When the xHCI driver needs to clean up memory (perhaps due to a failed
register restore on resume from S3 or resume from S4), it needs to reset
the number of reserved TRBs on the command ring to zero. Otherwise,
several resume cycles (about 30) with a UAS device attached will
continually increment the number of reserved TRBs, until all command
submissions fail because there isn't enough room on the command ring.
This patch should be backported to kernels as old as 2.6.32,
that contain the commit 913a8a344f
"USB: xhci: Change how xHCI commands are handled."
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
Some more data structures must be freed and counters
reset if an XHCI controller has lost power. The failure
to do so renders some chips inoperative after a certain number
of S4 cycles.
This patch should be backported to kernels as old as 3.2,
that contain the commits c29eea6219
"xhci: Implement HS/FS/LS bandwidth checking." and
commit 839c817ce6
"xhci: Implement HS/FS/LS bandwidth checking."
Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
When xhci_mem_cleanup() is called, we can't be sure if the xHC is
actually halted. We can ask the xHC to halt by writing to the RUN bit
in the command register, but that might timeout due to a HW hang.
If the host controller is still running, we should not write zeroed
values to the event ring dequeue pointers or base tables, the DCBAA
pointers, or the command ring pointers. Eric Fu reports his VIA VL800
host accesses the event ring pointers after a failed register restore on
resume from suspend. The hypothesis is that the host never actually
halted before the register write to change the event ring pointer to
zero.
Remove all writes of zeroed values to pointer registers in
xhci_mem_cleanup(). Instead, make all callers of the function reset the
host controller first, which will reset those registers to zero.
xhci_mem_init() is the only caller that doesn't first halt and reset the
host controller before calling xhci_mem_cleanup().
This should be backported to kernels as old as 2.6.32.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Elric Fu <elricfu1@gmail.com>
Cc: stable@vger.kernel.org
Allocate 2 segments for transfer ring by default, so we can expand the ring
when the enqueue pointer and dequeue pointer are in different segments.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
If room_on_ring() check fails, try to expand the ring and check again.
When expand a ring, use a cached ring or allocate new segments, link
the original ring and the new ring or segments, update the original ring's
segment numbers and the last segment pointer.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
In the past all the rings were allocated with cycle state equal to 1.
Now the driver may expand an existing ring, and the new segments shall be
allocated with the same cycle state as the old one.
This affects ring allocation and cached ring re-initialization.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
Factor out the segments allocation and free part from ring allocation
and free routines since driver may call them directly when try to expand
a ring.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
In the past, the room_on_ring() check was implemented by walking all over
the ring, which is wasteful and complicated.
Count the number of free TRBs instead. The free TRBs number should be
updated when enqueue/dequeue pointer is updated, or upon the completion
of a set dequeue pointer command.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
Store the ring's last segment pointer and number of segments for ring
expansion usage.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
When allocate a ring, store its type - four transfer types for endpoint,
TYPE_STREAM for stream transfer, and TYPE_COMMAND/TYPE_EVENT for xHCI host.
This helps to get rid of three bool function parameters: link_trbs, isoc
and consumer.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
This is to pull in the xhci changes and the other fixes and device id
updates that were done in Linus's tree.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The xHCI 0.96 spec says that HS bulk and control endpoint NAK rate must
be encoded as an exponent of two number of microframes. The endpoint
descriptor has the NAK rate encoded in number of microframes. We were
just copying the value from the endpoint descriptor into the endpoint
context interval field, which was not correct. This lead to the VIA
host rejecting the add of a bulk OUT endpoint from any USB 2.0 mass
storage device.
The fix is to use the correct encoding. Refactor the code to convert
number of frames to an exponential number of microframes, and make sure
we convert the number of microframes in HS bulk and control endpoints to
an exponent.
This should be back ported to kernels as old as 2.6.31, that contain the
commit dfa49c4ad1 "USB: xhci - fix math
in xhci_get_endpoint_interval"
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Felipe Contreras <felipe.contreras@gmail.com>
Suggested-by: Andiry Xu <andiry.xu@amd.com>
Cc: stable@vger.kernel.org
When the USB 3.0 hub support went in, I disabled selective suspend for
all external USB 3.0 hubs because they used a different mechanism to
enable remote wakeup. In fact, other USB 3.0 devices that could signal
remote wakeup would have been prevented from going into suspend because
they would have stalled the SetFeature Device Remote Wakeup request.
This patch adds support for the USB 3.0 way of enabling remote wake up
(with a SetFeature Function Suspend request), and enables selective
suspend for all hubs during hub_probe. It assumes that all USB 3.0 have
only one "function" as defined by the interface association descriptor,
which is true of all the USB 3.0 devices I've seen so far. FIXME if
that turns out to change later.
After a device signals a remote wakeup, it is supposed to send a Device
Notification packet to the host controller, signaling which function
sent the remote wakeup. The host can then put any other functions back
into function suspend. Since we don't have support for function suspend
(and no devices currently support it), we'll just assume the hub
function will resume the device properly when it received the port
status change notification, and simply ignore any device notification
events from the xHCI host controller.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Debuggers only really care what the xHCI driver sets the ring dequeue
pointer to, so make the driver stop babbling about the memory addresses
of internal ring structures. This makes wading through the output of
allocating and freeing 256 stream rings much easier by reducing the
number of output lines per ring from 9 to 1.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
pci_*_consistent() calls dma_*_coherent() with GFP_ATOMIC and requires
pci_dev struct. This is a preparion for later where we no longer have
the pci struct around.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Setting the chain (CH) bit in the link TRB of isochronous transfer rings
is required by AMD 0.96 xHCI host controller to successfully transverse
multi-TRB TD that span through different memory segments.
When a Missed Service Error event occurs, if the chain bit is not set in
the link TRB and the host skips TDs which just across a link TRB, the
host may falsely recognize the link TRB as a normal TRB. You can see
this may cause big trouble - the host does not jump to the right address
which is pointed by the link TRB, but continue fetching the memory which
is after the link TRB address, which may not even belong to the host,
and the result cannot be predicted.
This causes some big problems. Without the former patch I sent: "xHCI:
prevent infinite loop when processing MSE event", the system may hang.
With that patch applied, system does not hang, but the host still access
wrong memory address and isoc transfer will fail. With this patch,
isochronous transfer works as expected.
This patch should be applied to kernels as old as 2.6.36, which was when
the first isochronous support was added for the xHCI host controller.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch tests USB2 software LPM for a USB2 LPM-capable device.
When a lpm-capable device is addressed, if the host also supports software
LPM, apply a test by putting the device into L1 state and resume it to see
if the device can do L1 suspend/resume successfully.
If the device fails to enter L1 or resume from L1 state, it may not
function normally and usbcore may disconnect and re-enumerate it. In this
case, store the device's Vid and Pid information, make sure the host will
not test LPM for it twice.
The test result is per device/host. Some devices claim to be lpm-capable,
but fail to enter L1 or resume. So the test is necessary.
The xHCI 1.0 errata has modified the USB2.0 LPM implementation. It redefines
the HIRD field to BESL, and adds another register Port Hardware LPM Control
(PORTHLPMC). However, this should not affect the LPM behavior on xHC which
does not implement 1.0 errata.
