This OTP is read-only and contains various keys used by the console to
decrypt, encrypt or verify various pieces of storage.
Its size depends on the console, it is 128 bytes on the Wii and
1024 bytes on the Wii U (split into eight 128 bytes banks).
It can be used directly by writing into one register and reading from
the other one, without any additional synchronisation.
This driver was written based on reversed documentation, see:
https://wiiubrew.org/wiki/Hardware/OTP
Tested-by: Jonathan Neuschäfer <j.ne@posteo.net> # on Wii
Tested-by: Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> # on Wii U
Signed-off-by: Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20210810153036.1494-3-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Firmware/co-processors might use reserved memory areas in order to pass
data stemming from an nvmem device otherwise non accessible to Linux.
For example an EEPROM memory only physically accessible to firmware, or
data only accessible early at boot time.
In order to expose this data to other drivers and user-space, the driver
models the reserved memory area as an nvmem device.
Tested-by: Tim Gover <tim.gover@raspberrypi.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20210129171430.11328-5-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that we are using is_bin_visible callback, we do not need
nvmem_sysfs_get_groups() anymore so move all the relevant data-structures
and code to core.c
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20200325131951.31887-3-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch brings support for the JZ4780 efuse. Currently it only exposes
a read only access to the entire 8K bits efuse memory and nvmem cells.
To fetch for example the MAC address:
dd if=/sys/devices/platform/134100d0.efuse/jz4780-efuse0/nvmem bs=1 skip=34 count=6 status=none | xxd
Tested-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: PrasannaKumar Muralidharan <prasannatsmkumar@gmail.com>
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: H. Nikolaus Schaller <hns@goldelico.com>
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20200310132257.23358-13-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
QTI SDAM driver allows PMIC peripherals to access the shared memory
that is available on QTI PMICs.
Use subsys_initcall as PMIC SDAM NV memory is accessed by multiple PMIC
drivers (charger, fuel gauge) to store/restore data across reboots
required during their initialization.
Signed-off-by: Anirudh Ghayal <aghayal@codeaurora.org>
Signed-off-by: Shyam Kumar Thella <sthella@codeaurora.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20200116161100.30637-4-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Newer Rockchip socs like the px30 use a different one-time-programmable
memory controller for things like cpu-id and leakage information,
so add the necessary driver for it.
Signed-off-by: Finley Xiao <finley.xiao@rock-chips.com>
[ported from vendor 4.4, converted to clock-bulk API and cleanups]
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20191029114240.14905-11-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The Spreadtrum eFuse controller is widely used to dump chip ID,
configuration setting, function select and so on, as well as
supporting one-time programming.
Signed-off-by: Freeman Liu <freeman.liu@unisoc.com>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20191029114240.14905-8-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Many nvmem providers are not very keen on having default sysfs
nvmem entry, as most of the usecases for them are inside kernel
itself. And in some cases read/writes to some areas in nvmem are
restricted and trapped at secure monitor level, so accessing them
from userspace would result in board reboots.
This patch adds new NVMEM_SYSFS Kconfig to make binary sysfs entry
an optional one. This provision will give more flexibility to users.
This patch also moves existing sysfs code to a new file so that its
not compiled in when its not really required.
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Gaurav Kohli <gkohli@codeaurora.org>
Tested-by: Gaurav Kohli <gkohli@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch adds zynqmp nvmem firmware driver to access the
SoC revision information from the hardware register.
Signed-off-by: Nava kishore Manne <nava.manne@xilinx.com>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
This patch add the efuse driver which is embeded in Spreadtrum SC27XX
series PMICs. The sc27xx efuse contains 32 blocks and each block's
data width is 16 bits.
Signed-off-by: Freeman Liu <freeman.liu@spreadtrum.com>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Here is the big set of char/misc and other driver subsystem patches for
4.15-rc1.
There are small changes all over here, hyperv driver updates, pcmcia
driver updates, w1 driver updats, vme driver updates, nvmem driver
updates, and lots of other little one-off driver updates as well. The
shortlog has the full details.
Note, there will be a merge conflict in drivers/misc/lkdtm_core.c when
merging to your tree as one lkdtm patch came in through the perf tree as
well as this one. The resolution is to take the const change that this
tree provides.
