Commit Graph

1077900 Commits

Author SHA1 Message Date
Marco Elver 737b6a10ac kfence: allow use of a deferrable timer
Allow the use of a deferrable timer, which does not force CPU wake-ups
when the system is idle.  A consequence is that the sample interval
becomes very unpredictable, to the point that it is not guaranteed that
the KFENCE KUnit test still passes.

Nevertheless, on power-constrained systems this may be preferable, so
let's give the user the option should they accept the above trade-off.

Link: https://lkml.kernel.org/r/20220308141415.3168078-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Peng Liu 3cb1c9620e kfence: test: try to avoid test_gfpzero trigger rcu_stall
When CONFIG_KFENCE_NUM_OBJECTS is set to a big number, kfence
kunit-test-case test_gfpzero will eat up nearly all the CPU's resources
and rcu_stall is reported as the following log which is cut from a
physical server.

  rcu: INFO: rcu_sched self-detected stall on CPU
  rcu: 	68-....: (14422 ticks this GP) idle=6ce/1/0x4000000000000002
  softirq=592/592 fqs=7500 (t=15004 jiffies g=10677 q=20019)
  Task dump for CPU 68:
  task:kunit_try_catch state:R  running task
  stack:    0 pid: 9728 ppid:     2 flags:0x0000020a
  Call trace:
   dump_backtrace+0x0/0x1e4
   show_stack+0x20/0x2c
   sched_show_task+0x148/0x170
   ...
   rcu_sched_clock_irq+0x70/0x180
   update_process_times+0x68/0xb0
   tick_sched_handle+0x38/0x74
   ...
   gic_handle_irq+0x78/0x2c0
   el1_irq+0xb8/0x140
   kfree+0xd8/0x53c
   test_alloc+0x264/0x310 [kfence_test]
   test_gfpzero+0xf4/0x840 [kfence_test]
   kunit_try_run_case+0x48/0x20c
   kunit_generic_run_threadfn_adapter+0x28/0x34
   kthread+0x108/0x13c
   ret_from_fork+0x10/0x18

To avoid rcu_stall and unacceptable latency, a schedule point is
added to test_gfpzero.

Link: https://lkml.kernel.org/r/20220309083753.1561921-4-liupeng256@huawei.com
Signed-off-by: Peng Liu <liupeng256@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Wang Kefeng <wangkefeng.wang@huawei.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: David Gow <davidgow@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Peng Liu bdd015f7b7 kunit: make kunit_test_timeout compatible with comment
In function kunit_test_timeout, it is declared "300 * MSEC_PER_SEC"
represent 5min.  However, it is wrong when dealing with arm64 whose
default HZ = 250, or some other situations.  Use msecs_to_jiffies to fix
this, and kunit_test_timeout will work as desired.

Link: https://lkml.kernel.org/r/20220309083753.1561921-3-liupeng256@huawei.com
Fixes: 5f3e062089 ("kunit: test: add support for test abort")
Signed-off-by: Peng Liu <liupeng256@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Daniel Latypov <dlatypov@google.com>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Tested-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Wang Kefeng <wangkefeng.wang@huawei.com>
Cc: David Gow <davidgow@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Peng Liu adf5054570 kunit: fix UAF when run kfence test case test_gfpzero
Patch series "kunit: fix a UAF bug and do some optimization", v2.

This series is to fix UAF (use after free) when running kfence test case
test_gfpzero, which is time costly.  This UAF bug can be easily triggered
by setting CONFIG_KFENCE_NUM_OBJECTS = 65535.  Furthermore, some
optimization for kunit tests has been done.

This patch (of 3):

Kunit will create a new thread to run an actual test case, and the main
process will wait for the completion of the actual test thread until
overtime.  The variable "struct kunit test" has local property in function
kunit_try_catch_run, and will be used in the test case thread.  Task
kunit_try_catch_run will free "struct kunit test" when kunit runs
overtime, but the actual test case is still run and an UAF bug will be
triggered.

The above problem has been both observed in a physical machine and qemu
platform when running kfence kunit tests.  The problem can be triggered
when setting CONFIG_KFENCE_NUM_OBJECTS = 65535.  Under this setting, the
test case test_gfpzero will cost hours and kunit will run to overtime.
The follows show the panic log.

  BUG: unable to handle page fault for address: ffffffff82d882e9

  Call Trace:
   kunit_log_append+0x58/0xd0
   ...
   test_alloc.constprop.0.cold+0x6b/0x8a [kfence_test]
   test_gfpzero.cold+0x61/0x8ab [kfence_test]
   kunit_try_run_case+0x4c/0x70
   kunit_generic_run_threadfn_adapter+0x11/0x20
   kthread+0x166/0x190
   ret_from_fork+0x22/0x30
  Kernel panic - not syncing: Fatal exception
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
  Ubuntu-1.8.2-1ubuntu1 04/01/2014

To solve this problem, the test case thread should be stopped when the
kunit frame runs overtime.  The stop signal will send in function
kunit_try_catch_run, and test_gfpzero will handle it.

Link: https://lkml.kernel.org/r/20220309083753.1561921-1-liupeng256@huawei.com
Link: https://lkml.kernel.org/r/20220309083753.1561921-2-liupeng256@huawei.com
Signed-off-by: Peng Liu <liupeng256@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Tested-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Wang Kefeng <wangkefeng.wang@huawei.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: David Gow <davidgow@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Tianchen Ding b33f778bba kfence: alloc kfence_pool after system startup
Allow enabling KFENCE after system startup by allocating its pool via the
page allocator. This provides the flexibility to enable KFENCE even if it
wasn't enabled at boot time.

Link: https://lkml.kernel.org/r/20220307074516.6920-3-dtcccc@linux.alibaba.com
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Peng Liu <liupeng256@huawei.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Tianchen Ding 698361bca2 kfence: allow re-enabling KFENCE after system startup
Patch series "provide the flexibility to enable KFENCE", v3.

If CONFIG_CONTIG_ALLOC is not supported, we fallback to try
alloc_pages_exact().  Allocating pages in this way has limits about
MAX_ORDER (default 11).  So we will not support allocating kfence pool
after system startup with a large KFENCE_NUM_OBJECTS.

