In lru_sort.c and reclaim.c, they are all defining get_monitoring_region()
function, there is no need to define it separately.
As 'get_monitoring_region()' is not a 'static' function anymore, we try to
use a prefix to distinguish with other functions, so there rename it to
'damon_find_biggest_system_ram'.
Link: https://lkml.kernel.org/r/20220909213606.136221-1-sj@kernel.org
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Suggested-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When there are two or more non-contiguous regions intersecting with given
new ranges, 'damon_set_regions()' does not fill the holes. This commit
makes the function to fill the holes with newly created regions.
[sj@kernel.org: handle error from 'damon_fill_regions_holes()']
Link: https://lkml.kernel.org/r/20220913215420.57761-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220909202901.57977-3-sj@kernel.org
Fixes: 3f49584b26 ("mm/damon: implement primitives for the virtual memory address spaces")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Yun Levi <ppbuk5246@gmail.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
damon_new_scheme() has too many parameters, so introduce struct
damos_access_pattern to simplify it.
In additon, we can't use a bpf trace kprobe that has more than 5
parameters.
Link: https://lkml.kernel.org/r/20220908191443.129534-1-sj@kernel.org
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We iterate the whole regions list every time to get the first/last regions
intersecting with the specific range in damon_set_regions(), in order to
add new region or resize existing regions to fit in the specific range.
Actually, it is unnecessary to iterate the new added regions and the front
regions that have been checked. Just iterate the regions list from the
current point using list_for_each_entry_from() every time to improve
performance.
The kunit tests passed:
[PASSED] damon_test_apply_three_regions1
[PASSED] damon_test_apply_three_regions2
[PASSED] damon_test_apply_three_regions3
[PASSED] damon_test_apply_three_regions4
Link: https://lkml.kernel.org/r/1662477527-13003-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The parameter 'struct damon_ctx *ctx' is unnecessary in damon region split
operation, so we can remove it.
Link: https://lkml.kernel.org/r/1660403943-29124-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit moves 'damon_set_regions()' from vaddr to core, as it is aimed
to be used by not only 'vaddr' but also other parts of DAMON.
Link: https://lkml.kernel.org/r/20220429160606.127307-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When 'after_sampling()' or 'after_aggregation()' DAMON callbacks return an
error, kdamond continues the remaining loop once. It makes no much sense
to run the remaining part while something wrong already happened. The
context might be corrupted or having invalid data. This commit therefore
makes kdamond skips the remaining works and immediately finish in the
cases.
Link: https://lkml.kernel.org/r/20220429160606.127307-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/damon: Support online tuning".
Effects of DAMON and DAMON-based Operation Schemes highly depends on the
configurations. Wrong configurations could even result in unexpected
efficiency degradations. For finding a best configuration, repeating
incremental configuration changes and results measurements, in other
words, online tuning, could be helpful.
Nevertheless, DAMON kernel API supports only restrictive online tuning.
Worse yet, the sysfs-based DAMON user interface doesn't support online
tuning at all. DAMON_RECLAIM also doesn't support online tuning.
This patchset makes the DAMON kernel API, DAMON sysfs interface, and
DAMON_RECLAIM supports online tuning.
Sequence of patches
-------------------
First two patches enhance DAMON online tuning for kernel API users.
Specifically, patch 1 let kernel API users to be able to do DAMON online
tuning without a restriction, and patch 2 makes error handling easier.
Following seven patches (patches 3-9) refactor code for better readability
and easier reuse of code fragments that will be useful for online tuning
support.
Patch 10 introduces DAMON callback based user request handling structure
for DAMON sysfs interface, and patch 11 enables DAMON online tuning via
DAMON sysfs interface. Documentation patch (patch 12) for usage of it
follows.
Patch 13 enables online tuning of DAMON_RECLAIM and finally patch 14
documents the DAMON_RECLAIM online tuning usage.
This patch (of 14):
For updating input parameters for running DAMON contexts, DAMON kernel API
users can use the contexts' callbacks, as it is the safe place for context
internal data accesses. When the context has DAMON-based operation
schemes and all schemes are deactivated due to their watermarks, however,
DAMON does nothing but only watermarks checks. As a result, no callbacks
will be called back, and therefore the kernel API users cannot update the
input parameters including monitoring attributes, DAMON-based operation
schemes, and watermarks.
To let users easily update such DAMON input parameters in such a case,
this commit adds a new callback, 'after_wmarks_check()'. It will be
called after each watermarks check. Users can do the online input
parameters update in the callback even under the schemes deactivated case.
Link: https://lkml.kernel.org/r/20220429160606.127307-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/damon: allow users know which monitoring ops are available".
DAMON users can configure it for vaious address spaces including virtual
address spaces and the physical address space by setting its monitoring
operations set with appropriate one for their purpose. However, there is
no celan and simple way to know exactly which monitoring operations sets
are available on the currently running kernel.
This patchset adds functions for the purpose on DAMON's kernel API
('damon_is_registered_ops()') and sysfs interface ('avail_operations' file
under each context directory).
This patch (of 4):
To know if a specific 'damon_operations' is registered, users need to
check the kernel config or try 'damon_select_ops()' with the ops of the
question, and then see if it successes. In the latter case, the user
should also revert the change. To make the process simple and convenient,
this commit adds a function for checking if a specific 'damon_operations'
is registered or not.
Link: https://lkml.kernel.org/r/20220426203843.45238-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220426203843.45238-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In the DAMON, the minimum wait time of the schemes decides whether the
kernel wakes up 'kdamon_fn()'. But since the minimum wait time is
initialized to zero, there are corner cases against the original
objective.
For example, if we have several schemes for one target, and if the wait
time of the first scheme is zero, the minimum wait time will set zero,
which means 'kdamond_fn()' should wake up to apply this scheme.
However, in the following scheme, wait time can be set to non-zero.
Thus, the mininum wait time will be set to non-zero, which can cause
sleeping this interval for 'kdamon_fn()' due to one deactivated last
scheme.
This commit prevents making DAMON monitoring inactive state due to other
deactivated schemes.
Link: https://lkml.kernel.org/r/20220330105302.32114-1-tome01@ajou.ac.kr
Signed-off-by: Jonghyeon Kim <tome01@ajou.ac.kr>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Introduce DAMON sysfs interface", v3.