USB2.0 LPM errata defines a new bit BESL in the device's USB 2.0 extension
descriptor. If the device reports it uses BESL, driver should use BESL
instead of HIRD for it.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Check the host's USB2 LPM capability.
USB2 software LPM support is optional for xHCI 0.96 hosts. xHCI 1.0 hosts
should support software LPM, and may support hardware LPM.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The seg argument to xhci_segment_free is never passed as NULL, so
no need to check for this in xhci_segment_free.
Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
There are 2 situations wherein the xhci_ring* might not get freed:
- When xhci_ring_alloc() -> xhci_segment_alloc() returns NULL and
we goto the fail: label in xhci_ring_alloc. In this case, the ring
will not get kfreed.
- When the num_segs argument to xhci_ring_alloc is passed as 0 and
we try to free the rung after that.
( This doesn't really happen as of now in the code but we seem to
be entertaining num_segs=0 in xhci_ring_alloc )
This should be backported to kernels as old as 2.6.31.
Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The "Mult" bits in the SuperSpeed Endpoint Companion Descriptor are
zero-based, and the xHCI host controller wants them to be zero-based in
the input context. However, for the bandwidth math, we want them to be
one-based. Fix this.
Fix the documentation about the endpoint bandwidth mult variable in the
xhci.h file, which says it is zero-based. Also fix the documentation
about num_packets, which is also one-based, not zero-based.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In xhci_urb_enqueue(), allocate a block of memory for all the TDs instead
of allocating memory for each of them separately. This reduces the number
of kzalloc calling when an isochronous usb is submitted.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In order to update the root port or TT's bandwidth interval table, we will
need to keep track of a list of endpoints, per interval. That way we can
easily know the new largest max packet size when we have to remove an
endpoint.
Add an endpoint list for each root port or TT structure, sorted by
endpoint max packet size. Insert new endpoints into the list such that
the head of the list always has the endpoint with the greatest max packet
size. Only insert endpoints and update the interval table with new
information when those endpoints are periodic.
Make sure to update the number of active TTs when we add or drop periodic
endpoints. A TT is only considered active if it has one or more periodic
endpoints attached (control and bulk are best effort, and counted in the
20% reserved on the high speed bus). If the number of active endpoints
for a TT was zero, and it's now non-zero, increment the number of active
TTs for the rootport. If the number of active endpoints was non-zero, and
it's now zero, decrement the number of active TTs.
We have to be careful when we're checking the bandwidth for a new
configuration/alt setting. If we don't have enough bandwidth, we need to
be able to "roll back" the bandwidth information stored in the endpoint
and the root port/TT interval bandwidth table. We can't just create a
copy of the interval bandwidth table, modify it, and check the bandwidth
with the copy because we have lists of endpoints and entries can't be on
more than one list. Instead, we copy the old endpoint bandwidth
information, and use it to revert the interval table when the bandwidth
check fails.
We don't check the bandwidth after endpoints are dropped from the interval
table when a device is reset or freed after a disconnect, because having
endpoints use less bandwidth should not push the bandwidth usage over the
limits. Besides which, we can't fail a device disconnect.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In the upcoming patches, we'll use some stored endpoint information to
make software keep track of the worst-case bandwidth schedule. We need to
store several variables associated with each periodic endpoint:
- the type of endpoint
- Max Packet Size
- Mult
- Max ESIT payload
- Max Burst Size (aka number of packets, stored in one-based form)
- the endpoint interval (normalized to powers of 2 microframes)
All this information is available to the hardware, and stored in its
device output context. However, we need to ensure that the new
information is stored before the xHCI driver drops the xhci->lock to wait
on the Configure Endpoint command, so that another driver requesting a
configuration or alt setting change will see the update. The Configure
Endpoint command will never fail on the hardware that needs this software
bandwidth checking (assuming the slot is enabled and the flags are set
properly), so updating the endpoint info before the command completes
should be fine.
Until we add in the bandwidth checking code, just update the endpoint
information after the Configure Endpoint command completes, and after a
Reset Device command completes. Don't bother to clear the endpoint
bandwidth info when a device is being freed, since the xhci_virt_ep is
just going to be freed anyway.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
For upcoming patches, we need to keep information about the bandwidth
domains under the xHCI host. Each root port is a separate primary
bandwidth domain, and each high speed hub's TT (and potentially each port
on a multi-TT hub) is a secondary bandwidth domain.
If the table were in text form, it would look a bit like this:
EP Interval Sum of Number Largest Max Max Packet
of Packets Packet Size Overhead
0 N mps overhead
...
15 N mps overhead
Overhead is the maximum packet overhead (for bit stuffing, CRC, protocol
overhead, etc) for all the endpoints in this interval. Devices with
different speeds have different max packet overhead. For example, if
there is a low speed and a full speed endpoint that both have an interval
of 3, we would use the higher overhead (the low speed overhead). Interval
0 is a bit special, since we really just want to know the sum of the max
ESIT payloads instead of the largest max packet size. That's stored in
the interval0_esit_payload variable. For root ports, we also need to keep
track of the number of active TTs.
For each root port, and each TT under a root port, store some information
about the bandwidth consumption. Dynamically allocate an array of root
port bandwidth information for the number of root ports on the xHCI host.
Each root port stores a list of TTs under the root port. A single TT hub
only has one entry in the list, but a multi-TT hub will have an entry per
port.
When the USB core says that a USB device is a hub, create one or more
entries in the root port TT list for the hub. When a device is deleted,
and it is a hub, search through the root port TT list and delete all
TT entries for the hub. Keep track of which TT entry is associated with a
device under a TT.
LS/FS devices attached directly to the root port will have usb_device->tt
set to the roothub. Ignore that, and treat it like a primary bandwidth
domain, since there isn't really a high speed bus between the roothub and
the host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Since the xHCI driver now has split USB2/USB3 roothubs, devices under each
roothub can have duplicate "fake" port numbers. For the next set of
patches, we need to keep track of the "real" port number that the xHCI
host uses to index into the port status arrays.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The "port" field in xhci_virt_dev stores the port number associated with
one of the two xHCI split roothubs, not the unique port number the xHCI
hardware uses. Since we'll need to store the real hardware port number in
future patches, rename this field to "fake_port".
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Now ${LINUX}/drivers/usb/* can use usb_endpoint_maxp(desc) to get maximum packet size
instead of le16_to_cpu(desc->wMaxPacketSize).