When handling failures in kfence_init_pool_late(), we pair
free_pages_exact() to alloc_pages_exact() for compatibility consideration,
though it actually does the same as free_contig_range().

This patch (of 2):

If once KFENCE is disabled by:
echo 0 > /sys/module/kfence/parameters/sample_interval
KFENCE could never be re-enabled until next rebooting.

Allow re-enabling it by writing a positive num to sample_interval.

Link: https://lkml.kernel.org/r/20220307074516.6920-1-dtcccc@linux.alibaba.com
Link: https://lkml.kernel.org/r/20220307074516.6920-2-dtcccc@linux.alibaba.com
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
tangmeng 56eb8e9416 mm/kfence: remove unnecessary CONFIG_KFENCE option
In mm/Makefile has:

  obj-$(CONFIG_KFENCE) += kfence/

So that we don't need 'obj-$(CONFIG_KFENCE) :=' in mm/kfence/Makefile,
delete it from mm/kfence/Makefile.

Link: https://lkml.kernel.org/r/20220221065525.21344-1-tangmeng@uniontech.com
Signed-off-by: tangmeng <tangmeng@uniontech.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Dr. David Alan Gilbert 597da28e1a mm/page_table_check.c: use strtobool for param parsing
Use strtobool rather than open coding "on" and "off" parsing.

Link: https://lkml.kernel.org/r/20220227181038.126926-1-linux@treblig.org
Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Miaohe Lin 7a3f2263d7 mm/highmem: remove unnecessary done label
Remove unnecessary done label to simplify the code.

Link: https://lkml.kernel.org/r/20220126092542.64659-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Ira Weiny d7ca25c53e highmem: document kunmap_local()
Some users of kmap() add an offset to the kmap() address to be used
during the mapping.

When converting to kmap_local_page() the base address does not need to
be stored because any address within the page can be used in
kunmap_local().  However, this was not clear from the documentation and
cause some questions.[1]

Document that any address in the page can be used in kunmap_local() to
clarify this for future users.

[1] https://lore.kernel.org/lkml/20211213154543.GM3538886@iweiny-DESK2.sc.intel.com/

[ira.weiny@intel.com: updates per Christoph]
  Link: https://lkml.kernel.org/r/20220124182138.816693-1-ira.weiny@intel.com

Link: https://lkml.kernel.org/r/20220124013045.806718-1-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Vlastimil Babka be4893d92b mm/early_ioremap: declare early_memremap_pgprot_adjust()
The mm/ directory can almost fully be built with W=1, which would help
in local development.  One remaining issue is missing prototype for
early_memremap_pgprot_adjust().

Thus add a declaration for this function.  Use mm/internal.h instead of
asm/early_ioremap.h to avoid missing type definitions and unnecessary
exposure.

Link: https://lkml.kernel.org/r/20220314165724.16071-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Randy Dunlap 05fe3c103f mm/usercopy: return 1 from hardened_usercopy __setup() handler
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment).  This prevents:

  Unknown kernel command line parameters \
  "BOOT_IMAGE=/boot/bzImage-517rc5 hardened_usercopy=off", will be \
  passed to user space.

  Run /sbin/init as init process
   with arguments:
     /sbin/init
   with environment:
     HOME=/
     TERM=linux
     BOOT_IMAGE=/boot/bzImage-517rc5
     hardened_usercopy=off
or
     hardened_usercopy=on
but when "hardened_usercopy=foo" is used, there is no Unknown kernel
command line parameter.

Return 1 to indicate that the boot option has been handled.
Print a warning if strtobool() returns an error on the option string,
but do not mark this as in unknown command line option and do not cause
init's environment to be polluted with this string.

Link: https://lkml.kernel.org/r/20220222034249.14795-1-rdunlap@infradead.org
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Fixes: b5cb15d937 ("usercopy: Allow boot cmdline disabling of hardening")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Acked-by: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Christophe Leroy ad7489d526 mm: uninline copy_overflow()
While building a small config with CONFIG_CC_OPTIMISE_FOR_SIZE, I ended
up with more than 50 times the following function in vmlinux because GCC
doesn't honor the 'inline' keyword:

	c00243bc <copy_overflow>:
	c00243bc:	94 21 ff f0 	stwu    r1,-16(r1)
	c00243c0:	7c 85 23 78 	mr      r5,r4
	c00243c4:	7c 64 1b 78 	mr      r4,r3
	c00243c8:	3c 60 c0 62 	lis     r3,-16286
	c00243cc:	7c 08 02 a6 	mflr    r0
	c00243d0:	38 63 5e e5 	addi    r3,r3,24293
	c00243d4:	90 01 00 14 	stw     r0,20(r1)
	c00243d8:	4b ff 82 45 	bl      c001c61c <__warn_printk>
	c00243dc:	0f e0 00 00 	twui    r0,0
	c00243e0:	80 01 00 14 	lwz     r0,20(r1)
	c00243e4:	38 21 00 10 	addi    r1,r1,16
	c00243e8:	7c 08 03 a6 	mtlr    r0
	c00243ec:	4e 80 00 20 	blr

With -Winline, GCC tells:

	/include/linux/thread_info.h:212:20: warning: inlining failed in call to 'copy_overflow': call is unlikely and code size would grow [-Winline]

copy_overflow() is a non conditional warning called by check_copy_size()
on an error path.

check_copy_size() have to remain inlined in order to benefit from
constant folding, but copy_overflow() is not worth inlining.

Uninline the warning when CONFIG_BUG is selected.

When CONFIG_BUG is not selected, WARN() does nothing so skip it.

This reduces the size of vmlinux by almost 4kbytes.

Link: https://lkml.kernel.org/r/e1723b9cfa924bcefcd41f69d0025b38e4c9364e.1644819985.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Christophe Leroy 6eada26ffc mm: remove usercopy_warn()
Users of usercopy_warn() were removed by commit 53944f171a ("mm:
remove HARDENED_USERCOPY_FALLBACK")

Remove it.

Link: https://lkml.kernel.org/r/5f26643fc70b05f8455b60b99c30c17d635fa640.1644231910.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Stephen Kitt <steve@sk2.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Maciej S. Szmigiero cb325ddde5 mm/zswap.c: allow handling just same-value filled pages
Zswap has an ability to efficiently store same-value filled pages, which
can be turned on and off using the "same_filled_pages_enabled"
parameter.