Introduction
============
DAMON's debugfs-based user interface (DAMON_DBGFS) served very well, so
far. However, it unnecessarily depends on debugfs, while DAMON is not
aimed to be used for only debugging. Also, the interface receives
multiple values via one file. For example, schemes file receives 18
values. As a result, it is inefficient, hard to be used, and difficult to
be extended. Especially, keeping backward compatibility of user space
tools is getting only challenging. It would be better to implement
another reliable and flexible interface and deprecate DAMON_DBGFS in long
term.
For the reason, this patchset introduces a sysfs-based new user interface
of DAMON. The idea of the new interface is, using directory hierarchies
and having one dedicated file for each value. For a short example, users
can do the virtual address monitoring via the interface as below:
# cd /sys/kernel/mm/damon/admin/
# echo 1 > kdamonds/nr_kdamonds
# echo 1 > kdamonds/0/contexts/nr_contexts
# echo vaddr > kdamonds/0/contexts/0/operations
# echo 1 > kdamonds/0/contexts/0/targets/nr_targets
# echo $(pidof <workload>) > kdamonds/0/contexts/0/targets/0/pid_target
# echo on > kdamonds/0/state
A brief representation of the files hierarchy of DAMON sysfs interface is
as below. Childs are represented with indentation, directories are having
'/' suffix, and files in each directory are separated by comma.
/sys/kernel/mm/damon/admin
│ kdamonds/nr_kdamonds
│ │ 0/state,pid
│ │ │ contexts/nr_contexts
│ │ │ │ 0/operations
│ │ │ │ │ monitoring_attrs/
│ │ │ │ │ │ intervals/sample_us,aggr_us,update_us
│ │ │ │ │ │ nr_regions/min,max
│ │ │ │ │ targets/nr_targets
│ │ │ │ │ │ 0/pid_target
│ │ │ │ │ │ │ regions/nr_regions
│ │ │ │ │ │ │ │ 0/start,end
│ │ │ │ │ │ │ │ ...
│ │ │ │ │ │ ...
│ │ │ │ │ schemes/nr_schemes
│ │ │ │ │ │ 0/action
│ │ │ │ │ │ │ access_pattern/
│ │ │ │ │ │ │ │ sz/min,max
│ │ │ │ │ │ │ │ nr_accesses/min,max
│ │ │ │ │ │ │ │ age/min,max
│ │ │ │ │ │ │ quotas/ms,bytes,reset_interval_ms
│ │ │ │ │ │ │ │ weights/sz_permil,nr_accesses_permil,age_permil
│ │ │ │ │ │ │ watermarks/metric,interval_us,high,mid,low
│ │ │ │ │ │ │ stats/nr_tried,sz_tried,nr_applied,sz_applied,qt_exceeds
│ │ │ │ │ │ ...
│ │ │ │ ...
│ │ ...
Detailed usage of the files will be described in the final Documentation
patch of this patchset.
Main Difference Between DAMON_DBGFS and DAMON_SYSFS
---------------------------------------------------
At the moment, DAMON_DBGFS and DAMON_SYSFS provides same features. One
important difference between them is their exclusiveness. DAMON_DBGFS
works in an exclusive manner, so that no DAMON worker thread (kdamond) in
the system can run concurrently and interfere somehow. For the reason,
DAMON_DBGFS asks users to construct all monitoring contexts and start them
at once. It's not a big problem but makes the operation a little bit
complex and unflexible.
For more flexible usage, DAMON_SYSFS moves the responsibility of
preventing any possible interference to the admins and work in a
non-exclusive manner. That is, users can configure and start contexts one
by one. Note that DAMON respects both exclusive groups and non-exclusive
groups of contexts, in a manner similar to that of reader-writer locks.
That is, if any exclusive monitoring contexts (e.g., contexts that started
via DAMON_DBGFS) are running, DAMON_SYSFS does not start new contexts, and
vice versa.
Future Plan of DAMON_DBGFS Deprecation
======================================
Once this patchset is merged, DAMON_DBGFS development will be frozen.
That is, we will maintain it to work as is now so that no users will be
break. But, it will not be extended to provide any new feature of DAMON.
The support will be continued only until next LTS release. After that, we
will drop DAMON_DBGFS.
User-space Tooling Compatibility
--------------------------------
As DAMON_SYSFS provides all features of DAMON_DBGFS, all user space
tooling can move to DAMON_SYSFS. As we will continue supporting
DAMON_DBGFS until next LTS kernel release, user space tools would have
enough time to move to DAMON_SYSFS.
The official user space tool, damo[1], is already supporting both
DAMON_SYSFS and DAMON_DBGFS. Both correctness tests[2] and performance
tests[3] of DAMON using DAMON_SYSFS also passed.
[1] https://github.com/awslabs/damo
[2] https://github.com/awslabs/damon-tests/tree/master/corr
[3] https://github.com/awslabs/damon-tests/tree/master/perf
Sequence of Patches
===================
First two patches (patches 1-2) make core changes for DAMON_SYSFS. The
first one (patch 1) allows non-exclusive DAMON contexts so that
DAMON_SYSFS can work in non-exclusive mode, while the second one (patch 2)
adds size of DAMON enum types so that DAMON API users can safely iterate
the enums.
Third patch (patch 3) implements basic sysfs stub for virtual address
spaces monitoring. Note that this implements only sysfs files and DAMON
is not linked. Fourth patch (patch 4) links the DAMON_SYSFS to DAMON so
that users can control DAMON using the sysfs files.
Following six patches (patches 5-10) implements other DAMON features that
DAMON_DBGFS supports one by one (physical address space monitoring,
DAMON-based operation schemes, schemes quotas, schemes prioritization
weights, schemes watermarks, and schemes stats).
Following patch (patch 11) adds a simple selftest for DAMON_SYSFS, and the
final one (patch 12) documents DAMON_SYSFS.
This patch (of 13):
To avoid interference between DAMON contexts monitoring overlapping memory
regions, damon_start() works in an exclusive manner. That is,
damon_start() does nothing bug fails if any context that started by
another instance of the function is still running. This makes its usage a
little bit restrictive. However, admins could aware each DAMON usage and
address such interferences on their own in some cases.
