[ Upstream commit cbf53074a528191df82b4dba1e3d21191102255e ]
core-api/dma-api-howto.rst states the following properties of
dma_alloc_coherent():
| The CPU virtual address and the DMA address are both guaranteed to
| be aligned to the smallest PAGE_SIZE order which is greater than or
| equal to the requested size.
However, swiotlb_alloc() passes zero for the 'alloc_align_mask'
parameter of swiotlb_find_slots() and so this property is not upheld.
Instead, allocations larger than a page are aligned to PAGE_SIZE,
Calculate the mask corresponding to the page order suitable for holding
the allocation and pass that to swiotlb_find_slots().
Fixes: e81e99bacc ("swiotlb: Support aligned swiotlb buffers")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 04867a7a33324c9c562ee7949dbcaab7aaad1fb4 ]
Commit bbb73a103f ("swiotlb: fix a braino in the alignment check fix"),
which was a fix for commit 0eee5ae102 ("swiotlb: fix slot alignment
checks"), causes a functional regression with vsock in a virtual machine
using bouncing via a restricted DMA SWIOTLB pool.
When virtio allocates the virtqueues for the vsock device using
dma_alloc_coherent(), the SWIOTLB search can return page-unaligned
allocations if 'area->index' was left unaligned by a previous allocation
from the buffer:
# Final address in brackets is the SWIOTLB address returned to the caller
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800)
This ends badly (typically buffer corruption and/or a hang) because
swiotlb_alloc() is expecting a page-aligned allocation and so blindly
returns a pointer to the 'struct page' corresponding to the allocation,
therefore double-allocating the first half (2KiB slot) of the 4KiB page.
Fix the problem by treating the allocation alignment separately to any
additional alignment requirements from the device, using the maximum
of the two as the stride to search the buffer slots and taking care
to ensure a minimum of page-alignment for buffers larger than a page.
This also resolves swiotlb allocation failures occuring due to the
inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and
resulting in alignment requirements exceeding swiotlb_max_mapping_size().
Fixes: bbb73a103f ("swiotlb: fix a braino in the alignment check fix")
Fixes: 0eee5ae102 ("swiotlb: fix slot alignment checks")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fb13b11d53875e28e7fbf0c26b288e4ea676aa9f ]
When a probe is registered at the trace_sys_enter() tracepoint, and that
probe changes the system call number, the old system call still gets
executed. This worked correctly until commit b6ec413461 ("core/entry:
Report syscall correctly for trace and audit"), which removed the
re-evaluation of the syscall number after the trace point.
Restore the original semantics by re-evaluating the system call number
after trace_sys_enter().
The performance impact of this re-evaluation is minimal because it only
takes place when a trace point is active, and compared to the actual trace
point overhead the read from a cache hot variable is negligible.
Fixes: b6ec413461 ("core/entry: Report syscall correctly for trace and audit")
Signed-off-by: André Rösti <an.roesti@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240311211704.7262-1-an.roesti@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e5d7c1916562f0e856eb3d6f569629fcd535fed2 upstream.
The .release() function does not get called until all readers of a file
descriptor are finished.
If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.
The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.
When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.
This is what the .flush() callback is for. Have the .flush() wake up the
readers.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 25125a4762835d62ba1e540c1351d447fc1f6c7c upstream.
The update_cpumask(), checks for newly requested cpumask by calling
validate_change(), which returns an error on passing an invalid set
of cpu(s). Independent of the error returned, update_cpumask() always
returns zero, suppressing the error and returning success to the user
on writing an invalid cpu range for a cpuset. Fix it by returning
retval instead, which is returned by validate_change().
Fixes: 99fe36ba6f ("cgroup/cpuset: Improve temporary cpumasks handling")
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8318d6a6362f5903edb4c904a8dd447e59be4ad1 upstream.
Since we have set the WQ_NAME_LEN to 32, decrease the name of
events_freezable_power_efficient so that it does not trip the name length
warning when the workqueue is created.