However, there is currently no way to enable just this (lightweight)
functionality, while not making use of the whole compressed page storage
machinery.

Add a "non_same_filled_pages_enabled" parameter which allows disabling
handling of pages that aren't same-value filled.  This way zswap can be
run in such lightweight same-value filled pages only mode.

Link: https://lkml.kernel.org/r/7dbafa963e8bab43608189abbe2067f4b9287831.1641247624.git.maciej.szmigiero@oracle.com
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Hugh Dickins bd55b0c2d6 mm/thp: ClearPageDoubleMap in first page_add_file_rmap()
PageDoubleMap is maintained differently for anon and for shmem+file: the
shmem+file one was never cleared, because a safe place to do so could
not be found; so it would blight future use of the cached hugepage until
evicted.

See https://lore.kernel.org/lkml/1571938066-29031-1-git-send-email-yang.shi@linux.alibaba.com/

But page_add_file_rmap() does provide a safe place to do so (though later
than one might wish): allowing testing to return to an initial state
without a damaging drop_caches.

Link: https://lkml.kernel.org/r/61c5cf99-a962-9a25-597a-53ab1bd8fbc0@google.com
Fixes: 9a73f61bdb ("thp, mlock: do not mlock PTE-mapped file huge pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
Oscar Salvador 734c15700c mm: only re-generate demotion targets when a numa node changes its N_CPU state
Abhishek reported that after patch [1], hotplug operations are taking
roughly double the expected time.  [2]

The reason behind is that the CPU callbacks that
migrate_on_reclaim_init() sets always call set_migration_target_nodes()
whenever a CPU is brought up/down.

But we only care about numa nodes going from having cpus to become
cpuless, and vice versa, as that influences the demotion_target order.

We do already have two CPU callbacks (vmstat_cpu_online() and
vmstat_cpu_dead()) that check exactly that, so get rid of the CPU
callbacks in migrate_on_reclaim_init() and only call
set_migration_target_nodes() from vmstat_cpu_{dead,online}() whenever a
numa node change its N_CPU state.

[1] https://lore.kernel.org/linux-mm/20210721063926.3024591-2-ying.huang@intel.com/
[2] https://lore.kernel.org/linux-mm/eb438ddd-2919-73d4-bd9f-b7eecdd9577a@linux.vnet.ibm.com/

[osalvador@suse.de: add feedback from Huang Ying]
  Link: https://lkml.kernel.org/r/20220314150945.12694-1-osalvador@suse.de

Link: https://lkml.kernel.org/r/20220310120749.23077-1-osalvador@suse.de
Fixes: 884a6e5d1f ("mm/migrate: update node demotion order on hotplug events")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reported-by: Abhishek Goel <huntbag@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Abhishek Goel <huntbag@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:11 -07:00
David Hildenbrand 2aa065f7af drivers/base/memory: clarify adding and removing of memory blocks
Let's make it clearer at which places we actually add and remove memory
blocks -- streamlining the terminology -- and highlight which memory block
start out online and which start out as offline.

 * rename add_memory_block -> add_boot_memory_block
 * rename init_memory_block -> add_memory_block
 * rename unregister_memory -> remove_memory_block
 * rename register_memory -> __add_memory_block
 * add add_hotplug_memory_block
 * mark add_boot_memory_block with __init (suggested by Oscar)

__add_memory_block() is  a pure helper for add_memory_block(), remove
the somewhat obvious comment.

Link: https://lkml.kernel.org/r/20220221154531.11382-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
David Hildenbrand 395f6081ba drivers/base/memory: determine and store zone for single-zone memory blocks
test_pages_in_a_zone() is just another nasty PFN walker that can easily
stumble over ZONE_DEVICE memory ranges falling into the same memory block
as ordinary system RAM: the memmap of parts of these ranges might possibly
be uninitialized.  In fact, we observed (on an older kernel) with UBSAN:

  UBSAN: Undefined behaviour in ./include/linux/mm.h:1133:50
  index 7 is out of range for type 'zone [5]'
  CPU: 121 PID: 35603 Comm: read_all Kdump: loaded Tainted: [...]
  Hardware name: Dell Inc. PowerEdge R7425/08V001, BIOS 1.12.2 11/15/2019
  Call Trace:
   dump_stack+0x9a/0xf0
   ubsan_epilogue+0x9/0x7a
   __ubsan_handle_out_of_bounds+0x13a/0x181
   test_pages_in_a_zone+0x3c4/0x500
   show_valid_zones+0x1fa/0x380
   dev_attr_show+0x43/0xb0
   sysfs_kf_seq_show+0x1c5/0x440
   seq_read+0x49d/0x1190
   vfs_read+0xff/0x300
   ksys_read+0xb8/0x170
   do_syscall_64+0xa5/0x4b0
   entry_SYSCALL_64_after_hwframe+0x6a/0xdf
  RIP: 0033:0x7f01f4439b52

We seem to stumble over a memmap that contains a garbage zone id.  While
we could try inserting pfn_to_online_page() calls, it will just make
memory offlining slower, because we use test_pages_in_a_zone() to make
sure we're offlining pages that all belong to the same zone.

Let's just get rid of this PFN walker and determine the single zone of a
memory block -- if any -- for early memory blocks during boot.  For memory
onlining, we know the single zone already.  Let's avoid any additional
memmap scanning and just rely on the zone information available during
boot.

For memory hot(un)plug, we only really care about memory blocks that:
* span a single zone (and, thereby, a single node)
* are completely System RAM (IOW, no holes, no ZONE_DEVICE)
If one of these conditions is not met, we reject memory offlining.
Hotplugged memory blocks (starting out offline), always meet both
conditions.

There are three scenarios to handle:

(1) Memory hot(un)plug

A memory block with zone == NULL cannot be offlined, corresponding to
our previous test_pages_in_a_zone() check.

After successful memory onlining/offlining, we simply set the zone
accordingly.
* Memory onlining: set the zone we just used for onlining
* Memory offlining: set zone = NULL

So a hotplugged memory block starts with zone = NULL. Once memory
onlining is done, we set the proper zone.