This commit hence implements non-exclusive mode of the function and allows
the callers to select the mode. Note that the exclusive groups and
non-exclusive groups of contexts will respect each other in a manner
similar to that of reader-writer locks. Therefore, this commit will not
cause any behavioral change to the exclusive groups.
Link: https://lkml.kernel.org/r/20220228081314.5770-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220228081314.5770-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Xin Hao <xhao@linux.alibaba.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In-kernel DAMON user code like DAMON debugfs interface should set 'struct
damon_operations' of its 'struct damon_ctx' on its own. Therefore, the
client code should depend on all supporting monitoring operations
implementations that it could use. For example, DAMON debugfs interface
depends on both vaddr and paddr, while some of the users are not always
interested in both.
To minimize such unnecessary dependencies, this commit makes the
monitoring operations can be registered by implementing code and then
dynamically selected by the user code without build-time dependency.
Link: https://lkml.kernel.org/r/20220215184603.1479-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Allow DAMON user code independent of monitoring primitives".
In-kernel DAMON user code is required to configure the monitoring context
(struct damon_ctx) with proper monitoring primitives (struct
damon_primitive). This makes the user code dependent to all supporting
monitoring primitives. For example, DAMON debugfs interface depends on
both DAMON_VADDR and DAMON_PADDR, though some users have interest in only
one use case. As more monitoring primitives are introduced, the problem
will be bigger.
To minimize such unnecessary dependency, this patchset makes monitoring
primitives can be registered by the implemnting code and later dynamically
searched and selected by the user code.
In addition to that, this patchset renames monitoring primitives to
monitoring operations, which is more easy to intuitively understand what
it means and how it would be structed.
This patch (of 8):
DAMON has a set of callback functions called monitoring primitives and let
it can be configured with various implementations for easy extension for
different address spaces and usages. However, the word 'primitive' is not
so explicit. Meanwhile, many other structs resembles similar purpose
calls themselves 'operations'. To make the code easier to be understood,
this commit renames 'damon_primitives' to 'damon_operations' before it is
too late to rename.
Link: https://lkml.kernel.org/r/20220215184603.1479-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220215184603.1479-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Xin Hao <xhao@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAMON asks each monitoring target ('struct damon_target') to have one
'unsigned long' integer called 'id', which should be unique among the
targets of same monitoring context. Meaning of it is, however, totally up
to the monitoring primitives that registered to the monitoring context.
For example, the virtual address spaces monitoring primitives treats the
id as a 'struct pid' pointer.
This makes the code flexible, but ugly, not well-documented, and
type-unsafe[1]. Also, identification of each target can be done via its
index. For the reason, this commit removes the concept and uses clear
type definition. For now, only 'struct pid' pointer is used for the
virtual address spaces monitoring. If DAMON is extended in future so that
we need to put another identifier field in the struct, we will use a union
for such primitives-dependent fields and document which primitives are
using which type.
[1] https://lore.kernel.org/linux-mm/20211013154535.4aaeaaf9d0182922e405dd1e@linux-foundation.org/
Link: https://lkml.kernel.org/r/20211230100723.2238-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
damon_set_targets() function is defined in the core for general use cases,
but called from only dbgfs. Also, because the function is for general use
cases, dbgfs does additional handling of pid type target id case. To make
the situation simpler, this commit moves the function into dbgfs and makes
it to do the pid type case handling on its own.
Link: https://lkml.kernel.org/r/20211230100723.2238-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAMON's virtual address spaces monitoring primitive uses 'struct pid *'
of the target process as its monitoring target id. The kernel address
is exposed as-is to the user space via the DAMON tracepoint,
'damon_aggregated'.
Though primarily only privileged users are allowed to access that, it
would be better to avoid unnecessarily exposing kernel pointers so.
Because the trace result is only required to be able to distinguish each
target, we aren't need to use the pointer as-is.
This makes the tracepoint to use the index of the target in the
context's targets list as its id in the tracepoint, to hide the kernel
space address.
Link: https://lkml.kernel.org/r/20211229131016.23641-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Usually, inline function is declared static since it should sit between
storage and type. And implement it in a header file if used by multiple
files.
And this change also fixes compile issue when backport damon to 5.10.
mm/damon/vaddr.c: In function `damon_va_evenly_split_region':
./include/linux/damon.h:425:13: error: inlining failed in call to `always_inline' `damon_insert_region': function body not available
425 | inline void damon_insert_region(struct damon_region *r,
| ^~~~~~~~~~~~~~~~~~~
mm/damon/vaddr.c:86:3: note: called from here
86 | damon_insert_region(n, r, next, t);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Link: https://lkml.kernel.org/r/20211223085703.6142-1-guoqing.jiang@linux.dev
Signed-off-by: Guoqing Jiang <guoqing.jiang@linux.dev>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the time/space quotas of a given DAMON-based operation scheme is too
small, the scheme could show unexpectedly slow progress. However, there
is no good way to notice the case in runtime. This commit extends the
DAMOS stat to provide how many times the quota limits exceeded so that
the users can easily notice the case and tune the scheme.
Link: https://lkml.kernel.org/r/20211210150016.35349-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
damon_rand() is called in three files:damon/core.c, damon/ paddr.c,
damon/vaddr.c, i think there is no need to redefine this twice, So move
it to damon.h will be a good choice.
Link: https://lkml.kernel.org/r/20211202075859.51341-1-xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In kernel, we can use abs(a - b) to get the absolute value, So there is no
need to redefine a new one.
Link: https://lkml.kernel.org/r/b24e7b82d9efa90daf150d62dea171e19390ad0b.1636989871.git.xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAMON core prints error messages when damon_target object creation is
failed or wrong monitoring attributes are given. Because appropriate
error code is returned for each case, the messages are not essential.
Also, because the code path can be triggered with user-specified input,
this could result in kernel log mistakenly being messy. To avoid the
case, this commit removes the messages.
Link: https://lkml.kernel.org/r/20211201150440.1088-4-sj@kernel.org
Fixes: 4bc05954d0 ("mm/damon: implement a debugfs-based user space interface")
Fixes: b9a6ac4e4e ("mm/damon: adaptively adjust regions")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/damon: Trivial fixups and improvements".
This patchset contains trivial fixups and improvements for DAMON and its
kunit/kselftest tests.
This patch (of 11):
DAMON is using hrtimer if requested sleep time is <=100ms, while the
suggested threshold[1] is <=20ms. This commit applies the threshold.
