arch/x86/ to amd64_edac as that is its only user anyway
- Some MCE error injection improvements to the AMD side
- Reorganization of the #MC handler code and the facilities it calls to
make it noinstr-safe
- Add support for new AMD MCA bank types and non-uniform banks layout
- The usual set of cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHcGZ4ACgkQEsHwGGHe
VUr6Zw//WBvNvfV/akQGsvVo94G0DaF+buYB+Tl1p0goMd7QfKA5iHxjB1alEJC2
dTchIr7pjiiE3nr4svuWLLQZamx8kMwQNqipioBHXg3YThj0wD4PbUOC9TlIceBR
3yxVbvwlD7Y7sb2PII6IMlagzTiIeW0/ps29DHFr5vqDBvEanNdAHoV/h2vQi+76
Ma96psIxzTMSk11yGB6l9k66EASCdDGBU7sODjup7wuQmuRaQ/1oJAWY0wIJvJez
frjpaz/YKmlTwTf9bxoJbky2FkeBsD4yXXUGwjDgMq0EyUUaeSbvaQkm8gSHX9Yr
VDDv1WvT6QIw6x7Wc4skS8lWmZghNBbAHOoNS31BPJ2IDmFWkF5Q2bNEuHrtU4EC
0mkNeyN6x48L/F8j/1aE/tm+SjiGexZX4zhi6MNWReTV140I1zqQq/r7CCu5+MEa
PAB1YH/96k2dMPT6mbFrRIFJmkDuBuZOAkuwYWEjO/XjPl2SGBGj1jKolWW3qjRR
Po7vBJnDt7wgigWFh6+R4rJv+fh87XfB7B2wEOt4Yn37jUkK6dNRIy0zFmDaC1J2
bHgsJbWC+Sgs1G57gnYABJYzLj7RRdDyCu1/UUVyBBP7/WfZJw0kjABE7p3AaYTd
15JV1L0c/Ypuv05LJf40LkyF2F5w2fnP5QM2Rr8U4xW/GumEyWs=
=8Hu7
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
"A relatively big amount of movements in RAS-land this time around:
- First part of a series to move the AMD address translation code
from arch/x86/ to amd64_edac as that is its only user anyway
- Some MCE error injection improvements to the AMD side
- Reorganization of the #MC handler code and the facilities it calls
to make it noinstr-safe
- Add support for new AMD MCA bank types and non-uniform banks layout
- The usual set of cleanups and fixes"
* tag 'ras_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/mce: Reduce number of machine checks taken during recovery
x86/mce/inject: Avoid out-of-bounds write when setting flags
x86/MCE/AMD, EDAC/mce_amd: Support non-uniform MCA bank type enumeration
x86/MCE/AMD, EDAC/mce_amd: Add new SMCA bank types
x86/mce: Check regs before accessing it
x86/mce: Mark mce_start() noinstr
x86/mce: Mark mce_timed_out() noinstr
x86/mce: Move the tainting outside of the noinstr region
x86/mce: Mark mce_read_aux() noinstr
x86/mce: Mark mce_end() noinstr
x86/mce: Mark mce_panic() noinstr
x86/mce: Prevent severity computation from being instrumented
x86/mce: Allow instrumentation during task work queueing
x86/mce: Remove noinstr annotation from mce_setup()
x86/mce: Use mce_rdmsrl() in severity checking code
x86/mce: Remove function-local cpus variables
x86/mce: Do not use memset to clear the banks bitmaps
x86/mce/inject: Set the valid bit in MCA_STATUS before error injection
x86/mce/inject: Check if a bank is populated before injecting
x86/mce: Get rid of cpu_missing
...
copy_user_enhanced_fast_string()
- Avoid writing MSR_CSTAR on Intel due to TDX guests raising a #VE trap
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHcFRcACgkQEsHwGGHe
VUrVYRAAg8hJS/aIMnqr+CDX+iOlx2hxJ2TA2bA45NwWc1A4VTt9kwRB0+NIKkjj
F3uJbidZjxSch9Oza6O5KyjJK8QtOfqxyYcx8TLjSleqJRoJWxl1Ub1/yAfKIX/0
QsqXVc/OuMzgwVGYLUwGSWifJOWMYKy03vSczmXK74zp9vZ56fdot8rOhDm3Xb/R
QSfT5nKlgCvxbvAqgFfbXKoEu/EqT43sTXq4o1C6yDX/G6JOGe6nXZIAvIVm3iKZ
utOqO+tBOmektF/yg3EHZL/7paFgtfETcI1YpmPYqKhG3KvvZgm7yyU6SqrcctSx
vMSPTcgcuZl2I5OF+eesUGfGGhHSfSPBAhkxpCTOb6lHf73PYRC3BnQtlQkQt6g/
UOtm3fQwrVJcKlMu7nem46iDCgbSyvASFa5ZyuOGcrAiFLhJzQNRDlXLpxp/q615
yOYTRgj4YS6vomzc6bL3zNCcF5aJUwAPNVghe3l2zwKXetoOPvtWX8sKlYjiN3GW
DTtEi117IAiWkosDIYY+aFNxLeOqxpNMcOkwd5eHHdpR3rkeFkjOtBctll/eHzPi
NYx++cV5yYW0z4S2uRr6o4k4hdgAQU/p7xhdO28Z+yzWpmXQ//79HhiOf2nNd1iI
dpQAx9roo8vbR3JYLxGYFuJrZsHna+/f6Gqf5teUy7SjVL5M95U=
=zbYM
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Enable the short string copies for CPUs which support them, in
copy_user_enhanced_fast_string()
- Avoid writing MSR_CSTAR on Intel due to TDX guests raising a #VE trap
* tag 'x86_cpu_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/lib: Add fast-short-rep-movs check to copy_user_enhanced_fast_string()
x86/cpu: Don't write CSTAR MSR on Intel CPUs
When any of the copy functions in arch/x86/lib/copy_user_64.S take a
fault, the fixup code copies the remaining byte count from %ecx to %edx
and unconditionally jumps to .Lcopy_user_handle_tail to continue the
copy in case any more bytes can be copied.
If the fault was #PF this may copy more bytes (because the page fault
handler might have fixed the fault). But when the fault is a machine
check the original copy code will have copied all the way to the poisoned
cache line. So .Lcopy_user_handle_tail will just take another machine
check for no good reason.
Every code path to .Lcopy_user_handle_tail comes from an exception fixup
path, so add a check there to check the trap type (in %eax) and simply
return the count of remaining bytes if the trap was a machine check.
Doing this reduces the number of machine checks taken during synthetic
tests from four to three.
As well as reducing the number of machine checks, this also allows
Skylake generation Xeons to recover some cases that currently fail. The
is because REP; MOVSB is only recoverable when source and destination
are well aligned and the byte count is large. That useless call to
.Lcopy_user_handle_tail may violate one or more of these conditions and
generate a fatal machine check.
[ Tony: Add more details to commit message. ]
[ bp: Fixup comment.
Also, another tip patchset which is adding straight-line speculation
mitigation changes the "ret" instruction to an all-caps macro "RET".
But, since gas is case-insensitive, use "RET" in the newly added asm block
already in order to simplify tip branch merging on its way upstream.
]
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/YcTW5dh8yTGucDd+@agluck-desk2.amr.corp.intel.com
Commit
f444a5ff95 ("x86/cpufeatures: Add support for fast short REP; MOVSB")
fixed memmove() with an ALTERNATIVE that will use REP MOVSB for all
string lengths.
copy_user_enhanced_fast_string() has a similar run time check to avoid
using REP MOVSB for copies less that 64 bytes.
Add an ALTERNATIVE to patch out the short length check and always use
REP MOVSB on X86_FEATURE_FSRM CPUs.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211216172431.1396371-1-tony.luck@intel.com
Typically usercopy does whole word copies followed by a number of byte
copies to finish the tail. This means that on exception it needs to
compute the remaining length as: words*sizeof(long) + bytes.
Create a new extable handler to do just this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20211110101326.081701085@infradead.org
Have an exception jump to a .fixup to only immediately jump out is
daft, jump to the right place in one go.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20211110101326.021517780@infradead.org
In order to remove further .fixup usage, extend the extable
infrastructure to take additional information from the extable entry
sites.
Specifically add _ASM_EXTABLE_TYPE_REG() and EX_TYPE_IMM_REG that
extend the existing _ASM_EXTABLE_TYPE() by taking an additional
register argument and encoding that and an s16 immediate into the
existing s32 type field. This limits the actual types to the first
byte, 255 seem plenty.
Also add a few flags into the type word, specifically CLEAR_AX and
CLEAR_DX which clear the return and extended return register.
Notes:
- due to the % in our register names it's hard to make it more
generally usable as arm64 did.
- the s16 is far larger than used in these patches, future extentions
can easily shrink this to get more bits.
- without the bitfield fix this will not compile, because: 0xFF > -1
and we can't even extract the TYPE field.
[nathanchance: Build fix for clang-lto builds:
https://lkml.kernel.org/r/20211210234953.3420108-1-nathan@kernel.org
]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/r/20211110101325.303890153@infradead.org
Place the anonymous .fixup code at the tail of the regular functions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211110101325.127055887@infradead.org
Place the anonymous .fixup code at the tail of the regular functions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211110101325.068505810@infradead.org
This code puts an exception table entry on the PREFETCH instruction to
overwrite it with a JMP.d8 when it triggers an exception. Except of
course, our code is no longer writable, also SMP.
Instead of fixing this broken mess, simply take it out.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/YZKQzUmeNuwyvZpk@hirez.programming.kicks-ass.net
Replace all ret/retq instructions with ASM_RET in preparation of
making it more than a single instruction.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.964635458@infradead.org
Replace all ret/retq instructions with RET in preparation of making
RET a macro. Since AS is case insensitive it's a big no-op without
RET defined.
find arch/x86/ -name \*.S | while read file
do
sed -i 's/\<ret[q]*\>/RET/' $file
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.905503893@infradead.org
Principally, in order to get rid of #define RET in this code to make
place for a new RET, but also to clarify the code, rename a bunch of
things:
s/UNLOCK/IRQ_RESTORE/
s/LOCK/IRQ_SAVE/
s/BEGIN/BEGIN_IRQ_SAVE/
s/\<RET\>/RET_IRQ_RESTORE/
s/RET_ENDP/\tRET_IRQ_RESTORE\rENDP/
which then leaves RET unused so it can be removed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.841623970@infradead.org
With more NICs supporting CHECKSUM_COMPLETE, and IPv6 being widely
used csum_partial() is heavily used with small amount of bytes, and is
consuming many cycles.
IPv6 header size, for instance, is 40 bytes.
Another thing to consider is that NET_IP_ALIGN is 0 on x86, meaning
that network headers are not word-aligned, unless the driver forces
this.
This means that csum_partial() fetches one u16 to 'align the buffer',
then performs three u64 additions with carry in a loop, then a
remaining u32, then a remaining u16.
With this new version, it performs a loop only for the 64 bytes blocks,
then the remaining is bisected.
Testing on various CPUs, all of them show a big reduction in
csum_partial() cost (by 50 to 80 %)
Before:
4.16% [kernel] [k] csum_partial
After:
0.83% [kernel] [k] csum_partial
If run in a loop 1,000,000 times:
Before:
26,922,913 cycles # 3846130.429 GHz
80,302,961 instructions # 2.98 insn per cycle
21,059,816 branches # 3008545142.857 M/sec
2,896 branch-misses # 0.01% of all branches
After:
17,960,709 cycles # 3592141.800 GHz
41,292,805 instructions # 2.30 insn per cycle
11,058,119 branches # 2211623800.000 M/sec
2,997 branch-misses # 0.03% of all branches
[ bp: Massage, merge in subsequent fixes into a single patch:
- um compilation error due to missing load_unaligned_zeropad():
- Reported-by: kernel test robot <lkp@intel.com>
- Link: https://lkml.kernel.org/r/20211118175239.1525650-1-eric.dumazet@gmail.com
- Fix initial seed for odd buffers
- Reported-by: Noah Goldstein <goldstein.w.n@gmail.com>
- Link: https://lkml.kernel.org/r/20211125141817.3541501-1-eric.dumazet@gmail.com
]
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://lore.kernel.org/r/20211112161950.528886-1-eric.dumazet@gmail.com
In preparation for sharing MMIO instruction decode between SEV-ES and
TDX, factor out the common decode into a new insn_decode_mmio() helper.
For regular virtual machine, MMIO is handled by the VMM and KVM
emulates instructions that caused MMIO. But, this model doesn't work
for a secure VMs (like SEV or TDX) as VMM doesn't have access to the
guest memory and register state. So, for TDX or SEV VMM needs
assistance in handling MMIO. It induces exception in the guest. Guest
has to decode the instruction and handle it on its own.