This patch fix it up
Cc: Armin Fuerst <fuerst@in.tum.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Johannes Erdfelt <johannes@erdfelt.com>
Cc: Vojtech Pavlik <vojtech@suse.cz>
Cc: Oliver Neukum <oliver@neukum.name>
Cc: David Kubicek <dave@awk.cz>
Cc: Johan Hovold <jhovold@gmail.com>
Cc: Brad Hards <bhards@bigpond.net.au>
Acked-by: Felipe Balbi <balbi@ti.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Dahlmann <dahlmann.thomas@arcor.de>
Cc: David Brownell <david-b@pacbell.net>
Cc: David Lopo <dlopo@chipidea.mips.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Michal Nazarewicz <m.nazarewicz@samsung.com>
Cc: Xie Xiaobo <X.Xie@freescale.com>
Cc: Li Yang <leoli@freescale.com>
Cc: Jiang Bo <tanya.jiang@freescale.com>
Cc: Yuan-hsin Chen <yhchen@faraday-tech.com>
Cc: Darius Augulis <augulis.darius@gmail.com>
Cc: Xiaochen Shen <xiaochen.shen@intel.com>
Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
Cc: OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>
Cc: Robert Jarzmik <robert.jarzmik@free.fr>
Cc: Ben Dooks <ben@simtec.co.uk>
Cc: Thomas Abraham <thomas.ab@samsung.com>
Cc: Herbert Pötzl <herbert@13thfloor.at>
Cc: Arnaud Patard <arnaud.patard@rtp-net.org>
Cc: Roman Weissgaerber <weissg@vienna.at>
Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Tony Olech <tony.olech@elandigitalsystems.com>
Cc: Florian Floe Echtler <echtler@fs.tum.de>
Cc: Christian Lucht <lucht@codemercs.com>
Cc: Juergen Stuber <starblue@sourceforge.net>
Cc: Georges Toth <g.toth@e-biz.lu>
Cc: Bill Ryder <bryder@sgi.com>
Cc: Kuba Ober <kuba@mareimbrium.org>
Cc: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6: (115 commits)
EHCI: fix direction handling for interrupt data toggles
USB: serial: add IDs for WinChipHead USB->RS232 adapter
USB: OHCI: fix another regression for NVIDIA controllers
usb: gadget: m66592-udc: add pullup function
usb: gadget: m66592-udc: add function for external controller
usb: gadget: r8a66597-udc: add pullup function
usb: renesas_usbhs: support multi driver
usb: renesas_usbhs: inaccessible pipe is not an error
usb: renesas_usbhs: care buff alignment when dma handler
USB: PL2303: correctly handle baudrates above 115200
usb: r8a66597-hcd: fixup USB_PORT_STAT_C_SUSPEND shift
usb: renesas_usbhs: compile/config are rescued
usb: renesas_usbhs: fixup comment-out
usb: update email address in ohci-sh and r8a66597-hcd
usb: r8a66597-hcd: add function for external controller
EHCI: only power off port if over-current is active
USB: mon: Allow to use usbmon without debugfs
USB: EHCI: go back to using the system clock for QH unlinks
ehci: add pci quirk for Ordissimo and RM Slate 100 too
ehci: refactor pci quirk to use standard dmi_check_system method
...
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
The USB 3.0 specification says that the bMaxBurst field in the SuperSpeed
Endpoint Companion descriptor is supposed to indicate how many packets a
SS device can handle before it needs to wait for an explicit handshake
from the host controller. A zero value means the device can only handle
one packet before it needs a handshake. Remove a warning in the xHCI
driver that implies this is an invalid value.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Full-speed isoc endpoints specify interval in exponent based form in
frames, not microframes, so we need to adjust accordingly.
NEC xHCI host controllers will return an error code of 0x11 if a full
speed isochronous endpoint is added with the Interval field set to
something less than 3 (2^3 = 8 microframes, or one frame). It is
impossible for a full speed device to have an interval smaller than one
frame.
This was always an issue in the xHCI driver, but commit
dfa49c4ad1 "USB: xhci - fix math in
xhci_get_endpoint_interval()" removed the clamping of the minimum value
in the Interval field, which revealed this bug.
This needs to be backported to stable kernels back to 2.6.31.
Reported-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Some of the recently-added cpu_to_leXX and leXX_to_cpu made things somewhat
messy; this patch neatens some of these areas, removing unnecessary casts
in those parts also. In some places (where Y & Z are constants) a
comparison of (leXX_to_cpu(X) & Y) == Z has been replaced with
(X & cpu_to_leXX(Y)) == cpu_to_leXX(Z). The endian reversal of the
constants should wash out at compile time.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
When an endpoint ring is freed, it is either cached in a per-device ring
cache, or simply freed if the ring cache is full. If the ring was added
to the cache, then virt_dev->num_rings_cached is incremented. The cache
is designed to hold up to 31 endpoint rings, in array indexes 0 to 30.
When the device is freed (when the slot was disabled),
xhci_free_virt_device() is called, it would free the cached rings in
array indexes 0 to virt_dev->num_rings_cached.
Unfortunately, the original code in xhci_free_or_cache_endpoint_ring()
would put the first entry into the ring cache in array index 1, instead of
array index 0. This was caused by the second assignment to rings_cached:
rings_cached = virt_dev->num_rings_cached;
if (rings_cached < XHCI_MAX_RINGS_CACHED) {
virt_dev->num_rings_cached++;
rings_cached = virt_dev->num_rings_cached;
virt_dev->ring_cache[rings_cached] =
virt_dev->eps[ep_index].ring;
This meant that when the device was freed, cached rings with indexes 0 to
N would be freed, and the last cached ring in index N+1 would not be
freed. When the driver was unloaded, this caused interesting messages
like:
xhci_hcd 0000:06:00.0: dma_pool_destroy xHCI ring segments, ffff880063040000 busy
This should be queued to stable kernels back to 2.6.33.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Dmitry's patch
dfa49c4ad1 USB: xhci - fix math in xhci_get_endpoint_interval()
introduced a bug. The USB 2.0 spec says that full speed isochronous endpoints'
bInterval must be decoded as an exponent to a power of two (e.g. interval =
2^(bInterval - 1)). Full speed interrupt endpoints, on the other hand, don't
use exponents, and the interval in frames is encoded straight into bInterval.
Dmitry's patch was supposed to fix up the full speed isochronous to parse
bInterval as an exponent, but instead it changed the *interrupt* endpoint
bInterval decoding. The isochronous endpoint encoding was the same.
This caused full speed devices with interrupt endpoints (including mice, hubs,
and USB to ethernet devices) to fail under NEC 0.96 xHCI host controllers:
[ 100.909818] xhci_hcd 0000:06:00.0: add ep 0x83, slot id 1, new drop flags = 0x0, new add flags = 0x99, new slot info = 0x38100000
[ 100.909821] xhci_hcd 0000:06:00.0: xhci_check_bandwidth called for udev ffff88011f0ea000
...
[ 100.910187] xhci_hcd 0000:06:00.0: ERROR: unexpected command completion code 0x11.
[ 100.910190] xhci_hcd 0000:06:00.0: xhci_reset_bandwidth called for udev ffff88011f0ea000
When the interrupt endpoint was added and a Configure Endpoint command was
issued to the host, the host controller would return a very odd error message
(0x11 means "Slot Not Enabled", which isn't true because the slot was enabled).
Probably the host controller was getting very confused with the bad encoding.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Dmitry Torokhov <dtor@vmware.com>
Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com>
Tested-by: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
xHCI 1.0 specification specifies that CErr does not apply to Isoch endpoints
and shall be set to '0' for Isoch endpoints.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
xHCI 1.0 specification indicates that software should set Average TRB Length
to '8' for control endpoints.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
while going through Tatyana's changes for the gadget framework I noticed
that this type is not defined as __le16.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch changes the struct members defining access to xHCI device-visible
memory to use __le32/__le64 where appropriate, and then adds swaps where
required. Checked with sparse that all accesses are correct.