Signed-off-by: Audra Mitchell <audra@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7af9ded0c2caac0a95f33df5cb04706b0f502588 ]
Convert ring_buffer_wait() over to wait_event_interruptible(). The default
condition is to execute the wait loop inside __wait_event() just once.
This does not change the ring_buffer_wait() prototype yet, but
restructures the code so that it can take a "cond" and "data" parameter
and will call wait_event_interruptible() with a helper function as the
condition.
The helper function (rb_wait_cond) takes the cond function and data
parameters. It will first check if the buffer hit the watermark defined by
the "full" parameter and then call the passed in condition parameter. If
either are true, it returns true.
If rb_wait_cond() does not return true, it will set the appropriate
"waiters_pending" flag and returns false.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.399598519@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8145f1c35fa648da662078efab299c4467b85ad5 ]
If a reader of the ring buffer is doing a poll, and waiting for the ring
buffer to hit a specific watermark, there could be a case where it gets
into an infinite ping-pong loop.
The poll code has:
rbwork->full_waiters_pending = true;
if (!cpu_buffer->shortest_full ||
cpu_buffer->shortest_full > full)
cpu_buffer->shortest_full = full;
The writer will see full_waiters_pending and check if the ring buffer is
filled over the percentage of the shortest_full value. If it is, it calls
an irq_work to wake up all the waiters.
But the code could get into a circular loop:
CPU 0 CPU 1
----- -----
[ Poll ]
[ shortest_full = 0 ]
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
if ([ buffer percent ] > full)
break;
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
[ Wash, rinse, repeat! ]
In the poll, the shortest_full needs to be set before the
full_pending_waiters, as once that is set, the writer will compare the
current shortest_full (which is incorrect) to decide to call the irq_work,
which will reset the shortest_full (expecting the readers to update it).
Also move the setting of full_waiters_pending after the check if the ring
buffer has the required percentage filled. There's no reason to tell the
writer to wake up waiters if there are no waiters.
Link: https://lore.kernel.org/linux-trace-kernel/20240312131952.630922155@goodmis.org
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 42fb0a1e84 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 68282dd930ea38b068ce2c109d12405f40df3f93 ]
The "shortest_full" variable is used to keep track of the waiter that is
waiting for the smallest amount on the ring buffer before being woken up.
When a tasks waits on the ring buffer, it passes in a "full" value that is
a percentage. 0 means wake up on any data. 1-100 means wake up from 1% to
100% full buffer.
As all waiters are on the same wait queue, the wake up happens for the
waiter with the smallest percentage.
The problem is that the smallest_full on the cpu_buffer that stores the
smallest amount doesn't get reset when all the waiters are woken up. It
does get reset when the ring buffer is reset (echo > /sys/kernel/tracing/trace).
This means that tasks may be woken up more often then when they want to
be. Instead, have the shortest_full field get reset just before waking up
all the tasks. If the tasks wait again, they will update the shortest_full
before sleeping.
Also add locking around setting of shortest_full in the poll logic, and
change "work" to "rbwork" to match the variable name for rb_irq_work
structures that are used in other places.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.948914369@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: 2c2b0a78b3 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 8145f1c35fa6 ("ring-buffer: Fix full_waiters_pending in poll")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 761d9473e27f0c8782895013a3e7b52a37c8bcfc ]
The rb_watermark_hit() checks if the amount of data in the ring buffer is
above the percentage level passed in by the "full" variable. If it is, it
returns true.
But it also sets the "shortest_full" field of the cpu_buffer that informs
writers that it needs to call the irq_work if the amount of data on the
ring buffer is above the requested amount.
The rb_watermark_hit() always sets the shortest_full even if the amount in
the ring buffer is what it wants. As it is not going to wait, because it
has what it wants, there's no reason to set shortest_full.
Link: https://lore.kernel.org/linux-trace-kernel/20240312115641.6aa8ba08@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 42fb0a1e84 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b3594573681b53316ec0365332681a30463edfd6 ]
A task can wait on a ring buffer for when it fills up to a specific
watermark. The writer will check the minimum watermark that waiters are
waiting for and if the ring buffer is past that, it will wake up all the
waiters.