All of these have been in linux-next for quite a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWg2Lnw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ymTUwCgwp46+I8yPlgDH8oe5TxyyJnpdHQAn1XW0i+a
sBi6WS87In5v1QO1Rgfc
=dH2a
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.15-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc updates from Greg KH:
"Here is the big set of char/misc and other driver subsystem patches
for 4.15-rc1.
There are small changes all over here, hyperv driver updates, pcmcia
driver updates, w1 driver updats, vme driver updates, nvmem driver
updates, and lots of other little one-off driver updates as well. The
shortlog has the full details.
All of these have been in linux-next for quite a while with no
reported issues"
* tag 'char-misc-4.15-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (90 commits)
VME: Return -EBUSY when DMA list in use
w1: keep balance of mutex locks and refcnts
MAINTAINERS: Update VME subsystem tree.
nvmem: sunxi-sid: add support for A64/H5's SID controller
nvmem: imx-ocotp: Update module description
nvmem: imx-ocotp: Enable i.MX7D OTP write support
nvmem: imx-ocotp: Add i.MX7D timing write clock setup support
nvmem: imx-ocotp: Move i.MX6 write clock setup to dedicated function
nvmem: imx-ocotp: Add support for banked OTP addressing
nvmem: imx-ocotp: Pass parameters via a struct
nvmem: imx-ocotp: Restrict OTP write to IMX6 processors
nvmem: uniphier: add UniPhier eFuse driver
dt-bindings: nvmem: add description for UniPhier eFuse
nvmem: set nvmem->owner to nvmem->dev->driver->owner if unset
nvmem: qfprom: fix different address space warnings of sparse
nvmem: mtk-efuse: fix different address space warnings of sparse
nvmem: mtk-efuse: use stack for nvmem_config instead of malloc'ing it
nvmem: imx-iim: use stack for nvmem_config instead of malloc'ing it
thunderbolt: tb: fix use after free in tb_activate_pcie_devices
MAINTAINERS: Add git tree for Thunderbolt development
...
Add eFuse driver for Socionext UniPhier series SoC.
Note that eFuse device is under soc-glue and this register
implements as read only.
Signed-off-by: Keiji Hayashibara <hayashibara.keiji@socionext.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This adds a driver to access the efuse on Amlogic Meson6, Meson8 and
Meson8b SoCs.
These SoCs are accessing the efuse IP block directly through the
registers in the "secbus" region. This makes it different from the Meson
GX efuse driver which uses the "secure monitor" firmware to access the
efuse.
The efuse on Meson6 can only read one byte at a time, while the efuse on
Meson8 and Meson8b always reads 4 bytes at a time. The new driver
supports both, but due to lack of hardware Meson6 support was not tested.
The hardware also supports writing. However, this is currently not
supported by the driver.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This is a driver for Low Power General Purpose Register (LPGPR)
available on i.MX6 SoCs in Secure Non-Volatile Storage (SNVS)
of this chip.
It is a 32-bit read/write register located in the low power domain.
Since LPGPR is located in the battery-backed power domain, LPGPR can
be used by any application for retaining data during an SoC power-down
mode.
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This adds a readonly nvmem driver for the i.MX IC Identification Module
(IIM). The IIM is found on the older i.MX SoCs like the i.MX25, i.MX27,
i.MX31, i.MX35, i.MX51 and the i.MX53.
The IIM can control up to 8 fuse banks with 256 bit each. Not all of the
banks are equipped on the different SoCs. The actual number of fuses
differ from 512 on the i.MX27 and 1152 on the i.MX53.
The fuses are one time writable, but writing is currently not supported
in the driver.
Signed-off-by: Michael Grzeschik <m.grzeschik@pengutronix.de>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for 32 and 64-bit versions of Broadcom's On-Chip OTP
controller. These controllers are used on SoC's such as Cygnus and
Stingray.
Reviewed-by: Ray Jui <ray.jui@broadcom.com>
Tested-by: Jonathan Richardson <jonathan.richardson@broadcom.com>
Signed-off-by: Scott Branden <scott.branden@broadcom.com>
Signed-off-by: Oza Pawandeep <oza@broadcom.com>
Signed-off-by: Jonathan Richardson <jonathan.richardson@broadcom.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add simple read only driver for the internal OTP (One Time Programmable)
memory found on all NXP LPC18xx and LPC43xx devices.
