From the introduction of btrfs_(set|clear)_header_flag, there is no
usage of its return value. So just make it return void.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlyHwgcACgkQxWXV+ddt
WDvfFQ//VBO8Rnz0+V4XbxaIaz25EbCjR4cBuXwwXyl8HPJMZBvBPqW0LVXtV0eP
SwK0A5qiWqaXgWNpByD43AvgizZuWF/9SvxebaCKTjSK5t9TuXpR27vJNnHJf0L0
o4DeMXlgd8yE8yZstQo7UnLWfNU69v6Pi3Zbar/7IIJ0sVVCPMMoGoARZDlQ+w0M
wwppi04+a6bnAUbqpnWiL0a8++WX6gqP7MovqLRgf/up4cmzmDFoV7b/7pbvZxNv
LrKQBmJZQq44bW4TXMzhpkrIGyzrrUQuBhpbYJus9yZYqS6Owkzl5AQpdzo9reg2
V35xOkOZbXxqdOTGY0he9Z6wxJL+ocfryfRyA2hE4gXbCAnfFqIRyFicpTXuXxwg
RBan8VLB+1iC7j9djX/sP/uCH3tsPgN4WnjdZgnkUOkUhTuvpPw/A9bp6Uqfjr6g
JU0o/TlCC8npaveUQsuNbqyVYgPk58d9by12HsSW7UaA8ENyHz62+zoiv9jX/uZY
Tl4t2L+MKxEcsd0KEKEQpV+0hV56GtYcIZIqJTe9WFmPBHmEH3PCHDx4A5LrYveO
hC+hGAnX9xWK4XIr8T3ck1tsnxNApD25pmKSivadUiVJqOrPpJFyZb3aztcKcx4Y
sDbZdOV7XHq6ACrIhLoxpYWQc27v1FqrWVqsF51wo07I3meUVaA=
=u4Kf
-----END PGP SIGNATURE-----
Merge tag 'for-5.1-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Correctness and a deadlock fixes"
* tag 'for-5.1-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zstd: ensure reclaim timer is properly cleaned up
btrfs: move ulist allocation out of transaction in quota enable
btrfs: save drop_progress if we drop refs at all
btrfs: check for refs on snapshot delete resume
Btrfs: fix deadlock between clone/dedupe and rename
Btrfs: fix corruption reading shared and compressed extents after hole punching
Merge more updates from Andrew Morton:
- some of the rest of MM
- various misc things
- dynamic-debug updates
- checkpatch
- some epoll speedups
- autofs
- rapidio
- lib/, lib/lzo/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (83 commits)
samples/mic/mpssd/mpssd.h: remove duplicate header
kernel/fork.c: remove duplicated include
include/linux/relay.h: fix percpu annotation in struct rchan
arch/nios2/mm/fault.c: remove duplicate include
unicore32: stop printing the virtual memory layout
MAINTAINERS: fix GTA02 entry and mark as orphan
mm: create the new vm_fault_t type
arm, s390, unicore32: remove oneliner wrappers for memblock_alloc()
arch: simplify several early memory allocations
openrisc: simplify pte_alloc_one_kernel()
sh: prefer memblock APIs returning virtual address
microblaze: prefer memblock API returning virtual address
powerpc: prefer memblock APIs returning virtual address
lib/lzo: separate lzo-rle from lzo
lib/lzo: implement run-length encoding
lib/lzo: fast 8-byte copy on arm64
lib/lzo: 64-bit CTZ on arm64
lib/lzo: tidy-up ifdefs
ipc/sem.c: replace kvmalloc/memset with kvzalloc and use struct_size
ipc: annotate implicit fall through
...
First, the btrfs_debug macros open-code (one possible definition of)
DYNAMIC_DEBUG_BRANCH, so they don't benefit from the CONFIG_JUMP_LABEL
optimization.
Second, a planned change of struct _ddebug (to reduce its size on 64 bit
machines) requires that all descriptors in a translation unit use
distinct identifiers.
Using the new _dynamic_func_call_no_desc helper macro from
dynamic_debug.h takes care of both of these. No functional change.