The waiters are in a wait loop, and will first check if a signal is
pending and then check if the ring buffer is at the desired level where it
should break out of the loop.
If a file that uses a ring buffer closes, and there's threads waiting on
the ring buffer, it needs to wake up those threads. To do this, a
"wait_index" was used.
Before entering the wait loop, the waiter will read the wait_index. On
wakeup, it will check if the wait_index is different than when it entered
the loop, and will exit the loop if it is. The waker will only need to
update the wait_index before waking up the waiters.
This had a couple of bugs. One trivial one and one broken by design.
The trivial bug was that the waiter checked the wait_index after the
schedule() call. It had to be checked between the prepare_to_wait() and
the schedule() which it was not.
The main bug is that the first check to set the default wait_index will
always be outside the prepare_to_wait() and the schedule(). That's because
the ring_buffer_wait() doesn't have enough context to know if it should
break out of the loop.
The loop itself is not needed, because all the callers to the
ring_buffer_wait() also has their own loop, as the callers have a better
sense of what the context is to decide whether to break out of the loop
or not.
Just have the ring_buffer_wait() block once, and if it gets woken up, exit
the function and let the callers decide what to do next.
Link: https://lore.kernel.org/all/CAHk-=whs5MdtNjzFkTyaUy=vHi=qwWgPi0JgTe6OYUYMNSRZfg@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.792933613@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad2 ("tracing: Do not busy wait in buffer splice")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 761d9473e27f ("ring-buffer: Do not set shortest_full when full target is hit")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 801410b26a0e8b8a16f7915b2b55c9528b69ca87 ]
During the handoff from earlycon to the real console driver, we have
two separate drivers operating on the same device concurrently. In the
case of the 8250 driver these concurrent accesses cause problems due
to the driver's use of banked registers, controlled by LCR.DLAB. It is
possible for the setup(), config_port(), pm() and set_mctrl() callbacks
to set DLAB, which can cause the earlycon code that intends to access
TX to instead access DLL, leading to missed output and corruption on
the serial line due to unintended modifications to the baud rate.
In particular, for setup() we have:
univ8250_console_setup()
-> serial8250_console_setup()
-> uart_set_options()
-> serial8250_set_termios()
-> serial8250_do_set_termios()
-> serial8250_do_set_divisor()
For config_port() we have:
serial8250_config_port()
-> autoconfig()
For pm() we have:
serial8250_pm()
-> serial8250_do_pm()
-> serial8250_set_sleep()
For set_mctrl() we have (for some devices):
serial8250_set_mctrl()
-> omap8250_set_mctrl()
-> __omap8250_set_mctrl()
To avoid such problems, let's make it so that the console is locked
during pre-registration calls to these callbacks, which will prevent
the earlycon driver from running concurrently.
Remove the partial solution to this problem in the 8250 driver
that locked the console only during autoconfig_irq(), as this would
result in a deadlock with the new approach. The console continues
to be locked during autoconfig_irq() because it can only be called
through uart_configure_port().
Although this patch introduces more locking than strictly necessary
(and in particular it also locks during the call to rs485_config()
which is not affected by this issue as far as I can tell), it follows
the principle that it is the responsibility of the generic console
code to manage the earlycon handoff by ensuring that earlycon and real
console driver code cannot run concurrently, and not the individual
drivers.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Link: https://linux-review.googlesource.com/id/I7cf8124dcebf8618e6b2ee543fa5b25532de55d8
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240304214350.501253-1-pcc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9bc4ffd32ef8943f5c5a42c9637cfd04771d021b ]
psci_init_system_suspend() invokes suspend_set_ops() very early during
bootup even before kernel command line for mem_sleep_default is setup.
This leads to kernel command line mem_sleep_default=s2idle not working
as mem_sleep_current gets changed to deep via suspend_set_ops() and never
changes back to s2idle.
Set mem_sleep_current along with mem_sleep_default during kernel command
line setup as default suspend mode.
