This is useful for testing RX handling of frames with bad
CRCs.
Requires driver support to actually put the packet on the
wire properly.
Signed-off-by: Ben Greear <greearb@candelatech.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This one specifies where to start MSG_PEEK-ing queue data from. When
set to negative value means that MSG_PEEK works as ususally -- peeks
from the head of the queue always.
When some bytes are peeked from queue and the peeking offset is non
negative it is moved forward so that the next peek will return next
portion of data.
When non-peeking recvmsg occurs and the peeking offset is non negative
is is moved backward so that the next peek will still peek the proper
data (i.e. the one that would have been picked if there were no non
peeking recv in between).
The offset is set using per-proto opteration to let the protocol handle
the locking issues and to check whether the peeking offset feature is
supported by the protocol the socket belongs to.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The 802.1X EAPOL handshake hostapd does requires
knowing whether the frame was ack'ed by the peer.
Currently, we fudge this pretty badly by not even
transmitting the frame as a normal data frame but
injecting it with radiotap and getting the status
out of radiotap monitor as well. This is rather
complex, confuses users (mon.wlan0 presence) and
doesn't work with all hardware.
To get rid of that hack, introduce a real wifi TX
status option for data frame transmissions.
This works similar to the existing TX timestamping
in that it reflects the SKB back to the socket's
error queue with a SCM_WIFI_STATUS cmsg that has
an int indicating ACK status (0/1).
Since it is possible that at some point we will
want to have TX timestamping and wifi status in a
single errqueue SKB (there's little point in not
doing that), redefine SO_EE_ORIGIN_TIMESTAMPING
to SO_EE_ORIGIN_TXSTATUS which can collect more
than just the timestamp; keep the old constant
as an alias of course. Currently the internal APIs
don't make that possible, but it wouldn't be hard
to split them up in a way that makes it possible.
Thanks to Neil Horman for helping me figure out
the functions that add the control messages.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Create a new socket level option to report number of queue overflows
Recently I augmented the AF_PACKET protocol to report the number of frames lost
on the socket receive queue between any two enqueued frames. This value was
exported via a SOL_PACKET level cmsg. AFter I completed that work it was
requested that this feature be generalized so that any datagram oriented socket
could make use of this option. As such I've created this patch, It creates a
new SOL_SOCKET level option called SO_RXQ_OVFL, which when enabled exports a
SOL_SOCKET level cmsg that reports the nubmer of times the sk_receive_queue
overflowed between any two given frames. It also augments the AF_PACKET
protocol to take advantage of this new feature (as it previously did not touch
sk->sk_drops, which this patch uses to record the overflow count). Tested
successfully by me.
Notes:
1) Unlike my previous patch, this patch simply records the sk_drops value, which
is not a number of drops between packets, but rather a total number of drops.
Deltas must be computed in user space.
2) While this patch currently works with datagram oriented protocols, it will
also be accepted by non-datagram oriented protocols. I'm not sure if thats
agreeable to everyone, but my argument in favor of doing so is that, for those
protocols which aren't applicable to this option, sk_drops will always be zero,
and reporting no drops on a receive queue that isn't used for those
non-participating protocols seems reasonable to me. This also saves us having
to code in a per-protocol opt in mechanism.
3) This applies cleanly to net-next assuming that commit
977750076d (my af packet cmsg patch) is reverted
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This sockopt goes in line with SO_TYPE and SO_PROTOCOL. It makes it
possible for userspace programs to pass around file descriptors — I
am referring to arguments-to-functions, but it may even work for the
fd passing over UNIX sockets — without needing to also pass the
auxiliary information (PF_INET6/IPPROTO_TCP).
Signed-off-by: Jan Engelhardt <jengelh@medozas.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Similar to SO_TYPE returning the socket type, SO_PROTOCOL allows to
retrieve the protocol used with a given socket.
I am not quite sure why we have that-many copies of socket.h, and why
the values are not the same on all arches either, but for where hex
numbers dominate, I use 0x1029 for SO_PROTOCOL as that seems to be
the next free unused number across a bunch of operating systems, or
so Google results make me want to believe. SO_PROTOCOL for others
just uses the next free Linux number, 38.
Signed-off-by: Jan Engelhardt <jengelh@medozas.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
User space can request hardware and/or software time stamping.
Reporting of the result(s) via a new control message is enabled
separately for each field in the message because some of the
fields may require additional computation and thus cause overhead.
User space can tell the different kinds of time stamps apart
and choose what suits its needs.
When a TX timestamp operation is requested, the TX skb will be cloned
and the clone will be time stamped (in hardware or software) and added
to the socket error queue of the skb, if the skb has a socket
associated with it.
The actual TX timestamp will reach userspace as a RX timestamp on the
cloned packet. If timestamping is requested and no timestamping is
done in the device driver (potentially this may use hardware
timestamping), it will be done in software after the device's
start_hard_xmit routine.
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>