(2) Boot memory with !CONFIG_NUMA

We know that there is just a single pgdat, so we simply scan all zones
of that pgdat for an intersection with our memory block PFN range when
adding the memory block. If more than one zone intersects (e.g., DMA and
DMA32 on x86 for the first memory block) we set zone = NULL and
consequently mimic what test_pages_in_a_zone() used to do.

(3) Boot memory with CONFIG_NUMA

At the point in time we create the memory block devices during boot, we
don't know yet which nodes *actually* span a memory block. While we could
scan all zones of all nodes for intersections, overlapping nodes complicate
the situation and scanning all nodes is possibly expensive. But that
problem has already been solved by the code that sets the node of a memory
block and creates the link in the sysfs --
do_register_memory_block_under_node().

So, we hook into the code that sets the node id for a memory block. If
we already have a different node id set for the memory block, we know
that multiple nodes *actually* have PFNs falling into our memory block:
we set zone = NULL and consequently mimic what test_pages_in_a_zone() used
to do. If there is no node id set, we do the same as (2) for the given
node.

Note that the call order in driver_init() is:
-> memory_dev_init(): create memory block devices
-> node_dev_init(): link memory block devices to the node and set the
		    node id

So in summary, we detect if there is a single zone responsible for this
memory block and we consequently store the zone in that case in the
memory block, updating it during memory onlining/offlining.

Link: https://lkml.kernel.org/r/20220210184359.235565-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Rafael Parra <rparrazo@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rafael Parra <rparrazo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
David Hildenbrand cc6515591b drivers/base/node: rename link_mem_sections() to register_memory_block_under_node()
Patch series "drivers/base/memory: determine and store zone for single-zone memory blocks", v2.

I remember talking to Michal in the past about removing
test_pages_in_a_zone(), which we use for:
* verifying that a memory block we intend to offline is really only managed
  by a single zone. We don't support offlining of memory blocks that are
  managed by multiple zones (e.g., multiple nodes, DMA and DMA32)
* exposing that zone to user space via
  /sys/devices/system/memory/memory*/valid_zones

Now that I identified some more cases where test_pages_in_a_zone() might
go wrong, and we received an UBSAN report (see patch #3), let's get rid of
this PFN walker.

So instead of detecting the zone at runtime with test_pages_in_a_zone() by
scanning the memmap, let's determine and remember for each memory block if
it's managed by a single zone.  The stored zone can then be used for the
above two cases, avoiding a manual lookup using test_pages_in_a_zone().

This avoids eventually stumbling over uninitialized memmaps in corner
cases, especially when ZONE_DEVICE ranges partly fall into memory block
(that are responsible for managing System RAM).

Handling memory onlining is easy, because we online to exactly one zone.
Handling boot memory is more tricky, because we want to avoid scanning all
zones of all nodes to detect possible zones that overlap with the physical
memory region of interest.  Fortunately, we already have code that
determines the applicable nodes for a memory block, to create sysfs links
-- we'll hook into that.

Patch #1 is a simple cleanup I had laying around for a longer time.
Patch #2 contains the main logic to remove test_pages_in_a_zone() and
further details.

[1] https://lkml.kernel.org/r/20220128144540.153902-1-david@redhat.com
[2] https://lkml.kernel.org/r/20220203105212.30385-1-david@redhat.com

This patch (of 2):

Let's adjust the stale terminology, making it match
unregister_memory_block_under_nodes() and
do_register_memory_block_under_node().  We're dealing with memory block
devices, which span 1..X memory sections.

Link: https://lkml.kernel.org/r/20220210184359.235565-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220210184359.235565-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rafael Parra <rparrazo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Miaohe Lin 36ba30bc1d mm/memory_hotplug: fix misplaced comment in offline_pages
It's misplaced since commit 7960509329 ("mm, memory_hotplug: print
reason for the offlining failure").  Move it to the right place.

Link: https://lkml.kernel.org/r/20220207133643.23427-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Miaohe Lin b27340a5bd mm/memory_hotplug: clean up try_offline_node
We can use helper macro node_spanned_pages to check whether node spans
pages.  And we can change the parameter of check_cpu_on_node to nid as
that's what it really cares.  Thus we can further get rid of the local
variable pgdat and improve the readability a bit.

Link: https://lkml.kernel.org/r/20220207133643.23427-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Miaohe Lin d6aad2016a mm/memory_hotplug: avoid calling zone_intersects() for ZONE_NORMAL
If zid reaches ZONE_NORMAL, the caller will always get the NORMAL zone no
matter what zone_intersects() returns.  So we can save some possible cpu
cycles by avoid calling zone_intersects() for ZONE_NORMAL.

Link: https://lkml.kernel.org/r/20220207133643.23427-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Miaohe Lin 2b6bf15f46 mm/memory_hotplug: remove obsolete comment of __add_pages
Patch series "A few cleanup patches around memory_hotplug".

This series contains a few patches to fix obsolete and misplaced comments,
clean up the try_offline_node function and so on.

This patch (of 4):

Since commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online"), there is no need to pass in the zone.

[akpm@linux-foundation.org: remove the comment altogether, per David]

Link: https://lkml.kernel.org/r/20220207133643.23427-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220207133643.23427-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
David Hildenbrand 2848a28b0a drivers/base/node: consolidate node device subsystem initialization in node_dev_init()
...  and call node_dev_init() after memory_dev_init() from driver_init(),
so before any of the existing arch/subsys calls.  All online nodes should
be known at that point: early during boot, arch code determines node and
zone ranges and sets the relevant nodes online; usually this happens in
setup_arch().

This is in line with memory_dev_init(), which initializes the memory
device subsystem and creates all memory block devices.

Similar to memory_dev_init(), panic() if anything goes wrong, we don't
want to continue with such basic initialization errors.

The important part is that node_dev_init() gets called after
memory_dev_init() and after cpu_dev_init(), but before any of the relevant
archs call register_cpu() to register the new cpu device under the node
device.  The latter should be the case for the current users of
topology_init().