MMIO accesses use readl/writel so already are performed LE, but prototypes
now reflect this with __le*.
There were a couple of (debug) instances of DMA pointers being truncated to
32bits which have been fixed too.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
When parsing exponent-expressed intervals we subtract 1 from the
value and then expect it to match with original + 1, which is
highly unlikely, and we end with frequent spew:
usb 3-4: ep 0x83 - rounding interval to 512 microframes
Also, parsing interval for fullspeed isochronous endpoints was
incorrect - according to USB spec they use exponent-based
intervals (but xHCI spec claims frame-based intervals). I trust
USB spec more, especially since USB core agrees with it.
This should be queued for stable kernels back to 2.6.31.
Reviewed-by: Micah Elizabeth Scott <micah@vmware.com>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Remove 'inline' markings from file-local functions and let compiler
do its job and inline what makes sense for given architecture.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
There were some places that compared port_speed == -1 where port_speed
is a u8. This doesn't work unless we cast the -1 to u8. Some places
did it correctly.
Instead of using -1 directly, I've created a DUPLICATE_ENTRY define
which does the cast and is more descriptive as well.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
* 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6: (172 commits)
USB: Add support for SuperSpeed isoc endpoints
xhci: Clean up cycle bit math used during stalls.
xhci: Fix cycle bit calculation during stall handling.
xhci: Update internal dequeue pointers after stalls.
USB: Disable auto-suspend for USB 3.0 hubs.
USB: Remove bogus USB_PORT_STAT_SUPER_SPEED symbol.
xhci: Return canceled URBs immediately when host is halted.
xhci: Fixes for suspend/resume of shared HCDs.
xhci: Fix re-init on power loss after resume.
xhci: Make roothub functions deal with device removal.
xhci: Limit roothub ports to 15 USB3 & 31 USB2 ports.
xhci: Return a USB 3.0 hub descriptor for USB3 roothub.
xhci: Register second xHCI roothub.
xhci: Change xhci_find_slot_id_by_port() API.
xhci: Refactor bus suspend state into a struct.
xhci: Index with a port array instead of PORTSC addresses.
USB: Set usb_hcd->state and flags for shared roothubs.
usb: Make core allocate resources per PCI-device.
usb: Store bus type in usb_hcd, not in driver flags.
usb: Change usb_hcd->bandwidth_mutex to a pointer.
...
The USB core allocates a USB 2.0 roothub descriptor that has room for 31
(USB_MAXCHILDREN) ports' worth of DeviceRemovable and PortPwrCtrlMask
fields. Limit the number of USB 2.0 roothub ports accordingly. I don't
expect to run into this limitation ever, but this prevents a buffer
overflow issue in the roothub descriptor filling code.
Similarly, a USB 3.0 hub can only have 15 downstream ports, so limit the
USB 3.0 roothub to 15 USB 3.0 ports.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch changes the xHCI driver to allocate two roothubs. This touches
the driver initialization and shutdown paths, roothub emulation code, and
port status change event handlers. This is a rather large patch, but it
can't be broken up, or it would break git-bisect.
Make the xHCI driver register its own PCI probe function. This will call
the USB core to create the USB 2.0 roothub, and then create the USB 3.0
roothub. This gets the code for registering a shared roothub out of the
USB core, and allows other HCDs later to decide if and how many shared
roothubs they want to allocate.
Make sure the xHCI's reset method marks the xHCI host controller's primary
roothub as the USB 2.0 roothub. This ensures that the high speed bus will
be processed first when the PCI device is resumed, and any USB 3.0 devices
that have migrated over to high speed will migrate back after being reset.
This ensures that USB persist works with these odd devices.
The reset method will also mark the xHCI USB2 roothub as having an
integrated TT. Like EHCI host controllers with a "rate matching hub" the
xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller.
It doesn't really have a TT, but we'll lie and say it has an integrated
TT. We need to do this because the USB core will reject LS/FS devices
under a HS hub without a TT.
Other details:
-------------
The roothub emulation code is changed to return the correct number of
ports for the two roothubs. For the USB 3.0 roothub, it only reports the
USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS
ports. The code to disable a port now checks the speed of the roothub,
and refuses to disable SuperSpeed ports under the USB 3.0 roothub.
The code for initializing a new device context must be changed to set the
proper roothub port number. Since we've split the xHCI host into two
roothubs, we can't just use the port number in the ancestor hub. Instead,
we loop through the array of hardware port status register speeds and find
the Nth port with a similar speed.
The port status change event handler is updated to figure out whether the
port that reported the change is a USB 3.0 port, or a non-SuperSpeed port.
Once it figures out the port speed, it kicks the proper roothub.
The function to find a slot ID based on the port index is updated to take
into account that the two roothubs will have over-lapping port indexes.
It checks that the virtual device with a matching port index is the same
speed as the passed in roothub.
There's also changes to the driver initialization and shutdown paths:
1. Make sure that the xhci_hcd pointer is shared across the two
usb_hcd structures. The xhci_hcd pointer is allocated and the
registers are mapped in when xhci_pci_setup() is called with the
primary HCD. When xhci_pci_setup() is called with the non-primary
HCD, the xhci_hcd pointer is stored.
2. Make sure to set the sg_tablesize for both usb_hcd structures. Set
the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit
DMA. (The PCI DMA mask is set from the primary HCD further down in
the xhci_pci_setup() function.)
3. Ensure that the host controller doesn't start kicking khubd in
response to port status changes before both usb_hcd structures are
registered. xhci_run() only starts the xHC running once it has been
called with the non-primary roothub. Similarly, the xhci_stop()
function only halts the host controller when it is called with the
non-primary HCD. Then on the second call, it resets and cleans up the
MSI-X irqs.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
There are several variables in the xhci_hcd structure that are related to
bus suspend and resume state. There are a couple different port status
arrays that are accessed by port index. Move those variables into a
separate structure, xhci_bus_state. Stash that structure in xhci_hcd.
When we have two roothhubs that can be suspended and resumed separately,
we can have two xhci_bus_states, and index into the port arrays in each
structure with the fake roothub port index (not the real hardware port
index).
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Commit d199c96d by Alan Stern ensured that low speed and full speed
devices below a high speed hub without a transaction translator (TT) would
never get enumerated. Simplify the check for a TT in the xHCI virtual
device allocation to only check if the usb_device references a parent's
TT.
Make sure not to set the TT information on LS/FS devices directly
connected to the roothub. The xHCI host doesn't really have a TT, and the
host will throw an error when those virtual device TT fields are set for a
device connected to the roothub. We need this check because the xHCI
driver will shortly register two roothubs: a USB 2.0 roothub and a USB 3.0
roothub.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The USB core only allows up to 31 (USB_MAXCHILDREN) ports under a roothub.
The xHCI driver keeps track of which ports are suspended, which ports have
a suspend change bit set, and what time the port will be done resuming.