The code is based on the current SEV MMIO implementation.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20211130184933.31005-4-kirill.shutemov@linux.intel.com
The helper returns a pointer to the register indicated by
ModRM byte.
It's going to replace vc_insn_get_reg() in the SEV MMIO
implementation. TDX MMIO implementation will also use it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20211130184933.31005-3-kirill.shutemov@linux.intel.com
is_string_insn() calls insn_get_opcode() that can fail, but does not
handle the failure.
is_string_insn() interface does not allow to communicate an error to the
caller.
Push insn_get_opcode() to the only non-static user of is_string_insn()
and fail it early if insn_get_opcode() fails.
[ dhansen: fix tabs-versus-spaces breakage ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20211130184933.31005-2-kirill.shutemov@linux.intel.com
keep old userspace from breaking. Adjust the corresponding iopl selftest
to that.
- Improve stack overflow warnings to say which stack got overflowed and
raise the exception stack sizes to 2 pages since overflowing the single
page of exception stack is very easy to do nowadays with all the tracing
machinery enabled. With that, rip out the custom mapping of AMD SEV's
too.
- A bunch of changes in preparation for FGKASLR like supporting more
than 64K section headers in the relocs tool, correct ORC lookup table
size to cover the whole kernel .text and other adjustments.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/uugACgkQEsHwGGHe
VUroKw//e8BJ3Aun8bg00FHxfiMGbPYcozjLGDkaoMtMDZ8WlfCUrvtqYICEr8eB
UU0eRyygAPI167dre1O9JvAcbilkNTKntaU6qbu/ZVyUwS3+Jkjwsotbqn3xKtkd
QDDTDNiCU+beCJ2ZbspbrPgEh13+H0MwMHUfRxZB9Scpmo6aGSEaU3g295f6GX57
VFGJ/LNov5MV1dTD7Pp/h6/Nb+R6WmflKcBzJmQxYuKyKX+g1xsSv0VSga+t+uf3
M9pUkizqTiUxzC2eLgtcEZTqqBHu810E8M76FmhKBUMilsFJT5YAJTiqyahwHXds
HYarOFRgcnFuJPd29vn8UHjqeeoi6ru8GtcZYzccEc7U3ku/gXPaDJ9ffmvhs7vU
pJX5Um3GiiFm0w/ZZOKDqh78wRAsCKLN+jIoyszuhkkNchZSj/jKfOgdd3EmcZst
6L6rxBA4oRHwNOgM7uVMp+jFeRe1/prR280OWWH0D4QmmuqybThOdO23Iuh/Deth
W3qPUH3UQtfSWxGy2yODzJ1ciuGAr/AzJZ9zjg04e3Vl0DkEpyWtLKJiG3ClXZag
Nj+3xc4xYH2Aw+M0HRaONk5XVKLpqVjuAfgU5iLQa0YSUbtrR+wCWvY8KgQNbAqK
xZmzYzQ89stwVCuGKx10gPsL3jSJ3VCylMfqdHD2Ajmld1yApr0=
=DOZU
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Borislav Petkov:
- Do not #GP on userspace use of CLI/STI but pretend it was a NOP to
keep old userspace from breaking. Adjust the corresponding iopl
selftest to that.
- Improve stack overflow warnings to say which stack got overflowed and
raise the exception stack sizes to 2 pages since overflowing the
single page of exception stack is very easy to do nowadays with all
the tracing machinery enabled. With that, rip out the custom mapping
of AMD SEV's too.
- A bunch of changes in preparation for FGKASLR like supporting more
than 64K section headers in the relocs tool, correct ORC lookup table
size to cover the whole kernel .text and other adjustments.
* tag 'x86_core_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
selftests/x86/iopl: Adjust to the faked iopl CLI/STI usage
vmlinux.lds.h: Have ORC lookup cover entire _etext - _stext
x86/boot/compressed: Avoid duplicate malloc() implementations
x86/boot: Allow a "silent" kaslr random byte fetch
x86/tools/relocs: Support >64K section headers
x86/sev: Make the #VC exception stacks part of the default stacks storage
x86: Increase exception stack sizes
x86/mm/64: Improve stack overflow warnings
x86/iopl: Fake iopl(3) CLI/STI usage
The end goal of the current buffer overflow detection work[0] is to gain
full compile-time and run-time coverage of all detectable buffer overflows
seen via array indexing or memcpy(), memmove(), and memset(). The str*()
family of functions already have full coverage.
While much of the work for these changes have been on-going for many
releases (i.e. 0-element and 1-element array replacements, as well as
avoiding false positives and fixing discovered overflows[1]), this series
contains the foundational elements of several related buffer overflow
detection improvements by providing new common helpers and FORTIFY_SOURCE
changes needed to gain the introspection required for compiler visibility
into array sizes. Also included are a handful of already Acked instances
using the helpers (or related clean-ups), with many more waiting at the
ready to be taken via subsystem-specific trees[2]. The new helpers are:
- struct_group() for gaining struct member range introspection.
- memset_after() and memset_startat() for clearing to the end of structures.
- DECLARE_FLEX_ARRAY() for using flex arrays in unions or alone in structs.
Also included is the beginning of the refactoring of FORTIFY_SOURCE to
support memcpy() introspection, fix missing and regressed coverage under
GCC, and to prepare to fix the currently broken Clang support. Finishing
this work is part of the larger series[0], but depends on all the false
positives and buffer overflow bug fixes to have landed already and those
that depend on this series to land.
As part of the FORTIFY_SOURCE refactoring, a set of both a compile-time
and run-time tests are added for FORTIFY_SOURCE and the mem*()-family
functions respectively. The compile time tests have found a legitimate
(though corner-case) bug[6] already.
Please note that the appearance of "panic" and "BUG" in the
FORTIFY_SOURCE refactoring are the result of relocating existing code,
and no new use of those code-paths are expected nor desired.
Finally, there are two tree-wide conversions for 0-element arrays and
flexible array unions to gain sane compiler introspection coverage that
result in no known object code differences.
After this series (and the changes that have now landed via netdev
and usb), we are very close to finally being able to build with
-Warray-bounds and -Wzero-length-bounds. However, due corner cases in
GCC[3] and Clang[4], I have not included the last two patches that turn
on these options, as I don't want to introduce any known warnings to
the build. Hopefully these can be solved soon.
[0] https://lore.kernel.org/lkml/20210818060533.3569517-1-keescook@chromium.org/
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=FORTIFY_SOURCE
[2] https://lore.kernel.org/lkml/202108220107.3E26FE6C9C@keescook/
[3] https://lore.kernel.org/lkml/3ab153ec-2798-da4c-f7b1-81b0ac8b0c5b@roeck-us.net/
[4] https://bugs.llvm.org/show_bug.cgi?id=51682
[5] https://lore.kernel.org/lkml/202109051257.29B29745C0@keescook/
[6] https://lore.kernel.org/lkml/20211020200039.170424-1-keescook@chromium.org/
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmGAFWcWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJmKFD/45MJdnvW5MhIEeW5tc5UjfcIPS
ae+YvlEX/2ZwgSlTxocFVocE6hz7b6eCiX3dSAChPkPxsSfgeiuhjxsU+4ROnELR
04RqTA/rwT6JXfJcXbDPXfxDL4huUkgktAW3m1sT771AZspeap2GrSwFyttlTqKA
+kTiZ3lXJVFcw10uyhfp3Lk6eFJxdf5iOjuEou5kBOQfpNKEOduRL2K15hSowOwB
lARiAC+HbmN+E+npvDE7YqK4V7ZQ0/dtB0BlfqgTkn1spQz8N21kBAMpegV5vvIk
A+qGHc7q2oyk4M14TRTidQHGQ4juW1Kkvq3NV6KzwQIVD+mIfz0ESn3d4tnp28Hk
Y+OXTI1BRFlApQU9qGWv33gkNEozeyqMLDRLKhDYRSFPA9UKkpgXQRzeTzoLKyrQ
4B6n5NnUGcu7I6WWhpyZQcZLDsHGyy0vHzjQGs/NXtb1PzXJ5XIGuPdmx9pVMykk
IVKnqRcWyGWahfh3asOnoXvdhi1No4NSHQ/ZHfUM+SrIGYjBMaUisw66qm3Fe8ZU
lbO2CFkCsfGSoKNPHf0lUEGlkyxAiDolazOfflDNxdzzlZo2X1l/a7O/yoO4Pqul
cdL0eDjiNoQ2YR2TSYPnXq5KSL1RI0tlfS8pH8k1hVhZsQx0wpAQ+qki0S+fLePV
PdA9XB82G2tmqKc9cQ==
=9xbT
-----END PGP SIGNATURE-----
Merge tag 'overflow-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull overflow updates from Kees Cook:
"The end goal of the current buffer overflow detection work[0] is to
gain full compile-time and run-time coverage of all detectable buffer
overflows seen via array indexing or memcpy(), memmove(), and
memset(). The str*() family of functions already have full coverage.
While much of the work for these changes have been on-going for many
releases (i.e. 0-element and 1-element array replacements, as well as
avoiding false positives and fixing discovered overflows[1]), this
series contains the foundational elements of several related buffer
overflow detection improvements by providing new common helpers and
FORTIFY_SOURCE changes needed to gain the introspection required for
compiler visibility into array sizes. Also included are a handful of
already Acked instances using the helpers (or related clean-ups), with
many more waiting at the ready to be taken via subsystem-specific
trees[2].
The new helpers are:
- struct_group() for gaining struct member range introspection
- memset_after() and memset_startat() for clearing to the end of
structures
- DECLARE_FLEX_ARRAY() for using flex arrays in unions or alone in
structs
Also included is the beginning of the refactoring of FORTIFY_SOURCE to
support memcpy() introspection, fix missing and regressed coverage
under GCC, and to prepare to fix the currently broken Clang support.
Finishing this work is part of the larger series[0], but depends on
all the false positives and buffer overflow bug fixes to have landed
already and those that depend on this series to land.
As part of the FORTIFY_SOURCE refactoring, a set of both a
compile-time and run-time tests are added for FORTIFY_SOURCE and the
mem*()-family functions respectively. The compile time tests have
found a legitimate (though corner-case) bug[6] already.
Please note that the appearance of "panic" and "BUG" in the
FORTIFY_SOURCE refactoring are the result of relocating existing code,
and no new use of those code-paths are expected nor desired.
Finally, there are two tree-wide conversions for 0-element arrays and
flexible array unions to gain sane compiler introspection coverage
that result in no known object code differences.
After this series (and the changes that have now landed via netdev and
usb), we are very close to finally being able to build with
-Warray-bounds and -Wzero-length-bounds.
However, due corner cases in GCC[3] and Clang[4], I have not included
the last two patches that turn on these options, as I don't want to
introduce any known warnings to the build. Hopefully these can be
solved soon"
Link: https://lore.kernel.org/lkml/20210818060533.3569517-1-keescook@chromium.org/ [0]
Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=FORTIFY_SOURCE [1]
Link: https://lore.kernel.org/lkml/202108220107.3E26FE6C9C@keescook/ [2]
Link: https://lore.kernel.org/lkml/3ab153ec-2798-da4c-f7b1-81b0ac8b0c5b@roeck-us.net/ [3]
Link: https://bugs.llvm.org/show_bug.cgi?id=51682 [4]
Link: https://lore.kernel.org/lkml/202109051257.29B29745C0@keescook/ [5]
Link: https://lore.kernel.org/lkml/20211020200039.170424-1-keescook@chromium.org/ [6]
* tag 'overflow-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (30 commits)
fortify: strlen: Avoid shadowing previous locals
compiler-gcc.h: Define __SANITIZE_ADDRESS__ under hwaddress sanitizer
treewide: Replace 0-element memcpy() destinations with flexible arrays
treewide: Replace open-coded flex arrays in unions
stddef: Introduce DECLARE_FLEX_ARRAY() helper
btrfs: Use memset_startat() to clear end of struct
string.h: Introduce memset_startat() for wiping trailing members and padding
xfrm: Use memset_after() to clear padding
string.h: Introduce memset_after() for wiping trailing members/padding
lib: Introduce CONFIG_MEMCPY_KUNIT_TEST
fortify: Add compile-time FORTIFY_SOURCE tests
fortify: Allow strlen() and strnlen() to pass compile-time known lengths
fortify: Prepare to improve strnlen() and strlen() warnings
fortify: Fix dropped strcpy() compile-time write overflow check
fortify: Explicitly disable Clang support
fortify: Move remaining fortify helpers into fortify-string.h
lib/string: Move helper functions out of string.c
compiler_types.h: Remove __compiletime_object_size()
cm4000_cs: Use struct_group() to zero struct cm4000_dev region
can: flexcan: Use struct_group() to zero struct flexcan_regs regions
...
