memory nodes. Since the distance between
node 0 to node 1 and node 0 to node 2 is equal, and memory migration
between slow memory nodes will increase persistent memory bandwidth
greatly, which will hurt the whole system's performance.
Thus for this case, we can treat the slow memory node 1 and node 2 as a
whole slow memory region, and we should migrate memory from node 0 to
node 1 and node 2 if node 0 fills up.
This patch changes the node_demotion data structure to support multiple
target nodes, and establishes the migration path to support multiple
target nodes with validating if the node distance is the best or not.
available: 3 nodes (0-2)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
node 0 size: 62153 MB
node 0 free: 55135 MB
node 1 cpus:
node 1 size: 127007 MB
node 1 free: 126930 MB
node 2 cpus:
node 2 size: 126968 MB
node 2 free: 126878 MB
node distances:
node 0 1 2
0: 10 20 20
1: 20 10 20
2: 20 20 10
Link: https://lkml.kernel.org/r/00728da107789bb4ed9e0d28b1d08fd8056af2ef.1636697263.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Correct the migration stats for hugetlb with using compound_nr() instead
of thp_nr_pages(), meanwhile change 'nr_failed_pages' to record the
number of normal pages failed to migrate, including THP and hugetlb, and
'nr_succeeded' will record the number of normal pages migrated
successfully.
[baolin.wang@linux.alibaba.com: fix docs, per Mike]
Link: https://lkml.kernel.org/r/141bdfc6-f898-3cc3-f692-726c5f6cb74d@linux.alibaba.com
Link: https://lkml.kernel.org/r/71a4b6c22f208728fe8c78ad26375436c4ff9704.1636275127.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Improve the migration stats".
According to talk with Zi Yan [1], this patch set changes the return
value of migrate_pages() to avoid returning a number which is larger
than the number of pages the users tried to migrate by move_pages()
syscall. Also fix the hugetlb migration stats and migration stats in
trace_mm_compaction_migratepages().
[1] https://lore.kernel.org/linux-mm/7E44019D-2A5D-4BA7-B4D5-00D4712F1687@nvidia.com/
This patch (of 3):
As Zi Yan pointed out, the syscall move_pages() can return a
non-migrated number larger than the number of pages the users tried to
migrate, when a THP page is failed to migrate. This is confusing for
users.
Since other migration scenarios do not care about the actual
non-migrated number of pages except the memory compaction migration
which will fix in following patch. Thus we can change the return value
to return the number of {normal page, THP, hugetlb} instead to avoid
this issue, and the number of THP splits will be considered as the
number of non-migrated THP, no matter how many subpages of the THP are
migrated successfully. Meanwhile we should still keep the migration
counters using the number of normal pages.
Link: https://lkml.kernel.org/r/cover.1636275127.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/6486fabc3e8c66ff613e150af25e89b3147977a6.1636275127.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Co-developed-by: Zi Yan <ziy@nvidia.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "page table check", v3.
Ensure that some memory corruptions are prevented by checking at the
time of insertion of entries into user page tables that there is no
illegal sharing.
We have recently found a problem [1] that existed in kernel since 4.14.
The problem was caused by broken page ref count and led to memory
leaking from one process into another. The problem was accidentally
detected by studying a dump of one process and noticing that one page
contains memory that should not belong to this process.
There are some other page->_refcount related problems that were recently
fixed: [2], [3] which potentially could also lead to illegal sharing.
In addition to hardening refcount [4] itself, this work is an attempt to
prevent this class of memory corruption issues.
It uses a simple state machine that is independent from regular MM logic
to check for illegal sharing at time pages are inserted and removed from
page tables.
[1] https://lore.kernel.org/all/xr9335nxwc5y.fsf@gthelen2.svl.corp.google.com
[2] https://lore.kernel.org/all/1582661774-30925-2-git-send-email-akaher@vmware.com
[3] https://lore.kernel.org/all/20210622021423.154662-3-mike.kravetz@oracle.com
[4] https://lore.kernel.org/all/20211221150140.988298-1-pasha.tatashin@soleen.com
This patch (of 4):
There are a few places where we first update the entry in the user page
table, and later change the struct page to indicate that this is
anonymous or file page.
In most places, however, we first configure the page metadata and then
insert entries into the page table. Page table check, will use the
information from struct page to verify the type of entry is inserted.
Change the order in all places to first update struct page, and later to
update page table.
This means that we first do calls that may change the type of page (anon
or file):
page_move_anon_rmap
page_add_anon_rmap
do_page_add_anon_rmap
page_add_new_anon_rmap
page_add_file_rmap
hugepage_add_anon_rmap
hugepage_add_new_anon_rmap
And after that do calls that add entries to the page table:
set_huge_pte_at
set_pte_at
Link: https://lkml.kernel.org/r/20211221154650.1047963-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20211221154650.1047963-2-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Will Deacon <will@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently store large folios as 2^N consecutive entries. While this
consumes rather more memory than necessary, it also turns out to be buggy.
A writeback operation which starts within a tail page of a dirty folio will
not write back the folio as the xarray's dirty bit is only set on the
head index. With multi-index entries, the dirty bit will be found no
matter where in the folio the operation starts.
This does end up simplifying the page cache slightly, although not as
much as I had hoped.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Convert all three callers of put_and_wait_on_page_locked() to
folio_put_wait_locked(). This shrinks the kernel overall by 19 bytes.
filemap_update_page() shrinks by 19 bytes while __migration_entry_wait()
is unchanged. folio_put_wait_locked() is 14 bytes smaller than
put_and_wait_on_page_locked(), but pmd_migration_entry_wait() grows by
14 bytes. It removes the assumption from pmd_migration_entry_wait()
that pages cannot be larger than a PMD (which is true today, but
may be interesting to explore in the future).
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
MIGRATE_PFN_LOCKED is used to indicate to migrate_vma_prepare() that a
source page was already locked during migrate_vma_collect(). If it
wasn't then the a second attempt is made to lock the page. However if
the first attempt failed it's unlikely a second attempt will succeed,
and the retry adds complexity. So clean this up by removing the retry
and MIGRATE_PFN_LOCKED flag.
Destination pages are also meant to have the MIGRATE_PFN_LOCKED flag
set, but nothing actually checks that.
Link: https://lkml.kernel.org/r/20211025041608.289017-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to validate the file-backed page's refcount before
trying to freeze the page's expected refcount, instead we can rely on
the folio_ref_freeze() to validate if the page has the expected refcount
before migrating its mapping.
Moreover we are always under the page lock when migrating the page
mapping, which means nowhere else can remove it from the page cache, so
we can remove the xas_load() validation under the i_pages lock.
Link: https://lkml.kernel.org/r/cover.1629447552.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/df4c129fd8e86a95dbc55f4663d77441cc0d3bd1.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc updates from Andrew Morton:
"257 patches.
Subsystems affected by this patch series: scripts, ocfs2, vfs, and
mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
cleanups, kfence, and damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
mm/damon: remove return value from before_terminate callback
mm/damon: fix a few spelling mistakes in comments and a pr_debug message
mm/damon: simplify stop mechanism
Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
Docs/admin-guide/mm/damon/start: simplify the content
Docs/admin-guide/mm/damon/start: fix a wrong link
Docs/admin-guide/mm/damon/start: fix wrong example commands
mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
mm/damon: remove unnecessary variable initialization
Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
selftests/damon: support watermarks
mm/damon/dbgfs: support watermarks
mm/damon/schemes: activate schemes based on a watermarks mechanism
tools/selftests/damon: update for regions prioritization of schemes
mm/damon/dbgfs: support prioritization weights
mm/damon/vaddr,paddr: support pageout prioritization
mm/damon/schemes: prioritize regions within the quotas
mm/damon/selftests: support schemes quotas
mm/damon/dbgfs: support quotas of schemes
...
The memory demotion needs to call migrate_pages() to do the jobs. And
it is controlled by a knob, however, the knob doesn't depend on
CONFIG_MIGRATION. The knob could be truned on even though MIGRATION is
disabled, this will not cause any crash since migrate_pages() would just
return -ENOSYS. But it is definitely not optimal to go through demotion
path then retry regular swap every time.
And it doesn't make too much sense to have the knob visible to the users
when !MIGRATION. Move the related code from mempolicy.[h|c] to
migrate.[h|c].
Link: https://lkml.kernel.org/r/20211015005559.246709-1-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memory folios, a new type to represent either order-0 pages or
the head page of a compound page. This should be enough infrastructure
to support filesystems converting from pages to folios.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmF9uI0ACgkQDpNsjXcp
gj7MUAf/R7LCZ+xFiIedw7SAgb/DGK0C9uVjuBEIZgAw21ZUw/GuPI6cuKBMFGGf
rRcdtlvMpwi7yZJcoNXxaqU/xPaaJMjf2XxscIvYJP1mjlZVuwmP9dOx0neNvWOc
T+8lqR6c1TLl82lpqIjGFLwvj2eVowq2d3J5jsaIJFd4odmmYVInrhJXOzC/LQ54
Niloj5ksehf+KUIRLDz7ycppvIHhlVsoAl0eM2dWBAtL0mvT7Nyn/3y+vnMfV2v3
Flb4opwJUgTJleYc16oxTn9svT2yS8q2uuUemRDLW8ABghoAtH3fUUk43RN+5Krd
LYCtbeawtkikPVXZMfWybsx5vn0c3Q==
=7SBe
-----END PGP SIGNATURE-----
Merge tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache
Pull memory folios from Matthew Wilcox:
"Add memory folios, a new type to represent either order-0 pages or the
head page of a compound page. This should be enough infrastructure to
support filesystems converting from pages to folios.
The point of all this churn is to allow filesystems and the page cache
to manage memory in larger chunks than PAGE_SIZE. The original plan
was to use compound pages like THP does, but I ran into problems with
some functions expecting only a head page while others expect the
precise page containing a particular byte.
The folio type allows a function to declare that it's expecting only a
head page. Almost incidentally, this allows us to remove various calls
to VM_BUG_ON(PageTail(page)) and compound_head().
This converts just parts of the core MM and the page cache. For 5.17,
we intend to convert various filesystems (XFS and AFS are ready; other
filesystems may make it) and also convert more of the MM and page
cache to folios. For 5.18, multi-page folios should be ready.
The multi-page folios offer some improvement to some workloads. The
80% win is real, but appears to be an artificial benchmark (postgres
startup, which isn't a serious workload). Real workloads (eg building
the kernel, running postgres in a steady state, etc) seem to benefit
between 0-10%. I haven't heard of any performance losses as a result
of this series. Nobody has done any serious performance tuning; I
imagine that tweaking the readahead algorithm could provide some more
interesting wins. There are also other places where we could choose to
create large folios and currently do not, such as writes that are
larger than PAGE_SIZE.
I'd like to thank all my reviewers who've offered review/ack tags:
Christoph Hellwig, David Howells, Jan Kara, Jeff Layton, Johannes
Weiner, Kirill A. Shutemov, Michal Hocko, Mike Rapoport, Vlastimil
Babka, William Kucharski, Yu Zhao and Zi Yan.
I'd also like to thank those who gave feedback I incorporated but
haven't offered up review tags for this part of the series: Nick
Piggin, Mel Gorman, Ming Lei, Darrick Wong, Ted Ts'o, John Hubbard,
Hugh Dickins, and probably a few others who I forget"
* tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache: (90 commits)
mm/writeback: Add folio_write_one
mm/filemap: Add FGP_STABLE
mm/filemap: Add filemap_get_folio
mm/filemap: Convert mapping_get_entry to return a folio
mm/filemap: Add filemap_add_folio()
mm/filemap: Add filemap_alloc_folio
mm/page_alloc: Add folio allocation functions
mm/lru: Add folio_add_lru()
mm/lru: Convert __pagevec_lru_add_fn to take a folio
mm: Add folio_evictable()
mm/workingset: Convert workingset_refault() to take a folio
mm/filemap: Add readahead_folio()
mm/filemap: Add folio_mkwrite_check_truncate()
mm/filemap: Add i_blocks_per_folio()
mm/writeback: Add folio_redirty_for_writepage()
mm/writeback: Add folio_account_redirty()
mm/writeback: Add folio_clear_dirty_for_io()
mm/writeback: Add folio_cancel_dirty()
mm/writeback: Add folio_account_cleaned()
mm/writeback: Add filemap_dirty_folio()
...
The node demotion order needs to be updated during CPU hotplug. Because
whether a NUMA node has CPU may influence the demotion order. The
update function should be called during CPU online/offline after the
node_states[N_CPU] has been updated. That is done in
CPUHP_AP_ONLINE_DYN during CPU online and in CPUHP_MM_VMSTAT_DEAD during
CPU offline. But in commit 884a6e5d1f ("mm/migrate: update node
demotion order on hotplug events"), the function to update node demotion
order is called in CPUHP_AP_ONLINE_DYN during CPU online/offline. This
doesn't satisfy the order requirement.