Link: https://lkml.kernel.org/r/20220203105212.30385-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Anatoly Pugachev <matorola@gmail.com> (sparc64)
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
David Hildenbrand 7ea0d2d79d drivers/base/memory: add memory block to memory group after registration succeeded
If register_memory() fails, we freed the memory block but already added
the memory block to the group list, not good.  Let's defer adding the
block to the memory group to after registering the memory block device.

We do handle it properly during unregister_memory(), but that's not
called when the registration fails.

Link: https://lkml.kernel.org/r/20220128144540.153902-1-david@redhat.com
Fixes: 028fc57a1c ("drivers/base/memory: introduce "memory groups" to logically group memory blocks")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Wei Yang 8c9bb39816 memcg: do not tweak node in alloc_mem_cgroup_per_node_info
alloc_mem_cgroup_per_node_info is allocated for each possible node and
this used to be a problem because !node_online nodes didn't have
appropriate data structure allocated.  This has changed by "mm: handle
uninitialized numa nodes gracefully" so we can drop the special casing
here.

Link: https://lkml.kernel.org/r/20220127085305.20890-7-mhocko@kernel.org
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Rafael Aquini <raquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Michal Hocko 7c30daac20 mm: make free_area_init_node aware of memory less nodes
free_area_init_node is also called from memory less node initialization
path (free_area_init_memoryless_node).  It doesn't really make much sense
to display the physical memory range for those nodes: Initmem setup node
XX [mem 0x0000000000000000-0x0000000000000000]

Instead be explicit that the node is memoryless: Initmem setup node XX as
memoryless

Link: https://lkml.kernel.org/r/20220127085305.20890-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Michal Hocko 70b5b46a75 mm, memory_hotplug: reorganize new pgdat initialization
When a !node_online node is brought up it needs a hotplug specific
initialization because the node could be either uninitialized yet or it
could have been recycled after previous hotremove.  hotadd_init_pgdat is
responsible for that.

Internal pgdat state is initialized at two places currently
	- hotadd_init_pgdat
	- free_area_init_core_hotplug

There is no real clear cut what should go where but this patch's chosen to
move the whole internal state initialization into
free_area_init_core_hotplug.  hotadd_init_pgdat is still responsible to
pull all the parts together - most notably to initialize zonelists because
those depend on the overall topology.

This patch doesn't introduce any functional change.

Link: https://lkml.kernel.org/r/20220127085305.20890-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Michal Hocko 390511e147 mm, memory_hotplug: drop arch_free_nodedata
Prior to "mm: handle uninitialized numa nodes gracefully" memory hotplug
used to allocate pgdat when memory has been added to a node
(hotadd_init_pgdat) arch_free_nodedata has been only used in the failure
path because once the pgdat is exported (to be visible by NODA_DATA(nid))
it cannot really be freed because there is no synchronization available
for that.

pgdat is allocated for each possible nodes now so the memory hotplug
doesn't need to do the ever use arch_free_nodedata so drop it.

This patch doesn't introduce any functional change.

Link: https://lkml.kernel.org/r/20220127085305.20890-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Michal Hocko 09f49dca57 mm: handle uninitialized numa nodes gracefully
We have had several reports [1][2][3] that page allocator blows up when an
allocation from a possible node is requested.  The underlying reason is
that NODE_DATA for the specific node is not allocated.

NUMA specific initialization is arch specific and it can vary a lot.  E.g.
x86 tries to initialize all nodes that have some cpu affinity (see
init_cpu_to_node) but this can be insufficient because the node might be
cpuless for example.

One way to address this problem would be to check for !node_online nodes
when trying to get a zonelist and silently fall back to another node.
That is unfortunately adding a branch into allocator hot path and it
doesn't handle any other potential NODE_DATA users.

This patch takes a different approach (following a lead of [3]) and it pre
allocates pgdat for all possible nodes in an arch indipendent code -
free_area_init.  All uninitialized nodes are treated as memoryless nodes.
node_state of the node is not changed because that would lead to other
side effects - e.g.  sysfs representation of such a node and from past
discussions [4] it is known that some tools might have problems digesting
that.

Newly allocated pgdat only gets a minimal initialization and the rest of
the work is expected to be done by the memory hotplug - hotadd_new_pgdat
(renamed to hotadd_init_pgdat).

generic_alloc_nodedata is changed to use the memblock allocator because
neither page nor slab allocators are available at the stage when all
pgdats are allocated.  Hotplug doesn't allocate pgdat anymore so we can
use the early boot allocator.  The only arch specific implementation is
ia64 and that is changed to use the early allocator as well.

[1] http://lkml.kernel.org/r/20211101201312.11589-1-amakhalov@vmware.com
[2] http://lkml.kernel.org/r/20211207224013.880775-1-npache@redhat.com
[3] http://lkml.kernel.org/r/20190114082416.30939-1-mhocko@kernel.org
[4] http://lkml.kernel.org/r/20200428093836.27190-1-srikar@linux.vnet.ibm.com

[akpm@linux-foundation.org: replace comment, per Mike]

Link: https://lkml.kernel.org/r/Yfe7RBeLCijnWBON@dhcp22.suse.cz
Reported-by: Alexey Makhalov <amakhalov@vmware.com>
Tested-by: Alexey Makhalov <amakhalov@vmware.com>
Reported-by: Nico Pache <npache@redhat.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Tested-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Michal Hocko e930d99971 mm, memory_hotplug: make arch_alloc_nodedata independent on CONFIG_MEMORY_HOTPLUG
Patch series "mm, memory_hotplug: handle unitialized numa node gracefully".

The core of the fix is patch 2 which also links existing bug reports.  The
high level goal is to have all possible numa nodes have their pgdat
allocated and initialized so

	for_each_possible_node(nid)
		NODE_DATA(nid)

will never return garbage.  This has proven to be problem in several
places when an offline numa node is used for an allocation just to realize
that node_data and therefore allocation fallback zonelists are not
initialized and such an allocation request blows up.

There were attempts to address that by checking node_online in several
places including the page allocator.  This patchset approaches the problem
from a different perspective and instead of special casing, which just
adds a runtime overhead, it allocates pglist_data for each possible node.
This can add some memory overhead for platforms with high number of
possible nodes if they do not contain any memory.  This should be a rather
rare configuration though.