It keeps track of the first two by setting a bit in a u32 variable,
suspended_ports or port_c_suspend. The xHCI driver currently assumes we
can have up to 256 ports under a roothub, so it allocates an array of 8
u32 variables for both suspended_ports and port_c_suspend. It also
allocates a 256-element array to keep track of when the ports will be done
resuming.
Since we can only have 31 roothub ports, we only need to use one u32 for
each of the suspend state and change variables. We simplify the bit math
that's trying to index into those arrays and set the correct bit, if we
assume wIndex never exceeds 30. (wIndex is zero-based after it's
decremented from the value passed in from the USB core.) Finally, we
change the resume_done array to only hold 31 elements.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Andiry Xu <andiry.xu@amd.com>
Functions that are not used outsde of the module they are defined
should be marked as static.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
There is no point in casting to (void *) when setting up xhci->ir_set
as it only makes us lose __iomem annotation and makes sparse unhappy.
OTOH we do need to cast to (void *) when calculating xhci->dba from
offset, but since it is IO memory we need to annotate it as such.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
xhci->ir_set points to __iomem region, but xhci_print_ir_set accepts
plain struct xhci_intr_reg * causing multiple sparse warning at call
sites and inside the fucntion when we try to read that memory.
Instead of adding __iomem qualifier to the argument let's rework the
function so it itself gets needed register set from xhci and prints
it.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Fix two bugs with the port array setup.
The first bug will only show up with broken xHCI hosts with Extended
Capabilities registers that have duplicate port speed entries for the same
port. The idea with the original code was to set the port_array entry to
-1 if the duplicate port speed entry said the port was a different speed
than the original port speed entry. That would mean that later, the port
would not be exposed to the USB core. Unfortunately, I forgot a continue
statement, and the port_array entry would just be overwritten in the next
line.
The second bug would happen if there are conflicting port speed registers
(so that some entry in port_array is -1), or one of the hardware port
registers was not described in the port speed registers (so that some
entry in port_array is 0). The code that sets up the usb2_ports array
would accidentally claim those ports. That wouldn't really cause any
user-visible issues, but it is a bug.
This patch should go into the stable trees that have the port array and
USB 3.0 port disabling prevention patches.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
An xHCI host controller contains USB 2.0 and USB 3.0 ports, which can
occur in any order in the PORTSC registers. We cannot read the port speed
bits in the PORTSC registers at init time to determine the port speed,
since those bits are only valid when a USB device is plugged into the
port.
Instead, we read the "Supported Protocol Capability" registers in the xHC
Extended Capabilities space. Those describe the protocol, port offset in
the PORTSC registers, and port count. We use those registers to create
two arrays of pointers to the PORTSC registers, one for USB 3.0 ports, and
another for USB 2.0 ports. A third array keeps track of the port protocol
major revision, and is indexed with the internal xHCI port number.
This commit is a bit big, but it should be queued for stable because the "Don't
let the USB core disable SuperSpeed ports" patch depends on it. There is no
other way to determine which ports are SuperSpeed ports without this patch.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Don Zickus <dzickus@redhat.com>
Cc: stable@kernel.org
USB2.0 spec 9.6.6 says: For all endpoints, bit 10..0 specify the maximum
packet size(in bytes).
So the wMaxPacketSize mask should be 0x7ff rather than 0x3ff.
This patch should be queued for the stable tree. The bug in
xhci_endpoint_init() was present as far back as 2.6.31, and the bug in
xhci_get_max_esit_payload() was present when the function was introduced
in 2.6.34.
Reported-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
This patch implements xHCI bus suspend/resume function hook.
In the patch it goes through all the ports and suspend/resume
the ports if needed.
If any port is in remote wakeup, abort bus suspend as what ehci/ohci do.
Signed-off-by: Libin Yang <libin.yang@amd.com>
Signed-off-by: Crane Cai <crane.cai@amd.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit implements port remote wakeup.
When a port is in U3 state and resume signaling is detected from a device,
the port transitions to the Resume state, and the xHC generates a Port Status
Change Event.
For USB3 port, software write a '0' to the PLS field to complete the resume
signaling. For USB2 port, the resume should be signaling for at least 20ms,
irq handler set a timer for port remote wakeup, and then finishes process in
hub_control GetPortStatus.
Some codes are borrowed from EHCI code.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add software trigger USB device suspend resume function hook.
Do port suspend & resume in terms of xHCI spec.
Port Suspend:
Stop all endpoints via Stop Endpoint Command with Suspend (SP) flag set.
Place individual ports into suspend mode by writing '3' for Port Link State
(PLS) field into PORTSC register. This can only be done when the port is in
Enabled state. When writing, the Port Link State Write Strobe (LWS) bit shall
be set to '1'.
Allocate an xhci_command and stash it in xhci_virt_device to wait completion for
the last Stop Endpoint Command. Use the Suspend bit in TRB to indicate the Stop
Endpoint Command is for port suspend. Based on Sarah's suggestion.
Port Resume:
Write '0' in PLS field, device will transition to running state.
Ring an endpoints' doorbell to restart it.
Ref: USB device remote wake need another patch to implement. For details of
how USB subsystem do power management, please see:
Documentation/usb/power-management.txt
Signed-off-by: Crane Cai <crane.cai@amd.com>
Signed-off-by: Libin Yang <libin.yang@amd.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add a pointer to udev in struct xhci_virt_device. When allocate a new
virt_device, make the pointer point to the corresponding udev.
Modify xhci_check_args(), check if virt_dev->udev matches the target udev,
to make sure command is issued to the right device.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Now that the event handler functions no longer use xhci_set_hc_event_deq()
to update the event ring dequeue pointer, that function is not used by
anything in xhci-ring.c. Move that function into xhci-mem.c and make it
static.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
I've been using perf to measure the top symbols while transferring 1GB of data
on a USB 3.0 drive with dd. This is using the raw disk with /dev/sdb, with a
block size of 1K.
During performance testing, the top symbol was xhci_triad_to_transfer_ring(), a
function that should return immediately if streams are not enabled for an
endpoint. It turned out that the functions to find the endpoint ring was
defined in xhci-mem.c and used in xhci-ring.c and xhci-hcd.c. I moved a copy of
xhci_triad_to_transfer_ring() and xhci_urb_to_transfer_ring() into xhci-ring.c
and declared them static. I also made a static version of
xhci_urb_to_transfer_ring() in xhci.c.
This improved throughput on a 1GB read of the raw disk with dd from
186MB/s to 195MB/s, and perf reported sampling the xhci_triad_to_transfer_ring()
0.06% of the time, rather than 9.26% of the time.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Isochronous endpoint needs a bigger size of transfer ring. Isochronous URB
consists of multiple packets, each packet needs a isoc td to carry, and
there will be multiple trbs inserted to the ring at one time. One segment
is too small for isochronous endpoints, and it will result in
room_on_ring() check failure and the URB is failed to enqueue.
Allocate bigger ring for isochronous endpoint. 8 segments should be enough.
This will be replaced with dynamic ring expansion in the future.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add urb_priv data structure to xHCI driver. This structure allows multiple
xhci TDs to be linked to one urb, which is essential for isochronous
transfer. For non-isochronous urb, only one TD is needed for one urb;
for isochronous urb, the TD number for the urb is equal to
urb->number_of_packets.