Link: http://lkml.kernel.org/r/20190212214150.4807-12-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: David Sterba <dsterba@suse.com>
Acked-by: Jason Baron <jbaron@akamai.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Rafael J . Wysocki" <rafael.j.wysocki@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a bug in snapshot deletion where we won't update the
drop_progress key if we're in the UPDATE_BACKREF stage. This is a
problem because we could drop refs for blocks we know don't belong to
ours. If we crash or umount at the right time we could experience
messages such as the following when snapshot deletion resumes
BTRFS error (device dm-3): unable to find ref byte nr 66797568 parent 0 root 258 owner 1 offset 0
------------[ cut here ]------------
WARNING: CPU: 3 PID: 16052 at fs/btrfs/extent-tree.c:7108 __btrfs_free_extent.isra.78+0x62c/0xb30 [btrfs]
CPU: 3 PID: 16052 Comm: umount Tainted: G W OE 5.0.0-rc4+ #147
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011
RIP: 0010:__btrfs_free_extent.isra.78+0x62c/0xb30 [btrfs]
RSP: 0018:ffffc90005cd7b18 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff88842fade680 RSI: ffff88842fad6b18 RDI: ffff88842fad6b18
RBP: ffffc90005cd7bc8 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000001 R11: ffffffff822696b8 R12: 0000000003fb4000
R13: 0000000000000001 R14: 0000000000000102 R15: ffff88819c9d67e0
FS: 00007f08bb138fc0(0000) GS:ffff88842fac0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f8f5d861ea0 CR3: 00000003e99fe000 CR4: 00000000000006e0
Call Trace:
? _raw_spin_unlock+0x27/0x40
? btrfs_merge_delayed_refs+0x356/0x3e0 [btrfs]
__btrfs_run_delayed_refs+0x75a/0x13c0 [btrfs]
? join_transaction+0x2b/0x460 [btrfs]
btrfs_run_delayed_refs+0xf3/0x1c0 [btrfs]
btrfs_commit_transaction+0x52/0xa50 [btrfs]
? start_transaction+0xa6/0x510 [btrfs]
btrfs_sync_fs+0x79/0x1c0 [btrfs]
sync_filesystem+0x70/0x90
generic_shutdown_super+0x27/0x120
kill_anon_super+0x12/0x30
btrfs_kill_super+0x16/0xa0 [btrfs]
deactivate_locked_super+0x43/0x70
deactivate_super+0x40/0x60
cleanup_mnt+0x3f/0x80
__cleanup_mnt+0x12/0x20
task_work_run+0x8b/0xc0
exit_to_usermode_loop+0xce/0xd0
do_syscall_64+0x20b/0x210
entry_SYSCALL_64_after_hwframe+0x49/0xbe
To fix this simply mark dead roots we read from disk as DEAD and then
set the walk_control->restarted flag so we know we have a restarted
deletion. From here whenever we try to drop refs for blocks we check to
verify our ref is set on them, and if it is not we skip it. Once we
find a ref that is set we unset walk_control->restarted since the tree
should be in a normal state from then on, and any problems we run into
from there are different issues. I tested this with an existing broken
fs and my reproducer that creates a broken fs and it fixed both file
systems.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member btrfs_fs_info::scrub_nocow_workers is unused since the nocow
optimization was removed from scrub in 9bebe665c3 ("btrfs: scrub:
Remove unused copy_nocow_pages and its callchain").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The scrub worker pointers are not NULL iff the scrub is running, so
reset them back once the last reference is dropped. Add assertions to
the initial phase of scrub to verify that.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the refcount_t for fs_info::scrub_workers_refcnt instead of int so
we get the extra checks. All reference changes are still done under
scrub_lock.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've done this forever because of the voodoo around knowing how much
space we have. However, we have better ways of doing this now, and on
normal file systems we'll easily have a global reserve of 512MiB, and
since metadata chunks are usually 1GiB that means we'll allocate
metadata chunks more readily. Instead use the actual used amount when
determining if we need to allocate a chunk or not.
This has a side effect for mixed block group fs'es where we are no
longer allocating enough chunks for the data/metadata requirements. To
deal with this add a ALLOC_CHUNK_FORCE step to the flushing state
machine. This will only get used if we've already made a full loop
through the flushing machinery and tried committing the transaction.
If we have then we can try and force a chunk allocation since we likely
need it to make progress. This resolves issues I was seeing with
the mixed bg tests in xfstests without the new flushing state.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ merged with patch "add ALLOC_CHUNK_FORCE to the flushing code" ]
Signed-off-by: David Sterba <dsterba@suse.com>
The throttle path doesn't take cleaner_delayed_iput_mutex, which means
we could think we're done flushing iputs in the data space reservation
path when we could have a throttler doing an iput. There's no real
reason to serialize the delayed iput flushing, so instead of taking the
cleaner_delayed_iput_mutex whenever we flush the delayed iputs just
replace it with an atomic counter and a waitqueue. This removes the
short (or long depending on how big the inode is) window where we think
there are no more pending iputs when there really are some.
The waiting is killable as it could be indirectly called from user
operations like fallocate or zero-range. Such call sites should handle
the error but otherwise it's not necessary. Eg. flush_space just needs
to attempt to make space by waiting on iputs.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add killable comment and changelog parts ]
Signed-off-by: David Sterba <dsterba@suse.com>
A compiler warning (in a patch in development) pointed to a variable
that was used only inside and ASSERT:
u64 root_objectid = root->root_key.objectid;
ASSERT(root_objectid == ...);
fs/btrfs/relocation.c: In function ‘insert_dirty_subv’:
fs/btrfs/relocation.c:2138:6: warning: unused variable ‘root_objectid’ [-Wunused-variable]
u64 root_objectid = root->root_key.objectid;
^~~~~~~~~~~~~
When CONFIG_BRTFS_ASSERT isn't enabled, variable root_objectid isn't used.
Rework the assertion helper by adding a runtime check instead of the
'#ifdef CONFIG_BTRFS_ASSERT #else ...", so the compiler sees the
condition being passed into an inline function after preprocessing.