memcpy() in the insn decoder
- A randconfig build fix
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/wogACgkQEsHwGGHe
VUoQIw//WdNg7rD++X4GG5l73lGt5ajerqnxjpipiAQTy029cUx0OzeYlWeHR2QH
p+zLb3xzghjHn0Gviv9omadcPjHjXbqU6vlR3b95JARM5NnJEKRE7nho/w3mRfaT
gWBzo6awh5SXLlo7DYESHRfvyr/Ryjl6LvgBFXprO33ST+0RMsWW/J4bx63xEIUF
TKIYtm994O/qQBNLIEu/CB2cOAxtGZrVfRfVK+8QJcUy9xwgP0Oa9I6o9LvzaoJ1
UEvOkL1w6TttRsxgoHz/gskj8+LbXQD9LWVQ55u/HpRDhpNAe4f+RI73Fsgr7Av9
irbrhKwXherKCk9lHgaXQ6XgrrkZyvDY/pvdlj3RlnDt0jsJa6R4gwBGCOXmTgkU
5MF0hHr5kGgXAIJ7AVmYIaTBiLs99/JpF9+9lLW9UuJE2oKj2GxMot3YGTOokj1h
u7Y32cta6Ve96ZHHtIXObY5c+LD3OQaljdBayLFaJuTVB6TqVc3dfsEzSNNf/duS
56K28CQEIpPGMe/KW6uZW9eYzQsGv+Jux1X3p650Z/e9A5wVCbdmdEshtACbXSac
FVhaybv8ksJKNQmHi3xqbDUpFSMlbXZB3UfpCoQoGR20IfN1H+L7h64Xro5bvbXd
LResoLmpnyU3gs3gn9xRYsb4fBr4KYW9jFwzTZSEH3h/Si/Hm2c=
=Wj9y
-----END PGP SIGNATURE-----
Merge tag 'x86_misc_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 changes from Borislav Petkov:
- Use the proper interface for the job: get_unaligned() instead of
memcpy() in the insn decoder
- A randconfig build fix
* tag 'x86_misc_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/insn: Use get_unaligned() instead of memcpy()
x86/Kconfig: Fix an unused variable error in dell-smm-hwmon
of normal functions. This is in preparation of making the MCA code
noinstr-aware
- When the kernel copies data from user addresses and it encounters a
machine check, a SIGBUS is sent to that process. Change this action to
either an -EFAULT which is returned to the user or a short write, making
the recovery action a lot more user-friendly
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/s8sACgkQEsHwGGHe
VUqnaQ/8DIHkIOF6vy2w56snJwCj0XQYNLO+Clf6sHJ7ukWpWDoAi6HzvjqrBmaa
bQEdOLeO92wGtVutCQ5ndzq2SJ6UFcZtOulpHyzCpwNinhY2QMsPG6pkSzeaAy/e
aR4gpTY6pyCJyWl5DXXr7FMzBZVaWYdtZ2szPKmW1d1mLeDIdv5d3hInDbZ48XJF
o+fZx0uuK0CIuDjDujRNvkPbHXLbBSqSLCTRf66o+sCY5ZXHlAipabxa3UmhHKvd
dBxMrlObAaDBmDjqpc/YpS4IfWZb7+rHQfVmiq5O85ExXx6cyF6vlM7GI/5VBxSA
2dVcZX/3TsSqGbFdVygbcF6e/Yl1xhP5AE+pBb5jpzbzEaf4oiM8MDhoMAai3lEL
7CFsXL2oyAzho7QQsUSkv/hffHHrph2/aUZbGJlz6SdeRF9aoIjZANpcwm44TZrk
c11Fh1MLTDxx8uhCGrYFXqR8QgeTi4B+8d/CEXNJnkLXZMfSUtoL1iIzhBpsGkv3
r0JOIG2o5dGX2lLhQOiHZ+us33O1e8mvOli9P1jLoDttoKvNqSqLUuwpBCz4sc0E
ugfarf7v/R07NN+7SIT+O83ZG8dXxIRPzHm/g7wjZYgyOfEBgFSMBKVWXRotPo/f
aY88sDVyvF5sbYnUcA6zZANBCKAVfilqdMgCyaoGegoNGzDOCYE=
=bIZq
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Get rid of a bunch of function pointers used in MCA land in favor of
normal functions. This is in preparation of making the MCA code
noinstr-aware
- When the kernel copies data from user addresses and it encounters a
machine check, a SIGBUS is sent to that process. Change this action
to either an -EFAULT which is returned to the user or a short write,
making the recovery action a lot more user-friendly
* tag 'ras_core_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Sort mca_config members to get rid of unnecessary padding
x86/mce: Get rid of the ->quirk_no_way_out() indirect call
x86/mce: Get rid of msr_ops
x86/mce: Get rid of machine_check_vector
x86/mce: Get rid of the mce_severity function pointer
x86/mce: Drop copyin special case for #MC
x86/mce: Change to not send SIGBUS error during copy from user
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from explicit
error codes to a boolean fail/success as that's all what the calling
code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX support:
- Distangle the public header maze and remove especially the misnomed
kitchen sink internal.h which is despite it's name included all over
the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime by
flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code into
the FPU core which removes the number of exports and avoids adding
even more export when AMX has to be supported in KVM. This also
removes duplicated code which was of course unnecessary different and
incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new fpstate
container and just switching the buffer pointer from the user space
buffer to the KVM guest buffer when entering vcpu_run() and flipping
it back when leaving the function. This cuts the memory requirements
of a vCPU for FPU buffers in half and avoids pointless memory copy
operations.
This also solves the so far unresolved problem of adding AMX support
because the current FPU buffer handling of KVM inflicted a circular
dependency between adding AMX support to the core and to KVM. With
the new scheme of switching fpstate AMX support can be added to the
core code without affecting KVM.
- Replace various variables with proper data structures so the extra
information required for adding dynamically enabled FPU features (AMX)
can be added in one place
- Add AMX (Advanved Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
which allows to trap the (first) use of an AMX related instruction,
which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra 8K
or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and cleared
on exec(). The permission policy of the kernel is restricted to
sigaltstack size validation, but the syscall obviously allows
further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
takes granted permissions and the potentially resulting larger
signal frame into account. This mechanism can also be used to
enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support was
added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the use
of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have been
disabled in XCR0. If permission has been granted, then a new fpstate
which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler sends
SIGSEGV to the task. That's not elegant, but unavoidable as the
other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused by
unexpected memory allocation failures is not a fundamentally new
concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is disarmed
for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with the
same life time rules as the FPU register state itself. The mechanism
is keyed off with a static key which is default disabled so !AMX
equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
is limited by comparing the tasks XFD value with a per CPU shadow
variable to avoid redundant MSR writes. In case of switching from a
AMX using task to a non AMX using task or vice versa, the extra MSR
write is obviously inevitable.
All other places which need to be aware of the variable feature sets
and resulting variable sizes are not affected at all because they
retrieve the information (feature set, sizes) unconditonally from
the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support is in
the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which has
not been caught in review and testing right away was restricted to AMX
enabled systems, which is completely irrelevant for anyone outside Intel
and their early access program. There might be dragons lurking as usual,
but so far the fine grained refactoring has held up and eventual yet
undetected fallout is bisectable and should be easily addressable before
the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity to
follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for inclusion
into 5.16-rc1.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
/3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
hcKvDmehQLrUvg==
=x3WL
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from
explicit error codes to a boolean fail/success as that's all what the
calling code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX
support:
- Distangle the public header maze and remove especially the
misnomed kitchen sink internal.h which is despite it's name
included all over the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime
by flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code
into the FPU core which removes the number of exports and avoids
adding even more export when AMX has to be supported in KVM.
This also removes duplicated code which was of course
unnecessary different and incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new
fpstate container and just switching the buffer pointer from the
user space buffer to the KVM guest buffer when entering
vcpu_run() and flipping it back when leaving the function. This
cuts the memory requirements of a vCPU for FPU buffers in half
and avoids pointless memory copy operations.
This also solves the so far unresolved problem of adding AMX
support because the current FPU buffer handling of KVM inflicted
a circular dependency between adding AMX support to the core and
to KVM. With the new scheme of switching fpstate AMX support can
be added to the core code without affecting KVM.
- Replace various variables with proper data structures so the
extra information required for adding dynamically enabled FPU
features (AMX) can be added in one place
- Add AMX (Advanced Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR
(MSR_XFD) which allows to trap the (first) use of an AMX related
instruction, which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra
8K or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and
cleared on exec(). The permission policy of the kernel is
restricted to sigaltstack size validation, but the syscall
obviously allows further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2)
which takes granted permissions and the potentially resulting
larger signal frame into account. This mechanism can also be used
to enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support
was added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the
use of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have
been disabled in XCR0. If permission has been granted, then a new
fpstate which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler
sends SIGSEGV to the task. That's not elegant, but unavoidable as
the other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused
by unexpected memory allocation failures is not a fundamentally
new concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is
disarmed for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with
the same life time rules as the FPU register state itself. The
mechanism is keyed off with a static key which is default
disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
CPUs the overhead is limited by comparing the tasks XFD value
with a per CPU shadow variable to avoid redundant MSR writes. In
case of switching from a AMX using task to a non AMX using task
or vice versa, the extra MSR write is obviously inevitable.
All other places which need to be aware of the variable feature
sets and resulting variable sizes are not affected at all because
they retrieve the information (feature set, sizes) unconditonally
from the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support
is in the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which
has not been caught in review and testing right away was restricted
to AMX enabled systems, which is completely irrelevant for anyone
outside Intel and their early access program. There might be dragons
lurking as usual, but so far the fine grained refactoring has held up
and eventual yet undetected fallout is bisectable and should be
easily addressable before the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity
to follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for
inclusion into 5.16-rc1
* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
Documentation/x86: Add documentation for using dynamic XSTATE features
x86/fpu: Include vmalloc.h for vzalloc()
selftests/x86/amx: Add context switch test
selftests/x86/amx: Add test cases for AMX state management
x86/fpu/amx: Enable the AMX feature in 64-bit mode
x86/fpu: Add XFD handling for dynamic states
x86/fpu: Calculate the default sizes independently
x86/fpu/amx: Define AMX state components and have it used for boot-time checks
x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
x86/fpu/xstate: Add fpstate_realloc()/free()
x86/fpu/xstate: Add XFD #NM handler
x86/fpu: Update XFD state where required
x86/fpu: Add sanity checks for XFD
x86/fpu: Add XFD state to fpstate
x86/msr-index: Add MSRs for XFD
x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
x86/fpu: Reset permission and fpstate on exec()
x86/fpu: Prepare fpu_clone() for dynamically enabled features
x86/fpu/signal: Prepare for variable sigframe length
x86/signal: Use fpu::__state_user_size for sigalt stack validation
...
Stick all the retpolines in a single symbol and have the individual
thunks as inner labels, this should guarantee thunk order and layout.
Previously there were 16 (or rather 15 without rsp) separate symbols and
a toolchain might reasonably expect it could displace them however it
liked, with disregard for their relative position.
However, now they're part of a larger symbol. Any change to their
relative position would disrupt this larger _array symbol and thus not
be sound.
This is the same reasoning used for data symbols. On their own there
is no guarantee about their relative position wrt to one aonther, but
we're still able to do arrays because an array as a whole is a single
larger symbol.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.169659320@infradead.org
Currently GEN-for-each-reg.h usage leaves GEN defined, relying on any
subsequent usage to start with #undef, which is rude.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.041792350@infradead.org
Now that objtool no longer creates alternatives, these replacement
symbols are no longer needed, remove them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.915051744@infradead.org
Under earlyprintk, each RNG call produces a debug report line. To support
the future FGKASLR feature, which will fetch random bytes during function
shuffling, this is not useful information (each line is identical and
tells us nothing new), needlessly spamming the console. Instead, allow
for a NULL "purpose" to suppress the debug reporting.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/r/20211013175742.1197608-3-keescook@chromium.org
Resolve the conflict between these commits:
x86/fpu: 1193f408cd ("x86/fpu/signal: Change return type of __fpu_restore_sig() to boolean")
x86/urgent: d298b03506 ("x86/fpu: Restore the masking out of reserved MXCSR bits")
b2381acd3f ("x86/fpu: Mask out the invalid MXCSR bits properly")
Conflicts:
arch/x86/kernel/fpu/signal.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use get_unaligned() instead of memcpy() to access potentially unaligned
memory, which, when accessed through a pointer, leads to undefined
behavior. get_unaligned() describes much better what is happening there
anyway even if memcpy() does the job.