For example, there are 4 CPUs (P0, P1, P2, P3) in 2 sockets (P0, P1 in S0
and P2, P3 in S1), the demotion order is
- S0 -> NUMA_NO_NODE
- S1 -> NUMA_NO_NODE
After P2 and P3 is offlined, because S1 has no CPU now, the demotion
order should have been changed to
- S0 -> S1
- S1 -> NO_NODE
but it isn't changed, because the order updating callback for CPU
hotplug doesn't see the new nodemask. After that, if P1 is offlined,
the demotion order is changed to the expected order as above.
So in this patch, we added CPUHP_AP_MM_DEMOTION_ONLINE and
CPUHP_MM_DEMOTION_DEAD to be called after CPUHP_AP_ONLINE_DYN and
CPUHP_MM_VMSTAT_DEAD during CPU online and offline, and register the
update function on them.
Link: https://lkml.kernel.org/r/20210929060351.7293-1-ying.huang@intel.com
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once upon a time, the node demotion updates were driven solely by memory
hotplug events. But now, there are handlers for both CPU and memory
hotplug.
However, the #ifdef around the code checks only memory hotplug. A
system that has HOTPLUG_CPU=y but MEMORY_HOTPLUG=n would miss CPU
hotplug events.
Update the #ifdef around the common code. Add memory and CPU-specific
#ifdefs for their handlers. These memory/CPU #ifdefs avoid unused
function warnings when their Kconfig option is off.
[arnd@arndb.de: rework hotplug_memory_notifier() stub]
Link: https://lkml.kernel.org/r/20211013144029.2154629-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20210924161255.E5FE8F7E@davehans-spike.ostc.intel.com
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/migrate: 5.15 fixes for automatic demotion", v2.
This contains two fixes for the "automatic demotion" code which was
merged into 5.15:
* Fix memory hotplug performance regression by watching
suppressing any real action on irrelevant hotplug events.
* Ensure CPU hotplug handler is registered when memory hotplug
is disabled.
This patch (of 2):
== tl;dr ==
Automatic demotion opted for a simple, lazy approach to handling hotplug
events. This noticeably slows down memory hotplug[1]. Optimize away
updates to the demotion order when memory hotplug events should have no
effect.
This has no effect on CPU hotplug. There is no known problem on the CPU
side and any work there will be in a separate series.
== Background ==
Automatic demotion is a memory migration strategy to ensure that new
allocations have room in faster memory tiers on tiered memory systems.
The kernel maintains an array (node_demotion[]) to drive these
migrations.
The node_demotion[] path is calculated by starting at nodes with CPUs
and then "walking" to nodes with memory. Only hotplug events which
online or offline a node with memory (N_ONLINE) or CPUs (N_CPU) will
actually affect the migration order.
== Problem ==
However, the current code is lazy. It completely regenerates the
migration order on *any* CPU or memory hotplug event. The logic was
that these events are extremely rare and that the overhead from
indiscriminate order regeneration is minimal.
Part of the update logic involves a synchronize_rcu(), which is a pretty
big hammer. Its overhead was large enough to be detected by some 0day
tests that watch memory hotplug performance[1].
== Solution ==
Add a new helper (node_demotion_topo_changed()) which can differentiate
between superfluous and impactful hotplug events. Skip the expensive
update operation for superfluous events.
== Aside: Locking ==
It took me a few moments to declare the locking to be safe enough for
node_demotion_topo_changed() to work. It all hinges on the memory
hotplug lock:
During memory hotplug events, 'mem_hotplug_lock' is held for write.
This ensures that two memory hotplug events can not be called
simultaneously.
CPU hotplug has a similar lock (cpuhp_state_mutex) which also provides
mutual exclusion between CPU hotplug events. In addition, the demotion
code acquire and hold the mem_hotplug_lock for read during its CPU
hotplug handlers. This provides mutual exclusion between the demotion
memory hotplug callbacks and the CPU hotplug callbacks.
This effectively allows treating the migration target generation code to
act as if it is single-threaded.
1. https://lore.kernel.org/all/20210905135932.GE15026@xsang-OptiPlex-9020/
Link: https://lkml.kernel.org/r/20210924161251.093CCD06@davehans-spike.ostc.intel.com
Link: https://lkml.kernel.org/r/20210924161253.D7673E31@davehans-spike.ostc.intel.com
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the folio equivalent of migrate_page_copy(), which is retained
as a wrapper for filesystems which are not yet converted to folios.
Also convert copy_huge_page() to folio_copy().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Turn migrate_page_states() into a wrapper around folio_migrate_flags().
Also convert two functions only called from folio_migrate_flags() to
be folio-based. ksm_migrate_page() becomes folio_migrate_ksm() and
copy_page_owner() becomes folio_copy_owner(). folio_migrate_flags()
alone shrinks by two thirds -- 1967 bytes down to 642 bytes.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reimplement migrate_page_move_mapping() as a wrapper around
folio_migrate_mapping(). Saves 193 bytes of kernel text.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Convert all callers of mem_cgroup_migrate() to call page_folio() first.
They all look like they're using head pages already, but this proves it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Convert all callers of mem_cgroup_charge() to call page_folio() on the
page they're currently passing in. Many of them will be converted to
use folios themselves soon.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
These are all handled correctly when calling the native system call entry
point, so remove the special cases.
Link: https://lkml.kernel.org/r/20210727144859.4150043-6-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compat move_pages() implementation uses compat_alloc_user_space() for
converting the pointer array. Moving the compat handling into the
function itself is a bit simpler and lets us avoid the
compat_alloc_user_space() call.
Link: https://lkml.kernel.org/r/20210727144859.4150043-4-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change to use bool type for 'page_was_mapped' variable making it more
readable.
Link: https://lkml.kernel.org/r/ce1279df18d2c163998c403e0b5ec6d3f6f90f7a.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
since commit a98a2f0c8c ("mm/rmap: split migration into its own
function"), the migration ptes establishment has been split into a
separate try_to_migrate() function, thus update the related comments.
Link: https://lkml.kernel.org/r/5b824bad6183259c916ae6cf42f81d14c6118b06.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use thp_nr_pages() instead of compound_nr() to get the number of pages for
THP page, meanwhile introducing a local variable 'nr_pages' to avoid
getting the number of pages repeatedly.
Link: https://lkml.kernel.org/r/a8e331ac04392ee230c79186330fb05e86a2aa77.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the expected "Return:" format to prevent a kernel-doc warning.
mm/migrate.c:1157: warning: Excess function parameter 'returns' description in 'next_demotion_node'
Link: https://lkml.kernel.org/r/20210808203151.10632-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under normal circumstances, migrate_pages() returns the number of pages
migrated. In error conditions, it returns an error code. When returning
an error code, there is no way to know how many pages were migrated or not
migrated.
Make migrate_pages() return how many pages are demoted successfully for
all cases, including when encountering errors. Page reclaim behavior will
depend on this in subsequent patches.
Link: https://lkml.kernel.org/r/20210721063926.3024591-3-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-4-ying.huang@intel.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Oscar Salvador <osalvador@suse.de> [optional parameter]
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reclaim-based migration is attempting to optimize data placement in memory
based on the system topology. If the system changes, so must the
migration ordering.
The implementation is conceptually simple and entirely unoptimized. On
any memory or CPU hotplug events, assume that a node was added or removed
and recalculate all migration targets. This ensures that the
node_demotion[] array is always ready to be used in case the new reclaim
mode is enabled.
This recalculation is far from optimal, most glaringly that it does not
even attempt to figure out the hotplug event would have some *actual*
effect on the demotion order. But, given the expected paucity of hotplug
events, this should be fine.
Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Migrate Pages in lieu of discard", v11.
We're starting to see systems with more and more kinds of memory such as
Intel's implementation of persistent memory.
Let's say you have a system with some DRAM and some persistent memory.
Today, once DRAM fills up, reclaim will start and some of the DRAM
contents will be thrown out. Allocations will, at some point, start
falling over to the slower persistent memory.
That has two nasty properties. First, the newer allocations can end up in
the slower persistent memory. Second, reclaimed data in DRAM are just
discarded even if there are gobs of space in persistent memory that could
be used.
This patchset implements a solution to these problems. At the end of the
reclaim process in shrink_page_list() just before the last page refcount
is dropped, the page is migrated to persistent memory instead of being
dropped.
While I've talked about a DRAM/PMEM pairing, this approach would function
in any environment where memory tiers exist.
This is not perfect. It "strands" pages in slower memory and never brings
them back to fast DRAM. Huang Ying has follow-on work which repurposes
NUMA balancing to promote hot pages back to DRAM.
This is also all based on an upstream mechanism that allows persistent
memory to be onlined and used as if it were volatile:
http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com
With that, the DRAM and PMEM in each socket will be represented as 2
separate NUMA nodes, with the CPUs sit in the DRAM node. So the
general inter-NUMA demotion mechanism introduced in the patchset can
migrate the cold DRAM pages to the PMEM node.
We have tested the patchset with the postgresql and pgbench. On a
2-socket server machine with DRAM and PMEM, the kernel with the patchset
can improve the score of pgbench up to 22.1% compared with that of the
DRAM only + disk case. This comes from the reduced disk read throughput
(which reduces up to 70.8%).
== Open Issues ==
* Memory policies and cpusets that, for instance, restrict allocations
to DRAM can be demoted to PMEM whenever they opt in to this
new mechanism. A cgroup-level API to opt-in or opt-out of
these migrations will likely be required as a follow-on.
* Could be more aggressive about where anon LRU scanning occurs
since it no longer necessarily involves I/O. get_scan_count()
for instance says: "If we have no swap space, do not bother
scanning anon pages"
This patch (of 9):
Prepare for the kernel to auto-migrate pages to other memory nodes with a
node migration table. This allows creating single migration target for
each NUMA node to enable the kernel to do NUMA page migrations instead of
simply discarding colder pages. A node with no target is a "terminal
node", so reclaim acts normally there. The migration target does not
fundamentally _need_ to be a single node, but this implementation starts
there to limit complexity.
When memory fills up on a node, memory contents can be automatically
migrated to another node. The biggest problems are knowing when to
migrate and to where the migration should be targeted.
The most straightforward way to generate the "to where" list would be to
follow the page allocator fallback lists. Those lists already tell us if
memory is full where to look next. It would also be logical to move
memory in that order.
But, the allocator fallback lists have a fatal flaw: most nodes appear in
all the lists. This would potentially lead to migration cycles (A->B,
B->A, A->B, ...).
Instead of using the allocator fallback lists directly, keep a separate
node migration ordering. But, reuse the same data used to generate page
allocator fallback in the first place: find_next_best_node().
This means that the firmware data used to populate node distances
essentially dictates the ordering for now. It should also be
architecture-neutral since all NUMA architectures have a working
find_next_best_node().
RCU is used to allow lock-less read of node_demotion[] and prevent
demotion cycles been observed. If multiple reads of node_demotion[] are
performed, a single rcu_read_lock() must be held over all reads to ensure
no cycles are observed. Details are as follows.
=== What does RCU provide? ===
Imagine a simple loop which walks down the demotion path looking
for the last node:
terminal_node = start_node;
while (node_demotion[terminal_node] != NUMA_NO_NODE) {
terminal_node = node_demotion[terminal_node];
}
The initial values are:
node_demotion[0] = 1;
node_demotion[1] = NUMA_NO_NODE;
and are updated to:
node_demotion[0] = NUMA_NO_NODE;
node_demotion[1] = 0;
What guarantees that the cycle is not observed:
node_demotion[0] = 1;
node_demotion[1] = 0;
and would loop forever?
With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since
the write side does a synchronize_rcu(), the loop that observed the old
contents is known to be complete before the synchronize_rcu() has
completed.
RCU, combined with disable_all_migrate_targets(), ensures that the old
migration state is not visible by the time __set_migration_target_nodes()
is called.
=== What does READ_ONCE() provide? ===
READ_ONCE() forbids the compiler from merging or reordering successive
reads of node_demotion[]. This ensures that any updates are *eventually*
observed.
Consider the above loop again. The compiler could theoretically read the
entirety of node_demotion[] into local storage (registers) and never go
back to memory, and *permanently* observe bad values for node_demotion[].
Note: RCU does not provide any universal compiler-ordering
guarantees:
https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/
This code is unused for now. It will be called later in the
series.
Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to commit 2da9f6305f ("mm/vmscan: fix NR_ISOLATED_FILE
corruption on 64-bit") avoid using unsigned int for nr_pages. With
unsigned int type the large unsigned int converts to a large positive
signed long.
Symptoms include CMA allocations hanging forever due to
alloc_contig_range->...->isolate_migratepages_block waiting forever in
"while (unlikely(too_many_isolated(pgdat)))".
Link: https://lkml.kernel.org/r/20210728042531.359409-1-aneesh.kumar@linux.ibm.com
Fixes: c5fc5c3ae0 ("mm: migrate: account THP NUMA migration counters correctly")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rewrite copy_huge_page() and move it into mm/util.c so it's always
available. Fixes an exposure of uninitialised memory on configurations
with HUGETLB and UFFD enabled and MIGRATION disabled.