How to test this? David has provided and excellent howto:
http://lkml.kernel.org/r/6e5ebc19-890c-b6dd-1924-9f25c441010d@redhat.com

Patches 1 and 3-6 are mostly cleanups.  The patchset has been reviewed by
Rafael (thanks!) and the core fix tested by Rafael and Alexey (thanks to
both).  David has tested as per instructions above and hasn't found any
fallouts in the memory hotplug scenarios.

This patch (of 6):

This is a preparatory patch and it doesn't introduce any functional
change.  It merely pulls out arch_alloc_nodedata (and co) outside of
CONFIG_MEMORY_HOTPLUG because the following patch will need to call this
from the generic MM code.

Link: https://lkml.kernel.org/r/20220127085305.20890-1-mhocko@kernel.org
Link: https://lkml.kernel.org/r/20220127085305.20890-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael Aquini <raquini@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Alexey Makhalov <amakhalov@vmware.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Nico Pache <npache@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Charan Teja Kalla 08095d6310 mm: madvise: skip unmapped vma holes passed to process_madvise
The process_madvise() system call is expected to skip holes in vma passed
through 'struct iovec' vector list.  But do_madvise, which
process_madvise() calls for each vma, returns ENOMEM in case of unmapped
holes, despite the VMA is processed.

Thus process_madvise() should treat ENOMEM as expected and consider the
VMA passed to as processed and continue processing other vma's in the
vector list.  Returning -ENOMEM to user, despite the VMA is processed,
will be unable to figure out where to start the next madvise.

Link: https://lkml.kernel.org/r/4f091776142f2ebf7b94018146de72318474e686.1647008754.git.quic_charante@quicinc.com
Fixes: ecb8ac8b1f14("mm/madvise: introduce process_madvise() syscall: an external memory hinting API")
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Charan Teja Kalla 5bd009c7c9 mm: madvise: return correct bytes advised with process_madvise
Patch series "mm: madvise: return correct bytes processed with
process_madvise", v2.  With the process_madvise(), always choose to return
non zero processed bytes over an error.  This can help the user to know on
which VMA, passed in the 'struct iovec' vector list, is failed to advise
thus can take the decission of retrying/skipping on that VMA.

This patch (of 2):

The process_madvise() system call returns error even after processing some
VMA's passed in the 'struct iovec' vector list which leaves the user
confused to know where to restart the advise next.  It is also against
this syscall man page[1] documentation where it mentions that "return
value may be less than the total number of requested bytes, if an error
occurred after some iovec elements were already processed.".

Consider a user passed 10 VMA's in the 'struct iovec' vector list of which
9 are processed but one.  Then it just returns the error caused on that
failed VMA despite the first 9 VMA's processed, leaving the user confused
about on which VMA it is failed.  Returning the number of bytes processed
here can help the user to know which VMA it is failed on and thus can
retry/skip the advise on that VMA.

[1]https://man7.org/linux/man-pages/man2/process_madvise.2.html.

Link: https://lkml.kernel.org/r/cover.1647008754.git.quic_charante@quicinc.com
Link: https://lkml.kernel.org/r/125b61a0edcee5c2db8658aed9d06a43a19ccafc.1647008754.git.quic_charante@quicinc.com
Fixes: ecb8ac8b1f14("mm/madvise: introduce process_madvise() syscall: an external memory hinting API")
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:10 -07:00
Miaohe Lin 531037a065 mm/madvise: use vma_lookup() instead of find_vma()
Using vma_lookup() verifies the start address is contained in the found
vma.  This results in easier to read the code.

Link: https://lkml.kernel.org/r/20220311082731.63513-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Matthew Wilcox (Oracle) da358d5c0e mm/hwpoison: check the subpage, not the head page
Hardware poison is tracked on a per-page basis, not on the head page.

Link: https://lkml.kernel.org/r/20220130013042.1906881-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Miaohe Lin 1bad2e5ca0 mm/ksm: use helper macro __ATTR_RW
Use helper macro __ATTR_RW to define KSM_ATTR to make code more clear.
Minor readability improvement.

Link: https://lkml.kernel.org/r/20220221115809.26381-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Yang Yang 4d45c3aff5 mm/vmstat: add event for ksm swapping in copy
When faults in from swap what used to be a KSM page and that page had been
swapped in before, system has to make a copy, and leaves remerging the
pages to a later pass of ksmd.

That is not good for performace, we'd better to reduce this kind of copy.
There are some ways to reduce it, for example lessen swappiness or
madvise(, , MADV_MERGEABLE) range.  So add this event to support doing
this tuning.  Just like this patch: "mm, THP, swap: add THP swapping out
fallback counting".

Link: https://lkml.kernel.org/r/20220113023839.758845-1-yang.yang29@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Cc: Hugh Dickins <hughd@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Saravanan D <saravanand@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Johannes Weiner d8c47cc7bf mm: page_io: fix psi memory pressure error on cold swapins
Once upon a time, all swapins counted toward memory pressure[1].  Then
Joonsoo introduced workingset detection for anonymous pages and we gained
the ability to distinguish hot from cold swapins[2][3].  But we failed to
update swap_readpage() accordingly, and now we account partial memory
pressure in the swapin path of cold memory.

Not for all situations - which adds more inconsistency: paths using the
conventional submit_bio() and lock_page() route will not see much pressure
- unless storage itself is heavily congested and the bio submissions
stall.  ZRAM and ZSWAP do most of the work directly from swap_readpage()
and will see all swapins reflected as pressure.

IOW, a workload doing cold swapins could see little to no pressure
reported with on-disk swap, but potentially high pressure with a zram or
zswap backend.  That confuses any psi-based health monitoring, load
shedding, proactive reclaim, or userspace OOM killing schemes that might
be in place for the workload.

Restore consistency by making all swapin stall accounting conditional on
the page actually being part of the workingset.

[1] commit 937790699b ("mm/page_io.c: annotate refault stalls from swap_readpage")
[2] commit aae466b005 ("mm/swap: implement workingset detection for anonymous LRU")
[3] commit cad8320b4b ("mm/swap: don't SetPageWorkingset unconditionally during swapin")

Link: https://lkml.kernel.org/r/20220214214921.419687-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: CGEL <cgel.zte@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Huang Ying a1a3a2fc30 memory tiering: skip to scan fast memory
If the NUMA balancing isn't used to optimize the page placement among
sockets but only among memory types, the hot pages in the fast memory
node couldn't be migrated (promoted) to anywhere.  So it's unnecessary
to scan the pages in the fast memory node via changing their PTE/PMD
mapping to be PROT_NONE.  So that the page faults could be avoided too.