[1] Documentation/timers/timers-howto.rst
Link: https://lkml.kernel.org/r/20211201150440.1088-2-sj@kernel.org
Fixes: ee801b7dd7 ("mm/damon/schemes: activate schemes based on a watermarks mechanism")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because DAMON sleeps in uninterruptible mode, /proc/loadavg reports fake
load while DAMON is turned on, though it is doing nothing. This can
confuse users[1]. To avoid the case, this commit makes DAMON sleeps in
idle mode.
[1] https://lore.kernel.org/all/11868371.O9o76ZdvQC@natalenko.name/
Link: https://lkml.kernel.org/r/20211126145015.15862-3-sj@kernel.org
Fixes: 2224d84854 ("mm: introduce Data Access MONitor (DAMON)")
Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: SeongJae Park <sj@kernel.org>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a few spelling mistakes in the code. Fix these.
Link: https://lkml.kernel.org/r/20211028184157.614544-1-colin.i.king@gmail.com
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A kernel thread can exit gracefully with kthread_stop(). So we don't
need a new flag 'kdamond_stop'. And to make sure the task struct is not
freed when accessing it, get reference to it before termination.
Link: https://lkml.kernel.org/r/20211027130517.4404-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the ctx->adaptive_targets list is empty, I did some test on
monitor_on interface like this.
# cat /sys/kernel/debug/damon/target_ids
#
# echo on > /sys/kernel/debug/damon/monitor_on
# damon: kdamond (5390) starts
Though the ctx->adaptive_targets list is empty, but the kthread_run
still be called, and the kdamond.x thread still be created, this is
meaningless.
So there adds a judgment in 'dbgfs_monitor_on_write', if the
ctx->adaptive_targets list is empty, return -EINVAL.
Link: https://lkml.kernel.org/r/0a60a6e8ec9d71989e0848a4dc3311996ca3b5d4.1634720326.git.xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAMON-based operation schemes need to be manually turned on and off. In
some use cases, however, the condition for turning a scheme on and off
would depend on the system's situation. For example, schemes for
proactive pages reclamation would need to be turned on when some memory
pressure is detected, and turned off when the system has enough free
memory.
For easier control of schemes activation based on the system situation,
this introduces a watermarks-based mechanism. The client can describe
the watermark metric (e.g., amount of free memory in the system),
watermark check interval, and three watermarks, namely high, mid, and
low. If the scheme is deactivated, it only gets the metric and compare
that to the three watermarks for every check interval. If the metric is
higher than the high watermark, the scheme is deactivated. If the
metric is between the mid watermark and the low watermark, the scheme is
activated. If the metric is lower than the low watermark, the scheme is
deactivated again. This is to allow users fall back to traditional
page-granularity mechanisms.
Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes DAMON apply schemes to regions having higher priority first,
if it cannot apply schemes to all regions due to the quotas.
The prioritization function should be implemented in the monitoring
primitives. Those would commonly calculate the priority of the region
using attributes of regions, namely 'size', 'nr_accesses', and 'age'.
For example, some primitive would calculate the priority of each region
using a weighted sum of 'nr_accesses' and 'age' of the region.
The optimal weights would depend on give environments, so this makes
those customizable. Nevertheless, the score calculation functions are
only encouraged to respect the weights, not mandated.
Link: https://lkml.kernel.org/r/20211019150731.16699-8-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size quota feature of DAMOS is useful for IO resource-critical
systems, but not so intuitive for CPU time-critical systems. Systems
using zram or zswap-like swap device would be examples.
To provide another intuitive ways for such systems, this implements
time-based quota for DAMON-based Operation Schemes. If the quota is
set, DAMOS tries to use only up to the user-defined quota of CPU time
within a given time window.
Link: https://lkml.kernel.org/r/20211019150731.16699-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DAMOS has stopped applying action in the middle of a group of memory
regions due to its size quota, it starts the work again from the
beginning of the address space in the next charge window. If there is a
huge memory region at the beginning of the address space and it fulfills
the scheme's target data access pattern always, the action will applied
to only the region.
This mitigates the case by skipping memory regions that charged in
current charge window at the beginning of next charge window.
Link: https://lkml.kernel.org/r/20211019150731.16699-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There could be arbitrarily large memory regions fulfilling the target
data access pattern of a DAMON-based operation scheme. In the case,
applying the action of the scheme could incur too high overhead. To
provide an intuitive way for avoiding it, this implements a feature
called size quota. If the quota is set, DAMON tries to apply the action
only up to the given amount of memory regions within a given time
window.
Link: https://lkml.kernel.org/r/20211019150731.16699-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To tune the DAMON-based operation schemes, knowing how many and how
large regions are affected by each of the schemes will be helful. Those
stats could be used for not only the tuning, but also monitoring of the
working set size and the number of regions, if the scheme does not
change the program behavior too much.
For the reason, this implements the statistics for the schemes. The
total number and size of the regions that each scheme is applied are
exported to users via '->stat_count' and '->stat_sz' of 'struct damos'.
Admins can also check the number by reading 'schemes' debugfs file. The
last two integers now represents the stats. To allow collecting the
stats without changing the program behavior, this also adds new scheme
action, 'DAMOS_STAT'. Note that 'DAMOS_STAT' is not only making no
memory operation actions, but also does not reset the age of regions.
Link: https://lkml.kernel.org/r/20211001125604.29660-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In many cases, users might use DAMON for simple data access aware memory
management optimizations such as applying an operation scheme to a
memory region of a specific size having a specific access frequency for
a specific time. For example, "page out a memory region larger than 100
MiB but having a low access frequency more than 10 minutes", or "Use THP
for a memory region larger than 2 MiB having a high access frequency for
more than 2 seconds".
Most simple form of the solution would be doing offline data access
pattern profiling using DAMON and modifying the application source code
or system configuration based on the profiling results. Or, developing
a daemon constructed with two modules (one for access monitoring and the
other for applying memory management actions via mlock(), madvise(),
sysctl, etc) is imaginable.
To avoid users spending their time for implementation of such simple
data access monitoring-based operation schemes, this makes DAMON to
handle such schemes directly. With this change, users can simply
specify their desired schemes to DAMON. Then, DAMON will automatically
apply the schemes to the user-specified target processes.