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
To allow delayed subtree swap rescan, btrfs needs to record per-root
information about which tree blocks get swapped. This patch introduces
the required infrastructure.
The designed workflow will be:
1) Record the subtree root block that gets swapped.
During subtree swap:
O = Old tree blocks
N = New tree blocks
reloc tree subvolume tree X
Root Root
/ \ / \
NA OB OA OB
/ | | \ / | | \
NC ND OE OF OC OD OE OF
In this case, NA and OA are going to be swapped, record (NA, OA) into
subvolume tree X.
2) After subtree swap.
reloc tree subvolume tree X
Root Root
/ \ / \
OA OB NA OB
/ | | \ / | | \
OC OD OE OF NC ND OE OF
3a) COW happens for OB
If we are going to COW tree block OB, we check OB's bytenr against
tree X's swapped_blocks structure.
If it doesn't fit any, nothing will happen.
3b) COW happens for NA
Check NA's bytenr against tree X's swapped_blocks, and get a hit.
Then we do subtree scan on both subtrees OA and NA.
Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND).
Then no matter what we do to subvolume tree X, qgroup numbers will
still be correct.
Then NA's record gets removed from X's swapped_blocks.
4) Transaction commit
Any record in X's swapped_blocks gets removed, since there is no
modification to swapped subtrees, no need to trigger heavy qgroup
subtree rescan for them.
This will introduce 128 bytes overhead for each btrfs_root even qgroup
is not enabled. This is to reduce memory allocations and potential
failures.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Relocation code will drop btrfs_root::reloc_root as soon as
merge_reloc_root() finishes.
However later qgroup code will need to access btrfs_root::reloc_root
after merge_reloc_root() for delayed subtree rescan.
So alter the timming of resetting btrfs_root:::reloc_root, make it
happens after transaction commit.
With this patch, we will introduce a new btrfs_root::state,
BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user
that although btrfs_root::reloc_tree is still non-NULL, but still it's
not used any more.
The lifespan of btrfs_root::reloc tree will become:
Old behavior | New
------------------------------------------------------------------------
btrfs_init_reloc_root() --- | btrfs_init_reloc_root() ---
set reloc_root | | set reloc_root |
| | |
| | |
merge_reloc_root() | | merge_reloc_root() |
|- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+-
clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE |
| record root into dirty |
| roots rbtree |
| |
| reloc_block_group() Or |
| btrfs_recover_relocation() |
| | After transaction commit |
| |- clean_dirty_subvols() ---
| clear btrfs_root::reloc_root
During ROOT_DEAD_RELOC_TREE set lifespan, the only user of
btrfs_root::reloc_tree should be qgroup.
Since reloc root needs a longer life-span, this patch will also delay
btrfs_drop_snapshot() call.
Now btrfs_drop_snapshot() is called in clean_dirty_subvols().
This patch will increase the size of btrfs_root by 16 bytes.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is a simple wrapper over btrfs_get_extent that returns
either:
a) A real extent in the passed range or
b) Adjusted extent based on whether delalloc bytes are found backing up
a hole.
To support these semantics it doesn't need the page/pg_offset/create
arguments which are passed to btrfs_get_extent in case an extent is to
be created. So simplify the function by removing the unused arguments.
No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since this function is no longer a callback there is no need to have
its first argument obfuscated with a void *. Change it directly to a
pointer to an inode. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlxElHsACgkQxWXV+ddt
WDsF8Q/6A+l/Ku8D+xSmw+JGXGNroX1V62sxVYWqIgrkYNg6iSMjicqF3aN1bCbR
LqvOQ5skerrKteNYIPbTTOD5Xp37ccinSeEWEF0ktFkeU1G6yJo7aRsnQlO1sduk
2PKUOA1/PdeTBiOj1bej/1ybhtIW+d0MaoPtnUCMC8DD/ihfmU332+KC8VmRUYGZ
4kT1DvKfBOSVz1UTl6OJdWo76crvjz0eGVnH1YG7DoFbpVzAbphHE7+aC/WkHQme
X5Ux2NtYVMe/0IGAC7kJnj4jCZ1weAdlmvzzagjzGtWdhWgTxntiJ/FVJs9nO8Dm
G/pVtD8RVjgMkPOWcfw5fdderrBJqjVGgl4VDrDLqjO9OTGNFJs+HgcPRi6Oli28
sA+HG+U34YzSfKY0L9eAmpkNxMjWywBuXTQIAlMhHNZCL0vZ2K5EYa3dTp9OswAW
IIcOh/LfZxiomvMvUqQWcRCy5y/b+cYjOjbHwkrw+ewd3IWXVLG8YLMyZI3vnHKu
/f1xn6KCap9a1cS4LwyK6gzstEugn0MYmnmD/Jx8I1BJFBt55Q31ES6tPHgTmh/d
QjveRjMkxNCql4h5Hq0+LiXoSoocBmsO0wrs2QrWSx4PBnJsvjySnWr/8GfAOj79
BhnuQFxbr/BkNyBzvKrjoI+zZnrVm0cBU59lP6PzN75+kQTaIfs=
=hGlM
-----END PGP SIGNATURE-----
Merge tag 'for-5.0-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A handful of fixes (some of them in testing for a long time):
- fix some test failures regarding cleanup after transaction abort
- revert of a patch that could cause a deadlock
- delayed iput fixes, that can help in ENOSPC situation when there's
low space and a lot data to write"
* tag 'for-5.0-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: wakeup cleaner thread when adding delayed iput
btrfs: run delayed iputs before committing
btrfs: wait on ordered extents on abort cleanup
btrfs: handle delayed ref head accounting cleanup in abort
Revert "btrfs: balance dirty metadata pages in btrfs_finish_ordered_io"
The cleaner thread usually takes care of delayed iputs, with the
exception of the btrfs_end_transaction_throttle path. Delaying iputs
means we are potentially delaying the eviction of an inode and it's
respective space. The cleaner thread only gets woken up every 30
seconds, or when we require space. If there are a lot of inodes that
need to be deleted we could induce a serious amount of latency while we
wait for these inodes to be evicted. So instead wakeup the cleaner if
it's not already awake to process any new delayed iputs we add to the
list. If we suddenly need space we will less likely be backed up
behind a bunch of inodes that are waiting to be deleted, and we could
possibly free space before we need to get into the flushing logic which
will save us some latency.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull vfs mount API prep from Al Viro:
"Mount API prereqs.