In addition, since perf tool builds with -Werror, it would fire with:
util/intel-pt-decoder/../../../arch/x86/lib/insn.c: In function '__insn_get_emulate_prefix':
tools/include/../include/asm-generic/unaligned.h:10:15: error: packed attribute is unnecessary [-Werror=packed]
10 | const struct { type x; } __packed *__pptr = (typeof(__pptr))(ptr); \
because -Werror=packed would complain if the packed attribute would have
no effect on the layout of the structure.
In this case, that is intentional so disable the warning only for that
compilation unit.
That part is Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
No functional changes.
Fixes: 5ba1071f75 ("x86/insn, tools/x86: Fix undefined behavior due to potential unaligned accesses")
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Link: https://lkml.kernel.org/r/YVSsIkj9Z29TyUjE@zn.tnic
The core functions of string.c are those that may be implemented by
per-architecture functions, or overloaded by FORTIFY_SOURCE. As a
result, it needs to be built with __NO_FORTIFY. Without this, macros
will collide with function declarations. This was accidentally working
due to -ffreestanding (on some architectures). Make this deterministic
by explicitly setting __NO_FORTIFY and move all the helper functions
into string_helpers.c so that they gain the fortification coverage they
had been missing.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Andy Lavr <andy.lavr@gmail.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Don't perform unaligned loads in __get_next() and __peek_nbyte_next() as
these are forms of undefined behavior:
"A pointer to an object or incomplete type may be converted to a pointer
to a different object or incomplete type. If the resulting pointer
is not correctly aligned for the pointed-to type, the behavior is
undefined."
(from http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf)
These problems were identified using the undefined behavior sanitizer
(ubsan) with the tools version of the code and perf test.
[ bp: Massage commit message. ]
Signed-off-by: Numfor Mbiziwo-Tiapo <nums@google.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20210923161843.751834-1-irogers@google.com
Since commit c8137ace56 ("x86/iopl: Restrict iopl() permission
scope") it's possible to emulate iopl(3) using ioperm(), except for
the CLI/STI usage.
Userspace CLI/STI usage is very dubious (read broken), since any
exception taken during that window can lead to rescheduling anyway (or
worse). The IOPL(2) manpage even states that usage of CLI/STI is highly
discouraged and might even crash the system.
Of course, that won't stop people and HP has the dubious honour of
being the first vendor to be found using this in their hp-health
package.
In order to enable this 'software' to still 'work', have the #GP treat
the CLI/STI instructions as NOPs when iopl(3). Warn the user that
their program is doing dubious things.
Fixes: a24ca99768 ("x86/iopl: Remove legacy IOPL option")
Reported-by: Ondrej Zary <linux@zary.sk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org # v5.5+
Link: https://lkml.kernel.org/r/20210918090641.GD5106@worktop.programming.kicks-ass.net
Fixes to the iterator code to handle faults that are not on page
boundaries mean that the special case for machine check during copy from
user is no longer needed.
For a full list of those fixes, see the output of:
git log --oneline v5.14 ^v5.13 -- lib/iov_iter.c
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210818002942.1607544-4-tony.luck@intel.com
Nothing in that code uses the trap number which was stored by the exception
fixup which is instantiated via _ASM_EXTABLE_FAULT().
Use _ASM_EXTABLE(... EX_TYPE_DEFAULT_MCE_SAFE) instead which just handles
the IP fixup and the type indicates to the #MC handler that the call site
can handle the abort caused by #MC correctly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.328706042@linutronix.de
Define macros and accessors for the configuration space addressed
indirectly with an index register and a data register at the port I/O
locations of 0x22 and 0x23 respectively.
This space is defined by the Intel MultiProcessor Specification for the
IMCR register used to switch between the PIC and the APIC mode[1], by
Cyrix processors for their configuration[2][3], and also some chipsets.
Given the lack of atomicity with the indirect addressing a spinlock is
required to protect accesses, although for Cyrix processors it is enough
if accesses are executed with interrupts locally disabled, because the
registers are local to the accessing CPU, and IMCR is only ever poked at
by the BSP and early enough for interrupts not to have been configured
yet. Therefore existing code does not have to change or use the new
spinlock and neither it does.
Put the spinlock in a library file then, so that it does not get pulled
unnecessarily for configurations that do not refer it.
Convert Cyrix accessors to wrappers so as to retain the brevity and
clarity of the `getCx86' and `setCx86' calls.
References:
[1] "MultiProcessor Specification", Version 1.4, Intel Corporation,
Order Number: 242016-006, May 1997, Section 3.6.2.1 "PIC Mode", pp.
3-7, 3-8
[2] "5x86 Microprocessor", Cyrix Corporation, Order Number: 94192-00,
July 1995, Section 2.3.2.4 "Configuration Registers", p. 2-23
[3] "6x86 Processor", Cyrix Corporation, Order Number: 94175-01, March
1996, Section 2.4.4 "6x86 Configuration Registers", p. 2-23
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2107182353140.9461@angie.orcam.me.uk
on code executed in the guest and handle the case where failure to
get the RIP would result in a #GP, as it should, instead of in a #PF
- Disable interrupts while the per-CPU GHCB is held
- Split the #VC handler depending on where the #VC exception has
happened and therefore provide for precise context tracking like the
rest of the exception handlers deal with noinstr regions now
- Add defines for the GHCB version 2 protocol so that further shared
development with KVM can happen without merge conflicts
- The usual small cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmDZij8ACgkQEsHwGGHe
VUpwIQ/8CzFbGm2k2RdmO0H/VPwfF1HFSWpM9YFGSs++yOqfiyCFbyIcTcRbK4IO
+BUIRoHSgCWPb+5pJli1Wf0J/sIdYr9D4MDWt1oRQG6e/4NE2SL3EOnYJWW5VtOT
u1AVk01ooPOFDKIoh4OIZ7tCKAeNWBv+oe5dmP46spiEZbHHCzHIEaBuOQRzvX9C
jSKulDHjA4iaNl/BQMF7dJL1+aPWj2NXjSj86fhMAa+m5MspDXbIaM5wMZfPzc1k
Rj/m89JThp+mFwik46o/7g/5Q8SYtTE+Hqi1TX/65/dbyizLqbH5W3g0zwrD8TYf
B7kHguqkoE1j1avLwOYK1yJB8ZTjtf+OXjUAR4UPzxkG7Xhelu5Qb7RD/WCJ3YqO
KEFIFq+hsiAqvb6RkmX0aVecIJ49aqGX+onsMpLWq9pz2R4BRcH7jo81TIBcosg5
2Kfx2aPcMec7u7RMBHqwiaC4Adp7/vmHhukawfI8xCWLd7wEjvAMP3eeePxR+C0l
SSnn0O9COj8pctvq4eOGJAUXzPa4YtsaX+kILBs+hUdQXmQGVSxyTpakyhhUpGQ8
YyblbHybS8JeYdGqPVS/tn0Rc2DqOSQJetjmXAGhlkEkkGY8i1Ddwe0MaamJozol
g/wHNYcok/OQWglvVThv6EAY2pTSeWelmjUkZi1dnkYNH1VUxxE=
=iyX+
-----END PGP SIGNATURE-----
Merge tag 'x86_sev_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Differentiate the type of exception the #VC handler raises depending
on code executed in the guest and handle the case where failure to
get the RIP would result in a #GP, as it should, instead of in a #PF
- Disable interrupts while the per-CPU GHCB is held
- Split the #VC handler depending on where the #VC exception has
happened and therefore provide for precise context tracking like the
rest of the exception handlers deal with noinstr regions now
- Add defines for the GHCB version 2 protocol so that further shared
development with KVM can happen without merge conflicts
- The usual small cleanups
* tag 'x86_sev_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sev: Use "SEV: " prefix for messages from sev.c
x86/sev: Add defines for GHCB version 2 MSR protocol requests
x86/sev: Split up runtime #VC handler for correct state tracking
x86/sev: Make sure IRQs are disabled while GHCB is active
x86/sev: Propagate #GP if getting linear instruction address failed
x86/insn: Extend error reporting from insn_fetch_from_user[_inatomic]()
x86/insn-eval: Make 0 a valid RIP for insn_get_effective_ip()
x86/sev: Fix error message in runtime #VC handler
Because the __x86_indirect_alt* symbols are just that, objtool will
try and validate them as regular symbols, instead of the alternative
replacements that they are.
This goes sideways for FRAME_POINTER=y builds; which generate a fair
amount of warnings.
Fixes: 9bc0bb5072 ("objtool/x86: Rewrite retpoline thunk calls")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/YNCgxwLBiK9wclYJ@hirez.programming.kicks-ass.net
The error reporting from the insn_fetch_from_user*() functions is not
very verbose. Extend it to include information on whether the linear
RIP could not be calculated or whether the memory access faulted.
This will be used in the SEV-ES code to propagate the correct
exception depending on what went wrong during instruction fetch.
[ bp: Massage comments. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210614135327.9921-6-joro@8bytes.org
In theory, 0 is a valid value for the instruction pointer so don't use
it as the error return value from insn_get_effective_ip().
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210614135327.9921-5-joro@8bytes.org
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline how
one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery around
selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack
ops. Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCHyJQACgkQEsHwGGHe
VUpjiRAAwPZdwwp08ypZuMHR4EhLNru6gYhbAoALGgtYnQjLtn5onQhIeieK+R4L
cmZpxHT9OFp5dXHk4kwygaQBsD4pPOiIpm60kye1dN3cSbOORRdkwEoQMpKMZ+5Y
kvVsmn7lrwRbp600KdE4G6L5+N6gEgr0r6fMFWWGK3mgVAyCzPexVHgydcp131ch
iYMo6/pPDcNkcV/hboVKgx7GISdQ7L356L1MAIW/Sxtw6uD/X4qGYW+kV2OQg9+t
nQDaAo7a8Jqlop5W5TQUdMLKQZ1xK8SFOSX/nTS15DZIOBQOGgXR7Xjywn1chBH/
PHLwM5s4XF6NT5VlIA8tXNZjWIZTiBdldr1kJAmdDYacrtZVs2LWSOC0ilXsd08Z
EWtvcpHfHEqcuYJlcdALuXY8xDWqf6Q2F7BeadEBAxwnnBg+pAEoLXI/1UwWcmsj
wpaZTCorhJpYo2pxXckVdHz2z0LldDCNOXOjjaWU8tyaOBKEK6MgAaYU7e0yyENv
mVc9n5+WuvXuivC6EdZ94Pcr/KQsd09ezpJYcVfMDGv58YZrb6XIEELAJIBTu2/B
Ua8QApgRgetx+1FKb8X6eGjPl0p40qjD381TADb4rgETPb1AgKaQflmrSTIik+7p
O+Eo/4x/GdIi9jFk3K+j4mIznRbUX0cheTJgXoiI4zXML9Jv94w=
=bm4S
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 updates from Borislav Petkov:
- Turn the stack canary into a normal __percpu variable on 32-bit which
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline
how one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery
around selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack ops.
Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
* tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
x86, sched: Treat Intel SNC topology as default, COD as exception
x86/cpu: Comment Skylake server stepping too
x86/cpu: Resort and comment Intel models
objtool/x86: Rewrite retpoline thunk calls
objtool: Skip magical retpoline .altinstr_replacement
objtool: Cache instruction relocs
objtool: Keep track of retpoline call sites
objtool: Add elf_create_undef_symbol()
objtool: Extract elf_symbol_add()
objtool: Extract elf_strtab_concat()
objtool: Create reloc sections implicitly
objtool: Add elf_create_reloc() helper
objtool: Rework the elf_rebuild_reloc_section() logic
objtool: Fix static_call list generation
objtool: Handle per arch retpoline naming
objtool: Correctly handle retpoline thunk calls
x86/retpoline: Simplify retpolines
x86/alternatives: Optimize optimize_nops()
x86: Add insn_decode_kernel()
x86/kprobes: Move 'inline' to the beginning of the kprobe_is_ss() declaration
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
+HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
/uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
=bO1i
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 cleanups from Borislav Petkov:
"Trivial cleanups and fixes all over the place"
* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Remove me from IDE/ATAPI section
x86/pat: Do not compile stubbed functions when X86_PAT is off
x86/asm: Ensure asm/proto.h can be included stand-alone
x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
x86/msr: Make locally used functions static
x86/cacheinfo: Remove unneeded dead-store initialization
x86/process/64: Move cpu_current_top_of_stack out of TSS
tools/turbostat: Unmark non-kernel-doc comment
x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
x86/fpu/math-emu: Fix function cast warning
x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
x86: Fix various typos in comments, take #2
x86: Remove unusual Unicode characters from comments
x86/kaslr: Return boolean values from a function returning bool
x86: Fix various typos in comments
x86/setup: Remove unused RESERVE_BRK_ARRAY()
stacktrace: Move documentation for arch_stack_walk_reliable() to header
x86: Remove duplicate TSC DEADLINE MSR definitions
eliminate custom code patching. For that, the alternatives infra is
extended to accomodate paravirt's needs and, as a result, a lot of
paravirt patching code goes away, leading to a sizeable cleanup and
simplification. Work by Juergen Gross.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGiXQACgkQEsHwGGHe
VUocbw/+OkFzphK6zlNA8O3RJ24u2csXUWWUtpGlZ2220Nn/Bgyso2+fyg/NEeQg
EmEttaY3JG/riCDfHk5Xm2saeVtsbPXN4f0sJm/Io/djF7Cm03WS0eS0aA2Rnuca
MhmvvkrzYqZXAYVaxKkIH6sNlPgyXX7vDNPbTd/0ZCOb3ZKIyXwL+SaLatMCtE5o
ou7e8Bj8xPSwcaCyK6sqjrT6jdpPjoTrxxrwENW8AlRu5lCU1pIY03GGhARPVoEm
fWkZsIPn7DxhpyIqzJtEMX8EK1xN96E+NGkNuSAtJGP9HRb+3j5f4s3IUAfXiLXq
r7NecFw8zHhPKl9J0pPCiW7JvMrCMU5xGwyeUmmhKyK2BxwvvAC173ohgMlCfB2Q
FPIsQWemat17tSue8LIA8SmlSDQz6R+tTdUFT+vqmNV34PxOIEeSdV7HG8rs87Ec
dYB9ENUgXqI+h2t7atE68CpTLpWXzNDcq2olEsaEUXenky2hvsi+VxNkWpmlKQ3I
NOMU/AyH8oUzn5O0o3oxdPhDLmK5ItEFxjYjwrgLfKFQ+Y8vIMMq3LrKQGwOj+ZU
n9qC7JjOwDKZGjd3YqNNRhnXp+w0IJvUHbyr3vIAcp8ohQwEKgpUvpZzf/BKUvHh
nJgJSJ53GFJBbVOJMfgVq+JcFr+WO8MDKHaw6zWeCkivFZdSs4g=
=h+km
-----END PGP SIGNATURE-----
Merge tag 'x86_alternatives_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 alternatives/paravirt updates from Borislav Petkov:
"First big cleanup to the paravirt infra to use alternatives and thus
eliminate custom code patching.
For that, the alternatives infrastructure is extended to accomodate
paravirt's needs and, as a result, a lot of paravirt patching code
goes away, leading to a sizeable cleanup and simplification.
Work by Juergen Gross"
* tag 'x86_alternatives_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Have only one paravirt patch function
x86/paravirt: Switch functions with custom code to ALTERNATIVE
x86/paravirt: Add new PVOP_ALT* macros to support pvops in ALTERNATIVEs
x86/paravirt: Switch iret pvops to ALTERNATIVE
x86/paravirt: Simplify paravirt macros
x86/paravirt: Remove no longer needed 32-bit pvops cruft
x86/paravirt: Add new features for paravirt patching
x86/alternative: Use ALTERNATIVE_TERNARY() in _static_cpu_has()
x86/alternative: Support ALTERNATIVE_TERNARY
x86/alternative: Support not-feature
x86/paravirt: Switch time pvops functions to use static_call()
static_call: Add function to query current function
static_call: Move struct static_call_key definition to static_call_types.h
x86/alternative: Merge include files
x86/alternative: Drop unused feature parameter from ALTINSTR_REPLACEMENT()
The functions msr_read() and msr_write() are not used outside of msr.c,
make them static.
[ bp: Massage commit message. ]
Signed-off-by: Zhao Xuehui <zhaoxuehui1@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210408095218.152264-1-zhaoxuehui1@huawei.com
When the compiler emits: "CALL __x86_indirect_thunk_\reg" for an
indirect call, have objtool rewrite it to:
ALTERNATIVE "call __x86_indirect_thunk_\reg",
"call *%reg", ALT_NOT(X86_FEATURE_RETPOLINE)
Additionally, in order to not emit endless identical
.altinst_replacement chunks, use a global symbol for them, see
__x86_indirect_alt_*.
This also avoids objtool from having to do code generation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/20210326151300.320177914@infradead.org
Due to:
c9c324dc22 ("objtool: Support stack layout changes in alternatives")
it is now possible to simplify the retpolines.
Currently our retpolines consist of 2 symbols:
- __x86_indirect_thunk_\reg: the compiler target
- __x86_retpoline_\reg: the actual retpoline.
Both are consecutive in code and aligned such that for any one register
they both live in the same cacheline:
0000000000000000 <__x86_indirect_thunk_rax>:
0: ff e0 jmpq *%rax
2: 90 nop
3: 90 nop
4: 90 nop
0000000000000005 <__x86_retpoline_rax>:
5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc>
a: f3 90 pause
c: 0f ae e8 lfence
f: eb f9 jmp a <__x86_retpoline_rax+0x5>
11: 48 89 04 24 mov %rax,(%rsp)
15: c3 retq
16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)
The thunk is an alternative_2, where one option is a JMP to the
retpoline. This was done so that objtool didn't need to deal with
alternatives with stack ops. But that problem has been solved, so now
it is possible to fold the entire retpoline into the alternative to
simplify and consolidate unused bytes:
0000000000000000 <__x86_indirect_thunk_rax>:
0: ff e0 jmpq *%rax
2: 90 nop
3: 90 nop
4: 90 nop
5: 90 nop
6: 90 nop
7: 90 nop
8: 90 nop
9: 90 nop
a: 90 nop
b: 90 nop
c: 90 nop
d: 90 nop
e: 90 nop
f: 90 nop
10: 90 nop
11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1)
1c: 0f 1f 40 00 nopl 0x0(%rax)
Notice that since the longest alternative sequence is now:
0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc>
5: f3 90 pause
7: 0f ae e8 lfence
a: eb f9 jmp 5 <.altinstr_replacement+0x5>
c: 48 89 04 24 mov %rax,(%rsp)
10: c3 retq
17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if
we can shrink the retpoline by 1 byte we can pack it more densely).
[ bp: Massage commit message. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
gcc-11 warns about mismatched prototypes here:
arch/x86/lib/msr-smp.c:255:51: error: argument 2 of type ‘u32 *’ {aka ‘unsigned int *’} declared as a pointer [-Werror=array-parameter=]
255 | int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 *regs)
| ~~~~~^~~~
arch/x86/include/asm/msr.h:347:50: note: previously declared as an array ‘u32[8]’ {aka ‘unsigned int[8]’}
GCC is right here - fix up the types.
[ mingo: Twiddled the changelog. ]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210322164541.912261-1-arnd@kernel.org
Fix ~144 single-word typos in arch/x86/ code comments.
Doing this in a single commit should reduce the churn.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
Now that the different instruction-inspecting functions return a value,
test that and return early from callers if error has been encountered.
While at it, do not call insn_get_modrm() when calling
insn_get_displacement() because latter will make sure to call
insn_get_modrm() if ModRM hasn't been parsed yet.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210304174237.31945-6-bp@alien8.de
Users of the instruction decoder should use this to decode instruction
bytes. For that, have insn*() helpers return an int value to denote
success/failure. When there's an error fetching the next insn byte and
the insn falls short, return -ENODATA to denote that.
While at it, make insn_get_opcode() more stricter as to whether what has
seen so far is a valid insn and if not.
Copy linux/kconfig.h for the tools-version of the decoder so that it can
use IS_ENABLED().
Also, cast the INSN_MODE_KERN dummy define value to (enum insn_mode)
for tools use of the decoder because perf tool builds with -Werror and
errors out with -Werror=sign-compare otherwise.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20210304174237.31945-5-bp@alien8.de
Add an explicit __ignore_sync_check__ marker which will be used to mark
lines which are supposed to be ignored by file synchronization check
scripts, its advantage being that it explicitly denotes such lines in
the code.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20210304174237.31945-4-bp@alien8.de
Rename insn_decode() to insn_decode_from_regs() to denote that it
receives regs as param and uses registers from there during decoding.
Free the former name for a more generic version of the function.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210304174237.31945-2-bp@alien8.de
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmBOgu4eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGUd0H/3Ey8aWjVAig9Pe+
VQVZKwG+LXWH6UmUx5qyaTxophhmGnWLvkigJMn63qIg4eQtfp2gNFHK+T4OJNIP
ybnkjFZ337x4J9zD6m8mt4Wmelq9iW2wNOS+3YZAyYiGlXfMGM7SlYRCQRQznTED
2O/JCMsOoP+Z8tr5ah/bzs0dANsXmTZ3QqRP2uzb6irKTgFR3/weOhj+Ht1oJ4Aq
V+bgdcwhtk20hJhlvVeqws+o74LR789tTDCknlz/YNMv9e6VPfyIQ5vJAcFmZATE
Ezj9yzkZ4IU+Ux6ikAyaFyBU8d1a4Wqye3eHCZBsEo6tcSAhbTZ90eoU86vh6ajS
LZjwkNw=
=6y1u
-----END PGP SIGNATURE-----
Merge tag 'v5.12-rc3' into x86/core
Pick up dependent SEV-ES urgent changes to base new work ontop.
Signed-off-by: Borislav Petkov <bp@suse.de>
Merge arch/x86/include/asm/alternative-asm.h into
arch/x86/include/asm/alternative.h in order to make it easier to use
common definitions later.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210311142319.4723-2-jgross@suse.com
The #VC handler must run in atomic context and cannot sleep. This is a
problem when it tries to fetch instruction bytes from user-space via
copy_from_user().
Introduce a insn_fetch_from_user_inatomic() helper which uses
__copy_from_user_inatomic() to safely copy the instruction bytes to
kernel memory in the #VC handler.
Fixes: 5e3427a7bc ("x86/sev-es: Handle instruction fetches from user-space")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # v5.10+
Link: https://lkml.kernel.org/r/20210303141716.29223-6-joro@8bytes.org
On 32-bit kernels, the stackprotector canary is quite nasty -- it is
stored at %gs:(20), which is nasty because 32-bit kernels use %fs for
percpu storage. It's even nastier because it means that whether %gs
contains userspace state or kernel state while running kernel code
depends on whether stackprotector is enabled (this is
CONFIG_X86_32_LAZY_GS), and this setting radically changes the way
that segment selectors work. Supporting both variants is a
maintenance and testing mess.
Merely rearranging so that percpu and the stack canary
share the same segment would be messy as the 32-bit percpu address
layout isn't currently compatible with putting a variable at a fixed
offset.
Fortunately, GCC 8.1 added options that allow the stack canary to be
accessed as %fs:__stack_chk_guard, effectively turning it into an ordinary
percpu variable. This lets us get rid of all of the code to manage the
stack canary GDT descriptor and the CONFIG_X86_32_LAZY_GS mess.
(That name is special. We could use any symbol we want for the
%fs-relative mode, but for CONFIG_SMP=n, gcc refuses to let us use any
name other than __stack_chk_guard.)
Forcibly disable stackprotector on older compilers that don't support
the new options and turn the stack canary into a percpu variable. The
"lazy GS" approach is now used for all 32-bit configurations.
Also makes load_gs_index() work on 32-bit kernels. On 64-bit kernels,
it loads the GS selector and updates the user GSBASE accordingly. (This
is unchanged.) On 32-bit kernels, it loads the GS selector and updates
GSBASE, which is now always the user base. This means that the overall
effect is the same on 32-bit and 64-bit, which avoids some ifdeffery.
[ bp: Massage commit message. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c0ff7dba14041c7e5d1cae5d4df052f03759bef3.1613243844.git.luto@kernel.org
- Make objtool work for big-endian cross compiles
- Make stack tracking via stack pointer memory operations match push/pop
semantics to prepare for architectures w/o PUSH/POP instructions.