Fixes: 8cc5fcbb5b ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MMU notifier ranges have a migrate_pgmap_owner field which is used by
drivers to store a pointer. This is subsequently used by the driver
callback to filter MMU_NOTIFY_MIGRATE events. Other notifier event types
can also benefit from this filtering, so rename the 'migrate_pgmap_owner'
field to 'owner' and create a new notifier initialisation function to
initialise this field.
Link: https://lkml.kernel.org/r/20210616105937.23201-6-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration is currently implemented as a mode of operation for
try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag
or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE.
However it does not have much in common with the rest of the unmap
functionality of try_to_unmap_one() and thus splitting it into a separate
function reduces the complexity of try_to_unmap_one() making it more
readable.
Several simplifications can also be made in try_to_migrate_one() based on
the following observations:
- All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK.
- No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON.
- No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH.
TTU_SPLIT_FREEZE is a special case of migration used when splitting an
anonymous page. This is most easily dealt with by calling the correct
function from unmap_page() in mm/huge_memory.c - either try_to_migrate()
for PageAnon or try_to_unmap().
Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both migration and device private pages use special swap entries that are
manipluated by a range of inline functions. The arguments to these are
somewhat inconsistent so rework them to remove flag type arguments and to
make the arguments similar for both read and write entry creation.
Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Add support for SVM atomics in Nouveau", v11.
Introduction
============
Some devices have features such as atomic PTE bits that can be used to
implement atomic access to system memory. To support atomic operations to
a shared virtual memory page such a device needs access to that page which
is exclusive of the CPU. This series introduces a mechanism to
temporarily unmap pages granting exclusive access to a device.
These changes are required to support OpenCL atomic operations in Nouveau
to shared virtual memory (SVM) regions allocated with the
CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the
OpenCL SVM feature is available at
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/
OpenCL_API.html#_shared_virtual_memory .
Implementation
==============
Exclusive device access is implemented by adding a new swap entry type
(SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main
difference is that on fault the original entry is immediately restored by
the fault handler instead of waiting.
Restoring the entry triggers calls to MMU notifers which allows a device
driver to revoke the atomic access permission from the GPU prior to the
CPU finalising the entry.
Patches
=======
Patches 1 & 2 refactor existing migration and device private entry
functions.
Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated
functionality into separate functions - try_to_migrate_one() and
try_to_munlock_one().
Patch 5 renames some existing code but does not introduce functionality.
Patch 6 is a small clean-up to swap entry handling in copy_pte_range().
Patch 7 contains the bulk of the implementation for device exclusive
memory.
Patch 8 contains some additions to the HMM selftests to ensure everything
works as expected.
Patch 9 is a cleanup for the Nouveau SVM implementation.
Patch 10 contains the implementation of atomic access for the Nouveau
driver.
Testing
=======
This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program
which checks that GPU atomic accesses to system memory are atomic.
Without this series the test fails as there is no way of write-protecting
the page mapping which results in the device clobbering CPU writes. For
reference the test is available at
https://ozlabs.org/~apopple/opencl_svm_atomics/
Further testing has been performed by adding support for testing exclusive
access to the hmm-tests kselftests.
This patch (of 10):
Remove multiple similar inline functions for dealing with different types
of special swap entries.
Both migration and device private swap entries use the swap offset to
store a pfn. Instead of multiple inline functions to obtain a struct page
for each swap entry type use a common function pfn_swap_entry_to_page().
Also open-code the various entry_to_pfn() functions as this results is
shorter code that is easier to understand.
Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com
Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The generic migration path will check refcount, so no need check refcount
here. But the old code actually prevents from migrating shared THP
(mapped by multiple processes), so bail out early if mapcount is > 1 to
keep the behavior.
Link: https://lkml.kernel.org/r/20210518200801.7413-7-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old behavior didn't split THP if migration is failed due to lack of
memory on the target node. But the THP migration does split THP, so keep
the old behavior for misplaced NUMA page migration.
Link: https://lkml.kernel.org/r/20210518200801.7413-6-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now both base page and THP NUMA migration is done via
migrate_misplaced_page(), keep the counters correctly for THP.
Link: https://lkml.kernel.org/r/20210518200801.7413-5-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the THP NUMA fault support was added THP migration was not supported
yet. So the ad hoc THP migration was implemented in NUMA fault handling.
Since v4.14 THP migration has been supported so it doesn't make too much
sense to still keep another THP migration implementation rather than using
the generic migration code.
This patch reworks the NUMA fault handling to use generic migration
implementation to migrate misplaced page. There is no functional change.
After the refactor the flow of NUMA fault handling looks just like its
PTE counterpart:
Acquire ptl
Prepare for migration (elevate page refcount)
Release ptl
Isolate page from lru and elevate page refcount
Migrate the misplaced THP
If migration fails just restore the old normal PMD.
In the old code anon_vma lock was needed to serialize THP migration
against THP split, but since then the THP code has been reworked a lot, it
seems anon_vma lock is not required anymore to avoid the race.
The page refcount elevation when holding ptl should prevent from THP
split.
Use migrate_misplaced_page() for both base page and THP NUMA hinting fault
and remove all the dead and duplicate code.
[dan.carpenter@oracle.com: fix a double unlock bug]
Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda
Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit d6995da311 ("hugetlb: use page.private for hugetlb specific
page flags") converts page.private for hugetlb specific page flags. We
should use hugetlb_page_subpool() to get the subpool pointer instead of
page_private().
This 'could' prevent the migration of hugetlb pages. page_private(hpage)
is now used for hugetlb page specific flags. At migration time, the only
flag which could be set is HPageVmemmapOptimized. This flag will only be
set if the new vmemmap reduction feature is enabled. In addition,
!page_mapping() implies an anonymous mapping. So, this will prevent
migration of hugetb pages in anonymous mappings if the vmemmap reduction
feature is enabled.
In addition, that if statement checked for the rare race condition of a
page being migrated while in the process of being freed. Since that check
is now wrong, we could leak hugetlb subpool usage counts.
The commit forgot to update it in the page migration routine. So fix it.
[songmuchun@bytedance.com: fix compiler error when !CONFIG_HUGETLB_PAGE reported by Randy]
Link: https://lkml.kernel.org/r/20210521022747.35736-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210520025949.1866-1-songmuchun@bytedance.com
Fixes: d6995da311 ("hugetlb: use page.private for hugetlb specific page flags")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reported-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Anshuman Khandual <anshuman.khandual@arm.com> [arm64]
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On UFFDIO_COPY, if we fail to copy the page contents while holding the
hugetlb_fault_mutex, we will drop the mutex and return to the caller after
allocating a page that consumed a reservation. In this case there may be
a fault that double consumes the reservation. To handle this, we free the
allocated page, fix the reservations, and allocate a temporary hugetlb
page and return that to the caller. When the caller does the copy outside
of the lock, we again check the cache, and allocate a page consuming the
reservation, and copy over the contents.
Test:
Hacked the code locally such that resv_huge_pages underflows produce
a warning and the copy_huge_page_from_user() always fails, then:
./tools/testing/selftests/vm/userfaultfd hugetlb_shared 10
2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success
./tools/testing/selftests/vm/userfaultfd hugetlb 10
2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success
Both tests succeed and produce no warnings. After the
test runs number of free/resv hugepages is correct.
[yuehaibing@huawei.com: remove set but not used variable 'vm_alloc_shared']
Link: https://lkml.kernel.org/r/20210601141610.28332-1-yuehaibing@huawei.com
[almasrymina@google.com: fix allocation error check and copy func name]
Link: https://lkml.kernel.org/r/20210605010626.1459873-1-almasrymina@google.com
Link: https://lkml.kernel.org/r/20210528005029.88088-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Subject: [PATCH v2 0/5] Implement huge VMAP and VMALLOC on powerpc 8xx", v2.
This series implements huge VMAP and VMALLOC on powerpc 8xx.
Powerpc 8xx has 4 page sizes:
- 4k
- 16k
- 512k
- 8M
At the time being, vmalloc and vmap only support huge pages which are
leaf at PMD level.
Here the PMD level is 4M, it doesn't correspond to any supported
page size.
For now, implement use of 16k and 512k pages which is done
at PTE level.
Support of 8M pages will be implemented later, it requires use of
hugepd tables.
To allow this, the architecture provides two functions:
- arch_vmap_pte_range_map_size() which tells vmap_pte_range() what
page size to use. A stub returning PAGE_SIZE is provided when the
architecture doesn't provide this function.
- arch_vmap_pte_supported_shift() which tells __vmalloc_node_range()
what page shift to use for a given area size. A stub returning
PAGE_SHIFT is provided when the architecture doesn't provide this
function.
This patch (of 5):
At the time being, arch_make_huge_pte() has the following prototype:
pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
struct page *page, int writable);
vma is used to get the pages shift or size.
vma is also used on Sparc to get vm_flags.
page is not used.
writable is not used.
In order to use this function without a vma, replace vma by shift and
flags. Also remove the used parameters.
Link: https://lkml.kernel.org/r/cover.1620795204.git.christophe.leroy@csgroup.eu
Link: https://lkml.kernel.org/r/f4633ac6a7da2f22f31a04a89e0a7026bb78b15b.1620795204.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we free a HugeTLB page to the buddy allocator, we need to allocate
the vmemmap pages associated with it. However, we may not be able to
allocate the vmemmap pages when the system is under memory pressure. In
this case, we just refuse to free the HugeTLB page. This changes behavior
in some corner cases as listed below:
1) Failing to free a huge page triggered by the user (decrease nr_pages).
User needs to try again later.
2) Failing to free a surplus huge page when freed by the application.
Try again later when freeing a huge page next time.
3) Failing to dissolve a free huge page on ZONE_MOVABLE via
offline_pages().
This can happen when we have plenty of ZONE_MOVABLE memory, but
not enough kernel memory to allocate vmemmmap pages. We may even
be able to migrate huge page contents, but will not be able to
dissolve the source huge page. This will prevent an offline
operation and is unfortunate as memory offlining is expected to
succeed on movable zones. Users that depend on memory hotplug
to succeed for movable zones should carefully consider whether the
memory savings gained from this feature are worth the risk of
possibly not being able to offline memory in certain situations.
4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via
alloc_contig_range() - once we have that handling in place. Mainly
affects CMA and virtio-mem.
Similar to 3). virito-mem will handle migration errors gracefully.
CMA might be able to fallback on other free areas within the CMA
region.
Vmemmap pages are allocated from the page freeing context. In order for
those allocations to be not disruptive (e.g. trigger oom killer)
__GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because
a non sleeping allocation would be too fragile and it could fail too
easily under memory pressure. GFP_ATOMIC or other modes to access memory
reserves is not used because we want to prevent consuming reserves under
heavy hugetlb freeing.
[mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page]
Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com
[willy@infradead.org: fix alloc_vmemmap_page_list documentation warning]
Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org
Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use vma_lookup() to find the VMA at a specific address. As vma_lookup()
will return NULL if the address is not within any VMA, the start address
no longer needs to be validated.
Link: https://lkml.kernel.org/r/20210521174745.2219620-20-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We notice that hung task happens in a corner but practical scenario when
CONFIG_PREEMPT_NONE is enabled, as follows.
Process 0 Process 1 Process 2..Inf
split_huge_page_to_list
unmap_page
split_huge_pmd_address
__migration_entry_wait(head)
__migration_entry_wait(tail)
remap_page (roll back)
remove_migration_ptes
rmap_walk_anon
cond_resched
Where __migration_entry_wait(tail) is occurred in kernel space, e.g.,
copy_to_user in fstat, which will immediately fault again without
rescheduling, and thus occupy the cpu fully.
When there are too many processes performing __migration_entry_wait on
tail page, remap_page will never be done after cond_resched.
This makes __migration_entry_wait operate on the compound head page,
thus waits for remap_page to complete, whether the THP is split
successfully or roll back.
Note that put_and_wait_on_page_locked helps to drop the page reference
acquired with get_page_unless_zero, as soon as the page is on the wait
queue, before actually waiting. So splitting the THP is only prevented
for a brief interval.
Link: https://lkml.kernel.org/r/b9836c1dd522e903891760af9f0c86a2cce987eb.1623144009.git.xuyu@linux.alibaba.com
Fixes: ba98828088 ("thp: add option to setup migration entries during PMD split")
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Gang Deng <gavin.dg@linux.alibaba.com>
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cma and migrate trace events to enable CMA allocation performance to
be measured via ftrace.
[georgi.djakov@linaro.org: add the CMA instance name to the cma_alloc_start trace event]
Link: https://lkml.kernel.org/r/20210326155414.25006-1-georgi.djakov@linaro.org
Link: https://lkml.kernel.org/r/20210324160740.15901-1-georgi.djakov@linaro.org
Signed-off-by: Liam Mark <lmark@codeaurora.org>
Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit c77c5cbafe.
Since commit c77c5cbafe ("mm: migrate: skip shared exec THP for NUMA
balancing"), the NUMA balancing would skip shared exec transhuge page.