Mostly that's LSM mount options cleanups. There are several minor
fixes in there, but nothing earth-shattering (leaks on failure exits,
mostly)"
* 'mount.part1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (27 commits)
mount_fs: suppress MAC on MS_SUBMOUNT as well as MS_KERNMOUNT
smack: rewrite smack_sb_eat_lsm_opts()
smack: get rid of match_token()
smack: take the guts of smack_parse_opts_str() into a new helper
LSM: new method: ->sb_add_mnt_opt()
selinux: rewrite selinux_sb_eat_lsm_opts()
selinux: regularize Opt_... names a bit
selinux: switch away from match_token()
selinux: new helper - selinux_add_opt()
LSM: bury struct security_mnt_opts
smack: switch to private smack_mnt_opts
selinux: switch to private struct selinux_mnt_opts
LSM: hide struct security_mnt_opts from any generic code
selinux: kill selinux_sb_get_mnt_opts()
LSM: turn sb_eat_lsm_opts() into a method
nfs_remount(): don't leak, don't ignore LSM options quietly
btrfs: sanitize security_mnt_opts use
selinux; don't open-code a loop in sb_finish_set_opts()
LSM: split ->sb_set_mnt_opts() out of ->sb_kern_mount()
new helper: security_sb_eat_lsm_opts()
...
1) keeping a copy in btrfs_fs_info is completely pointless - we never
use it for anything. Getting rid of that allows for simpler calling
conventions for setup_security_options() (caller is responsible for
freeing mnt_opts in all cases).
2) on remount we want to use ->sb_remount(), not ->sb_set_mnt_opts(),
same as we would if not for FS_BINARY_MOUNTDATA. Behaviours *are*
close (in fact, selinux sb_set_mnt_opts() ought to punt to
sb_remount() in "already initialized" case), but let's handle
that uniformly. And the only reason why the original btrfs changes
didn't go for security_sb_remount() in btrfs_remount() case is that
it hadn't been exported. Let's export it for a while - it'll be
going away soon anyway.
Reviewed-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When debugging some weird extent reference bug I suspected that we were
changing a snapshot while we were deleting it, which could explain my
bug. This was indeed what was happening, and this patch helped me
verify my theory. It is never correct to modify the snapshot once it's
being deleted, so mark the root when we are deleting it and make sure we
complain about it when it happens.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now with the delayed_refs_rsv we can now know exactly how much pending
delayed refs space we need. This means we can drastically simplify
btrfs_check_space_for_delayed_refs by simply checking how much space we
have reserved for the global rsv (which acts as a spill over buffer) and
the delayed refs rsv. If our total size is beyond that amount then we
know it's time to commit the transaction and stop any more delayed refs
from being generated.
With the introduction of dealyed_refs_rsv infrastructure, namely
btrfs_update_delayed_refs_rsv we now know exactly how much pending
delayed refs space is required.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A nice thing we gain with the delayed refs rsv is the ability to flush
the delayed refs on demand to deal with enospc pressure. Add states to
flush delayed refs on demand, and this will allow us to remove a lot of
ad-hoc work around checking to see if we should commit the transaction
to run our delayed refs.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Traditionally we've had voodoo in btrfs to account for the space that
delayed refs may take up by having a global_block_rsv. This works most
of the time, except when it doesn't. We've had issues reported and seen
in production where sometimes the global reserve is exhausted during
transaction commit before we can run all of our delayed refs, resulting
in an aborted transaction. Because of this voodoo we have equally
dubious flushing semantics around throttling delayed refs which we often
get wrong.