In the test, if only the memory tiering NUMA balancing mode is enabled,
the number of the NUMA balancing hint faults for the DRAM node is
reduced to almost 0 with the patch.  While the benchmark score doesn't
change visibly.

Link: https://lkml.kernel.org/r/20220221084529.1052339-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Huang Ying c574bbe917 NUMA balancing: optimize page placement for memory tiering system
With the advent of various new memory types, some machines will have
multiple types of memory, e.g.  DRAM and PMEM (persistent memory).  The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.

In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally.  So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.

In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node.  The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote.  So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.

The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark.  This
is a reasonable policy if there's only one memory type.  But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types.  Details are as follows.

It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes.  Otherwise, it's
unnecessary to use the slow memory at all.  So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node.  To solve the issue, we have 2 choices as follows,

a. Ignore the free pages watermark checking when promoting hot pages
   from the slow memory node to the fast memory node.  This will
   create some memory pressure in the fast memory node, thus trigger
   the memory reclaiming.  So that, the cold pages in the fast memory
   node will be demoted to the slow memory node.

b. Define a new watermark called wmark_promo which is higher than
   wmark_high, and have kswapd reclaiming pages until free pages reach
   such watermark.  The scenario is as follows: when we want to promote
   hot-pages from a slow memory to a fast memory, but fast memory's free
   pages would go lower than high watermark with such promotion, we wake
   up kswapd with wmark_promo watermark in order to demote cold pages and
   free us up some space.  So, next time we want to promote hot-pages we
   might have a chance of doing so.

The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g.  the direct reclaiming may be triggered.

The choice "b" works much better at this aspect.  If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation.  So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added.  Which is larger than the
high watermark and can be controlled via watermark_scale_factor.

In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types.  So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.

The sysctl is converted from a Boolean value to a bits field.  The
definition of the flags is,

- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING

We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model.  The test results shows that the pmbench score can
improve up to 95.9%.

Thanks Andrew Morton to help fix the document format error.

Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Huang Ying e39bb6be9f NUMA Balancing: add page promotion counter
Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13

With the advent of various new memory types, some machines will have
multiple types of memory, e.g.  DRAM and PMEM (persistent memory).  The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are different.

After commit c221c0b030 ("device-dax: "Hotplug" persistent memory for
use like normal RAM"), the PMEM could be used as the cost-effective
volatile memory in separate NUMA nodes.  In a typical memory tiering
system, there are CPUs, DRAM and PMEM in each physical NUMA node.  The
CPUs and the DRAM will be put in one logical node, while the PMEM will
be put in another (faked) logical node.

To optimize the system overall performance, the hot pages should be
placed in DRAM node.  To do that, we need to identify the hot pages in
the PMEM node and migrate them to DRAM node via NUMA migration.

In the original NUMA balancing, there are already a set of existing
mechanisms to identify the pages recently accessed by the CPUs in a node
and migrate the pages to the node.  So we can reuse these mechanisms to
build the mechanisms to optimize the page placement in the memory
tiering system.  This is implemented in this patchset.

At the other hand, the cold pages should be placed in PMEM node.  So, we
also need to identify the cold pages in the DRAM node and migrate them
to PMEM node.

In commit 26aa2d199d ("mm/migrate: demote pages during reclaim"), a
mechanism to demote the cold DRAM pages to PMEM node under memory
pressure is implemented.  Based on that, the cold DRAM pages can be
demoted to PMEM node proactively to free some memory space on DRAM node
to accommodate the promoted hot PMEM pages.  This is implemented in this
patchset too.

We have tested the solution with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent Memory
Model.  The test results shows that the pmbench score can improve up to
95.9%.

This patch (of 3):

In a system with multiple memory types, e.g.  DRAM and PMEM, the CPU
and DRAM in one socket will be put in one NUMA node as before, while
the PMEM will be put in another NUMA node as described in the
description of the commit c221c0b030 ("device-dax: "Hotplug"
persistent memory for use like normal RAM").  So, the NUMA balancing
mechanism will identify all PMEM accesses as remote access and try to
promote the PMEM pages to DRAM.

To distinguish the number of the inter-type promoted pages from that of
the inter-socket migrated pages.  A new vmstat count is added.  The
counter is per-node (count in the target node).  So this can be used to
identify promotion imbalance among the NUMA nodes.

Link: https://lkml.kernel.org/r/20220301085329.3210428-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220221084529.1052339-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220221084529.1052339-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Hari Bathini ee97347fe0 powerpc/fadump: opt out from freeing pages on cma activation failure
With commit a4e92ce8e4 ("powerpc/fadump: Reservationless firmware
assisted dump"), Linux kernel's Contiguous Memory Allocator (CMA) based
reservation was introduced in fadump.  That change was aimed at using CMA
to let applications utilize the memory reserved for fadump while blocking
it from being used for kernel pages.  The assumption was, even if CMA
activation fails for whatever reason, the memory still remains reserved to
avoid it from being used for kernel pages.  But commit 072355c1cf
("mm/cma: expose all pages to the buddy if activation of an area fails")
breaks this assumption as it started exposing all pages to buddy allocator
on CMA activation failure.  It led to warning messages like below while
running crash-utility on vmcore of a kernel having above two commits:

  crash: seek error: kernel virtual address: <from reserved region>

To fix this problem, opt out from exposing pages to buddy allocator on CMA
activation failure for fadump reserved memory.

Link: https://lkml.kernel.org/r/20220117075246.36072-3-hbathini@linux.ibm.com
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Hari Bathini 27d121d0ec mm/cma: provide option to opt out from exposing pages on activation failure
Patch series "powerpc/fadump: handle CMA activation failure appropriately", v3.

Commit 072355c1cf ("mm/cma: expose all pages to the buddy if
activation of an area fails") started exposing all pages to buddy
allocator on CMA activation failure.  But there can be CMA users that
want to handle the reserved memory differently on CMA allocation
failure.