The OTP memory is split into 4 banks each with 4 32-bits word. Some of
the banks contain predefined data while others are for general purpose
and user programmable via the OTP API in ROM. Note that writing to the
OTP memory is not yet supported.
Signed-off-by: Joachim Eastwood <manabian@gmail.com>
Tested-by: Vladimir Zapolskiy <vz@mleia.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add Amlogic EFUSE driver to access hardware data like ethernet address,
serial number or IDs.
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Carlo Caione <carlo@endlessm.com>
Signed-off-by: Kevin Hilman <khilman@baylibre.com>
This commit adds support for NXP LPC18xx EEPROM memory found in NXP
LPC185x/3x and LPC435x/3x/2x/1x devices.
EEPROM size is 16384 bytes and it can be entirely read and
written/erased with 1 word (4 bytes) granularity. The last page
(128 bytes) contains the EEPROM initialization data and is not writable.
Erase/program time is less than 3ms. The EEPROM device requires a
~1500 kHz clock (min 800 kHz, max 1600 kHz) that is generated dividing
the system bus clock by the division factor, contained in the divider
register (minus 1 encoded).
EEPROM will be kept in Power Down mode except during read/write calls.
Signed-off-by: Ariel D'Alessandro <ariel@vanguardiasur.com.ar>
Acked-by: Stefan Wahren <stefan.wahren@i2se.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are some SoC specified values store in eFuse,
such as the cpu_leakage and cpu_version,
this driver can expose these values to /sys base on nvmem.
Signed-off-by: Caesar Wang <caesar.wang@rock-chips.com>
Signed-off-by: ZhengShunQian <zhengsq@rock-chips.com>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch brings read-only support for the On-Chip OTP cells
in the i.MX23 and i.MX28 processor. The driver implements the
new NVMEM provider API.
Signed-off-by: Stefan Wahren <stefan.wahren@i2se.com>
Reviewed-by: Marek Vasut <marex@denx.de>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This driver handles the i.MX On-Chip OTP Controller found in
i.MX6Q/D, i.MX6S/DL, i.MX6SL, and i.MX6SX SoCs. Currently it
just returns the values stored in the shadow registers.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The patch adds support for the On Chip One Time Programmable Peripheral
(OCOTP) on the Vybrid platform.
Signed-off-by: Sanchayan Maity <maitysanchayan@gmail.com>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that we have the nvmem framework, we can consolidate the common
driver code. Move the driver to the framework, and hopefully, it will
fix the sysfs file creation race.
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
[srinivas.kandagatla: Moved to regmap based EEPROM framework]
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Tested-by: Philipp Zabel <p.zabel@pengutronix.de>
Tested-by: Rajendra Nayak <rnayak@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch adds QFPROM support driver which is used by other drivers
like thermal sensor and cpufreq.
On MSM parts there are some efuses (called qfprom) these fuses store
things like calibration data, speed bins.. etc. Drivers like cpufreq,
thermal sensors would read out this data for configuring the driver.
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Tested-by: Philipp Zabel <p.zabel@pengutronix.de>
Tested-by: Rajendra Nayak <rnayak@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch adds just providers part of the framework just to enable easy
review.
Up until now, NVMEM drivers like eeprom were stored in drivers/misc,
where they all had to duplicate pretty much the same code to register
a sysfs file, allow in-kernel users to access the content of the devices
they were driving, etc.
This was also a problem as far as other in-kernel users were involved,
since the solutions used were pretty much different from on driver to
another, there was a rather big abstraction leak.
This introduction of this framework aims at solving this. It also
introduces DT representation for consumer devices to go get the data
they require (MAC Addresses, SoC/Revision ID, part numbers, and so on)
from the nvmems.
Having regmap interface to this framework would give much better
abstraction for nvmems on different buses.
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
[Maxime Ripard: intial version of eeprom framework]
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Tested-by: Stefan Wahren <stefan.wahren@i2se.com>
Tested-by: Philipp Zabel <p.zabel@pengutronix.de>
Tested-by: Rajendra Nayak <rnayak@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>