Each of the schemes is composed with conditions for filtering of the
target memory regions and desired memory management action for the
target. Specifically, the format is::
<min/max size> <min/max access frequency> <min/max age> <action>
The filtering conditions are size of memory region, number of accesses
to the region monitored by DAMON, and the age of the region. The age of
region is incremented periodically but reset when its addresses or
access frequency has significantly changed or the action of a scheme was
applied. For the action, current implementation supports a few of
madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``,
and ``NOHUGEPAGE``.
Because DAMON supports various address spaces and application of the
actions to a monitoring target region is dependent to the type of the
target address space, the application code should be implemented by each
primitives and registered to the framework. Note that this only
implements the framework part. Following commit will implement the
action applications for virtual address spaces primitives.
Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Implement Data Access Monitoring-based Memory Operation Schemes".
Introduction
============
DAMON[1] can be used as a primitive for data access aware memory
management optimizations. For that, users who want such optimizations
should run DAMON, read the monitoring results, analyze it, plan a new
memory management scheme, and apply the new scheme by themselves. Such
efforts will be inevitable for some complicated optimizations.
However, in many other cases, the users would simply want the system to
apply a memory management action to a memory region of a specific size
having a specific access frequency for a specific time. For example,
"page out a memory region larger than 100 MiB keeping only rare accesses
more than 2 minutes", or "Do not use THP for a memory region larger than
2 MiB rarely accessed for more than 1 seconds".
To make the works easier and non-redundant, this patchset implements a
new feature of DAMON, which is called Data Access Monitoring-based
Operation Schemes (DAMOS). Using the feature, users can describe the
normal schemes in a simple way and ask DAMON to execute those on its
own.
[1] https://damonitor.github.io
Evaluations
===========
DAMOS is accurate and useful for memory management optimizations. An
experimental DAMON-based operation scheme for THP, 'ethp', removes
76.15% of THP memory overheads while preserving 51.25% of THP speedup.
Another experimental DAMON-based 'proactive reclamation' implementation,
'prcl', reduces 93.38% of residential sets and 23.63% of system memory
footprint while incurring only 1.22% runtime overhead in the best case
(parsec3/freqmine).
NOTE that the experimental THP optimization and proactive reclamation
are not for production but only for proof of concepts.
Please refer to the showcase web site's evaluation document[1] for
detailed evaluation setup and results.
[1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html
Long-term Support Trees
-----------------------
For people who want to test DAMON but using LTS kernels, there are
another couple of trees based on two latest LTS kernels respectively and
containing the 'damon/master' backports.
- For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y
- For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y
Sequence Of Patches
===================
The 1st patch accounts age of each region. The 2nd patch implements the
core of the DAMON-based operation schemes feature. The 3rd patch makes
the default monitoring primitives for virtual address spaces to support
the schemes. From this point, the kernel space users can use DAMOS.
The 4th patch exports the feature to the user space via the debugfs
interface. The 5th patch implements schemes statistics feature for
easier tuning of the schemes and runtime access pattern analysis, and
the 6th patch adds selftests for these changes. Finally, the 7th patch
documents this new feature.
This patch (of 7):
DAMON can be used for data access pattern aware memory management
optimizations. For that, users should run DAMON, read the monitoring
results, analyze it, plan a new memory management scheme, and apply the
new scheme by themselves. It would not be too hard, but still require
some level of effort. For complicated cases, this effort is inevitable.
That said, in many cases, users would simply want to apply an actions to
a memory region of a specific size having a specific access frequency
for a specific time. For example, "page out a memory region larger than
100 MiB but having a low access frequency more than 10 minutes", or "Use
THP for a memory region larger than 2 MiB having a high access frequency
for more than 2 seconds".
For such optimizations, users will need to first account the age of each
region themselves. To reduce such efforts, this implements a simple age
account of each region in DAMON. For each aggregation step, DAMON
compares the access frequency with that from last aggregation and reset
the age of the region if the change is significant. Else, the age is
incremented. Also, in case of the merge of regions, the region
size-weighted average of the ages is set as the age of merged new
region.
Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rienjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a plain integer is being used to nullify the pointer
ctx->kdamond. Use NULL instead. Cleans up sparse warning:
mm/damon/core.c:317:40: warning: Using plain integer as NULL pointer
Link: https://lkml.kernel.org/r/20210925215908.181226-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just get the pid by 'current->pid'. Meanwhile, to be symmetrical make
the 'starts' and 'finishes' logs both use debug level.
Link: https://lkml.kernel.org/r/20210927232432.17750-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just return from the kthread function.
Link: https://lkml.kernel.org/r/20210927232421.17694-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Logging of kdamond startup is using 'pr_info()' unnecessarily. This
makes it to use 'pr_debug()' instead.
Link: https://lkml.kernel.org/r/20210917123958.3819-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds kunit based unit tests for the core and the virtual
address spaces monitoring primitives of DAMON.
Link: https://lkml.kernel.org/r/20210716081449.22187-12-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Fernand Sieber <sieberf@amazon.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAMON is designed to be used by kernel space code such as the memory
management subsystems, and therefore it provides only kernel space API.
That said, letting the user space control DAMON could provide some
benefits to them. For example, it will allow user space to analyze their
specific workloads and make their own special optimizations.
For such cases, this commit implements a simple DAMON application kernel
module, namely 'damon-dbgfs', which merely wraps the DAMON api and exports
those to the user space via the debugfs.
'damon-dbgfs' exports three files, ``attrs``, ``target_ids``, and
``monitor_on`` under its debugfs directory, ``<debugfs>/damon/``.
Attributes
----------
Users can read and write the ``sampling interval``, ``aggregation
interval``, ``regions update interval``, and min/max number of monitoring
target regions by reading from and writing to the ``attrs`` file. For
example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10,
1000 and check it again::
# cd <debugfs>/damon
# echo 5000 100000 1000000 10 1000 > attrs
# cat attrs
5000 100000 1000000 10 1000
Target IDs
----------
Some types of address spaces supports multiple monitoring target. For
example, the virtual memory address spaces monitoring can have multiple
processes as the monitoring targets. Users can set the targets by writing
relevant id values of the targets to, and get the ids of the current
targets by reading from the ``target_ids`` file. In case of the virtual
address spaces monitoring, the values should be pids of the monitoring
target processes. For example, below commands set processes having pids
42 and 4242 as the monitoring targets and check it again::
# cd <debugfs>/damon
# echo 42 4242 > target_ids
# cat target_ids
42 4242
Note that setting the target ids doesn't start the monitoring.