Fixes: faf7ec4a92 ("drivers: firmware: psci: add system suspend support")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Maulik Shah <quic_mkshah@quicinc.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f2d5dcb48f7ba9e3ff249d58fc1fa963d374e66a ]
ilog2() rounds down, so for example when PowerPC 85xx sets CONFIG_NR_CPUS
to 24, we will only allocate 4 bits to store the number of CPUs instead of
5. Use bits_per() instead, which rounds up. Found by code inspection.
The effect of this would probably be a misaccounting when doing NUMA
balancing, so to a user, it would only be a performance penalty. The
effects may be more wide-spread; it's hard to tell.
Link: https://lkml.kernel.org/r/20231010145549.1244748-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Fixes: 90572890d2 ("mm: numa: Change page last {nid,pid} into {cpu,pid}")
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 00bf63122459e87193ee7f1bc6161c83a525569f ]
When there are heavy load, cpumap kernel threads can be busy polling
packets from redirect queues and block out RCU tasks from reaching
quiescent states. It is insufficient to just call cond_resched() in such
context. Periodically raise a consolidated RCU QS before cond_resched
fixes the problem.
Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reviewed-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Yan Zhai <yan@cloudflare.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/c17b9f1517e19d813da3ede5ed33ee18496bb5d8.1710877680.git.yan@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8f8cd6c0a43ed637e620bbe45a8d0e0c2f4d5130 ]
The synchronization here is to ensure the ordering of freeing of a module
init so that it happens before W+X checking. It is worth noting it is not
that the freeing was not happening, it is just that our sanity checkers
raced against the permission checkers which assume init memory is already
gone.
Commit 1a7b7d9220 ("modules: Use vmalloc special flag") moved calling
do_free_init() into a global workqueue instead of relying on it being
called through call_rcu(..., do_free_init), which used to allowed us call
do_free_init() asynchronously after the end of a subsequent grace period.
The move to a global workqueue broke the gaurantees for code which needed
to be sure the do_free_init() would complete with rcu_barrier(). To fix
this callers which used to rely on rcu_barrier() must now instead use
flush_work(&init_free_wq).
Without this fix, we still could encounter false positive reports in W+X
checking since the rcu_barrier() here can not ensure the ordering now.
Even worse, the rcu_barrier() can introduce significant delay. Eric
Chanudet reported that the rcu_barrier introduces ~0.1s delay on a
PREEMPT_RT kernel.
[ 0.291444] Freeing unused kernel memory: 5568K
[ 0.402442] Run /sbin/init as init process
With this fix, the above delay can be eliminated.
Link: https://lkml.kernel.org/r/20240227023546.2490667-1-changbin.du@huawei.com
Fixes: 1a7b7d9220 ("modules: Use vmalloc special flag")
Signed-off-by: Changbin Du <changbin.du@huawei.com>
Tested-by: Eric Chanudet <echanude@redhat.com>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Xiaoyi Su <suxiaoyi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d6170e4aaf86424c24ce06e355b4573daa891b17 ]
On some architectures like ARM64, PMD_SIZE can be really large in some
configurations. Like with CONFIG_ARM64_64K_PAGES=y the PMD_SIZE is
512MB.
Use 2MB * num_possible_nodes() as the size for allocations done through
the prog pack allocator. On most architectures, PMD_SIZE will be equal
to 2MB in case of 4KB pages and will be greater than 2MB for bigger page
sizes.
Fixes: ea2babac63 ("bpf: Simplify bpf_prog_pack_[size|mask]")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Closes: https://lore.kernel.org/all/7e216c88-77ee-47b8-becc-a0f780868d3c@sirena.org.uk/
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202403092219.dhgcuz2G-lkp@intel.com/
Suggested-by: Song Liu <song@kernel.org>
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Message-ID: <20240311122722.86232-1-puranjay12@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7a4b21250bf79eef26543d35bd390448646c536b ]
The stackmap code relies on roundup_pow_of_two() to compute the number
of hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code.
The commit in the fixes tag actually attempted to fix this, but the fix
did not account for the UB, so the fix only works on CPUs where an
overflow does result in a neat truncation to zero, which is not
guaranteed. Checking the value before rounding does not have this
problem.