So instead give them their own block_rsv. This way we can always know
exactly how much outstanding space we need for delayed refs. This
allows us to make sure we are constantly filling that reservation up
with space, and allows us to put more precise pressure on the enospc
system. Instead of doing math to see if its a good time to throttle,
the normal enospc code will be invoked if we have a lot of delayed refs
pending, and they will be run via the normal flushing mechanism.
For now the delayed_refs_rsv will hold the reservations for the delayed
refs, the block group updates, and deleting csums. We could have a
separate rsv for the block group updates, but the csum deletion stuff is
still handled via the delayed_refs so that will stay there.
Historical background:
The global reserve has grown to cover everything we don't reserve space
explicitly for, and we've grown a lot of weird ad-hoc heuristics to know
if we're running short on space and when it's time to force a commit. A
failure rate of 20-40 file systems when we run hundreds of thousands of
them isn't super high, but cleaning up this code will make things less
ugly and more predictible.
Thus the delayed refs rsv. We always know how many delayed refs we have
outstanding, and although running them generates more we can use the
global reserve for that spill over, which fits better into it's desired
use than a full blown reservation. This first approach is to simply
take how many times we're reserving space for and multiply that by 2 in
order to save enough space for the delayed refs that could be generated.
This is a niave approach and will probably evolve, but for now it works.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com> # high-level review
[ added background notes from the cover letter ]
Signed-off-by: David Sterba <dsterba@suse.com>
After the rw semaphore has been added, the custom blocking using
::blocking_readers and ::read_lock_wq is redundant.
The blocking logic in __btrfs_map_block is replaced by extending the
time the semaphore is held, that has the same blocking effect on writes
as the previous custom scheme that waited until ::blocking_readers was
zero.
Signed-off-by: David Sterba <dsterba@suse.com>
This is the first part of removing the custom locking and waiting scheme
used for device replace. It was probably copied from extent buffer
locking, but there's nothing that would require more than is provided by
the common locking primitives.
The rw spinlock protects waiting tasks counter in case of incompatible
locks and the waitqueue. Same as rw semaphore.
This patch only switches the locking primitive, for better
bisectability. There should be no functional change other than the
overhead of the locking and potential sleeping instead of spinning when
the lock is contended.
Signed-off-by: David Sterba <dsterba@suse.com>
The first auto-assigned value to enum is 0, we can use that and not
initialize all members where the auto-increment does the same. This is
used for values that are not part of on-disk format.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
We can use simple enum for values that are not part of on-disk format:
root tree flags.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
We can use simple enum for values that are not part of on-disk format:
internal filesystem states.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can use simple enum for values that are not part of on-disk format:
block reserve types.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
We can use simple enum for values that are not part of on-disk format:
global filesystem states.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
This function really checks whether adding more data to the bio will
straddle a stripe/chunk. So first let's give it a more appropraite name
- btrfs_bio_fits_in_stripe. Secondly, the offset parameter was never
used to just remove it. Thirdly, pages are submitted to either btree or
data inodes so it's guaranteed that tree->ops is set so replace the
check with an ASSERT. Finally, document the parameters of the function.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_fs_info structure contains a copy of the
fsid/metadata_uuid fields. Same values are also contained in the
btrfs_fs_devices structure which fs_info has a reference to. Let's
reduce duplication by removing the fields from fs_info and always refer
to the ones in fs_devices. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This field is going to be used when the user wants to change the UUID
of the filesystem without having to rewrite all metadata blocks. This
field adds another level of indirection such that when the FSID is
changed what really happens is the current UUID (the one with which the
fs was created) is copied to the 'metadata_uuid' field in the superblock
as well as a new incompat flag is set METADATA_UUID. When the kernel
detects this flag is set it knows that the superblock in fact has 2
UUIDs:
1. Is the UUID which is user-visible, currently known as FSID.
2. Metadata UUID - this is the UUID which is stamped into all on-disk
datastructures belonging to this file system.
When the new incompat flag is present device scanning checks whether
both fsid/metadata_uuid of the scanned device match any of the
registered filesystems. When the flag is not set then both UUIDs are
equal and only the FSID is retained on disk, metadata_uuid is set only
in-memory during mount.
Additionally a new metadata_uuid field is also added to the fs_info
struct. It's initialised either with the FSID in case METADATA_UUID
incompat flag is not set or with the metdata_uuid of the superblock
otherwise.
This commit introduces the new fields as well as the new incompat flag
and switches all users of the fsid to the new logic.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor updates in comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Depending on whether CONFIG_BTRFS_FS_RUN_SANITY_TESTS is set, some BTRFS
functions are either local to the file they are implemented in and thus
should be declared static or are called from within the test
implementation defined in a different file.
Introduce an EXPORT_FOR_TESTS macro which depending on
CONFIG_BTRFS_FS_RUN_SANITY_TESTS either adds the 'static' keyword to a
function or not.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Snapshot is expected to be fast. But if there are writers steadily
creating dirty pages in our subvolume, the snapshot may take a very long
time to complete. To fix the problem, we use tagged writepage for
snapshot flusher as we do in the generic write_cache_pages(), so we can
omit pages dirtied after the snapshot command.