The length field of urb_priv indicates the number of TDs in the urb.
The td_cnt field indicates the number of TDs already processed by xHC.
When td_cnt matches length, the urb can be given back to usbcore.
When an urb is dequeued or cancelled, add all the unprocessed TDs to the
endpoint's cancelled_td_list. When process a cancelled TD, increase
td_cnt field. When td_cnt equals urb_priv->length, giveback the
cancelled urb.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch adds mechanism to process Missed Service Error Event.
Sometimes the xHC is unable to process the isoc TDs in time, it will
generate Missed Service Error Event. In this case some TDs on the ring are
not processed and missed. When encounter a Missed Servce Error Event, set
the skip flag of the ep, and process the missed TDs until reach the next
processed TD, then clear the skip flag.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The bmAttributes field of the SuperSpeed Endpoint Companion Descriptor has
different meanings, depending on the endpoint type. If the endpoint is
isochronous, the bmAttributes field is the maximum number of packets
within a service interval that this endpoint supports. If the endpoint is
bulk, it's the number of stream IDs this endpoint supports.
Only set the Mult field of the xHCI endpoint context using the
bmAttributes field if the endpoint is isochronous, and the device is a
SuperSpeed device.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When a configured device is reset, the control endpoint's ring is reused.
If control transfers to the device were issued before the device is reset,
the dequeue pointer will be somewhere in the middle of the ring. If the
device is then issued an address with the set address command, the xHCI
driver must provide a valid input context for control endpoint zero.
The original code would give the hardware the original input context,
which had a dequeue pointer set to the top of the ring. This would cause
the host to re-execute any control transfers until it reached the ring's
enqueue pointer. When issuing a set address command for a device that has
just been configured and then reset, use the control endpoint's enqueue
pointer as the hardware's dequeue pointer.
Assumption: All control transfers will be completed or cancelled before
the set address command is issued to the device. If there are any
outstanding control transfers, this code will not work.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1375) eliminates the usb_host_ss_ep_comp structure used
for storing a dynamically-allocated copy of the SuperSpeed endpoint
companion descriptor. The SuperSpeed descriptor is placed directly in
the usb_host_endpoint structure, alongside the standard endpoint
descriptor.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Fix usb sparse warnings:
drivers/usb/host/isp1362-hcd.c:2220:50: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-mem.c:43:24: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-mem.c:49:24: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-mem.c:161:24: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-mem.c:198:16: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-mem.c:319:31: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-mem.c:1231:33: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-pci.c:177:23: warning: non-ANSI function declaration of function 'xhci_register_pci'
drivers/usb/host/xhci-pci.c:182:26: warning: non-ANSI function declaration of function 'xhci_unregister_pci'
drivers/usb/host/xhci-ring.c:342:32: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-ring.c:525:34: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-ring.c:1009:32: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-ring.c:1031:32: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-ring.c:1041:16: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-ring.c:1096:30: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-ring.c:1100:27: warning: Using plain integer as NULL pointer
drivers/usb/host/xhci-mem.c:224:27: warning: symbol 'xhci_alloc_container_ctx' was not declared. Should it be static?
drivers/usb/host/xhci-mem.c:242:6: warning: symbol 'xhci_free_container_ctx' was not declared. Should it be static?
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Lothar Wassmann <LW@KARO-electronics.de>
Signed-off By: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Much of the xHCI driver code assumes that endpoints only have one ring.
Now an endpoint can have one ring per enabled stream ID, so correct that
assumption. Use functions that translate the stream_id field in the URB
or the DMA address of a TRB into the correct stream ring.
Correct the polling loop to print out all enabled stream rings. Make the
URB cancellation routine find the correct stream ring if the URB has
stream_id set. Make sure the URB enqueueing routine does the same. Also
correct the code that handles stalled/halted endpoints.
Check that commands and registers that can take stream IDs handle them
properly. That includes ringing an endpoint doorbell, resetting a
stalled/halted endpoint, and setting a transfer ring dequeue pointer
(since that command can set the dequeue pointer in a stream context or an
endpoint context).
Correct the transfer event handler to translate a TRB DMA address into the
stream ring it was enqueued to. Make the code to allocate and prepare TD
structures adds the TD to the right td_list for the stream ring. Make
sure the code to give the first TRB in a TD to the hardware manipulates
the correct stream ring.
When an endpoint stalls, store the stream ID of the stream ring that
stalled in the xhci_virt_ep structure. Use that instead of the stream ID
in the URB, since an URB may be re-used after it is given back after a
non-control endpoint stall.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add support for allocating streams for USB 3.0 bulk endpoints. See
Documentation/usb/bulk-streams.txt for more information about how and why
you would use streams.
When an endpoint has streams enabled, instead of having one ring where all
transfers are enqueued to the hardware, it has several rings. The ring
dequeue pointer in the endpoint context is changed to point to a "Stream
Context Array". This is basically an array of pointers to transfer rings,
one for each stream ID that the driver wants to use.
The Stream Context Array size must be a power of two, and host controllers
can place a limit on the size of the array (4 to 2^16 entries). These
two facts make calculating the size of the Stream Context Array and the
number of entries actually used by the driver a bit tricky.
Besides the Stream Context Array and rings for all the stream IDs, we need
one more data structure. The xHCI hardware will not tell us which stream
ID a transfer event was for, but it will give us the slot ID, endpoint
index, and physical address for the TRB that caused the event. For every
endpoint on a device, add a radix tree to map physical TRB addresses to
virtual segments within a stream ring.
Keep track of whether an endpoint is transitioning to using streams, and
don't enqueue any URBs while that's taking place. Refuse to transition an
endpoint to streams if there are already URBs enqueued for that endpoint.
We need to make sure that freeing streams does not fail, since a driver's
disconnect() function may attempt to do this, and it cannot fail.
Pre-allocate the command structure used to issue the Configure Endpoint
command, and reserve space on the command ring for each stream endpoint.
This may be a bit overkill, but it is permissible for the driver to
allocate all streams in one call and free them in multiple calls. (It is
not advised, however, since it is a waste of resources and time.)
Even with the memory and ring room pre-allocated, freeing streams can
still fail because the xHC rejects the configure endpoint command. It is
valid (by the xHCI 0.96 spec) to return a "Bandwidth Error" or a "Resource
Error" for a configure endpoint command. We should never see a Bandwidth
Error, since bulk endpoints do not effect the reserved bandwidth. The
host controller can still return a Resource Error, but it's improbable
since the xHC would be going from a more resource-intensive configuration
(streams) to a less resource-intensive configuration (no streams).
If the xHC returns a Resource Error, the endpoint will be stuck with
streams and will be unusable for drivers. It's an unavoidable consequence
of broken host controller hardware.
Includes bug fixes from the original patch, contributed by
John Youn <John.Youn@synopsys.com> and Andy Green <AGreen@PLXTech.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
For periodic endpoints, we must let the xHCI hardware know the maximum
payload an endpoint can transfer in one service interval. The xHCI
specification refers to this as the Maximum Endpoint Service Interval Time
Payload (Max ESIT Payload). This is used by the hardware for bandwidth
management and scheduling of packets.