Fixes: 6183f4d3a0 ("bpf: Check for integer overflow when using roundup_pow_of_two()")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-ID: <20240307120340.99577-4-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6787d916c2cf9850c97a0a3f73e08c43e7d973b1 ]
The hashtab code relies on roundup_pow_of_two() to compute the number of
hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code. So apply the same
fix to hashtab, by moving the overflow check to before the roundup.
Fixes: daaf427c6a ("bpf: fix arraymap NULL deref and missing overflow and zero size checks")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-3-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 281d464a34f540de166cee74b723e97ac2515ec3 ]
The devmap code allocates a number hash buckets equal to the next power
of two of the max_entries value provided when creating the map. When
rounding up to the next power of two, the 32-bit variable storing the
number of buckets can overflow, and the code checks for overflow by
checking if the truncated 32-bit value is equal to 0. However, on 32-bit
arches the rounding up itself can overflow mid-way through, because it
ends up doing a left-shift of 32 bits on an unsigned long value. If the
size of an unsigned long is four bytes, this is undefined behaviour, so
there is no guarantee that we'll end up with a nice and tidy 0-value at
the end.
Syzbot managed to turn this into a crash on arm32 by creating a
DEVMAP_HASH with max_entries > 0x80000000 and then trying to update it.
Fix this by moving the overflow check to before the rounding up
operation.
Fixes: 6f9d451ab1 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Link: https://lore.kernel.org/r/000000000000ed666a0611af6818@google.com
Reported-and-tested-by: syzbot+8cd36f6b65f3cafd400a@syzkaller.appspotmail.com
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-2-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 178c54666f9c4d2f49f2ea661d0c11b52f0ed190 ]
Currently tracing is supposed not to allow for bpf_spin_{lock,unlock}()
helper calls. This is to prevent deadlock for the following cases:
- there is a prog (prog-A) calling bpf_spin_{lock,unlock}().
- there is a tracing program (prog-B), e.g., fentry, attached
to bpf_spin_lock() and/or bpf_spin_unlock().
- prog-B calls bpf_spin_{lock,unlock}().
For such a case, when prog-A calls bpf_spin_{lock,unlock}(),
a deadlock will happen.
The related source codes are below in kernel/bpf/helpers.c:
notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
notrace is supposed to prevent fentry prog from attaching to
bpf_spin_{lock,unlock}().
But actually this is not the case and fentry prog can successfully
attached to bpf_spin_lock(). Siddharth Chintamaneni reported
the issue in [1]. The following is the macro definition for
above BPF_CALL_1:
#define BPF_CALL_x(x, name, ...) \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
{ \
return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
} \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
The notrace attribute is actually applied to the static always_inline function
____bpf_spin_{lock,unlock}(). The actual callback function
bpf_spin_{lock,unlock}() is not marked with notrace, hence
allowing fentry prog to attach to two helpers, and this
may cause the above mentioned deadlock. Siddharth Chintamaneni
actually has a reproducer in [2].
To fix the issue, a new macro NOTRACE_BPF_CALL_1 is introduced which
will add notrace attribute to the original function instead of
the hidden always_inline function and this fixed the problem.
[1] https://lore.kernel.org/bpf/CAE5sdEigPnoGrzN8WU7Tx-h-iFuMZgW06qp0KHWtpvoXxf1OAQ@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAE5sdEg6yUc_Jz50AnUXEEUh6O73yQ1Z6NV2srJnef0ZrQkZew@mail.gmail.com/
Fixes: d83525ca62 ("bpf: introduce bpf_spin_lock")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20240207070102.335167-1-yonghong.song@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d04d5882cd678b898a9d7c5aee6afbe9e6e77fcd ]
The commit d51507098f ("printk: disable optimistic spin
during panic") added checks to avoid becoming a console waiter
if a panic is in progress.
However, the transition to panic can occur while there is
already a waiter. The current owner should not pass the lock to
the waiter because it might get stopped or blocked anytime.