- Add support for analyzing alternatives
- Improve retpoline detection and handling
- Improve assembly code coverage on x86
- Provide support for inlined stack switching
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmA1FUcTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoe+0D/9ytW3AfQUOGlVHVPTwCAd2LSCL2kQR
zrUAyUEwEXDuZi2vOcmgndr9AToszdBnAlxSOStJYE1/ia/ptbYjj9eFOWkCwPw2
R0DSjTHh+Ui2yPjcbYvOcMphc7DTT1ssMvRWzw0I3fjfJaYBJjNx1qdseN2yhFrL
BNhdh4B4StEfCbNBMhnzKTZNM1yXNN93ojot9suxnqPIAV6ruc5SUrd9Pmii2odX
gRHQthGSPMR9nJYWrT2QzbDrM2DWkKIGUol0Xr1LTFYWNFsK3sTQkFiMevTP5Msw
qO01lw4IKCMKMonaE0t/vxFBz5vhIyivxLQMI3LBixmf2dbE9UbZqW0ONPYoZJgf
MrYyz4Tdv2u/MklTPM263cbTsdtmGEuW2iVRqaDDWP/Py1A187bUaVkw8p/9O/9V
CBl8dMF3ag1FquxnsyHDowHKu8DaIZyeBHu69aNfAlcOrtn8ZtY4MwQbQkL9cNYe
ywLEmCm8zdYNrXlVOuMX/0AAWnSpqCgDYUmKhOLW4W1r4ewNpAUCmvIL8cpLtko0
FDbMTdKU2pd5SQv5YX6Bvvra483DvP9rNAuQGHpxZ7ubSlj8cFOT9UmjuuOb4fxQ
EFj8JrF9KEN5sxGUu4tjg0D0Ee3wDdSTGs0cUN5FBMXelQOM7U4n4Y7n/Pas/LMa
B5TVW3JiDcMcPg==
=0AHf
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2021-02-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Thomas Gleixner:
- Make objtool work for big-endian cross compiles
- Make stack tracking via stack pointer memory operations match
push/pop semantics to prepare for architectures w/o PUSH/POP
instructions.
- Add support for analyzing alternatives
- Improve retpoline detection and handling
- Improve assembly code coverage on x86
- Provide support for inlined stack switching
* tag 'objtool-core-2021-02-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
objtool: Support stack-swizzle
objtool,x86: Additionally decode: mov %rsp, (%reg)
x86/unwind/orc: Change REG_SP_INDIRECT
x86/power: Support objtool validation in hibernate_asm_64.S
x86/power: Move restore_registers() to top of the file
x86/power: Annotate indirect branches as safe
x86/acpi: Support objtool validation in wakeup_64.S
x86/acpi: Annotate indirect branch as safe
x86/ftrace: Support objtool vmlinux.o validation in ftrace_64.S
x86/xen/pvh: Annotate indirect branch as safe
x86/xen: Support objtool vmlinux.o validation in xen-head.S
x86/xen: Support objtool validation in xen-asm.S
objtool: Add xen_start_kernel() to noreturn list
objtool: Combine UNWIND_HINT_RET_OFFSET and UNWIND_HINT_FUNC
objtool: Add asm version of STACK_FRAME_NON_STANDARD
objtool: Assume only ELF functions do sibling calls
x86/ftrace: Add UNWIND_HINT_FUNC annotation for ftrace_stub
objtool: Support retpoline jump detection for vmlinux.o
objtool: Fix ".cold" section suffix check for newer versions of GCC
objtool: Fix retpoline detection in asm code
...
The ORC metadata generated for UNWIND_HINT_FUNC isn't actually very
func-like. With certain usages it can cause stack state mismatches
because it doesn't set the return address (CFI_RA).
Also, users of UNWIND_HINT_RET_OFFSET no longer need to set a custom
return stack offset. Instead they just need to specify a func-like
situation, so the current ret_offset code is hacky for no good reason.
Solve both problems by simplifying the RET_OFFSET handling and
converting it into a more useful UNWIND_HINT_FUNC.
If we end up needing the old 'ret_offset' functionality again in the
future, we should be able to support it pretty easily with the addition
of a custom 'sp_offset' in UNWIND_HINT_FUNC.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/db9d1f5d79dddfbb3725ef6d8ec3477ad199948d.1611263462.git.jpoimboe@redhat.com
The default kernel_fpu_begin() doesn't work on systems that support XMM but
haven't yet enabled CR4.OSFXSR. This causes crashes when _mmx_memcpy() is
called too early because LDMXCSR generates #UD when the aforementioned bit
is clear.
Fix it by using kernel_fpu_begin_mask(KFPU_387) explicitly.
Fixes: 7ad816762f ("x86/fpu: Reset MXCSR to default in kernel_fpu_begin()")
Reported-by: Krzysztof Mazur <krzysiek@podlesie.net>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Krzysztof Piotr Olędzki <ole@ans.pl>
Tested-by: Krzysztof Mazur <krzysiek@podlesie.net>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/e7bf21855fe99e5f3baa27446e32623358f69e8d.1611205691.git.luto@kernel.org
Running instruction decoder posttest on an s390 host with an x86 target
with allyesconfig shows errors. Instructions used in a couple of kernel
objects could not be correctly decoded on big endian system.
insn_decoder_test: warning: objdump says 6 bytes, but insn_get_length() says 5
insn_decoder_test: warning: Found an x86 instruction decoder bug, please report this.
insn_decoder_test: warning: ffffffff831eb4e1: 62 d1 fd 48 7f 04 24 vmovdqa64 %zmm0,(%r12)
insn_decoder_test: warning: objdump says 7 bytes, but insn_get_length() says 6
insn_decoder_test: warning: Found an x86 instruction decoder bug, please report this.
insn_decoder_test: warning: ffffffff831eb4e8: 62 51 fd 48 7f 44 24 01 vmovdqa64 %zmm8,0x40(%r12)
insn_decoder_test: warning: objdump says 8 bytes, but insn_get_length() says 6
This is because in a few places instruction field bytes are set directly
with further usage of "value". To address that introduce and use a
insn_set_byte() helper, which correctly updates "value" on big endian
systems.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
The x86 instruction decoder code is shared across the kernel source and
the tools. Currently objtool seems to be the only tool from build tools
needed which breaks x86 cross-compilation on big endian systems. Make
the x86 instruction decoder build host endianness agnostic to support
x86 cross-compilation and enable objtool to implement endianness
awareness for big endian architectures support.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Co-developed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
- migrate_disable/enable() support which originates from the RT tree and
is now a prerequisite for the new preemptible kmap_local() API which aims
to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XwK4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX28D/9cVrvziSQGfBfuQWnUiw8iOIq1QBa2
Me+Tvenhfrlt7xU6rbP9ciFu7eTN+fS06m5uQPGI+t22WuJmHzbmw1bJVXfkvYfI
/QoU+Hg7DkDAn1p7ZKXh0dRkV0nI9ixxSHl0E+Zf1ATBxCUMV2SO85flg6z/4qJq
3VWUye0dmR7/bhtkIjv5rwce9v2JB2g1AbgYXYTW9lHVoUdGoMSdiZAF4tGyHLnx
sJ6DMqQ+k+dmPyYO0z5MTzjW/fXit4n9w2e3z9TvRH/uBu58WSW1RBmQYX6aHBAg
dhT9F4lvTs6lJY23x5RSFWDOv6xAvKF5a0xfb8UZcyH5EoLYrPRvm42a0BbjdeRa
u0z7LbwIlKA+RFdZzFZWz8UvvO0ljyMjmiuqZnZ5dY9Cd80LSBuxrWeQYG0qg6lR
Y2povhhCepEG+q8AXIe2YjHKWKKC1s/l/VY3CNnCzcd21JPQjQ4Z5eWGmHif5IED
CntaeFFhZadR3w02tkX35zFmY3w4soKKrbI4EKWrQwd+cIEQlOSY7dEPI/b5BbYj
MWAb3P4EG9N77AWTNmbhK4nN0brEYb+rBbCA+5dtNBVhHTxAC7OTWElJOC2O66FI
e06dREjvwYtOkRUkUguWwErbIai2gJ2MH0VILV3hHoh64oRk7jjM8PZYnjQkdptQ
Gsq0rJW5iiu/OQ==
=Oz1V
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
(Gabriel Krisman Bertazi)
- All kinds of minor cleanups all over the tree.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XgtoACgkQEsHwGGHe
VUqGuA/9GqN2zNQdhgRvAQ+FLZiOYK9MfXcoayfMq8T61VRPDBWaQRfVYKmfmEjS
0l5OnYgZQ9n6vzqFy6pmgc/ix8Jr553dZp5NCamcOqjCTcuO/LwRRh+ZBeFSBTPi
r2qFYKKRYvM7nbyUMm4WqvAakxJ18xsjNbIslr9Aqe8WtHBKKX3MOu8SOpFtGyXz
aEc4rhsS45iZa5gTXhvOn73tr3yHGWU1rzyyAAAmDGTgAxRwsTna8v16C4+v+Bua
Zg18Wiutj8ZjtFpzKJtGWGZoSBap3Jw2Ys64g42MBQUE56KY/99tQVo/SvbYvvlf
PHWLH0f3rPNJ6J2qeKwhtNzPlEAH/6e416A1/6TVwsK+8pdfGmkfaQh2iDHLhJ5i
CSwF61H44ZaE3pc1tHHbC5ALvydPlup7D4MKgztfq0mZ3OoV2Vg7dtyyr+Ybz72b
G+Kl/tmyacQTXo0FiYbZKETo3/VfTdBXGyVax1rHkx3pt8zvhFg3kxb1TT/l/CoM
eSTx53PtTdVtbGOq1CjnUm0FKlbh4+kLoNuo9DYKeXUQBs8PWOCZmL3wXmm4cqlZ
mDZVWvll7CjToY8izzcE/AG279cWkgcL5Tcg7W7CR66+egfDdpuqOZ4tv4TyzoWq
0J7WeNj+TAo98b7RA0Ux8LOlszRxS2ykuI6uB2MgwCaRMbbaQao=
=lLiH
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Borislav Petkov:
"Another branch with a nicely negative diffstat, just the way I
like 'em:
- Remove all uses of TIF_IA32 and TIF_X32 and reclaim the two bits in
the end (Gabriel Krisman Bertazi)
- All kinds of minor cleanups all over the tree"
* tag 'x86_cleanups_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/ia32_signal: Propagate __user annotation properly
x86/alternative: Update text_poke_bp() kernel-doc comment
x86/PCI: Make a kernel-doc comment a normal one
x86/asm: Drop unused RDPID macro
x86/boot/compressed/64: Use TEST %reg,%reg instead of CMP $0,%reg
x86/head64: Remove duplicate include
x86/mm: Declare 'start' variable where it is used
x86/head/64: Remove unused GET_CR2_INTO() macro
x86/boot: Remove unused finalize_identity_maps()
x86/uaccess: Document copy_from_user_nmi()
x86/dumpstack: Make show_trace_log_lvl() static
x86/mtrr: Fix a kernel-doc markup
x86/setup: Remove unused MCA variables
x86, libnvdimm/test: Remove COPY_MC_TEST
x86: Reclaim TIF_IA32 and TIF_X32
x86/mm: Convert mmu context ia32_compat into a proper flags field
x86/elf: Use e_machine to check for x32/ia32 in setup_additional_pages()
elf: Expose ELF header on arch_setup_additional_pages()
x86/elf: Use e_machine to select start_thread for x32
elf: Expose ELF header in compat_start_thread()
...
Since insn.prefixes.nbytes can be bigger than the size of
insn.prefixes.bytes[] when a prefix is repeated, the proper check must
be
insn.prefixes.bytes[i] != 0 and i < 4
instead of using insn.prefixes.nbytes. Use the new
for_each_insn_prefix() macro which does it correctly.
Debugged by Kees Cook <keescook@chromium.org>.
[ bp: Massage commit message. ]
Fixes: 32d0b95300 ("x86/insn-eval: Add utility functions to get segment selector")
Reported-by: syzbot+9b64b619f10f19d19a7c@syzkaller.appspotmail.com
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/160697104969.3146288.16329307586428270032.stgit@devnote2
Get rid of the __call_single_node union and cleanup the API a little
to avoid external code relying on the structure layout as much.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Document the functionality of copy_from_user_nmi() to avoid further
confusion. Fix the typo in the existing comment while at it.
Requested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201117202753.806376613@linutronix.de
Commit
393f203f5f ("x86_64: kasan: add interceptors for memset/memmove/memcpy functions")
added .weak directives to arch/x86/lib/mem*_64.S instead of changing the
existing ENTRY macros to WEAK. This can lead to the assembly snippet
.weak memcpy
...
.globl memcpy
which will produce a STB_WEAK memcpy with GNU as but STB_GLOBAL memcpy
with LLVM's integrated assembler before LLVM 12. LLVM 12 (since
https://reviews.llvm.org/D90108) will error on such an overridden symbol
binding.
Commit
ef1e03152c ("x86/asm: Make some functions local")
changed ENTRY in arch/x86/lib/memcpy_64.S to SYM_FUNC_START_LOCAL, which
was ineffective due to the preceding .weak directive.