This does not change the semantics regarding which data get to the
snapshot, if there are pages being dirtied during the snapshotting
operation. There's a sync called before snapshot is taken in old/new
case, any IO in flight just after that may be in the snapshot but this
depends on other system effects that might still sync the IO.
We do a simple snapshot speed test on a Intel D-1531 box:
fio --ioengine=libaio --iodepth=32 --bs=4k --rw=write --size=64G
--direct=0 --thread=1 --numjobs=1 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio
original: 1m58sec
patched: 6.54sec
This is the best case for this patch since for a sequential write case,
we omit nearly all pages dirtied after the snapshot command.
For a multi writers, random write test:
fio --ioengine=libaio --iodepth=32 --bs=4k --rw=randwrite --size=64G
--direct=0 --thread=1 --numjobs=4 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio
original: 15.83sec
patched: 10.35sec
The improvement is smaller compared to the sequential write case,
since we omit only half of the pages dirtied after snapshot command.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This parameter was never used, yet was part of the interface of the
function ever since its introduction as extent_io_ops::writepage_end_io_hook
in e6dcd2dc9c ("Btrfs: New data=ordered implementation"). Now that
NULL is passed everywhere as a value for this parameter let's remove it
for good. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A later patch will implement swap file support for Btrfs, but before we
do that, we need to make sure that the various Btrfs ioctls cannot
change a swap file.
When a swap file is active, we must make sure that the extents of the
file are not moved and that they don't become shared. That means that
the following are not safe:
- chattr +c (enable compression)
- reflink
- dedupe
- snapshot
- defrag
Don't allow those to happen on an active swap file.
Additionally, balance, resize, device remove, and device replace are
also unsafe if they affect an active swapfile. Add a red-black tree of
block groups and devices which contain an active swapfile. Relocation
checks each block group against this tree and skips it or errors out for
balance or resize, respectively. Device remove and device replace check
the tree for the device they will operate on.
Note that we don't have to worry about chattr -C (disable nocow), which
we ignore for non-empty files, because an active swapfile must be
non-empty and can't be truncated. We also don't have to worry about
autodefrag because it's only done on COW files. Truncate and fallocate
are already taken care of by the generic code. Device add doesn't do
relocation so it's not an issue, either.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the counterpart to merge_extent_hook, similarly, it's used only
for data/freespace inodes so let's remove it, rename it and call it
directly where necessary. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is used only for data and free space inodes. Such inodes
are guaranteed to have their extent_io_tree::private_data set to the
inode struct. Exploit this fact to directly call the function. Also give
it a more descriptive name. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the counterpart to ex-set_bit_hook (now btrfs_set_delalloc_extent),
similar to what was done before remove clear_bit_hook and rename the
function. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is used to properly account delalloc extents for data
inodes (ordinary file inodes and freespace v1 inodes). Those can be
easily identified since they have their extent_io trees ->private_data
member point to the inode. Let's exploit this fact to remove the
needless indirection through extent_io_hooks and directly call the
function. Also give the function a name which reflects its purpose -
btrfs_set_delalloc_extent.
This patch also modified test_find_delalloc so that the extent_io_tree
used for testing doesn't have its ->private_data set which would have
caused a crash in btrfs_set_delalloc_extent due to the btrfs_inode->root
member not being initialised. The old version of the code also didn't
call set_bit_hook since the extent_io ops weren't set for the inode. No
functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is ony ever called for data page writeout so there is no
need to actually abstract it via extent_io_ops. Lets just export it,
remove the definition of the callback and call it directly in the
functions that invoke the callback. Also rename the function to
btrfs_writepage_endio_finish_ordered since what it really does is
account finished io in the ordered extent data structures. No
functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This hook is called only from __extent_writepage_io which is already
called only from the data page writeout path. So there is no need to
make an indirect call via extent_io_ops. This patch just removes the
callback definition, exports the callback function and calls it directly
at the only call site. Also give the function a more descriptive name.