But this enhancement is not suitable for transhuge page. Because it's
required that page_mapcount() must be 1 due to no migration pte dance is
done here. On the other hand, the shared exec transhuge page will leave
the migrate_misplaced_page() with pte entry untouched and page locked.
Thus pagefault for NUMA will be triggered again and deadlock occurs when
we start waiting for the page lock held by ourselves.
Yang Shi said:
"Thanks for catching this. By relooking the code I think the other
important reason for removing this is
migrate_misplaced_transhuge_page() actually can't see shared exec
file THP at all since page_lock_anon_vma_read() is called before
and if page is not anonymous page it will just restore the PMD
without migrating anything.
The pages for private mapped file vma may be anonymous pages due to
COW but they can't be THP so it won't trigger THP numa fault at all. I
think this is why no bug was reported. I overlooked this in the first
place."
Link: https://lkml.kernel.org/r/20210325131524.48181-6-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's more recommended to use helper function migrate_vma_collect_skip() to
skip the unexpected case and it also helps remove some duplicated codes.
Move migrate_vma_collect_skip() above migrate_vma_collect_hole() to avoid
compiler warning.
Link: https://lkml.kernel.org/r/20210325131524.48181-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the zone device page does not belong to un-addressable device memory,
the variable entry will be uninitialized and lead to indeterminate pte
entry ultimately. Fix this unexpected case and warn about it.
Link: https://lkml.kernel.org/r/20210325131524.48181-4-linmiaohe@huawei.com
Fixes: df6ad69838 ("mm/device-public-memory: device memory cache coherent with CPU")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's guaranteed that in the 'else' case of the rc == MIGRATEPAGE_SUCCESS
check, rc does not equal to MIGRATEPAGE_SUCCESS. Remove this unnecessary
check.
Link: https://lkml.kernel.org/r/20210325131524.48181-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Cleanup and fixup for mm/migrate.c", v3.
This series contains cleanups to remove unnecessary VM_BUG_ON_PAGE and rc
!= MIGRATEPAGE_SUCCESS check. Also use helper function to remove some
duplicated codes. What's more, this fixes potential deadlock in NUMA
balancing shared exec THP case and so on. More details can be found in
the respective changelogs.
This patch (of 5):
The putback_movable_page() is just called by putback_movable_pages() and
we know the page is locked and both PageMovable() and PageIsolated() is
checked right before calling putback_movable_page(). So we make it static
and remove all the 3 VM_BUG_ON_PAGE().
Link: https://lkml.kernel.org/r/20210325131524.48181-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210325131524.48181-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, migrate_[prep|finish] is merely a wrapper of
lru_cache_[disable|enable]. There is not much to gain from having
additional abstraction.
Use lru_cache_[disable|enable] instead of migrate_[prep|finish], which
would be more descriptive.
note: migrate_prep_local in compaction.c changed into lru_add_drain to
avoid CPU schedule cost with involving many other CPUs to keep old
behavior.
Link: https://lkml.kernel.org/r/20210319175127.886124-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Chris Goldsworthy <cgoldswo@codeaurora.org>
Cc: John Dias <joaodias@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oliver Sang <oliver.sang@intel.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LRU pagevec holds refcount of pages until the pagevec are drained. It
could prevent migration since the refcount of the page is greater than
the expection in migration logic. To mitigate the issue, callers of
migrate_pages drains LRU pagevec via migrate_prep or lru_add_drain_all
before migrate_pages call.
However, it's not enough because pages coming into pagevec after the
draining call still could stay at the pagevec so it could keep
preventing page migration. Since some callers of migrate_pages have
retrial logic with LRU draining, the page would migrate at next trail
but it is still fragile in that it doesn't close the fundamental race
between upcoming LRU pages into pagvec and migration so the migration
failure could cause contiguous memory allocation failure in the end.
To close the race, this patch disables lru caches(i.e, pagevec) during
ongoing migration until migrate is done.
Since it's really hard to reproduce, I measured how many times
migrate_pages retried with force mode(it is about a fallback to a sync
migration) with below debug code.
int migrate_pages(struct list_head *from, new_page_t get_new_page,
..
..
if (rc && reason == MR_CONTIG_RANGE && pass > 2) {
printk(KERN_ERR, "pfn 0x%lx reason %d", page_to_pfn(page), rc);
dump_page(page, "fail to migrate");
}
The test was repeating android apps launching with cma allocation in
background every five seconds. Total cma allocation count was about 500
during the testing. With this patch, the dump_page count was reduced
from 400 to 30.
The new interface is also useful for memory hotplug which currently
drains lru pcp caches after each migration failure. This is rather
suboptimal as it has to disrupt others running during the operation.
With the new interface the operation happens only once. This is also in
line with pcp allocator cache which are disabled for the offlining as
well.
Link: https://lkml.kernel.org/r/20210319175127.886124-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oliver Sang <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are only two callers of __alloc_pages() so prune the thicket of
alloc_page variants by combining the two functions together. Current
callers of __alloc_pages() simply add an extra 'NULL' parameter and
current callers of __alloc_pages_nodemask() call __alloc_pages() instead.
Link: https://lkml.kernel.org/r/20210225150642.2582252-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds swapcache stat for the cgroup v2. The swapcache
represents the memory that is accounted against both the memory and the
swap limit of the cgroup. The main motivation behind exposing the
swapcache stat is for enabling users to gracefully migrate from cgroup
v1's memsw counter to cgroup v2's memory and swap counters.
Cgroup v1's memsw limit allows users to limit the memory+swap usage of a
workload but without control on the exact proportion of memory and swap.
Cgroup v2 provides separate limits for memory and swap which enables more
control on the exact usage of memory and swap individually for the
workload.
With some little subtleties, the v1's memsw limit can be switched with the
sum of the v2's memory and swap limits. However the alternative for memsw
usage is not yet available in cgroup v2. Exposing per-cgroup swapcache
stat enables that alternative. Adding the memory usage and swap usage and
subtracting the swapcache will approximate the memsw usage. This will
help in the transparent migration of the workloads depending on memsw
usage and limit to v2' memory and swap counters.
The reasons these applications are still interested in this approximate
memsw usage are: (1) these applications are not really interested in two
separate memory and swap usage metrics. A single usage metric is more
simple to use and reason about for them.
(2) The memsw usage metric hides the underlying system's swap setup from
the applications. Applications with multiple instances running in a
datacenter with heterogeneous systems (some have swap and some don't) will
keep seeing a consistent view of their usage.
[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]
Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is prep work for the next patch, but I think at least one of the
current callers would prefer a killable sleep to an uninterruptible one.
Link: https://lkml.kernel.org/r/20210122160140.223228-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All pages isolated for the migration have an elevated reference count and
therefore seeing a reference count equal to 1 means that the last user of
the page has dropped the reference and the page has became unused and
there doesn't make much sense to migrate it anymore.
This has been done for regular pages and this patch does the same for
hugetlb pages. Although the likelihood of the race is rather small for
hugetlb pages it makes sense the two code paths in sync.
Link: https://lkml.kernel.org/r/20210115124942.46403-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel is not correctly updating the numa stats for
NR_FILE_PAGES and NR_SHMEM on THP migration. Fix that.
For NR_FILE_DIRTY and NR_ZONE_WRITE_PENDING, although at the moment
there is no need to handle THP migration as kernel still does not have
write support for file THP but to be more future proof, this patch adds
the THP support for those stats as well.
Link: https://lkml.kernel.org/r/20210108155813.2914586-2-shakeelb@google.com
Fixes: e71769ae52 ("mm: enable thp migration for shmem thp")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel updates the per-node NR_FILE_DIRTY stats on page migration
but not the memcg numa stats.
That was not an issue until recently the commit 5f9a4f4a70 ("mm:
memcontrol: add the missing numa_stat interface for cgroup v2") exposed
numa stats for the memcg.
So fix the file_dirty per-memcg numa stat.
Link: https://lkml.kernel.org/r/20210108155813.2914586-1-shakeelb@google.com
Fixes: 5f9a4f4a70 ("mm: memcontrol: add the missing numa_stat interface for cgroup v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"dst" parameter to migrate_vma_insert_page() is not used anymore.
Link: https://lkml.kernel.org/r/CANubcdUwCAMuUyamG2dkWP=cqSR9MAS=tHLDc95kQkqU-rEnAg@mail.gmail.com
Signed-off-by: Stephen Zhang <starzhangzsd@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current implementation unmap_and_move() would return -ENOMEM if THP
migration is unsupported, then the THP will be split. If split is failed
just exit without trying to migrate other pages. It doesn't make too much
sense since there may be enough free memory to migrate other pages and
there may be a lot base pages on the list.
Return -ENOSYS to make consistent with hugetlb. And if THP split is
failed just skip and try other pages on the list.
Just skip the whole list and exit when free memory is really low.
Link: https://lkml.kernel.org/r/20201113205359.556831-6-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migrate_prep{_local} never fails, so it is pointless to have return
value and check the return value.
Link: https://lkml.kernel.org/r/20201113205359.556831-5-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The NUMA balancing skip shared exec base page. Since
CONFIG_READ_ONLY_THP_FOR_FS was introduced, there are probably shared exec
THP, so skip such THPs for NUMA balancing as well.
And Willy's regular filesystem THP support patches could create shared
exec THP wven without that config.
In addition, the page_is_file_lru() is used to tell if the page is file
cache or not, but it filters out shmem page. It sounds like a typical
usecase by putting executables in shmem to achieve performance gain via
using shmem-THP, so it sounds worth skipping migration for such case too.
Link: https://lkml.kernel.org/r/20201113205359.556831-4-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When unmap_and_move{_huge_page}() returns !-EAGAIN and
!MIGRATEPAGE_SUCCESS, the page would be put back to LRU or proper list if
it is non-LRU movable page. But, the callers always call
putback_movable_pages() to put the failed pages back later on, so it seems
not very efficient to put every single page back immediately, and the code
looks convoluted.
Put the failed page on a separate list, then splice the list to migrate
list when all pages are tried. It is the caller's responsibility to call
putback_movable_pages() to handle failures. This also makes the code
simpler and more readable.
After the change the rules are:
* Success: non hugetlb page will be freed, hugetlb page will be put
back
* -EAGAIN: stay on the from list
* -ENOMEM: stay on the from list
* Other errno: put on ret_pages list then splice to from list
The from list would be empty iff all pages are migrated successfully, it
was not so before. This has no impact to current existing callsites.
Link: https://lkml.kernel.org/r/20201113205359.556831-3-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: misc migrate cleanup and improvement", v3.
This patch (of 5):
The commit 9f4e41f471 ("mm: refactor truncate_complete_page()")
refactored truncate_complete_page(), and it is not existed anymore,
correct the comment in vmscan and migrate to avoid confusion.
Link: https://lkml.kernel.org/r/20201113205359.556831-1-shy828301@gmail.com
Link: https://lkml.kernel.org/r/20201113205359.556831-2-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When migrating a zero page or pte_none() anonymous page to device private
memory, migrate_vma_setup() will initialize the src[] array with a NULL
PFN. This lets the device driver allocate device private memory and clear
it instead of DMAing a page of zeros over the device bus.
Since the source page didn't exist at the time, no struct page was locked
nor a migration PTE inserted into the CPU page tables. The actual PTE
insertion happens in migrate_vma_pages() when it tries to insert the
device private struct page PTE into the CPU page tables.
migrate_vma_pages() has to call the mmu notifiers again since another
device could fault on the same page before the page table locks are
acquired.
Allow device drivers to optimize the invalidation similar to
migrate_vma_setup() by calling mmu_notifier_range_init() which sets struct
mmu_notifier_range event type to MMU_NOTIFY_MIGRATE and the
migrate_pgmap_owner field.
Link: https://lkml.kernel.org/r/20201021191335.10916-1-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The word in the comment is misspelled, it should be "include".
Link: https://lkml.kernel.org/r/20201024114144.GA20552@lilong
Signed-off-by: Long Li <lonuxli.64@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 369ea8242c ("mm/rmap: update to new mmu_notifier semantic
v2"), the code to check the secondary MMU's page table access bit is
broken for !(TTU_IGNORE_ACCESS) because the page is unmapped from the
secondary MMU's page table before the check. More specifically for those
secondary MMUs which unmap the memory in
mmu_notifier_invalidate_range_start() like kvm.
However memory reclaim is the only user of !(TTU_IGNORE_ACCESS) or the
absence of TTU_IGNORE_ACCESS and it explicitly performs the page table
access check before trying to unmap the page. So, at worst the reclaim
will miss accesses in a very short window if we remove page table access
check in unmapping code.
There is an unintented consequence of !(TTU_IGNORE_ACCESS) for the memcg
reclaim. From memcg reclaim the page_referenced() only account the
accesses from the processes which are in the same memcg of the target page
but the unmapping code is considering accesses from all the processes, so,
decreasing the effectiveness of memcg reclaim.
The simplest solution is to always assume TTU_IGNORE_ACCESS in unmapping
code.