Turning On/Off
--------------
Setting the files as described above doesn't incur effect unless you
explicitly start the monitoring. You can start, stop, and check the
current status of the monitoring by writing to and reading from the
``monitor_on`` file. Writing ``on`` to the file starts the monitoring of
the targets with the attributes. Writing ``off`` to the file stops those.
DAMON also stops if every targets are invalidated (in case of the virtual
memory monitoring, target processes are invalidated when terminated).
Below example commands turn on, off, and check the status of DAMON::
# cd <debugfs>/damon
# echo on > monitor_on
# echo off > monitor_on
# cat monitor_on
off
Please note that you cannot write to the above-mentioned debugfs files
while the monitoring is turned on. If you write to the files while DAMON
is running, an error code such as ``-EBUSY`` will be returned.
[akpm@linux-foundation.org: remove unneeded "alloc failed" printks]
[akpm@linux-foundation.org: replace macro with static inline]
Link: https://lkml.kernel.org/r/20210716081449.22187-8-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds a tracepoint for DAMON. It traces the monitoring results
of each region for each aggregation interval. Using this, DAMON can
easily integrated with tracepoints supporting tools such as perf.
Link: https://lkml.kernel.org/r/20210716081449.22187-7-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Even somehow the initial monitoring target regions are well constructed to
fulfill the assumption (pages in same region have similar access
frequencies), the data access pattern can be dynamically changed. This
will result in low monitoring quality. To keep the assumption as much as
possible, DAMON adaptively merges and splits each region based on their
access frequency.
For each ``aggregation interval``, it compares the access frequencies of
adjacent regions and merges those if the frequency difference is small.
Then, after it reports and clears the aggregated access frequency of each
region, it splits each region into two or three regions if the total
number of regions will not exceed the user-specified maximum number of
regions after the split.
In this way, DAMON provides its best-effort quality and minimal overhead
while keeping the upper-bound overhead that users set.
Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid the unbounded increase of the overhead, DAMON groups adjacent
pages that are assumed to have the same access frequencies into a
region. As long as the assumption (pages in a region have the same
access frequencies) is kept, only one page in the region is required to
be checked. Thus, for each ``sampling interval``,
1. the 'prepare_access_checks' primitive picks one page in each region,
2. waits for one ``sampling interval``,
3. checks whether the page is accessed meanwhile, and
4. increases the access count of the region if so.
Therefore, the monitoring overhead is controllable by adjusting the
number of regions. DAMON allows both the underlying primitives and user
callbacks to adjust regions for the trade-off. In other words, this
commit makes DAMON to use not only time-based sampling but also
space-based sampling.
This scheme, however, cannot preserve the quality of the output if the
assumption is not guaranteed. Next commit will address this problem.
Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Introduce Data Access MONitor (DAMON)", v34.
Introduction
============
DAMON is a data access monitoring framework for the Linux kernel. The
core mechanisms of DAMON called 'region based sampling' and 'adaptive
regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this
patchset for the detail) make it
- accurate (The monitored information is useful for DRAM level memory
management. It might not appropriate for Cache-level accuracy,
though.),
- light-weight (The monitoring overhead is low enough to be applied
online while making no impact on the performance of the target
workloads.), and
- scalable (the upper-bound of the instrumentation overhead is
controllable regardless of the size of target workloads.).
Using this framework, therefore, several memory management mechanisms such
as reclamation and THP can be optimized to aware real data access
patterns. Experimental access pattern aware memory management
optimization works that incurring high instrumentation overhead will be
able to have another try.
Though DAMON is for kernel subsystems, it can be easily exposed to the
user space by writing a DAMON-wrapper kernel subsystem. Then, user space
users who have some special workloads will be able to write personalized
tools or applications for deeper understanding and specialized
optimizations of their systems.
DAMON is also merged in two public Amazon Linux kernel trees that based on
v5.4.y[1] and v5.10.y[2].
[1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon
[2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon
The userspace tool[1] is available, released under GPLv2, and actively
being maintained. I am also planning to implement another basic user
interface in perf[2]. Also, the basic test suite for DAMON is available
under GPLv2[3].
[1] https://github.com/awslabs/damo
[2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/
[3] https://github.com/awslabs/damon-tests
Long-term Plan
--------------
DAMON is a part of a project called Data Access-aware Operating System
(DAOS). As the name implies, I want to improve the performance and
efficiency of systems using fine-grained data access patterns. The
optimizations are for both kernel and user spaces. I will therefore
modify or create kernel subsystems, export some of those to user space and
implement user space library / tools. Below shows the layers and
components for the project.
---------------------------------------------------------------------------
Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ...
Framework: DAMON
Features: DAMOS, virtual addr, physical addr, ...
Applications: DAMON-debugfs, (DARC), ...
^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ...
vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Library: (libdamon), ...
Tools: DAMO, (perf), ...
---------------------------------------------------------------------------
The components in parentheses or marked as '...' are not implemented yet
but in the future plan. IOW, those are the TODO tasks of DAOS project.
For more detail, please refer to the plans:
https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/
Evaluations
===========
We evaluated DAMON's overhead, monitoring quality and usefulness using 24
realistic workloads on my QEMU/KVM based virtual machine running a kernel
that v24 DAMON patchset is applied.
DAMON is lightweight. It increases system memory usage by 0.39% and slows
target workloads down by 1.16%.
DAMON is accurate and useful for memory management optimizations. An
experimental DAMON-based operation scheme for THP, namely 'ethp', removes
76.15% of THP memory overheads while preserving 51.25% of THP speedup.
Another experimental DAMON-based 'proactive reclamation' implementation,
'prcl', reduces 93.38% of residential sets and 23.63% of system memory
footprint while incurring only 1.22% runtime overhead in the best case
(parsec3/freqmine).
NOTE that the experimental THP optimization and proactive reclamation are
not for production but only for proof of concepts.
Please refer to the official document[1] or "Documentation/admin-guide/mm:
Add a document for DAMON" patch in this patchset for detailed evaluation
setup and results.