Use the appropriate SYM_FUNC_START_WEAK instead.
Fixes: 393f203f5f ("x86_64: kasan: add interceptors for memset/memmove/memcpy functions")
Fixes: ef1e03152c ("x86/asm: Make some functions local")
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201103012358.168682-1-maskray@google.com
The COPY_MC_TEST facility has served its purpose for validating the
early termination conditions of the copy_mc_fragile() implementation.
Remove it and the EXPORT_SYMBOL_GPL of copy_mc_fragile().
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/160316688322.3374697.8648308115165836243.stgit@dwillia2-desk3.amr.corp.intel.com
Pull initial set_fs() removal from Al Viro:
"Christoph's set_fs base series + fixups"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Allow a NULL pos pointer to __kernel_read
fs: Allow a NULL pos pointer to __kernel_write
powerpc: remove address space overrides using set_fs()
powerpc: use non-set_fs based maccess routines
x86: remove address space overrides using set_fs()
x86: make TASK_SIZE_MAX usable from assembly code
x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h
lkdtm: remove set_fs-based tests
test_bitmap: remove user bitmap tests
uaccess: add infrastructure for kernel builds with set_fs()
fs: don't allow splice read/write without explicit ops
fs: don't allow kernel reads and writes without iter ops
sysctl: Convert to iter interfaces
proc: add a read_iter method to proc proc_ops
proc: cleanup the compat vs no compat file ops
proc: remove a level of indentation in proc_get_inode
called SEV by also encrypting the guest register state, making the
registers inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared between
the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so
in order for that exception mechanism to work, the early x86 init code
needed to be made able to handle exceptions, which, in itself, brings
a bunch of very nice cleanups and improvements to the early boot code
like an early page fault handler, allowing for on-demand building of the
identity mapping. With that, !KASLR configurations do not use the EFI
page table anymore but switch to a kernel-controlled one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly
separate from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and behind
static keys to minimize the performance impact on !SEV-ES setups.
Work by Joerg Roedel and Thomas Lendacky and others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+FiKYACgkQEsHwGGHe
VUqS5BAAlh5mKwtxXMyFyAIHa5tpsgDjbecFzy1UVmZyxN0JHLlM3NLmb+K52drY
PiWjNNMi/cFMFazkuLFHuY0poBWrZml8zRS/mExKgUJC6EtguS9FQnRE9xjDBoWQ
gOTSGJWEzT5wnFqo8qHwlC2CDCSF1hfL8ks3cUFW2tCWus4F9pyaMSGfFqD224rg
Lh/8+arDMSIKE4uH0cm7iSuyNpbobId0l5JNDfCEFDYRigQZ6pZsQ9pbmbEpncs4
rmjDvBA5eHDlNMXq0ukqyrjxWTX4ZLBOBvuLhpyssSXnnu2T+Tcxg09+ZSTyJAe0
LyC9Wfo0v78JASXMAdeH9b1d1mRYNMqjvnBItNQoqweoqUXWz7kvgxCOp6b/G4xp
cX5YhB6BprBW2DXL45frMRT/zX77UkEKYc5+0IBegV2xfnhRsjqQAQaWLIksyEaX
nz9/C6+1Sr2IAv271yykeJtY6gtlRjg/usTlYpev+K0ghvGvTmuilEiTltjHrso1
XAMbfWHQGSd61LNXofvx/GLNfGBisS6dHVHwtkayinSjXNdWxI6w9fhbWVjQ+y2V
hOF05lmzaJSG5kPLrsFHFqm2YcxOmsWkYYDBHvtmBkMZSf5B+9xxDv97Uy9NETcr
eSYk//TEkKQqVazfCQS/9LSm0MllqKbwNO25sl0Tw2k6PnheO2g=
=toqi
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
Instead of inlining the stac/mov/clac sequence (which also requires
individual exception table entries and several asm instruction
alternatives entries), just generate "call __put_user_nocheck_X" for the
__put_user() cases, the same way we changed __get_user earlier.
Unlike the get_user() case, we didn't have the same nice infrastructure
to just generate the call with a single case, so this actually has to
change some of the infrastructure in order to do this. But that only
cleans up the code further.
So now, instead of using a case statement for the sizes, we just do the
same thing we've done on the get_user() side for a long time: use the
size as an immediate constant to the asm, and generate the asm that way
directly.
In order to handle the special case of 64-bit data on a 32-bit kernel, I
needed to change the calling convention slightly: the data is passed in
%eax[:%edx], the pointer in %ecx, and the return value is also returned
in %ecx. It used to be returned in %eax, but because of how %eax can
now be a double register input, we don't want mix that with a
single-register output.
The actual low-level asm is easier to handle: we'll just share the code
between the checking and non-checking case, with the non-checking case
jumping into the middle of the function. That may sound a bit too
special, but this code is all very very special anyway, so...
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of inlining the whole stac/lfence/mov/clac sequence (which also
requires individual exception table entries and several asm instruction
alternatives entries), just generate "call __get_user_nocheck_X" for the
__get_user() cases.
We can use all the same infrastructure that we already do for the
regular "get_user()", and the end result is simpler source code, and
much simpler code generation.
It also means that when I introduce asm goto with input for
"unsafe_get_user()", there are no nasty interactions with the
__get_user() code.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull copy_and_csum cleanups from Al Viro:
"Saner calling conventions for csum_and_copy_..._user() and friends"
[ Removing 800+ lines of code and cleaning stuff up is good - Linus ]
* 'work.csum_and_copy' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ppc: propagate the calling conventions change down to csum_partial_copy_generic()
amd64: switch csum_partial_copy_generic() to new calling conventions
sparc64: propagate the calling convention changes down to __csum_partial_copy_...()
xtensa: propagate the calling conventions change down into csum_partial_copy_generic()
mips: propagate the calling convention change down into __csum_partial_copy_..._user()
mips: __csum_partial_copy_kernel() has no users left
mips: csum_and_copy_{to,from}_user() are never called under KERNEL_DS
sparc32: propagate the calling conventions change down to __csum_partial_copy_sparc_generic()
i386: propagate the calling conventions change down to csum_partial_copy_generic()
sh: propage the calling conventions change down to csum_partial_copy_generic()
m68k: get rid of zeroing destination on error in csum_and_copy_from_user()
arm: propagate the calling convention changes down to csum_partial_copy_from_user()
alpha: propagate the calling convention changes down to csum_partial_copy.c helpers
saner calling conventions for csum_and_copy_..._user()
csum_and_copy_..._user(): pass 0xffffffff instead of 0 as initial sum
csum_partial_copy_nocheck(): drop the last argument
unify generic instances of csum_partial_copy_nocheck()
icmp_push_reply(): reorder adding the checksum up
skb_copy_and_csum_bits(): don't bother with the last argument
encounter an MCE in kernel space but while copying from user memory by
sending them a SIGBUS on return to user space and umapping the faulty
memory, by Tony Luck and Youquan Song.
* memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
* New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
* Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the hw
eval phase and they don't make it into production.
* Misc fixes, improvements and cleanups, as always.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+EIpUACgkQEsHwGGHe
VUouoBAAgwb+NkWZtIqGImV4f+LOyFjhTR/r/7ZyiijXdbhOIuAdc/jQM31mQxug
sX2jxaRYnf1n6SLA0ggX99gwr2deRQ/hsNf5Abw55GC+Z1dOxpGL0k59A3ELl1IR
H9KYmCAFQIHvzfk38qcdND73XHcgthQoXFBOG9wAPAdgDWnaiWt6lcLAq8OiJTmp
D8pInAYhcnL8YXwMGyQQ1KkFn9HwydoWDsK5Ff2shaw2/+dMQqd1zetenbVtjhLb
iNYGvV7Bi/RQ8PyMbzmtTWa4kwQJAHC2gptkGxty//2ADGVBbqUQdqF9TjIWCNy5
V6Ldv5zo0/1s7DOzji3htzqkSs/K1Ea6d2LtZjejkJipHKV5x068UC6Fu+PlfS2D
VZfcICeapU4G2F3Zvks2DlZ7dVTbHCvoI78Qi7bBgczPUVmk6iqah4xuQaiHyBJc
kTFDA4Nnf/026GpoWRiFry9vqdnHBZyLet5A6Y+SoWF0FbhYnCVPpq4MnussYoav
lUIi9ZZav6X2RZp9DDM1f9d5xubtKq0DKt93wvzqAhjK0T2DikckJ+riOYkI6N8t
fHCBNUkdfgyMzJUTBPAzYQ7RmjbjKWJi7xWP0oz6+GqOJkQfSTVC5/2yEffbb3ya
whYRS6iklbl7yshzaOeecXsZcAeK2oGPfoHg34WkHFgXdF5mNgA=
=u1Wg
-----END PGP SIGNATURE-----
Merge tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Extend the recovery from MCE in kernel space also to processes which
encounter an MCE in kernel space but while copying from user memory
by sending them a SIGBUS on return to user space and umapping the
faulty memory, by Tony Luck and Youquan Song.
- memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
- New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
- Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the
hw eval phase and they don't make it into production.
- Misc fixes, improvements and cleanups, as always.
* tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Allow for copy_mc_fragile symbol checksum to be generated
x86/mce: Decode a kernel instruction to determine if it is copying from user
x86/mce: Recover from poison found while copying from user space
x86/mce: Avoid tail copy when machine check terminated a copy from user
x86/mce: Add _ASM_EXTABLE_CPY for copy user access
x86/mce: Provide method to find out the type of an exception handler
x86/mce: Pass pointer to saved pt_regs to severity calculation routines
x86/copy_mc: Introduce copy_mc_enhanced_fast_string()
x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()
x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list
x86/mce: Add Skylake quirk for patrol scrub reported errors
RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE()
x86/mce: Annotate mce_rd/wrmsrl() with noinstr
x86/mce/dev-mcelog: Do not update kflags on AMD systems
x86/mce: Stop mce_reign() from re-computing severity for every CPU
x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR
x86/mce: Increase maximum number of banks to 64
x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check()
x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap
RAS/CEC: Fix cec_init() prototype
In the page fault case it is ok to see if a few more unaligned bytes
can be copied from the source address. Worst case is that the page fault
will be triggered again.
Machine checks are more serious. Just give up at the point where the
main copy loop triggered the #MC and return from the copy code as if
the copy succeeded. The machine check handler will use task_work_add() to
make sure that the task is sent a SIGBUS.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201006210910.21062-5-tony.luck@intel.com
_ASM_EXTABLE_UA is a general exception entry to record the exception fixup
for all exception spots between kernel and user space access.
To enable recovery from machine checks while coping data from user
addresses it is necessary to be able to distinguish the places that are
looping copying data from those that copy a single byte/word/etc.
Add a new macro _ASM_EXTABLE_CPY and use it in place of _ASM_EXTABLE_UA
in the copy functions.
Record the exception reason number to regs->ax at
ex_handler_uaccess which is used to check MCE triggered.
The new fixup routine ex_handler_copy() is almost an exact copy of
ex_handler_uaccess() The difference is that it sets regs->ax to the trap
number. Following patches use this to avoid trying to copy remaining
bytes from the tail of the copy and possibly hitting the poison again.
New mce.kflags bit MCE_IN_KERNEL_COPYIN will be used by mce_severity()
calculation to indicate that a machine check is recoverable because the
kernel was copying from user space.
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201006210910.21062-4-tony.luck@intel.com
The motivations to go rework memcpy_mcsafe() are that the benefit of
doing slow and careful copies is obviated on newer CPUs, and that the
current opt-in list of CPUs to instrument recovery is broken relative to
those CPUs. There is no need to keep an opt-in list up to date on an
ongoing basis if pmem/dax operations are instrumented for recovery by
default. With recovery enabled by default the old "mcsafe_key" opt-in to
careful copying can be made a "fragile" opt-out. Where the "fragile"
list takes steps to not consume poison across cachelines.
The discussion with Linus made clear that the current "_mcsafe" suffix
was imprecise to a fault. The operations that are needed by pmem/dax are
to copy from a source address that might throw #MC to a destination that
may write-fault, if it is a user page.
So copy_to_user_mcsafe() becomes copy_mc_to_user() to indicate
the separate precautions taken on source and destination.
copy_mc_to_kernel() is introduced as a non-SMAP version that does not
expect write-faults on the destination, but is still prepared to abort
with an error code upon taking #MC.