Link: https://lkml.kernel.org/r/20201104231928.1494083-1-shakeelb@google.com
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Qian Cai reported the following BUG in [1]
LTP: starting move_pages12
BUG: unable to handle page fault for address: ffffffffffffffe0
...
RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63
Call Trace:
rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864
try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763
migrate_pages+0x1005/0x1fb0
move_pages_and_store_status.isra.47+0xd7/0x1a0
__x64_sys_move_pages+0xa5c/0x1100
do_syscall_64+0x5f/0x310
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Hugh Dickins diagnosed this as a migration bug caused by code introduced
to use i_mmap_rwsem for pmd sharing synchronization. Specifically, the
routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED
flag to try_to_unmap() while holding i_mmap_rwsem. This is wrong for
anon pages as the anon_vma_lock should be held in this case. Further
analysis suggested that i_mmap_rwsem was not required to he held at all
when calling try_to_unmap for anon pages as an anon page could never be
part of a shared pmd mapping.
Discussion also revealed that the hack in hugetlb_page_mapping_lock_write
to drop page lock and acquire i_mmap_rwsem is wrong. There is no way to
keep mapping valid while dropping page lock.
This patch does the following:
- Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when
calling try_to_unmap.
- Remove the hacky code in hugetlb_page_mapping_lock_write. The routine
will now simply do a 'trylock' while still holding the page lock. If
the trylock fails, it will return NULL. This could impact the
callers:
- migration calling code will receive -EAGAIN and retry up to the
hard coded limit (10).
- memory error code will treat the page as BUSY. This will force
killing (SIGKILL) instead of SIGBUS any mapping tasks.
Do note that this change in behavior only happens when there is a
race. None of the standard kernel testing suites actually hit this
race, but it is possible.
[1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/
[2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/
Fixes: c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Reported-by: Qian Cai <cai@lca.pw>
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to check if this process has the right to modify the
specified process when they are same. And we could also skip the security
hook call if a process is modifying its own pages. Add helper function to
handle these.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Hongxiang Lou <louhongxiang@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christopher Lameter <cl@linux.com>
Link: https://lkml.kernel.org/r/20200819083331.19012-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch changes the way we set and handle in-use poisoned pages. Until
now, poisoned pages were released to the buddy allocator, trusting that
the checks that take place at allocation time would act as a safe net and
would skip that page.
This has proved to be wrong, as we got some pfn walkers out there, like
compaction, that all they care is the page to be in a buddy freelist.
Although this might not be the only user, having poisoned pages in the
buddy allocator seems a bad idea as we should only have free pages that
are ready and meant to be used as such.
Before explaining the taken approach, let us break down the kind of pages
we can soft offline.
- Anonymous THP (after the split, they end up being 4K pages)
- Hugetlb
- Order-0 pages (that can be either migrated or invalited)
* Normal pages (order-0 and anon-THP)
- If they are clean and unmapped page cache pages, we invalidate
then by means of invalidate_inode_page().
- If they are mapped/dirty, we do the isolate-and-migrate dance.
Either way, do not call put_page directly from those paths. Instead, we
keep the page and send it to page_handle_poison to perform the right
handling.
page_handle_poison sets the HWPoison flag and does the last put_page.
Down the chain, we placed a check for HWPoison page in
free_pages_prepare, that just skips any poisoned page, so those pages
do not end up in any pcplist/freelist.
After that, we set the refcount on the page to 1 and we increment
the poisoned pages counter.
If we see that the check in free_pages_prepare creates trouble, we can
always do what we do for free pages:
- wait until the page hits buddy's freelists
- take it off, and flag it
The downside of the above approach is that we could race with an
allocation, so by the time we want to take the page off the buddy, the
page has been already allocated so we cannot soft offline it.
But the user could always retry it.
* Hugetlb pages
- We isolate-and-migrate them
After the migration has been successful, we call dissolve_free_huge_page,
and we set HWPoison on the page if we succeed.
Hugetlb has a slightly different handling though.
While for non-hugetlb pages we cared about closing the race with an
allocation, doing so for hugetlb pages requires quite some additional
and intrusive code (we would need to hook in free_huge_page and some other
places).
So I decided to not make the code overly complicated and just fail
normally if the page we allocated in the meantime.
We can always build on top of this.
As a bonus, because of the way we handle now in-use pages, we no longer
need the put-as-isolation-migratetype dance, that was guarding for poisoned
pages to end up in pcplists.
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Aristeu Rozanski <aris@ruivo.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Yakunin <zeil@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Device public memory never had an in tree consumer and was removed in
commit 25b2995a35 ("mm: remove MEMORY_DEVICE_PUBLIC support"). Delete
the obsolete comment.
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20200827190735.12752-2-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable struct migrate_vma->cpages is only used in
migrate_vma_setup(). There is no need to decrement it in
migrate_vma_finalize() since it is never checked.
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20200827190735.12752-1-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+EWUgQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpnoxEADCVSNBRkpV0OVkOEC3wf8EGhXhk01Jnjtl
u5Mg2V55hcgJ0thQxBV/V28XyqmsEBrmAVi0Yf8Vr9Qbq4Ze08Wae4ChS4rEOyh1
jTcGYWx5aJB3ChLvV/HI0nWQ3bkj03mMrL3SW8rhhf5DTyKHsVeTenpx42Qu/FKf
fRzi09FSr3Pjd0B+EX6gunwJnlyXQC5Fa4AA0GhnXJzAznANXxHkkcXu8a6Yw75x
e28CfhIBliORsK8sRHLoUnPpeTe1vtxCBhBMsE+gJAj9ZUOWMzvNFIPP4FvfawDy
6cCQo2m1azJ/IdZZCDjFUWyjh+wxdKMp+NNryEcoV+VlqIoc3n98rFwrSL+GIq5Z
WVwEwq+AcwoMCsD29Lu1ytL2PQ/RVqcJP5UheMrbL4vzefNfJFumQVZLIcX0k943
8dFL2QHL+H/hM9Dx5y5rjeiWkAlq75v4xPKVjh/DHb4nehddCqn/+DD5HDhNANHf
c1kmmEuYhvLpIaC4DHjE6DwLh8TPKahJjwsGuBOTr7D93NUQD+OOWsIhX6mNISIl
FFhP8cd0/ZZVV//9j+q+5B4BaJsT+ZtwmrelKFnPdwPSnh+3iu8zPRRWO+8P8fRC
YvddxuJAmE6BLmsAYrdz6Xb/wqfyV44cEiyivF0oBQfnhbtnXwDnkDWSfJD1bvCm
ZwfpDh2+Tg==
=LzyE
-----END PGP SIGNATURE-----
Merge tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- Series of merge handling cleanups (Baolin, Christoph)
- Series of blk-throttle fixes and cleanups (Baolin)
- Series cleaning up BDI, seperating the block device from the
backing_dev_info (Christoph)
- Removal of bdget() as a generic API (Christoph)
- Removal of blkdev_get() as a generic API (Christoph)
- Cleanup of is-partition checks (Christoph)
- Series reworking disk revalidation (Christoph)
- Series cleaning up bio flags (Christoph)
- bio crypt fixes (Eric)
- IO stats inflight tweak (Gabriel)
- blk-mq tags fixes (Hannes)
- Buffer invalidation fixes (Jan)
- Allow soft limits for zone append (Johannes)
- Shared tag set improvements (John, Kashyap)
- Allow IOPRIO_CLASS_RT for CAP_SYS_NICE (Khazhismel)
- DM no-wait support (Mike, Konstantin)
- Request allocation improvements (Ming)
- Allow md/dm/bcache to use IO stat helpers (Song)
- Series improving blk-iocost (Tejun)
- Various cleanups (Geert, Damien, Danny, Julia, Tetsuo, Tian, Wang,
Xianting, Yang, Yufen, yangerkun)
* tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block: (191 commits)
block: fix uapi blkzoned.h comments
blk-mq: move cancel of hctx->run_work to the front of blk_exit_queue
blk-mq: get rid of the dead flush handle code path
block: get rid of unnecessary local variable
block: fix comment and add lockdep assert
blk-mq: use helper function to test hw stopped
block: use helper function to test queue register
block: remove redundant mq check
block: invoke blk_mq_exit_sched no matter whether have .exit_sched
percpu_ref: don't refer to ref->data if it isn't allocated
block: ratelimit handle_bad_sector() message
blk-throttle: Re-use the throtl_set_slice_end()
blk-throttle: Open code __throtl_de/enqueue_tg()
blk-throttle: Move service tree validation out of the throtl_rb_first()
blk-throttle: Move the list operation after list validation
blk-throttle: Fix IO hang for a corner case
blk-throttle: Avoid tracking latency if low limit is invalid
blk-throttle: Avoid getting the current time if tg->last_finish_time is 0
blk-throttle: Remove a meaningless parameter for throtl_downgrade_state()
block: Remove redundant 'return' statement
...
PageTransHuge returns true for both thp and hugetlb, so thp stats was
counting both thp and hugetlb migrations. Exclude hugetlb migration by
setting is_thp variable right.
Clean up thp handling code too when we are there.
Fixes: 1a5bae25e3 ("mm/vmstat: add events for THP migration without split")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lkml.kernel.org/r/20200917210413.1462975-1-zi.yan@sent.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the two negative flags that are always used together with a
single positive flag that indicates the writeback capability instead
of two related non-capabilities. Also remove the pointless wrappers
to just check the flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
hugetlbfs pages do not participate in memcg: so although they do find most
of migrate_page_states() useful, it would be better if they did not call
into mem_cgroup_migrate() - where Qian Cai reported that LTP's
move_pages12 triggers the warning in Alex Shi's prospective commit
"mm/memcg: warning on !memcg after readahead page charged".
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxch.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008301359460.5954@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code to remove a migration PTE and replace it with a device private
PTE was not copying the soft dirty bit from the migration entry. This
could lead to page contents not being marked dirty when faulting the page
back from device private memory.
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Link: https://lkml.kernel.org/r/20200831212222.22409-3-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/migrate: preserve soft dirty in remove_migration_pte()".
I happened to notice this from code inspection after seeing Alistair
Popple's patch ("mm/rmap: Fixup copying of soft dirty and uffd ptes").
This patch (of 2):
The check for is_zone_device_page() and is_device_private_page() is
unnecessary since the latter is sufficient to determine if the page is a
device private page. Simplify the code for easier reading.
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Link: https://lkml.kernel.org/r/20200831212222.22409-1-rcampbell@nvidia.com
Link: https://lkml.kernel.org/r/20200831212222.22409-2-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During memory migration a pte is temporarily replaced with a migration
swap pte. Some pte bits from the existing mapping such as the soft-dirty
and uffd write-protect bits are preserved by copying these to the
temporary migration swap pte.
However these bits are not stored at the same location for swap and
non-swap ptes. Therefore testing these bits requires using the
appropriate helper function for the given pte type.
Unfortunately several code locations were found where the wrong helper
function is being used to test soft_dirty and uffd_wp bits which leads to
them getting incorrectly set or cleared during page-migration.
Fix these by using the correct tests based on pte type.
Fixes: a5430dda8a ("mm/migrate: support un-addressable ZONE_DEVICE page in migration")
Fixes: 8c3328f1f3 ("mm/migrate: migrate_vma() unmap page from vma while collecting pages")
Fixes: f45ec5ff16 ("userfaultfd: wp: support swap and page migration")
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200825064232.10023-2-alistair@popple.id.au
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f45ec5ff16 ("userfaultfd: wp: support swap and page migration")
introduced support for tracking the uffd wp bit during page migration.
However the non-swap PTE variant was used to set the flag for zone device
private pages which are a type of swap page.
This leads to corruption of the swap offset if the original PTE has the
uffd_wp flag set.
Fixes: f45ec5ff16 ("userfaultfd: wp: support swap and page migration")
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: https://lkml.kernel.org/r/20200825064232.10023-1-alistair@popple.id.au
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a well-defined migration target allocation callback. Use it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-7-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are some similar functions for migration target allocation. Since
there is no fundamental difference, it's better to keep just one rather
than keeping all variants. This patch implements base migration target
allocation function. In the following patches, variants will be converted
to use this function.
Changes should be mechanical, but, unfortunately, there are some
differences. First, some callers' nodemask is assgined to NULL since NULL
nodemask will be considered as all available nodes, that is,
&node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is
redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if
user provided gfp_mask has it. This is because future caller of this
function requires to set this node constaint. Lastly, if provided nodeid
is NUMA_NO_NODE, nodeid is set up to the node where migration source
lives. It helps to remove simple wrappers for setting up the nodeid.
Note that PageHighmem() call in previous function is changed to open-code
"is_highmem_idx()" since it provides more readability.
[akpm@linux-foundation.org: tweak patch title, per Vlastimil]
[akpm@linux-foundation.org: fix typo in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
new_page_nodemask is a migration callback and it tries to use a common gfp
flags for the target page allocation whether it is a base page or a THP.