[1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html
Real-world User Story
=====================
In summary, DAMON has used on production systems and proved its usefulness.
DAMON as a profiler
-------------------
We analyzed characteristics of a large scale production systems of our
customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From
this, we were able to find interesting things below.
There were obviously different access pattern under idle workload and
active workload. Under the idle workload, it accessed large memory
regions with low frequency, while the active workload accessed small
memory regions with high freuqnecy.
DAMON found a 7GB memory region that showing obviously high access
frequency under the active workload. We believe this is the
performance-effective working set and need to be protected.
There was a 4KB memory region that showing highest access frequency under
not only active but also idle workloads. We think this must be a hottest
code section like thing that should never be paged out.
For this analysis, DAMON used only 0.3-1% of single CPU time. Because we
used recording-based analysis, it consumed about 3-12 MB of disk space per
20 minutes. This is only small amount of disk space, but we can further
reduce the disk usage by using non-recording-based DAMON features. I'd
like to argue that only DAMON can do such detailed analysis (finding 4KB
highest region in 70GB memory) with the light overhead.
DAMON as a system optimization tool
-----------------------------------
We also found below potential performance problems on the systems and made
DAMON-based solutions.
The system doesn't want to make the workload suffer from the page
reclamation and thus it utilizes enough DRAM but no swap device. However,
we found the system is actively reclaiming file-backed pages, because the
system has intensive file IO. The file IO turned out to be not
performance critical for the workload, but the customer wanted to ensure
performance critical file-backed pages like code section to not mistakenly
be evicted.
Using direct IO should or `mlock()` would be a straightforward solution,
but modifying the user space code is not easy for the customer.
Alternatively, we could use DAMON-based operation scheme[1]. By using it,
we can ask DAMON to track access frequency of each region and make
'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size
and access frequency for a time interval.
We also found the system is having high number of TLB misses. We tried
'always' THP enabled policy and it greatly reduced TLB misses, but the
page reclamation also been more frequent due to the THP internal
fragmentation caused memory bloat. We could try another DAMON-based
operation scheme that applies 'MADV_HUGEPAGE' to memory regions having
>=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to
regions having <2MB size and low access frequency.
We do not own the systems so we only reported the analysis results and
possible optimization solutions to the customers. The customers satisfied
about the analysis results and promised to try the optimization guides.
[1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/
[2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/
Comparison with Idle Page Tracking
==================================
Idle Page Tracking allows users to set and read idleness of pages using a
bitmap file which represents each page with each bit of the file. One
recommended usage of it is working set size detection. Users can do that
by
1. find PFN of each page for workloads in interest,
2. set all the pages as idle by doing writes to the bitmap file,
3. wait until the workload accesses its working set, and
4. read the idleness of the pages again and count pages became not idle.
NOTE: While Idle Page Tracking is for user space users, DAMON is primarily
designed for kernel subsystems though it can easily exposed to the user
space. Hence, this section only assumes such user space use of DAMON.
For what use cases Idle Page Tracking would be better?
------------------------------------------------------
1. Flexible usecases other than hotness monitoring.
Because Idle Page Tracking allows users to control the primitive (Page
idleness) by themselves, Idle Page Tracking users can do anything they
want. Meanwhile, DAMON is primarily designed to monitor the hotness of
each memory region. For this, DAMON asks users to provide sampling
interval and aggregation interval. For the reason, there could be some
use case that using Idle Page Tracking is simpler.
2. Physical memory monitoring.
Idle Page Tracking receives PFN range as input, so natively supports
physical memory monitoring.
DAMON is designed to be extensible for multiple address spaces and use
cases by implementing and using primitives for the given use case.
Therefore, by theory, DAMON has no limitation in the type of target
address space as long as primitives for the given address space exists.
However, the default primitives introduced by this patchset supports only
virtual address spaces.
Therefore, for physical memory monitoring, you should implement your own
primitives and use it, or simply use Idle Page Tracking.
Nonetheless, RFC patchsets[1] for the physical memory address space
primitives is already available. It also supports user memory same to
Idle Page Tracking.
[1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/
For what use cases DAMON is better?
-----------------------------------
1. Hotness Monitoring.
Idle Page Tracking let users know only if a page frame is accessed or not.
For hotness check, the user should write more code and use more memory.
DAMON do that by itself.
2. Low Monitoring Overhead
DAMON receives user's monitoring request with one step and then provide
the results. So, roughly speaking, DAMON require only O(1) user/kernel
context switches.
In case of Idle Page Tracking, however, because the interface receives
contiguous page frames, the number of user/kernel context switches
increases as the monitoring target becomes complex and huge. As a result,
the context switch overhead could be not negligible.
Moreover, DAMON is born to handle with the monitoring overhead. Because
the core mechanism is pure logical, Idle Page Tracking users might be able
to implement the mechanism on their own, but it would be time consuming
and the user/kernel context switching will still more frequent than that
of DAMON. Also, the kernel subsystems cannot use the logic in this case.
3. Page granularity working set size detection.
Until v22 of this patchset, this was categorized as the thing Idle Page
Tracking could do better, because DAMON basically maintains additional
metadata for each of the monitoring target regions. So, in the page
granularity working set size detection use case, DAMON would incur (number
of monitoring target pages * size of metadata) memory overhead. Size of
the single metadata item is about 54 bytes, so assuming 4KB pages, about
1.3% of monitoring target pages will be additionally used.
All essential metadata for Idle Page Tracking are embedded in 'struct
page' and page table entries. Therefore, in this use case, only one
counter variable for working set size accounting is required if Idle Page
Tracking is used.
There are more details to consider, but roughly speaking, this is true in
most cases.
However, the situation changed from v23. Now DAMON supports arbitrary
types of monitoring targets, which don't use the metadata. Using that,
DAMON can do the working set size detection with no additional space
overhead but less user-kernel context switch. A first draft for the
implementation of monitoring primitives for this usage is available in a
DAMON development tree[1]. An RFC patchset for it based on this patchset
will also be available soon.
Since v24, the arbitrary type support is dropped from this patchset
because this patchset doesn't introduce real use of the type. You can
still get it from the DAMON development tree[2], though.