For SuperSpeed endpoints, the maximum is calculated by multiplying the max
packet size by the number of bursts and the number of opportunities to
transfer within a service interval (the Mult field of the SuperSpeed
Endpoint companion descriptor). Devices advertise this in the
wBytesPerInterval field of their SuperSpeed Endpoint Companion Descriptor.
For high speed devices, this is taken by multiplying the max packet size by the
"number of additional transaction opportunities per microframe" (the high
bits of the wMaxPacketSize field in the endpoint descriptor).
For FS/LS devices, this is just the max packet size.
The other thing we must set in the endpoint context is the Average TRB
Length. This is supposed to be the average of the total bytes in the
transfer descriptor (TD), divided by the number of transfer request blocks
(TRBs) it takes to describe the TD. This gives the host controller an
indication of whether the driver will be enqueuing a scatter gather list
with many entries comprised of small buffers, or one contiguous buffer.
It also takes into account the number of extra TRBs you need for every TD.
This includes No-op TRBs and Link TRBs used to link ring segments
together. Some drivers may choose to chain an Event Data TRB on the end
of every TD, thus increasing the average number of TRBs per TD. The Linux
xHCI driver does not use Event Data TRBs.
In theory, if there was an API to allow drivers to state what their
bandwidth requirements are, we could set this field accurately. For now,
we set it to the same number as the Max ESIT payload.
The Average TRB Length should also be set for bulk and control endpoints,
but I have no idea how to guess what it should be.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
A SuperSpeed interrupt or isochronous endpoint can define the number of
"burst transactions" it can handle in a service interval. This is
indicated by the "Mult" bits in the bmAttributes of the SuperSpeed
Endpoint Companion Descriptor. For example, if it has a max packet size
of 1024, a max burst of 11, and a mult of 3, the host may send 33
1024-byte packets in one service interval.
We must tell the xHCI host controller the number of multiple service
opportunities (mults) the device can handle when the endpoint is
installed. We do that by setting the Mult field of the Endpoint Context
before a configure endpoint command is sent down. The Mult field is
invalid for control or bulk SuperSpeed endpoints.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
The xHCI hardware can only handle polling intervals that are a power of
two. When we add a new endpoint during a bandwidth allocation, and the
polling interval is rounded down to a power of two, print the original
polling interval in the endpoint descriptor.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
It's really the wireless speed, so rename the thing to make
more sense. Based on a recommendation from David Vrabel
Cc: David Vrabel <david.vrabel@csr.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The xhci_command structure is the basic structure for issuing commands to
the xHCI hardware. It contains a struct completion (so that the issuing
function can wait on the command), command status, and a input context
that is used to pass information to the hardware. Not all commands need
the input context, so make it optional to allocate. Allow
xhci_free_container_ctx() to be passed a NULL input context, to make
freeing the xhci_command structure simple.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Refactor out the code to cache or free endpoint rings from recently
dropped or disabled endpoints. This code will be used by a new function
to reset a device and disable all endpoints except control endpoint 0.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When a driver wants to switch to a different alternate setting for an
interface, the USB core will (soon) check whether there is enough
bandwidth. Once the new alternate setting is installed in the xHCI
hardware, the USB core will send a USB_REQ_SET_INTERFACE control
message. That can fail in various ways, and the USB core needs to be
able to reinstate the old alternate setting.
With the old code, reinstating the old alt setting could fail if the
there's not enough memory to allocate new endpoint rings. Keep
around a cache of (at most 31) endpoint rings for this case. When we
successfully switch the xHCI hardware to the new alt setting, the old
alt setting's rings will be stored in the cache. Therefore we'll
always have enough rings to satisfy a conversion back to a previous
device setting.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
It's not surprising that the transfer request buffer (TRB) physical to
virtual address translation function has bugs in it, since I wrote most of
it at 4am last October. Add a test suite to check the TRB math. This
runs at memory initialization time, and causes the driver to fail to load
if the TRB math fails.
Please excuse the excessively long lines in the test vectors; they can't
really be made shorter and still be readable.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In order to giveback a canceled URB, we must ensure that the xHCI
hardware will not access the buffer in an URB. We can't modify the
buffer pointers on endpoint rings without issuing and waiting for a stop
endpoint command. Since URBs can be canceled in interrupt context, we
can't wait on that command. The old code trusted that the host
controller would respond to the command, and would giveback the URBs in
the event handler. If the hardware never responds to the stop endpoint
command, the URBs will never be completed, and we might hang the USB
subsystem.
Implement a watchdog timer that is spawned whenever a stop endpoint
command is queued. If a stop endpoint command event is found on the
event ring during an interrupt, we need to stop the watchdog timer with
del_timer(). Since del_timer() can fail if the timer is running and
waiting on the xHCI lock, we need a way to signal to the timer that
everything is fine and it should exit. If we simply clear
EP_HALT_PENDING, a new stop endpoint command could sneak in and set it
before the watchdog timer can grab the lock.
Instead we use a combination of the EP_HALT_PENDING flag and a counter
for the number of pending stop endpoint commands
(xhci_virt_ep->stop_cmds_pending). If we need to cancel the watchdog
timer and del_timer() succeeds, we decrement the number of pending stop
endpoint commands. If del_timer() fails, we leave the number of pending
stop endpoint commands alone. In either case, we clear the
EP_HALT_PENDING flag.
The timer will decrement the number of pending stop endpoint commands
once it obtains the lock. If the timer is the tail end of the last stop
endpoint command (xhci_virt_ep->stop_cmds_pending == 0), and the
endpoint's command is still pending (EP_HALT_PENDING is set), we assume
the host is dying. The watchdog timer will set XHCI_STATE_DYING, try to
halt the xHCI host, and give back all pending URBs.
Various other places in the driver need to check whether the xHCI host
is dying. If the interrupt handler ever notices, it should immediately
stop processing events. The URB enqueue function should also return
-ESHUTDOWN. The URB dequeue function should simply return the value
of usb_hcd_check_unlink_urb() and the watchdog timer will take care of
giving the URB back. When a device is disconnected, the xHCI hardware
structures should be freed without issuing a disable slot command (since
the hardware probably won't respond to it anyway). The debugging
polling loop should stop polling if the host is dying.
When a device is disconnected, any pending watchdog timers are killed
with del_timer_sync(). It must be synchronous so that the watchdog
timer doesn't attempt to access the freed endpoint structures.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The scratchpad_free() function uses xhci->page_size to free some memory
with pci_free_consistent(). However, the page_size is set to zero before
the call, causing kernel oopses on driver unload. Call scratchpad_free()
before setting xhci->page_size to zero.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Acked-by: John Youn <John.Youn@synopsys.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
If the xHCI driver fails during the memory initialization, xhci->ir_set
may not be a valid pointer. Check that it points to valid DMA'able memory
before writing to that address during the memory freeing process.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When setting up a slot context for an address device command, set the
multi-TT field if this is a low or full speed device under a HS hub with
multiple transaction translators.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The xHCI driver needs to set the route string in the slot context of all
devices, not just SuperSpeed devices. The route string concept was added
in the USB 3.0 specification, section 10.1.3.2. Each hub in the topology
is expected to have no more than 15 ports in order for the route string of
a device to be unique. SuperSpeed hubs are restricted to only having 15
ports, but FS/LS/HS hubs are not. The xHCI specification says that if the
port number the device is under is greater than 15, that portion of the
route string shall be set to 15.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Some commands to the xHCI hardware cannot be allowed to fail due to out of
memory issues or the command ring being full.