The later only adds GFP_TRANSHUGE to the given mask. This results in the
allocation being slightly more aggressive than necessary because the
resulting gfp mask will contain also __GFP_RECLAIM_KSWAPD. THP
allocations usually exclude this flag to reduce over eager background
reclaim during a high THP allocation load which has been seen during large
mmaps initialization. There is no indication that this is a problem for
migration as well but theoretically the same might happen when migrating
large mappings to a different node. Make the migration callback
consistent with regular THP allocations.
[akpm@linux-foundation.org: fix comment typo, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-5-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no difference between two migration callback functions,
alloc_huge_page_node() and alloc_huge_page_nodemask(), except
__GFP_THISNODE handling. It's redundant to have two almost similar
functions in order to handle this flag. So, this patch tries to remove
one by introducing a new argument, gfp_mask, to
alloc_huge_page_nodemask().
After introducing gfp_mask argument, it's caller's job to provide correct
gfp_mask. So, every callsites for alloc_huge_page_nodemask() are changed
to provide gfp_mask.
Note that it's safe to remove a node id check in alloc_huge_page_node()
since there is no caller passing NUMA_NO_NODE as a node id.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's not performance sensitive function. Move it to .c. This is a
preparation step for future change.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "and".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-8-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add following new vmstat events which will help in validating THP
migration without split. Statistics reported through these new VM events
will help in performance debugging.
1. THP_MIGRATION_SUCCESS
2. THP_MIGRATION_FAILURE
3. THP_MIGRATION_SPLIT
In addition, these new events also update normal page migration statistics
appropriately via PGMIGRATE_SUCCESS and PGMIGRATE_FAILURE. While here,
this updates current trace event 'mm_migrate_pages' to accommodate now
available THP statistics.
[akpm@linux-foundation.org: s/hpage_nr_pages/thp_nr_pages/]
[ziy@nvidia.com: v2]
Link: http://lkml.kernel.org/r/C5E3C65C-8253-4638-9D3C-71A61858BB8B@nvidia.com
[anshuman.khandual@arm.com: s/thp_nr_pages/hpage_nr_pages/]
Link: http://lkml.kernel.org/r/1594287583-16568-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Link: http://lkml.kernel.org/r/1594080415-27924-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/migrate: optimize migrate_vma_setup() for holes".
A simple optimization for migrate_vma_*() when the source vma is not an
anonymous vma and a new test case to exercise it.
This patch (of 2):
When migrating system memory to device private memory, if the source
address range is a valid VMA range and there is no memory or a zero page,
the source PFN array is marked as valid but with no PFN.
This lets the device driver allocate private memory and clear it, then
insert the new device private struct page into the CPU's page tables when
migrate_vma_pages() is called. migrate_vma_pages() only inserts the new
page if the VMA is an anonymous range.
There is no point in telling the device driver to allocate device private
memory and then not migrate the page. Instead, mark the source PFN array
entries as not migrating to avoid this overhead.
[rcampbell@nvidia.com: v2]
Link: http://lkml.kernel.org/r/20200710194840.7602-2-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: "Bharata B Rao" <bharata@linux.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200710194840.7602-1-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20200709165711.26584-1-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20200709165711.26584-2-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current implementation, newly created or swap-in anonymous page is
started on active list. Growing active list results in rebalancing
active/inactive list so old pages on active list are demoted to inactive
list. Hence, the page on active list isn't protected at all.
Following is an example of this situation.
Assume that 50 hot pages on active list. Numbers denote the number of
pages on active/inactive list (active | inactive).
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(uo) | 50(h)
3. workload: another 50 newly created (used-once) pages
50(uo) | 50(uo), swap-out 50(h)
This patch tries to fix this issue. Like as file LRU, newly created or
swap-in anonymous pages will be inserted to the inactive list. They are
promoted to active list if enough reference happens. This simple
modification changes the above example as following.
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(h) | 50(uo)
3. workload: another 50 newly created (used-once) pages
50(h) | 50(uo), swap-out 50(uo)
As you can see, hot pages on active list would be protected.
Note that, this implementation has a drawback that the page cannot be
promoted and will be swapped-out if re-access interval is greater than the
size of inactive list but less than the size of total(active+inactive).
To solve this potential issue, following patch will apply workingset
detection similar to the one that's already applied to file LRU.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On x86_64, when CONFIG_MMU_NOTIFIER is not set/enabled, there is a
compiler error:
mm/migrate.c: In function 'migrate_vma_collect':
mm/migrate.c:2481:7: error: 'struct mmu_notifier_range' has no member named 'migrate_pgmap_owner'
range.migrate_pgmap_owner = migrate->pgmap_owner;
^
Fixes: 998427b3ad ("mm/notifier: add migration invalidation type")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Jason Gunthorpe" <jgg@mellanox.com>
Link: http://lkml.kernel.org/r/20200806193353.7124-1-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series adds reporting of the page table order from hmm_range_fault()
and some optimization of migrate_vma():
- Report the size of the page table mapping out of hmm_range_fault(). This
makes it easier to establish a large/huge/etc mapping in the device's
page table.
- Allow devices to ignore the invalidations during migration in cases
where the migration is not going to change pages. For instance migrating
pages to a device does not require the device to invalidate pages
already in the device.
- Update nouveau and hmm_tests to use the above
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl8oocYACgkQOG33FX4g
mxqd3Q/+OClUADmrI+EGJAPI7VD3EYfyZdnMCcp39AYNfySQPN9+fCMF5hVD5U7x
KZVflR/zKUIZJVvdD8yAdrynZ1sHBG/HEzDyoaKcGzfCKq5LEAEnP5FG3xsiDjkO
QX7w6qIGDz59gaeanQKNzqaR3DMpBwO/0D5/80DWXv+WgmxsAphanJYlo4eWyq4D
EGq8EndCxairkTLpPlDHvFottL5kAKDXEinSAwWGQeZJkRY93vj+HZAQaeltmB1K
SDdZr7lsEg2RhtRjzT7CkA2bkCERKL3xEc4VWaCAZw+qm8aeswADVOSo5E5F7DMI
NUsB/p4GZ2CvIog/y3g/aSGluevdYJHTH8ip1BnNr2qCcXSEqHKsmyKpVNZztSUl
uljyT17ZzTsdR4xj50tM27fzgDaavWrwFZTsJxUifuvAO9rHvGDVpaN8ZIU9iZei
PTsGQvfoHDmWBWKX1dkIUGq+UoGwEAYRGk+XU0OYZCK97xmjRnGVoH0FTOk4DNQs
+A0250oTOrvdSGiv0fNT5qpWpFsQ/84h8Lz6ubAD3okVo1bk9cFMe2argQl+E2qI
TGM9ZHS8rphJNWwiPm8xrgf9eQ9bNp3ilCsIzBBpqZq8elwaL6a3ySieDPE734Ar
FZEeEYTvj5Z/gXtyo/gxVKhltCc4U8kPqye9uexTInz4zBUUZOM=
=omAU
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"Ralph has been working on nouveau's use of hmm_range_fault() and
migrate_vma() which resulted in this small series. It adds reporting
of the page table order from hmm_range_fault() and some optimization
of migrate_vma():
- Report the size of the page table mapping out of hmm_range_fault().
This makes it easier to establish a large/huge/etc mapping in the
device's page table.
- Allow devices to ignore the invalidations during migration in cases
where the migration is not going to change pages.
For instance migrating pages to a device does not require the
device to invalidate pages already in the device.
- Update nouveau and hmm_tests to use the above"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma:
mm/hmm/test: use the new migration invalidation
nouveau/svm: use the new migration invalidation
mm/notifier: add migration invalidation type
mm/migrate: add a flags parameter to migrate_vma
nouveau: fix storing invalid ptes
nouveau/hmm: support mapping large sysmem pages
nouveau: fix mapping 2MB sysmem pages
nouveau/hmm: fault one page at a time
mm/hmm: add tests for hmm_pfn_to_map_order()
mm/hmm: provide the page mapping order in hmm_range_fault()
Currently migrate_vma_setup() calls mmu_notifier_invalidate_range_start()
which flushes all device private page mappings whether or not a page is
being migrated to/from device private memory.
In order to not disrupt device mappings that are not being migrated, shift
the responsibility for clearing device private mappings to the device
driver and leave CPU page table unmapping handled by
migrate_vma_setup().
To support this, the caller of migrate_vma_setup() should always set
struct migrate_vma::pgmap_owner to a non NULL value that matches the
device private page->pgmap->owner. This value is then passed to the struct
mmu_notifier_range with a new event type which the driver's invalidation
function can use to avoid device MMU invalidations.
Link: https://lore.kernel.org/r/20200723223004.9586-4-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The src_owner field in struct migrate_vma is being used for two purposes,
it acts as a selection filter for which types of pages are to be migrated
and it identifies device private pages owned by the caller.
Split this into separate parameters so the src_owner field can be used
just to identify device private pages owned by the caller of
migrate_vma_setup().
Rename the src_owner field to pgmap_owner to reflect it is now used only
to identify which device private pages to migrate.
Link: https://lore.kernel.org/r/20200723223004.9586-3-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
I realize that we fairly recently raised it to 4.8, but the fact is, 4.9
is a much better minimum version to target.
We have a number of workarounds for actual bugs in pre-4.9 gcc versions
(including things like internal compiler errors on ARM), but we also
have some syntactic workarounds for lacking features.
In particular, raising the minimum to 4.9 means that we can now just
assume _Generic() exists, which is likely the much better replacement
for a lot of very convoluted built-time magic with conditionals on
sizeof and/or __builtin_choose_expr() with same_type() etc.
Using _Generic also means that you will need to have a very recent
version of 'sparse', but thats easy to build yourself, and much less of
a hassle than some old gcc version can be.
The latest (in a long string) of reasons for minimum compiler version
upgrades was commit 5435f73d5c ("efi/x86: Fix build with gcc 4").
Ard points out that RHEL 7 uses gcc-4.8, but the people who stay back on
old RHEL versions persumably also don't build their own kernels anyway.
And maybe they should cross-built or just have a little side affair with
a newer compiler?
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swapin faults were the last event to charge pages after they had already
been put on the LRU list. Now that we charge directly on swapin, the
lrucare portion of the charge code is unused.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the page->mapping requirement gone from memcg, we can charge anon and
file-thp pages in one single step, right after they're allocated.
This removes two out of three API calls - especially the tricky commit
step that needed to happen at just the right time between when the page is
"set up" and when it's "published" - somewhat vague and fluid concepts
that varied by page type. All we need is a freshly allocated page and a
memcg context to charge.
v2: prevent double charges on pre-allocated hugepages in khugepaged
[hannes@cmpxchg.org: Fix crash - *hpage could be ERR_PTR instead of NULL]
Link: http://lkml.kernel.org/r/20200512215813.GA487759@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200508183105.225460-13-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg maintains a private MEMCG_RSS counter. This divergence from the
generic VM accounting means unnecessary code overhead, and creates a
dependency for memcg that page->mapping is set up at the time of charging,
so that page types can be told apart.
Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED. We use
lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the
same way we do for NR_FILE_MAPPED.
With the previous patch removing MEMCG_CACHE and the private NR_SHMEM
counter, this patch finally eliminates the need to have page->mapping set
up at charge time. However, we need to have page->mem_cgroup set up by
the time rmap runs and does the accounting, so switch the commit and the
rmap callbacks around.
v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo)
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg maintains private MEMCG_CACHE and NR_SHMEM counters. This
divergence from the generic VM accounting means unnecessary code overhead,
and creates a dependency for memcg that page->mapping is set up at the
time of charging, so that page types can be told apart.
Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counters of NR_FILE_PAGES and NR_SHMEM.
The page is already locked in these places, so page->mem_cgroup is stable;
we only need minimal tweaks of two mem_cgroup_migrate() calls to ensure
it's set up in time.
Then replace MEMCG_CACHE with NR_FILE_PAGES and delete the private
NR_SHMEM accounting sites.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-10-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg charging API carries a boolean @compound parameter that tells
whether the page we're dealing with is a hugepage.
mem_cgroup_commit_charge() has another boolean @lrucare that indicates
whether the page needs LRU locking or not while charging. The majority of
callsites know those parameters at compile time, which results in a lot of
naked "false, false" argument lists. This makes for cryptic code and is a
breeding ground for subtle mistakes.
Thankfully, the huge page state can be inferred from the page itself and
doesn't need to be passed along. This is safe because charging completes
before the page is published and somebody may split it.
Simplify the callsites by removing @compound, and let memcg infer the
state by using hpage_nr_pages() unconditionally. That function does
PageTransHuge() to identify huge pages, which also helpfully asserts that
nobody passes in tail pages by accident.
The following patches will introduce a new charging API, best not to carry
over unnecessary weight.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just finished bisecting mmotm, to find why a test which used to take
four minutes now took more than an hour: the __buffer_migrate_page()
cleanup left behind a get_page() which attach_page_private() now does.
Fixes: cd0f371544 ("mm/migrate.c: call detach_page_private to cleanup code")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can cleanup code a little by call detach_page_private here.