Provide an option to opt out from exposing pages to buddy for such
cases.

Link: https://lkml.kernel.org/r/20220117075246.36072-1-hbathini@linux.ibm.com
Link: https://lkml.kernel.org/r/20220117075246.36072-2-hbathini@linux.ibm.com
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Hugh Dickins 9d84604b84 mm/thp: refix __split_huge_pmd_locked() for migration PMD
Migration entries do not contribute to a page's reference count: move
__split_huge_pmd_locked()'s page_ref_add() into pmd_migration's else
block (along with the page_count() check - a page is quite likely to
have reference count frozen to 0 when a migration entry is found).

This will fix a very rare anonymous memory leak, after a
split_huge_pmd() raced with an anon split_huge_page() or an anon THP
migrate_pages(): since the wrongly raised refcount stopped the page
(perhaps small, perhaps huge, depending on when the race hit) from ever
being freed.

At first I thought there were worse risks, from prematurely unfreezing a
frozen page: but now think that would only affect page cache pages,
which do not come this way (except for anonymous pages in swap cache,
perhaps).

Link: https://lkml.kernel.org/r/84792468-f512-e48f-378c-e34c3641e97@google.com
Fixes: ec0abae6dc ("mm/thp: fix __split_huge_pmd_locked() for migration PMD")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
andrew.yang 356ea38656 mm/migrate: fix race between lock page and clear PG_Isolated
When memory is tight, system may start to compact memory for large
continuous memory demands.  If one process tries to lock a memory page
that is being locked and isolated for compaction, it may wait a long time
or even forever.  This is because compaction will perform non-atomic
PG_Isolated clear while holding page lock, this may overwrite PG_waiters
set by the process that can't obtain the page lock and add itself to the
waiting queue to wait for the lock to be unlocked.

  CPU1                            CPU2
  lock_page(page); (successful)
                                  lock_page(); (failed)
  __ClearPageIsolated(page);      SetPageWaiters(page) (may be overwritten)
  unlock_page(page);

The solution is to not perform non-atomic operation on page flags while
holding page lock.

Link: https://lkml.kernel.org/r/20220315030515.20263-1-andrew.yang@mediatek.com
Signed-off-by: andrew.yang <andrew.yang@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Vlastimil Babka" <vbabka@suse.cz>
Cc: David Howells <dhowells@redhat.com>
Cc: "William Kucharski" <william.kucharski@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Cc: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Huang Ying fc89213a63 mm,migrate: fix establishing demotion target
In commit ac16ec8353 ("mm: migrate: support multiple target nodes
demotion"), after the first demotion target node is found, we will
continue to check the next candidate obtained via find_next_best_node().
This is to find all demotion target nodes with same NUMA distance.  But
one side effect of find_next_best_node() is that the candidate node
returned will be set in "used" parameter, even if the candidate node isn't
passed in the following NUMA distance checking, the candidate node will
not be used as demotion target node for the following nodes.  For example,
for system as follows,

node distances:
node   0   1   2   3
  0:  10  21  17  28
  1:  21  10  28  17
  2:  17  28  10  28
  3:  28  17  28  10

when we establish demotion target node for node 0, in the first round node
2 is added to the demotion target node set.  Then in the second round,
node 3 is checked and failed because distance(0, 3) > distance(0, 2).  But
node 3 is set in "used" nodemask too.  When we establish demotion target
node for node 1, there is no available node.  This is wrong, node 3 should
be set as the demotion target of node 1.

To fix this, if the candidate node is failed to pass the distance
checking, it will be cleared in "used" nodemask.  So that it can be used
for the following node.

The bug can be reproduced and fixed with this patch on a 2 socket server
machine with DRAM and PMEM.

Link: https://lkml.kernel.org/r/20220128055940.1792614-1-ying.huang@intel.com
Fixes: ac16ec8353 ("mm: migrate: support multiple target nodes demotion")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Xunlei Pang <xlpang@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Miaohe Lin bd8b77d653 mm/oom_kill: remove unneeded is_memcg_oom check
oom_cpuset_eligible() is always called when !is_memcg_oom().  Remove this
unnecessary check.

Link: https://lkml.kernel.org/r/20220224115933.20154-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Hugh Dickins 4e0906008c mempolicy: mbind_range() set_policy() after vma_merge()
v2.6.34 commit 9d8cebd4bc ("mm: fix mbind vma merge problem") introduced
vma_merge() to mbind_range(); but unlike madvise, mlock and mprotect, it
put a "continue" to next vma where its precedents go to update flags on
current vma before advancing: that left vma with the wrong setting in the
infamous vma_merge() case 8.

v3.10 commit 1444f92c84 ("mm: merging memory blocks resets mempolicy")
tried to fix that in vma_adjust(), without fully understanding the issue.

v3.11 commit 3964acd0db ("mm: mempolicy: fix mbind_range() &&
vma_adjust() interaction") reverted that, and went about the fix in the
right way, but chose to optimize out an unnecessary mpol_dup() with a
prior mpol_equal() test.  But on tmpfs, that also pessimized out the vital
call to its ->set_policy(), leaving the new mbind unenforced.

The user visible effect was that the pages got allocated on the local
node (happened to be 0), after the mbind() caller had specifically
asked for them to be allocated on node 1.  There was not any page
migration involved in the case reported: the pages simply got allocated
on the wrong node.

Just delete that optimization now (though it could be made conditional on
vma not having a set_policy).  Also remove the "next" variable: it turned
out to be blameless, but also pointless.

Link: https://lkml.kernel.org/r/319e4db9-64ae-4bca-92f0-ade85d342ff@google.com
Fixes: 3964acd0db ("mm: mempolicy: fix mbind_range() && vma_adjust() interaction")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Baolin Wang abd4349ff9 mm: compaction: cleanup the compaction trace events
As Steven suggested [1], we should access the pointers from the trace
event to avoid dereferencing them to the tracepoint function when the
tracepoint is disabled.

[1] https://lkml.org/lkml/2021/11/3/409

Link: https://lkml.kernel.org/r/4cd393b4d57f8f01ed72c001509b28e3a3b1a8c1.1646985115.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00