Add a way to reserve a TRB on the command ring, and make all command
queueing functions indicate whether they are using a reserved TRB.
Add a way to pre-allocate all the memory a command might need. A command
needs an input context, a variable to store the status, and (optionally) a
completion for the caller to wait on. Change all code that assumes the
input device context, status, and completion for a command is stored in
the xhci virtual USB device structure (xhci_virt_device).
Store pending completions in a FIFO in xhci_virt_device. Make the event
handler for a configure endpoint command check to see whether a pending
command in the list has completed. We need to use separate input device
contexts for some configure endpoint commands, since multiple drivers can
submit requests at the same time that require a configure endpoint
command.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The xhci_ring structure contained information that is really related to an
endpoint, not a ring. This will cause problems later when endpoint
streams are supported and there are multiple rings per endpoint.
Move the endpoint state and cancellation information into a new virtual
endpoint structure, xhci_virt_ep. The list of TRBs to be cancelled should
be per endpoint, not per ring, for easy access. There can be only one TRB
that the endpoint stopped on after a stop endpoint command (even with
streams enabled); move the stopped TRB information into the new virtual
endpoint structure. Also move the 31 endpoint rings and temporary ring
storage from the virtual device structure (xhci_virt_device) into the
virtual endpoint structure (xhci_virt_ep).
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Set the max packet size for the default control endpoint on high speed
devices to be 64 bytes. High speed devices always have a max packet size
of 64 bytes. There's no use setting it to eight for the initial 8 byte
descriptor fetch and then issuing (and waiting for) an evaluate context
command to update it to 64 bytes for the subsequent control transfers.
The USB core guesses that the max packet size on a full speed control
endpoint is 64 bytes, and then updates it after the first 8-byte
descriptor fetch. Change the initial setup for the xHCI internal
representation of the full speed device to have a 64 byte max packet size.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Refactor out the code issue, wait for, and parse the event completion code
for a configure endpoint command. Modify it to support the evaluate
context command, which has a very similar submission process. Add
functions to copy parts of the output context into the input context
(which will be used in the evaluate context command).
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Different sections of the xHCI 0.95 specification had opposing
requirements for the chain bit in a link transaction request buffer (TRB).
The chain bit is used to designate that adjacent TRBs are all part of the
same scatter gather list that should be sent to the device. Link TRBs can
be in the middle, or at the beginning or end of these chained TRBs.
Sections 4.11.5.1 and 6.4.4.1 both stated the link TRB "shall have the
chain bit set to 1", meaning it is always chained to the next TRB.
However, section 4.6.9 on the stop endpoint command has specific cases for
what the hardware must do for a link TRB with the chain bit set to 0. The
0.96 specification errata later cleared up this issue by fixing the
4.11.5.1 and 6.4.4.1 sections to state that a link TRB can have the chain
bit set to 1 or 0.
The problem is that the xHCI cancellation code depends on the chain bit of
the link TRB being cleared when it's at the end of a TD, and some 0.95
xHCI hardware simply stops processing the ring when it encounters a link
TRB with the chain bit cleared.
Allow users who are testing 0.95 xHCI prototypes to set a module parameter
(link_quirk) to turn on this link TRB work around. Cancellation may not
work if the ring is stopped exactly on a link TRB with chain bit set, but
cancellation should be a relatively uncommon case.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Adds support for controllers that use 64-byte contexts. The following context
data structures are affected by this: Device, Input, Input Control, Endpoint,
and Slot. To accommodate the use of either 32 or 64-byte contexts, a Device or
Input context can only be accessed through functions which look-up and return
pointers to their contained contexts.
Signed-off-by: John Youn <johnyoun@synopsys.com>
Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Make sure the xHCI output device context is 64-byte aligned. Previous
code was using the same structure for both the output device context and
the input control context. Since the structure had 32 bytes of flags
before the device context, the output device context wouldn't be 64-byte
aligned. Define a new structure to use for the output device context and
clean up the debugging for these two structures.
The copy of the device context in the input control context does *not*
need to be 64-byte aligned.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Allocates and initializes the scratchpad buffer array (XHCI 4.20). This is an
array of 64-bit DMA addresses to scratch pages that the controller may use
during operation. The number of pages is specified in the "Max Scratchpad
Buffers" field of HCSPARAMS2. The DMA address of this array is written into
slot 0 of the DCBAA.
Signed-off-by: John Youn <johnyoun@synopsys.com>
Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This is a work around for a bug in the SuperSpeed Endpoint Companion Descriptor
parsing code. It fails in some corner cases, which means ep->ss_ep_comp may be
NULL.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The xHCI host controller can be programmed to retry a transfer a certain number
of times per endpoint before it passes back an error condition to the host
controller driver. The xHC will return an error code when the error count
transitions from 1 to 0. Programming an error count of 3 means the xHC tries
the transfer 3 times, programming it with a 1 means it tries to transfer once,
and programming it with 0 means the HW tries the transfer infinitely.
We want isochronous transfers to only be tried once, so set the error count to
one.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
There are several xHCI data structures that use two 32-bit fields to
represent a 64-bit address. Since some architectures don't support 64-bit
PCI writes, the fields need to be written in two 32-bit writes. The xHCI
specification says that if a platform is incapable of generating 64-bit
writes, software must write the low 32-bits first, then the high 32-bits.
Hardware that supports 64-bit addressing will wait for the high 32-bit
write before reading the revised value, and hardware that only supports
32-bit writes will ignore the high 32-bit write.
Previous xHCI code represented 64-bit addresses with two u32 values. This
lead to buggy code that would write the 32-bits in the wrong order, or
forget to write the upper 32-bits. Change the two u32s to one u64 and
create a function call to write all 64-bit addresses in the proper order.
This new function could be modified in the future if all platforms support
64-bit writes.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Narrow down time spent holding the xHCI spinlock so that it's only used to
protect the xHCI rings, not as mutual exclusion. Stop allocating memory
while holding the spinlock and calling xhci_alloc_virt_device() and
xhci_endpoint_init().
The USB core should have locking in it to prevent device state to be
manipulated by more than one kernel thread. E.g. you can't free a device
while you're in the middle of setting a new configuration. So removing
the locks from the sections where xhci_alloc_dev() and
xhci_reset_bandwidth() touch xHCI's representation of the device should be
OK.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
xhci-mem.c includes calls to dma_pool_alloc() and other functions defined
in linux/dmapool.h. Make sure to include that header file.
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Differentiate between SuperSpeed endpoint companion descriptor and the
wireless USB endpoint companion descriptor. Make all structure names for
this descriptor have "ss" (SuperSpeed) in them. David Vrabel asked for
this change in http://marc.info/?l=linux-usb&m=124091465109367&w=2
Reported-by: David Vrabel <david.vrabel@csr.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>