No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This callback is called only from writepage_delalloc which in turn is
guaranteed to be called from the data page writeout path. In the end
there is no reason to have the call to this function to be indrected via
the extent_io_ops structure. This patch removes the callback definition,
exports the function and calls it directly. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename to btrfs_run_delalloc_range ]
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlvoGIUACgkQxWXV+ddt
WDta6g//UJSLnVskCUwh8VyMdd47QArQnaLJowOH7wQn4Nqj+2hf04mCq/kv05ed
OneTezzONZc/qW9fiJGS+Dp77ln4JIDA1hWHtb/A4t9pYlksSQllJ3oiDUVsCp3q
2EbzrjuNz3iQO6TjKlaHX473CLCMQMXS2OXOUnCkF2maMJSdr86oi+j1UiSnud1/
C7uMYM3hG8nkfEfjjb1COpkS2MmzYcPruF5RDcbT/WOUfylTsjjX1E7rK/ZEqS9P
SUcp4uoZe9BNoyWMASLaM7oHE82day4X9MwQoCQFRcm0kq4CnRAZ8X4lBl+M70iW
7Olii/wNZ2SRiJf3jac/rpxoBHvEskXTHyiHTEmdHp4n1L1pL9GzGYIePQcX7uV1
Tb6ImdUUKCC//fPqyeB7cEk5yxqahmlFD3qZVs6GnQkzKrPE+ChLx+7PgcJC/XVh
C5ogNmJm+NvFOuTrYk9zSXg85B8gWHescDJrvNKVizIjw3nKmqiC+dXZljhzw+p8
HscK9EXsiS8jW9ClfJljXzIa4SeA/i7fQGe4tCKfIrCQ+OqUxWpFCEoxygchinfF
Rw90fJ0jX083oXsnfFcVdQpQ+SLSKka/aIRMvi58WRgLU3trci5NNN4TFg8TYRKP
xBDF/iF3sqXajc+xsjoqLhLioZL3Pa5VDNuhsFdois9M5JSRekU=
=K14u
-----END PGP SIGNATURE-----
Merge tag 'for-4.20-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Several fixes to recent release (4.19, fixes tagged for stable) and
other fixes"
* tag 'for-4.20-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix missing delayed iputs on unmount
Btrfs: fix data corruption due to cloning of eof block
Btrfs: fix infinite loop on inode eviction after deduplication of eof block
Btrfs: fix deadlock on tree root leaf when finding free extent
btrfs: avoid link error with CONFIG_NO_AUTO_INLINE
btrfs: tree-checker: Fix misleading group system information
Btrfs: fix missing data checksums after a ranged fsync (msync)
btrfs: fix pinned underflow after transaction aborted
Btrfs: fix cur_offset in the error case for nocow
When we are writing out a free space cache, during the transaction commit
phase, we can end up in a deadlock which results in a stack trace like the
following:
schedule+0x28/0x80
btrfs_tree_read_lock+0x8e/0x120 [btrfs]
? finish_wait+0x80/0x80
btrfs_read_lock_root_node+0x2f/0x40 [btrfs]
btrfs_search_slot+0xf6/0x9f0 [btrfs]
? evict_refill_and_join+0xd0/0xd0 [btrfs]
? inode_insert5+0x119/0x190
btrfs_lookup_inode+0x3a/0xc0 [btrfs]
? kmem_cache_alloc+0x166/0x1d0
btrfs_iget+0x113/0x690 [btrfs]
__lookup_free_space_inode+0xd8/0x150 [btrfs]
lookup_free_space_inode+0x5b/0xb0 [btrfs]
load_free_space_cache+0x7c/0x170 [btrfs]
? cache_block_group+0x72/0x3b0 [btrfs]
cache_block_group+0x1b3/0x3b0 [btrfs]
? finish_wait+0x80/0x80
find_free_extent+0x799/0x1010 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0x1b3/0x4f0 [btrfs]
__btrfs_cow_block+0x11d/0x500 [btrfs]
btrfs_cow_block+0xdc/0x180 [btrfs]
btrfs_search_slot+0x3bd/0x9f0 [btrfs]
btrfs_lookup_inode+0x3a/0xc0 [btrfs]
? kmem_cache_alloc+0x166/0x1d0
btrfs_update_inode_item+0x46/0x100 [btrfs]
cache_save_setup+0xe4/0x3a0 [btrfs]
btrfs_start_dirty_block_groups+0x1be/0x480 [btrfs]
btrfs_commit_transaction+0xcb/0x8b0 [btrfs]
At cache_save_setup() we need to update the inode item of a block group's
cache which is located in the tree root (fs_info->tree_root), which means
that it may result in COWing a leaf from that tree. If that happens we
need to find a free metadata extent and while looking for one, if we find
a block group which was not cached yet we attempt to load its cache by
calling cache_block_group(). However this function will try to load the
inode of the free space cache, which requires finding the matching inode
item in the tree root - if that inode item is located in the same leaf as
the inode item of the space cache we are updating at cache_save_setup(),
we end up in a deadlock, since we try to obtain a read lock on the same
extent buffer that we previously write locked.
So fix this by using the tree root's commit root when searching for a
block group's free space cache inode item when we are attempting to load
a free space cache. This is safe since block groups once loaded stay in
memory forever, as well as their caches, so after they are first loaded
we will never need to read their inode items again. For new block groups,
once they are created they get their ->cached field set to
BTRFS_CACHE_FINISHED meaning we will not need to read their inode item.
Reported-by: Andrew Nelson <andrew.s.nelson@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAPTELenq9x5KOWuQ+fa7h1r3nsJG8vyiTH8+ifjURc_duHh2Wg@mail.gmail.com/
Fixes: 9d66e233c7 ("Btrfs: load free space cache if it exists")
Tested-by: Andrew Nelson <andrew.s.nelson@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rework the vfs_clone_file_range and vfs_dedupe_file_range infrastructure to use
a common .remap_file_range method and supply generic bounds and sanity checking
functions that are shared with the data write path. The current VFS
infrastructure has problems with rlimit, LFS file sizes, file time stamps,
maximum filesystem file sizes, stripping setuid bits, etc and so they are
addressed in these commits.