[akpm@linux-foundation.org: use attach_page_private(), per Dave]
http://lkml.kernel.org/r/20200521225220.GV2005@dread.disaster.area
[akpm@linux-foundation.org: clear PagePrivate]
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200519214049.15179-1-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the new readahead aop and convert all callers (block_dev,
exfat, ext2, fat, gfs2, hpfs, isofs, jfs, nilfs2, ocfs2, omfs, qnx6,
reiserfs & udf).
The callers are all trivial except for GFS2 & OCFS2.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com> # ocfs2
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> # ocfs2
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-17-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For either swap and page migration, we all use the bit 2 of the entry to
identify whether this entry is uffd write-protected. It plays a similar
role as the existing soft dirty bit in swap entries but only for keeping
the uffd-wp tracking for a specific PTE/PMD.
Something special here is that when we want to recover the uffd-wp bit
from a swap/migration entry to the PTE bit we'll also need to take care of
the _PAGE_RW bit and make sure it's cleared, otherwise even with the
_PAGE_UFFD_WP bit we can't trap it at all.
In change_pte_range() we do nothing for uffd if the PTE is a swap entry.
That can lead to data mismatch if the page that we are going to write
protect is swapped out when sending the UFFDIO_WRITEPROTECT. This patch
also applies/removes the uffd-wp bit even for the swap entries.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some comments for MADV_FREE is revised and added to help people understand
the MADV_FREE code, especially the page flag, PG_swapbacked. This makes
page_is_file_cache() isn't consistent with its comments. So the function
is renamed to page_is_file_lru() to make them consistent again. All these
are put in one patch as one logical change.
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the migration code doesn't migrate PG_readahead flag.
Theoretically this would incur slight performance loss as the application
might have to ramp its readahead back up again. Even though such problem
happens, it might be hidden by something else since migration is typically
triggered by compaction and NUMA balancing, any of which should be more
noticeable.
Migrate the flag after end_page_writeback() since it may clear PG_reclaim
flag, which is the same bit as PG_readahead, for the new page.
[akpm@linux-foundation.org: tweak comment]
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1581640185-95731-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It can currently happen that we store the status of a page twice:
* Once we detect that it is already on the target node
* Once we moved a bunch of pages, and a page that's already on the
target node is contained in the current interval.
Let's simplify the code and always call do_move_pages_to_node() in case we
did not queue a page for migration. Note that pages that are already on
the target node are not added to the pagelist and are, therefore, ignored
by do_move_pages_to_node() - there is no functional change.
The status of such a page is now only stored once.
[david@redhat.com rephrase changelog]
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-5-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pagelist is empty, it is not necessary to do the move and store.
Also it consolidate the empty list check in one place.
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-4-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Usually, do_move_pages_to_node() and store_status() are used in
combination. We have three similar call sites.
Let's provide a wrapper for both function calls -
move_pages_and_store_status - to make the calling code easier to maintain
and fix (as noted by Yang Shi, the return value handling of
do_move_pages_to_node() has a flaw).
[david@redhat.com rephrase changelog]
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-3-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "cleanup on do_pages_move()", v5.
The logic in do_pages_move() is a little mess for audience to read and has
some potential error on handling the return value. Especially there are
three calls on do_move_pages_to_node() and store_status() with almost the
same form.
This patch set tries to make the code a little friendly for audience by
consolidate the calls.
This patch (of 4):
At this point, we always have i >= start. If i == start, store_status()
will return 0. So we can drop the check for i > start.
[david@redhat.com rephrase changelog]
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200214003017.25558-2-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
"A large amount of MM, plenty more to come.
Subsystems affected by this patch series:
- tools
- kthread
- kbuild
- scripts
- ocfs2
- vfs
- mm: slub, kmemleak, pagecache, gup, swap, memcg, pagemap, mremap,
sparsemem, kasan, pagealloc, vmscan, compaction, mempolicy,
hugetlbfs, hugetlb"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (155 commits)
include/linux/huge_mm.h: check PageTail in hpage_nr_pages even when !THP
mm/hugetlb: fix build failure with HUGETLB_PAGE but not HUGEBTLBFS
selftests/vm: fix map_hugetlb length used for testing read and write
mm/hugetlb: remove unnecessary memory fetch in PageHeadHuge()
mm/hugetlb.c: clean code by removing unnecessary initialization
hugetlb_cgroup: add hugetlb_cgroup reservation docs
hugetlb_cgroup: add hugetlb_cgroup reservation tests
hugetlb: support file_region coalescing again
hugetlb_cgroup: support noreserve mappings
hugetlb_cgroup: add accounting for shared mappings
hugetlb: disable region_add file_region coalescing
hugetlb_cgroup: add reservation accounting for private mappings
mm/hugetlb_cgroup: fix hugetlb_cgroup migration
hugetlb_cgroup: add interface for charge/uncharge hugetlb reservations
hugetlb_cgroup: add hugetlb_cgroup reservation counter
hugetlbfs: Use i_mmap_rwsem to address page fault/truncate race
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
mm/memblock.c: remove redundant assignment to variable max_addr
mm: mempolicy: require at least one nodeid for MPOL_PREFERRED
mm: mempolicy: use VM_BUG_ON_VMA in queue_pages_test_walk()
...
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.
While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races. These issues are:
1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
reserve counts and state.
A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2]. However, those patches were reverted starting with [3]
due to locking issues.
To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing. However, during fault
processing we need to lock the page we will be adding. Lock ordering
requires we take page lock before i_mmap_rwsem. Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.
To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages. This is not too invasive as hugetlbfs
processing is done separate from core mm in many places. However, I don't
really like this idea. Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.
The only other way I can think of to address these issues is by catching
all the races. After catching a race, cleanup, backout, retry ... etc,
as needed. This can get really ugly, especially for huge page
reservations. At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races. Any other
suggestions would be welcome.
[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/
This patch (of 2):
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with
the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.
One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults. This is not the order
specified in the rest of mm code. Handling of hugetlbfs pages is mostly
isolated today. Therefore, we use this alternative locking order for
PageHuge() pages.
mapping->i_mmap_rwsem
hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
page->flags PG_locked (lock_page)
To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.
In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma. A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new src_owner field to struct migrate_vma. If the field is set,
only device private pages with page->pgmap->owner equal to that field are
migrated. If the field is not set only "normal" pages are migrated.
Fixes: df6ad69838 ("mm/device-public-memory: device memory cache coherent with CPU")
Link: https://lore.kernel.org/r/20200316193216.920734-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
The pte_hole() callback is called at multiple levels of the page tables.
Code dumping the kernel page tables needs to know what at what depth the
missing entry is. Add this is an extra parameter to pte_hole(). When the
depth isn't know (e.g. processing a vma) then -1 is passed.
The depth that is reported is the actual level where the entry is missing
(ignoring any folding that is in place), i.e. any levels where
PTRS_PER_P?D is set to 1 are ignored.
Note that depth starts at 0 for a PGD so that PUD/PMD/PTE retain their
natural numbers as levels 2/3/4.
Link: http://lkml.kernel.org/r/20191218162402.45610-16-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Tested-by: Zong Li <zong.li@sifive.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
migrate_vma_insert_page() closely follows the code in:
__handle_mm_fault()
handle_pte_fault()
do_anonymous_page()
Add a call to check_stable_address_space() after locking the page table
entry before inserting a ZONE_DEVICE private zero page mapping similar
to page faulting a new anonymous page.
Link: http://lkml.kernel.org/r/20200107211208.24595-4-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix some comment typos and coding style clean up in preparation for the
next patch. No functional changes.
Link: http://lkml.kernel.org/r/20200107211208.24595-3-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Addresses passed to walk_page_range() callback functions are already
page aligned and don't need to be masked with PAGE_MASK.
Link: http://lkml.kernel.org/r/20200107211208.24595-2-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a49bd4d716 ("mm, numa: rework do_pages_move"), the
semantic of move_pages() has changed to return the number of
non-migrated pages if they were result of a non-fatal reasons (usually a
busy page).
This was an unintentional change that hasn't been noticed except for LTP
tests which checked for the documented behavior.
There are two ways to go around this change. We can even get back to
the original behavior and return -EAGAIN whenever migrate_pages is not
able to migrate pages due to non-fatal reasons. Another option would be
to simply continue with the changed semantic and extend move_pages
documentation to clarify that -errno is returned on an invalid input or
when migration simply cannot succeed (e.g. -ENOMEM, -EBUSY) or the
number of pages that couldn't have been migrated due to ephemeral
reasons (e.g. page is pinned or locked for other reasons).
This patch implements the second option because this behavior is in
place for some time without anybody complaining and possibly new users
depending on it. Also it allows to have a slightly easier error
handling as the caller knows that it is worth to retry when err > 0.
But since the new semantic would be aborted immediately if migration is
failed due to ephemeral reasons, need include the number of
non-attempted pages in the return value too.
Link: http://lkml.kernel.org/r/1580160527-109104-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: a49bd4d716 ("mm, numa: rework do_pages_move")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Cc: <stable@vger.kernel.org> [4.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we get here after successfully adding page to list, err would be 1 to
indicate the page is queued in the list.
Current code has two problems:
* on success, 0 is not returned
* on error, if add_page_for_migratioin() return 1, and the following err1
from do_move_pages_to_node() is set, the err1 is not returned since err
is 1
And these behaviors break the user interface.
Link: http://lkml.kernel.org/r/20200119065753.21694-1-richardw.yang@linux.intel.com
Fixes: e0153fc2c7 ("mm: move_pages: return valid node id in status if the page is already on the target node").
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Felix Abecassis reports move_pages() would return random status if the
pages are already on the target node by the below test program:
int main(void)
{
const long node_id = 1;
const long page_size = sysconf(_SC_PAGESIZE);
const int64_t num_pages = 8;
unsigned long nodemask = 1 << node_id;
long ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask));
if (ret < 0)
return (EXIT_FAILURE);
void **pages = malloc(sizeof(void*) * num_pages);
for (int i = 0; i < num_pages; ++i) {
pages[i] = mmap(NULL, page_size, PROT_WRITE | PROT_READ,
MAP_PRIVATE | MAP_POPULATE | MAP_ANONYMOUS,
-1, 0);
if (pages[i] == MAP_FAILED)
return (EXIT_FAILURE);
}
ret = set_mempolicy(MPOL_DEFAULT, NULL, 0);
if (ret < 0)
return (EXIT_FAILURE);
int *nodes = malloc(sizeof(int) * num_pages);
int *status = malloc(sizeof(int) * num_pages);
for (int i = 0; i < num_pages; ++i) {
nodes[i] = node_id;
status[i] = 0xd0; /* simulate garbage values */
}
ret = move_pages(0, num_pages, pages, nodes, status, MPOL_MF_MOVE);
printf("move_pages: %ld\n", ret);
for (int i = 0; i < num_pages; ++i)
printf("status[%d] = %d\n", i, status[i]);
}
Then running the program would return nonsense status values:
$ ./move_pages_bug
move_pages: 0
status[0] = 208
status[1] = 208
status[2] = 208
status[3] = 208
status[4] = 208
status[5] = 208
status[6] = 208
status[7] = 208
This is because the status is not set if the page is already on the
target node, but move_pages() should return valid status as long as it
succeeds. The valid status may be errno or node id.
We can't simply initialize status array to zero since the pages may be
not on node 0. Fix it by updating status with node id which the page is
already on.
Link: http://lkml.kernel.org/r/1575584353-125392-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: a49bd4d716 ("mm, numa: rework do_pages_move")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reported-by: Felix Abecassis <fabecassis@nvidia.com>
Tested-by: Felix Abecassis <fabecassis@nvidia.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [4.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When zone_watermark_ok() is called in migrate_balanced_pgdat() to check
migration target node, the parameter classzone_idx (for requested zone)
is specified as 0 (ZONE_DMA). But when allocating memory for autonuma
in alloc_misplaced_dst_page(), the requested zone from GFP flags is
ZONE_MOVABLE. That is, the requested zone is different. The size of
lowmem_reserve for the different requested zone is different. And this
may cause some issues.
For example, in the zoneinfo of a test machine as below,
Node 0, zone DMA32
pages free 61592
min 29
low 454
high 879
spanned 1044480
present 442306
managed 425921
protection: (0, 0, 62457, 62457, 62457)
The free page number of ZONE_DMA32 is greater than "high watermark +
lowmem_reserve[ZONE_DMA]", but less than "high watermark +
lowmem_reserve[ZONE_MOVABLE]". And because __alloc_pages_node() in
alloc_misplaced_dst_page() requests ZONE_MOVABLE, the
zone_watermark_ok() on ZONE_DMA32 in migrate_balanced_pgdat() may always
return true. So, autonuma may not stop even when memory pressure in
node 0 is heavy.
To fix the issue, ZONE_MOVABLE is used as parameter to call
zone_watermark_ok() in migrate_balanced_pgdat(). This makes it same as
requested zone in alloc_misplaced_dst_page(). So that
migrate_balanced_pgdat() returns false when memory pressure is heavy.