[1] https://github.com/sjp38/linux/tree/damon/pgidle_hack
[2] https://github.com/sjp38/linux/tree/damon/master
4. More future usecases
While Idle Page Tracking has tight coupling with base primitives (PG_Idle
and page table Accessed bits), DAMON is designed to be extensible for many
use cases and address spaces. If you need some special address type or
want to use special h/w access check primitives, you can write your own
primitives for that and configure DAMON to use those. Therefore, if your
use case could be changed a lot in future, using DAMON could be better.
Can I use both Idle Page Tracking and DAMON?
--------------------------------------------
Yes, though using them concurrently for overlapping memory regions could
result in interference to each other. Nevertheless, such use case would
be rare or makes no sense at all. Even in the case, the noise would bot
be really significant. So, you can choose whatever you want depending on
the characteristics of your use cases.
More Information
================
We prepared a showcase web site[1] that you can get more information.
There are
- the official documentations[2],
- the heatmap format dynamic access pattern of various realistic workloads for
heap area[3], mmap()-ed area[4], and stack[5] area,
- the dynamic working set size distribution[6] and chronological working set
size changes[7], and
- the latest performance test results[8].
[1] https://damonitor.github.io/_index
[2] https://damonitor.github.io/doc/html/latest-damon
[3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html
[4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html
[5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html
[6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html
[7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html
[8] https://damonitor.github.io/test/result/perf/latest/html/index.html
Baseline and Complete Git Trees
===============================
The patches are based on the latest -mm tree, specifically
v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can
also clone the complete git tree:
$ git clone git://github.com/sjp38/linux -b damon/patches/v34
The web is also available:
https://github.com/sjp38/linux/releases/tag/damon/patches/v34
Development Trees
-----------------
There are a couple of trees for entire DAMON patchset series and features
for future release.
- For latest release: https://github.com/sjp38/linux/tree/damon/master
- For next release: https://github.com/sjp38/linux/tree/damon/next
Long-term Support Trees
-----------------------
For people who want to test DAMON but using LTS kernels, there are another
couple of trees based on two latest LTS kernels respectively and
containing the 'damon/master' backports.
- For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y
- For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y
Amazon Linux Kernel Trees
-------------------------
DAMON is also merged in two public Amazon Linux kernel trees that based on
v5.4.y[1] and v5.10.y[2].
[1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon
[2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon
Git Tree for Diff of Patches
============================
For easy review of diff between different versions of each patch, I
prepared a git tree containing all versions of the DAMON patchset series:
https://github.com/sjp38/damon-patches
You can clone it and use 'diff' for easy review of changes between
different versions of the patchset. For example:
$ git clone https://github.com/sjp38/damon-patches && cd damon-patches
$ diff -u damon/v33 damon/v34
Sequence Of Patches
===================
First three patches implement the core logics of DAMON. The 1st patch
introduces basic sampling based hotness monitoring for arbitrary types of
targets. Following two patches implement the core mechanisms for control
of overhead and accuracy, namely regions based sampling (patch 2) and
adaptive regions adjustment (patch 3).
Now the essential parts of DAMON is complete, but it cannot work unless
someone provides monitoring primitives for a specific use case. The
following two patches make it just work for virtual address spaces
monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the
5th patch implements the virtual memory address space specific monitoring
primitives using page table Accessed bits and the 'PG_idle' page flag.
Now DAMON just works for virtual address space monitoring via the kernel
space api. To let the user space users can use DAMON, following four
patches add interfaces for them. The 6th patch adds a tracepoint for
monitoring results. The 7th patch implements a DAMON application kernel
module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON
interface to the user space via the debugfs interface. The 8th patch
further exports pid of monitoring thread (kdamond) to user space for
easier cpu usage accounting, and the 9th patch makes the debugfs interface
to support multiple contexts.
Three patches for maintainability follows. The 10th patch adds
documentations for both the user space and the kernel space. The 11th
patch provides unit tests (based on the kunit) while the 12th patch adds
user space tests (based on the kselftest).
Finally, the last patch (13th) updates the MAINTAINERS file.
This patch (of 13):
DAMON is a data access monitoring framework for the Linux kernel. The
core mechanisms of DAMON make it
- accurate (the monitoring output is useful enough for DRAM level
performance-centric memory management; It might be inappropriate for
CPU cache levels, though),
- light-weight (the monitoring overhead is normally low enough to be
applied online), and
- scalable (the upper-bound of the overhead is in constant range
regardless of the size of target workloads).
Using this framework, hence, we can easily write efficient kernel space
data access monitoring applications. For example, the kernel's memory
management mechanisms can make advanced decisions using this.
Experimental data access aware optimization works that incurring high
access monitoring overhead could again be implemented on top of this.
Due to its simple and flexible interface, providing user space interface
would be also easy. Then, user space users who have some special
workloads can write personalized applications for better understanding and
optimizations of their workloads and systems.
===
Nevertheless, this commit is defining and implementing only basic access
check part without the overhead-accuracy handling core logic. The basic
access check is as below.
The output of DAMON says what memory regions are how frequently accessed
for a given duration. The resolution of the access frequency is
controlled by setting ``sampling interval`` and ``aggregation interval``.
In detail, DAMON checks access to each page per ``sampling interval`` and
aggregates the results. In other words, counts the number of the accesses
to each region. After each ``aggregation interval`` passes, DAMON calls
callback functions that previously registered by users so that users can
read the aggregated results and then clears the results. This can be
described in below simple pseudo-code::
init()
while monitoring_on:
for page in monitoring_target:
if accessed(page):
nr_accesses[page] += 1
if time() % aggregation_interval == 0:
for callback in user_registered_callbacks:
callback(monitoring_target, nr_accesses)
for page in monitoring_target:
nr_accesses[page] = 0
if time() % update_interval == 0:
update()
sleep(sampling interval)
The target regions constructed at the beginning of the monitoring and
updated after each ``regions_update_interval``, because the target regions
could be dynamically changed (e.g., mmap() or memory hotplug). The
monitoring overhead of this mechanism will arbitrarily increase as the
size of the target workload grows.
The basic monitoring primitives for actual access check and dynamic target
regions construction aren't in the core part of DAMON. Instead, it allows
users to implement their own primitives that are optimized for their use
case and configure DAMON to use those. In other words, users cannot use
current version of DAMON without some additional works.
Following commits will implement the core mechanisms for the
overhead-accuracy control and default primitives implementations.
Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Joe Perches <joe@perches.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>