The original copy_mc_fragile() implementation had negative performance
implications since it did not use the fast-string instruction sequence
to perform copies. For this reason copy_mc_to_kernel() fell back to
plain memcpy() to preserve performance on platforms that did not indicate
the capability to recover from machine check exceptions. However, that
capability detection was not architectural and now that some platforms
can recover from fast-string consumption of memory errors the memcpy()
fallback now causes these more capable platforms to fail.
Introduce copy_mc_enhanced_fast_string() as the fast default
implementation of copy_mc_to_kernel() and finalize the transition of
copy_mc_fragile() to be a platform quirk to indicate 'copy-carefully'.
With this in place, copy_mc_to_kernel() is fast and recovery-ready by
default regardless of hardware capability.
Thanks to Vivek for identifying that copy_user_generic() is not suitable
as the copy_mc_to_user() backend since the #MC handler explicitly checks
ex_has_fault_handler(). Thanks to the 0day robot for catching a
performance bug in the x86/copy_mc_to_user implementation.
[ bp: Add the "why" for this change from the 0/2th message, massage. ]
Fixes: 92b0729c34 ("x86/mm, x86/mce: Add memcpy_mcsafe()")
Reported-by: Erwin Tsaur <erwin.tsaur@intel.com>
Reported-by: 0day robot <lkp@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Erwin Tsaur <erwin.tsaur@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/160195562556.2163339.18063423034951948973.stgit@dwillia2-desk3.amr.corp.intel.com
In reaction to a proposal to introduce a memcpy_mcsafe_fast()
implementation Linus points out that memcpy_mcsafe() is poorly named
relative to communicating the scope of the interface. Specifically what
addresses are valid to pass as source, destination, and what faults /
exceptions are handled.
Of particular concern is that even though x86 might be able to handle
the semantics of copy_mc_to_user() with its common copy_user_generic()
implementation other archs likely need / want an explicit path for this
case:
On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote:
>
> On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote:
> >
> > However now I see that copy_user_generic() works for the wrong reason.
> > It works because the exception on the source address due to poison
> > looks no different than a write fault on the user address to the
> > caller, it's still just a short copy. So it makes copy_to_user() work
> > for the wrong reason relative to the name.
>
> Right.
>
> And it won't work that way on other architectures. On x86, we have a
> generic function that can take faults on either side, and we use it
> for both cases (and for the "in_user" case too), but that's an
> artifact of the architecture oddity.
>
> In fact, it's probably wrong even on x86 - because it can hide bugs -
> but writing those things is painful enough that everybody prefers
> having just one function.
Replace a single top-level memcpy_mcsafe() with either
copy_mc_to_user(), or copy_mc_to_kernel().
Introduce an x86 copy_mc_fragile() name as the rename for the
low-level x86 implementation formerly named memcpy_mcsafe(). It is used
as the slow / careful backend that is supplanted by a fast
copy_mc_generic() in a follow-on patch.
One side-effect of this reorganization is that separating copy_mc_64.S
to its own file means that perf no longer needs to track dependencies
for its memcpy_64.S benchmarks.
[ bp: Massage a bit. ]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>
Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com
Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com
If we copy less than 8 bytes and if the destination crosses a cache
line, __copy_user_flushcache would invalidate only the first cache line.
This patch makes it invalidate the second cache line as well.
Fixes: 0aed55af88 ("x86, uaccess: introduce copy_from_iter_flushcache for pmem / cache-bypass operations")
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dan Williams <dan.j.wiilliams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/alpine.LRH.2.02.2009161451140.21915@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stop providing the possibility to override the address space using
set_fs() now that there is no need for that any more. To properly
handle the TASK_SIZE_MAX checking for 4 vs 5-level page tables on
x86 a new alternative is introduced, which just like the one in
entry_64.S has to use the hardcoded virtual address bits to escape
the fact that TASK_SIZE_MAX isn't actually a constant when 5-level
page tables are enabled.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a function to check whether an instruction has a REP prefix.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-12-joro@8bytes.org
Add a function to the instruction decoder which returns the pt_regs
offset of the register specified in the reg field of the modrm byte.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-11-joro@8bytes.org
Factor out the code used to decode an instruction with the correct
address and operand sizes to a helper function.
No functional changes.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-10-joro@8bytes.org
Factor out the code to fetch the instruction from user-space to a helper
function.
No functional changes.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-9-joro@8bytes.org
When CONFIG_RETPOLINE is disabled, Clang uses a jump table for the
switch statement in cmdline_find_option (jump tables are disabled when
CONFIG_RETPOLINE is enabled). This function is called very early in boot
from sme_enable() if CONFIG_AMD_MEM_ENCRYPT is enabled. At this time,
the kernel is still executing out of the identity mapping, but the jump
table will contain virtual addresses.
Fix this by disabling jump tables for cmdline.c when AMD_MEM_ENCRYPT is
enabled.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200903023056.3914690-1-nivedita@alum.mit.edu
... and fold handling of misaligned case into it.
Implementation note: we stash the "will we need to rol8 the sum in the end"
flag into the MSB of %rcx (the lower 32 bits are used for length); the rest
is pretty straightforward.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All callers of these primitives will
* discard anything we might've copied in case of error
* ignore the csum value in case of error
* always pass 0xffffffff as the initial sum, so the
resulting csum value (in case of success, that is) will never be 0.
That suggest the following calling conventions:
* don't pass err_ptr - just return 0 on error.
* don't bother with zeroing destination, etc. in case of error
* don't pass the initial sum - just use 0xffffffff.
This commit does the minimal conversion in the instances of csum_and_copy_...();
the changes of actual asm code behind them are done later in the series.
Note that this asm code is often shared with csum_partial_copy_nocheck();
the difference is that csum_partial_copy_nocheck() passes 0 for initial
sum while csum_and_copy_..._user() pass 0xffffffff. Fortunately, we are
free to pass 0xffffffff in all cases and subsequent patches will use that
freedom without any special comments.
A part that could be split off: parisc and uml/i386 claimed to have
csum_and_copy_to_user() instances of their own, but those were identical
to the generic one, so we simply drop them. Not sure if it's worth
a separate commit...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It's always 0. Note that we theoretically could use ~0U as well -
result will be the same modulo 0xffff, _if_ the damn thing did the
right thing for any value of initial sum; later we'll make use of
that when convenient.
However, unlike csum_and_copy_..._user(), there are instances that
did not work for arbitrary initial sums; c6x is one such.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Some Makefiles already pass -fno-stack-protector unconditionally.
For example, arch/arm64/kernel/vdso/Makefile, arch/x86/xen/Makefile.
No problem report so far about hard-coding this option. So, we can
assume all supported compilers know -fno-stack-protector.
GCC 4.8 and Clang support this option (https://godbolt.org/z/_HDGzN)
Get rid of cc-option from -fno-stack-protector.
Remove CONFIG_CC_HAS_STACKPROTECTOR_NONE, which is always 'y'.
Note:
arch/mips/vdso/Makefile adds -fno-stack-protector twice, first
unconditionally, and second conditionally. I removed the second one.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
* Use the proper length type in the 32-bit truncate() syscall variant,
by Jiri Slaby.
* Reinit IA32_FEAT_CTL during wakeup to fix the case where after
resume, VMXON would #GP due to VMX not being properly enabled, by Sean
Christopherson.
* Fix a static checker warning in the resctrl code, by Dan Carpenter.
* Add a CR4 pinning mask for bits which cannot change after boot, by
Kees Cook.
* Align the start of the loop of __clear_user() to 16 bytes, to improve
performance on AMD zen1 and zen2 microarchitectures, by Matt Fleming.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl74q8kACgkQEsHwGGHe
VUqYig/8CRyHBweLnR9naD6uZ+rF83LXiTKOGLt60WRzNPCLpkwGD5aRiUwzRmFL
FOn9g2YLDY32+SzPRkqwJioodfxXRhvjKMnEChgnDcWAtTkWfMXWQfj2w5E8sTLE
/9cpc9rmfCQJmZFDPkL88lfH38t+Uye4Ydcur/HMetkoR4C8hGrUOGZpkG3nR8EJ
PGmmQ1VpMmwKMUsdD+GgKC+wgyrHbhFcrr+ZH5quU3XIzuvxXsHBiK2MlqVnN1a/
1xKglMHfQQ1MI7tmJth8s1xLQ1/Mr+ctxhC5nyyMpheDU9/257bVNKE1uF+yz7or
KylFUcvYje49mm7fxyEDrX+NMJGT7ZBBK/Xn7Fw5sLSsGGNY2/2HwYRbnzMSTjNO
JzY7HDkZuQgzLxlKSIKgRvz5f1j1m8D0UaG/q+JuJ6mJoPDS5qiPyshv4cW8v8iD
t5mzEuj++dWfiyPR4sWruP36jNKqPnbe8bUGe4j+QJ+TZL0SsSlopCFxo3TEJ4Bo
dlHUxXZcYE2/48wlP15X+jFultKcqi0HwO+rQm8uPN7O7X1xsWcO4PbTl/lngvg6
HxClDwmfDjoCmEXij3U9gqWvXmy++C5ljWCwhYNM60Fc1yIChfnwJHZBUvx3XGui
DZqimVa+QIRNFwWqMVF1RmE1ZuyCMYGZulZPo68gEXNeeNZ0R6g=
=hxkd
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- AMD Memory bandwidth counter width fix, by Babu Moger.
- Use the proper length type in the 32-bit truncate() syscall variant,
by Jiri Slaby.
- Reinit IA32_FEAT_CTL during wakeup to fix the case where after
resume, VMXON would #GP due to VMX not being properly enabled, by
Sean Christopherson.
- Fix a static checker warning in the resctrl code, by Dan Carpenter.
- Add a CR4 pinning mask for bits which cannot change after boot, by
Kees Cook.
- Align the start of the loop of __clear_user() to 16 bytes, to improve
performance on AMD zen1 and zen2 microarchitectures, by Matt Fleming.
* tag 'x86_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm/64: Align start of __clear_user() loop to 16-bytes
x86/cpu: Use pinning mask for CR4 bits needing to be 0
x86/resctrl: Fix a NULL vs IS_ERR() static checker warning in rdt_cdp_peer_get()
x86/cpu: Reinitialize IA32_FEAT_CTL MSR on BSP during wakeup
syscalls: Fix offset type of ksys_ftruncate()
x86/resctrl: Fix memory bandwidth counter width for AMD
vmlinux.o: warning: objtool: fixup_bad_iret()+0x8e: call to memcpy() leaves .noinstr.text section
Worse, when KASAN there is no telling what memcpy() actually is. Force
the use of __memcpy() which is our assmebly implementation.
Reported-by: Marco Elver <elver@google.com>
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20200618144801.760070502@infradead.org
x86 CPUs can suffer severe performance drops if a tight loop, such as
the ones in __clear_user(), straddles a 16-byte instruction fetch
window, or worse, a 64-byte cacheline. This issues was discovered in the
SUSE kernel with the following commit,
1153933703 ("x86/asm/64: Micro-optimize __clear_user() - Use immediate constants")
which increased the code object size from 10 bytes to 15 bytes and
caused the 8-byte copy loop in __clear_user() to be split across a
64-byte cacheline.
Aligning the start of the loop to 16-bytes makes this fit neatly inside
a single instruction fetch window again and restores the performance of
__clear_user() which is used heavily when reading from /dev/zero.
Here are some numbers from running libmicro's read_z* and pread_z*
microbenchmarks which read from /dev/zero:
Zen 1 (Naples)
libmicro-file
5.7.0-rc6 5.7.0-rc6 5.7.0-rc6
revert-1153933703d9+ align16+
Time mean95-pread_z100k 9.9195 ( 0.00%) 5.9856 ( 39.66%) 5.9938 ( 39.58%)
Time mean95-pread_z10k 1.1378 ( 0.00%) 0.7450 ( 34.52%) 0.7467 ( 34.38%)
Time mean95-pread_z1k 0.2623 ( 0.00%) 0.2251 ( 14.18%) 0.2252 ( 14.15%)
Time mean95-pread_zw100k 9.9974 ( 0.00%) 6.0648 ( 39.34%) 6.0756 ( 39.23%)
Time mean95-read_z100k 9.8940 ( 0.00%) 5.9885 ( 39.47%) 5.9994 ( 39.36%)
Time mean95-read_z10k 1.1394 ( 0.00%) 0.7483 ( 34.33%) 0.7482 ( 34.33%)
Note that this doesn't affect Haswell or Broadwell microarchitectures
which seem to avoid the alignment issue by executing the loop straight
out of the Loop Stream Detector (verified using perf events).
Fixes: 1153933703 ("x86/asm/64: Micro-optimize __clear_user() - Use immediate constants")
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # v4.19+
Link: https://lkml.kernel.org/r/20200618102002.30034-1-matt@codeblueprint.co.uk
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>