Link: http://lkml.kernel.org/r/20191101075727.26683-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When doing migration if the freed page is met, we just return without
migrating it since it is pointless to migrate a freed page. But, the
current code allocates target page unconditionally before handling freed
page, if the page is freed, the newly allocated will be just freed. It
doesn't make too much sense and is just a waste of time although
migrating freed page is rare.
So, handle freed page at the before that to avoid unnecessary page
allocation and free.
Link: http://lkml.kernel.org/r/1573755869-106954-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
Kirill and Huang Ying contributed several fixes.
[willy@infradead.org: use compound_nr, squish uninit-var warning]
Link: http://lkml.kernel.org/r/20190731210400.7419-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-by: Song Liu <songliubraving@fb.com>
Tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace 1 << compound_order(page) with compound_nr(page). Minor
improvements in readability.
Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
From rdma.git
Jason Gunthorpe says:
====================
This is a collection of general cleanups for ODP to clarify some of the
flows around umem creation and use of the interval tree.
====================
The branch is based on v5.3-rc5 due to dependencies, and is being taken
into hmm.git due to dependencies in the next patches.
* odp_fixes:
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
RDMA/core: Make invalidate_range a device operation
RDMA/odp: Use kvcalloc for the dma_list and page_list
RDMA/odp: Check for overflow when computing the umem_odp end
RDMA/odp: Provide ib_umem_odp_release() to undo the allocs
RDMA/odp: Split creating a umem_odp from ib_umem_get
RDMA/odp: Make the three ways to create a umem_odp clear
RMDA/odp: Consolidate umem_odp initialization
RDMA/odp: Make it clearer when a umem is an implicit ODP umem
RDMA/odp: Iterate over the whole rbtree directly
RDMA/odp: Use the common interval tree library instead of generic
RDMA/mlx5: Fix MR npages calculation for IB_ACCESS_HUGETLB
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
CONFIG_MIGRATE_VMA_HELPER guards helpers that are required for proper
devic private memory support. Remove the option and just check for
CONFIG_DEVICE_PRIVATE instead.
Link: https://lore.kernel.org/r/20190814075928.23766-11-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
No one ever checks this flag, and we could easily get that information
from the page if needed.
Link: https://lore.kernel.org/r/20190814075928.23766-10-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
There isn't any good reason to pass callbacks to migrate_vma. Instead
we can just export the three steps done by this function to drivers and
let them sequence the operation without callbacks. This removes a lot
of boilerplate code as-is, and will allow the drivers to drastically
improve code flow and error handling further on.
Link: https://lore.kernel.org/r/20190814075928.23766-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
When CONFIG_MIGRATE_VMA_HELPER is enabled, migrate_vma() calls
migrate_vma_collect() which initializes a struct mm_walk but didn't
initialize mm_walk.pud_entry. (Found by code inspection) Use a C
structure initialization to make sure it is set to NULL.
Link: http://lkml.kernel.org/r/20190719233225.12243-1-rcampbell@nvidia.com
Fixes: 8763cb45ab ("mm/migrate: new memory migration helper for use with device memory")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
buffer_migrate_page_norefs() can race with bh users in the following
way:
CPU1 CPU2
buffer_migrate_page_norefs()
buffer_migrate_lock_buffers()
checks bh refs
spin_unlock(&mapping->private_lock)
__find_get_block()
spin_lock(&mapping->private_lock)
grab bh ref
spin_unlock(&mapping->private_lock)
move page do bh work
This can result in various issues like lost updates to buffers (i.e.
metadata corruption) or use after free issues for the old page.
This patch closes the race by holding mapping->private_lock while the
mapping is being moved to a new page. Ordinarily, a reference can be
taken outside of the private_lock using the per-cpu BH LRU but the
references are checked and the LRU invalidated if necessary. The
private_lock is held once the references are known so the buffer lookup
slow path will spin on the private_lock. Between the page lock and
private_lock, it should be impossible for other references to be
acquired and updates to happen during the migration.
A user had reported data corruption issues on a distribution kernel with
a similar page migration implementation as mainline. The data
corruption could not be reproduced with this patch applied. A small
number of migration-intensive tests were run and no performance problems
were noted.
[mgorman@techsingularity.net: Changelog, removed tracing]
Link: http://lkml.kernel.org/r/20190718090238.GF24383@techsingularity.net
Fixes: 89cb0888ca "mm: migrate: provide buffer_migrate_page_norefs()"
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
migrate_page_move_mapping() doesn't use the mode argument. Remove it
and update callers accordingly.
Link: http://lkml.kernel.org/r/20190508210301.8472-1-keith.busch@intel.com
Signed-off-by: Keith Busch <keith.busch@intel.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Improvements and bug fixes for the hmm interface in the kernel:
- Improve clarity, locking and APIs related to the 'hmm mirror' feature
merged last cycle. In linux-next we now see AMDGPU and nouveau to be
using this API.
- Remove old or transitional hmm APIs. These are hold overs from the past
with no users, or APIs that existed only to manage cross tree conflicts.
There are still a few more of these cleanups that didn't make the merge
window cut off.
- Improve some core mm APIs:
* export alloc_pages_vma() for driver use
* refactor into devm_request_free_mem_region() to manage
DEVICE_PRIVATE resource reservations
* refactor duplicative driver code into the core dev_pagemap
struct
- Remove hmm wrappers of improved core mm APIs, instead have drivers use
the simplified API directly
- Remove DEVICE_PUBLIC
- Simplify the kconfig flow for the hmm users and core code
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl0k1zkACgkQOG33FX4g
mxrO+w//QF/yI/9Hh30RWEBq8W107cODkDlaT0Z/7cVEXfGetZzIUpqzxnJofRfQ
xTw1XmYkc9WpJe/mTTuFZFewNQwWuMM6X0Xi25fV438/Y64EclevlcJTeD49TIH1
CIMsz8bX7CnCEq5sz+UypLg9LPnaD9L/JLyuSbyjqjms/o+yzqa7ji7p/DSINuhZ
Qva9OZL1ZSEDJfNGi8uGpYBqryHoBAonIL12R9sCF5pbJEnHfWrH7C06q7AWOAjQ
4vjN/p3F4L9l/v2IQ26Kn/S0AhmN7n3GT//0K66e2gJPfXa8fxRKGuFn/Kd79EGL
YPASn5iu3cM23up1XkbMNtzacL8yiIeTOcMdqw26OaOClojy/9OJduv5AChe6qL/
VUQIAn1zvPsJTyC5U7mhmkrGuTpP6ivHpxtcaUp+Ovvi1cyK40nLCmSNvLnbN5ES
bxbb0SjE4uupDG5qU6Yct/hFp6uVMSxMqXZOb9Xy8ZBkbMsJyVOLj71G1/rVIfPU
hO1AChX5CRG1eJoMo6oBIpiwmSvcOaPp3dqIOQZvwMOqrO869LR8qv7RXyh/g9gi
FAEKnwLl4GK3YtEO4Kt/1YI5DXYjSFUbfgAs0SPsRKS6hK2+RgRk2M/B/5dAX0/d
lgOf9WPODPwiSXBYLtJB8qHVDX0DIY8faOyTx6BYIKClUtgbBI8=
=wKvp
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull HMM updates from Jason Gunthorpe:
"Improvements and bug fixes for the hmm interface in the kernel:
- Improve clarity, locking and APIs related to the 'hmm mirror'
feature merged last cycle. In linux-next we now see AMDGPU and
nouveau to be using this API.
- Remove old or transitional hmm APIs. These are hold overs from the
past with no users, or APIs that existed only to manage cross tree
conflicts. There are still a few more of these cleanups that didn't
make the merge window cut off.
- Improve some core mm APIs:
- export alloc_pages_vma() for driver use
- refactor into devm_request_free_mem_region() to manage
DEVICE_PRIVATE resource reservations
- refactor duplicative driver code into the core dev_pagemap
struct
- Remove hmm wrappers of improved core mm APIs, instead have drivers
use the simplified API directly
- Remove DEVICE_PUBLIC
- Simplify the kconfig flow for the hmm users and core code"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits)
mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR
mm: remove the HMM config option
mm: sort out the DEVICE_PRIVATE Kconfig mess
mm: simplify ZONE_DEVICE page private data
mm: remove hmm_devmem_add
mm: remove hmm_vma_alloc_locked_page
nouveau: use devm_memremap_pages directly
nouveau: use alloc_page_vma directly
PCI/P2PDMA: use the dev_pagemap internal refcount
device-dax: use the dev_pagemap internal refcount
memremap: provide an optional internal refcount in struct dev_pagemap
memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag
memremap: remove the data field in struct dev_pagemap
memremap: add a migrate_to_ram method to struct dev_pagemap_ops
memremap: lift the devmap_enable manipulation into devm_memremap_pages
memremap: pass a struct dev_pagemap to ->kill and ->cleanup
memremap: move dev_pagemap callbacks into a separate structure
memremap: validate the pagemap type passed to devm_memremap_pages
mm: factor out a devm_request_free_mem_region helper
mm: export alloc_pages_vma
...
The code hasn't been used since it was added to the tree, and doesn't
appear to actually be usable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This updates each existing invalidation to use the correct mmu notifier
event that represent what is happening to the CPU page table. See the
patch which introduced the events to see the rational behind this.
Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening.
This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma). Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.
The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens. A latter patch do convert mm call path to use a more appropriate
events for each call.
This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:
%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }
@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)
@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%
Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place
Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
[willy@infradead.org: fix swapcache pages]
Link: http://lkml.kernel.org/r/20190324155441.GF10344@bombadil.infradead.org
[kirill@shutemov.name: hugetlb stores pages in page cache differently]
Link: http://lkml.kernel.org/r/20190404134553.vuvhgmghlkiw2hgl@kshutemo-mobl1
Link: http://lkml.kernel.org/r/20190307153051.18815-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-and-tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Hugh Dickins <hughd@google.com>
Cc: Song Liu <liu.song.a23@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our MIPS 1004Kc SoCs were seeing random userspace crashes with SIGILL
and SIGSEGV that could not be traced back to a userspace code bug. They
had all the magic signs of an I/D cache coherency issue.
Now recently we noticed that the /proc/sys/vm/compact_memory interface
was quite efficient at provoking this class of userspace crashes.
Studying the code in mm/migrate.c there is a distinction made between
migrating a page that is mapped at the instant of migration and one that
is not mapped. Our problem turned out to be the non-mapped pages.
For the non-mapped page the code performs a copy of the page content and
all relevant meta-data of the page without doing the required D-cache
maintenance. This leaves dirty data in the D-cache of the CPU and on
the 1004K cores this data is not visible to the I-cache. A subsequent
page-fault that triggers a mapping of the page will happily serve the
process with potentially stale code.
What about ARM then, this bug should have seen greater exposure? Well
ARM became immune to this flaw back in 2010, see commit c01778001a
("ARM: 6379/1: Assume new page cache pages have dirty D-cache").
My proposed fix moves the D-cache maintenance inside move_to_new_page to
make it common for both cases.
Link: http://lkml.kernel.org/r/20190315083502.11849-1-larper@axis.com
Fixes: 97ee052461 ("flush cache before installing new page at migraton")
Signed-off-by: Lars Persson <larper@axis.com>
Reviewed-by: Paul Burton <paul.burton@mips.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrea has noted that page migration code propagates page_mapping(page)
through the whole migration stack down to migrate_page() function so it
seems stupid to then use page_mapping(page) in expected_page_refs()
instead of passed down 'mapping' argument. I agree so let's make
expected_page_refs() more in line with the rest of the migration stack.
Link: http://lkml.kernel.org/r/20190207112314.24872-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional change.
Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages with no migration handler use a fallback handler which sometimes
works and sometimes persistently retries. A historical example was
blockdev pages but there are others such as odd refcounting when
page->private is used. These are retried multiple times which is
wasteful during compaction so this patch will fail migration faster
unless the caller specifies MIGRATE_SYNC.
This is not expected to help THP allocation success rates but it did
reduce latencies very slightly in some cases.
1-socket thpfioscale
4.20.0 4.20.0
noreserved-v2r15 failfast-v2r15
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3839.67 ( 0.00%) 3833.72 ( 0.15%)
Amean fault-both-5 5177.47 ( 0.00%) 4967.15 ( 4.06%)
Amean fault-both-7 7245.03 ( 0.00%) 7139.19 ( 1.46%)
Amean fault-both-12 11534.89 ( 0.00%) 11326.30 ( 1.81%)
Amean fault-both-18 16241.10 ( 0.00%) 16270.70 ( -0.18%)
Amean fault-both-24 19075.91 ( 0.00%) 19839.65 ( -4.00%)
Amean fault-both-30 22712.11 ( 0.00%) 21707.05 ( 4.43%)
Amean fault-both-32 21692.92 ( 0.00%) 21968.16 ( -1.27%)
The 2-socket results are not materially different. Scan rates are
similar as expected.
Link: http://lkml.kernel.org/r/20190118175136.31341-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>