We also introduce the ability for the ->remap_file_range methods to return short
clones so that clones for vfs_copy_file_range() don't get rejected if the entire
range can't be cloned. It also allows filesystems to sliently skip deduplication
of partial EOF blocks if they are not capable of doing so without requiring
errors to be thrown to userspace.
All existing filesystems are converted to user the new .remap_file_range method,
and both XFS and ocfs2 are modified to make use of the new generic checking
infrastructure.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJb29gEAAoJEK3oKUf0dfodpOAQAL2VbHjvKXEwNMDTKscSRMmZ
Z0xXo3gamFKQ+VGOqy2g2lmAYQs9SAnTuCGTJ7zIAp7u+q8gzUy5FzKAwLS4Id6L
8siaY6nzlicfO04d0MdXnWz0f3xykChgzfdQfVUlUi7WrDioBUECLPmx4a+USsp1
DQGjLOZfoOAmn2rijdnH9RTEaHqg+8mcTaLN9TRav4gGqrWxldFKXw2y6ouFC7uo
/hxTRNXR9VI+EdbDelwBNXl9nU9gQA0WLOvRKwgUrtv6bSJohTPsmXt7EbBtNcVR
cl3zDNc1sLD1bLaRLEUAszI/33wXaaQgom1iB51obIcHHef+JxRNG/j6rUMfzxZI
VaauGv5EIvtaKN0LTAqVVLQ8t2MQFYfOr8TykmO+1UFog204aKRANdVMHDSjxD/0
dTGKJGcq+HnKQ+JHDbTdvuXEL8sUUl1FiLjOQbZPw63XmuddLKFUA2TOjXn6htbU
1h1MG5d9KjGLpabp2BQheczD08NuSmcrOBNt7IoeI3+nxr3HpMwprfB9TyaERy9X
iEgyVXmjjc9bLLRW7A2wm77aW64NvPs51wKMnvuNgNwnCewrGS6cB8WVj2zbQjH1
h3f3nku44s9ctNPSBzb/sJLnpqmZQ5t0oSmrMSN+5+En6rNTacoJCzxHRJBA7z/h
Z+C6y1GTZw0euY6Zjiwu
=CE/A
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull vfs dedup fixes from Dave Chinner:
"This reworks the vfs data cloning infrastructure.
We discovered many issues with these interfaces late in the 4.19 cycle
- the worst of them (data corruption, setuid stripping) were fixed for
XFS in 4.19-rc8, but a larger rework of the infrastructure fixing all
the problems was needed. That rework is the contents of this pull
request.
Rework the vfs_clone_file_range and vfs_dedupe_file_range
infrastructure to use a common .remap_file_range method and supply
generic bounds and sanity checking functions that are shared with the
data write path. The current VFS infrastructure has problems with
rlimit, LFS file sizes, file time stamps, maximum filesystem file
sizes, stripping setuid bits, etc and so they are addressed in these
commits.
We also introduce the ability for the ->remap_file_range methods to
return short clones so that clones for vfs_copy_file_range() don't get
rejected if the entire range can't be cloned. It also allows
filesystems to sliently skip deduplication of partial EOF blocks if
they are not capable of doing so without requiring errors to be thrown
to userspace.
Existing filesystems are converted to user the new remap_file_range
method, and both XFS and ocfs2 are modified to make use of the new
generic checking infrastructure"
* tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (28 commits)
xfs: remove [cm]time update from reflink calls
xfs: remove xfs_reflink_remap_range
xfs: remove redundant remap partial EOF block checks
xfs: support returning partial reflink results
xfs: clean up xfs_reflink_remap_blocks call site
xfs: fix pagecache truncation prior to reflink
ocfs2: remove ocfs2_reflink_remap_range
ocfs2: support partial clone range and dedupe range
ocfs2: fix pagecache truncation prior to reflink
ocfs2: truncate page cache for clone destination file before remapping
vfs: clean up generic_remap_file_range_prep return value
vfs: hide file range comparison function
vfs: enable remap callers that can handle short operations
vfs: plumb remap flags through the vfs dedupe functions
vfs: plumb remap flags through the vfs clone functions
vfs: make remap_file_range functions take and return bytes completed
vfs: remap helper should update destination inode metadata
vfs: pass remap flags to generic_remap_checks
vfs: pass remap flags to generic_remap_file_range_prep
vfs: combine the clone and dedupe into a single remap_file_range
...
Change the remap_file_range functions to take a number of bytes to
operate upon and return the number of bytes they operated on. This is a
requirement for allowing fs implementations to return short clone/dedupe
results to the user, which will enable us to obey resource limits in a
graceful manner.
A subsequent patch will enable copy_file_range to signal to the
->clone_file_range implementation that it can handle a short length,
which will be returned in the function's return value. For now the
short return is not implemented anywhere so the behavior won't change --
either copy_file_range manages to clone the entire range or it tries an
alternative.
Neither clone ioctl can take advantage of this, alas.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Combine the clone_file_range and dedupe_file_range operations into a
single remap_file_range file operation dispatch since they're
fundamentally the same operation. The differences between the two can
be made in the prep functions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>