Also the panic context might pass the console lock owner to an
already stopped waiter by mistake. It might happen when
console_flush_on_panic() ignores the current lock owner, for
example:
CPU0 CPU1
---- ----
console_lock_spinning_enable()
console_trylock_spinning()
[CPU1 now console waiter]
NMI: panic()
panic_other_cpus_shutdown()
[stopped as console waiter]
console_flush_on_panic()
console_lock_spinning_enable()
[print 1 record]
console_lock_spinning_disable_and_check()
[handover to stopped CPU1]
This results in panic() not flushing the panic messages.
Fix these problems by disabling all spinning operations
completely during panic().
Another advantage is that it prevents possible deadlocks caused
by "console_owner_lock". The panic() context does not need to
take it any longer. The lockless checks are safe because the
functions become NOPs when they see the panic in progress. All
operations manipulating the state are still synchronized by the
lock even when non-panic CPUs would notice the panic
synchronously.
The current owner might stay spinning. But non-panic() CPUs
would get stopped anyway and the panic context will never start
spinning.
Fixes: dbdda842fe ("printk: Add console owner and waiter logic to load balance console writes")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20240207134103.1357162-12-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 23d04d8c6b8ec339057264659b7834027f3e6a63 ]
When picking a CPU on task wakeup, select_idle_core() has to take
into account the scheduling domain where the function looks for the CPU.
This is because the "isolcpus" kernel command line option can remove CPUs
from the domain to isolate them from other SMT siblings.
This change replaces the set of CPUs allowed to run the task from
p->cpus_ptr by the intersection of p->cpus_ptr and sched_domain_span(sd)
which is stored in the 'cpus' argument provided by select_idle_cpu().
Fixes: 9fe1f127b9 ("sched/fair: Merge select_idle_core/cpu()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240110131707.437301-2-keisuke.nishimura@inria.fr
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8aeaffef8c6eceab0e1498486fdd4f3dc3b7066c ]
When picking a CPU on task wakeup, select_idle_smt() has to take
into account the scheduling domain of @target. This is because the
"isolcpus" kernel command line option can remove CPUs from the domain to
isolate them from other SMT siblings.
This fix checks if the candidate CPU is in the target scheduling domain.
Commit:
df3cb4ea1f ("sched/fair: Fix wrong cpu selecting from isolated domain")
... originally introduced this fix by adding the check of the scheduling
domain in the loop.
However, commit:
3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")
... accidentally removed the check. Bring it back.
Fixes: 3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240110131707.437301-1-keisuke.nishimura@inria.fr
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 14274d0bd31b4debf28284604589f596ad2e99f2 ]
So far, get_device_system_crosststamp() unconditionally passes
system_counterval.cycles to timekeeping_cycles_to_ns(). But when
interpolating system time (do_interp == true), system_counterval.cycles is
before tkr_mono.cycle_last, contrary to the timekeeping_cycles_to_ns()
expectations.
On x86, CONFIG_CLOCKSOURCE_VALIDATE_LAST_CYCLE will mitigate on
interpolating, setting delta to 0. With delta == 0, xtstamp->sys_monoraw
and xtstamp->sys_realtime are then set to the last update time, as
implicitly expected by adjust_historical_crosststamp(). On other
architectures, the resulting nonsense xtstamp->sys_monoraw and
xtstamp->sys_realtime corrupt the xtstamp (ts) adjustment in
adjust_historical_crosststamp().
Fix this by deriving xtstamp->sys_monoraw and xtstamp->sys_realtime from
the last update time when interpolating, by using the local variable
"cycles". The local variable already has the right value when
interpolating, unlike system_counterval.cycles.
Fixes: 2c756feb18 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-4-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 87a41130881995f82f7adbafbfeddaebfb35f0ef ]
The cycle_between() helper checks if parameter test is in the open interval
(before, after). Colloquially speaking, this also applies to the counter
wrap-around special case before > after. get_device_system_crosststamp()
currently uses cycle_between() at the first call site to decide whether to
interpolate for older counter readings.
get_device_system_crosststamp() has the following problem with
cycle_between() testing against an open interval: Assume that, by chance,
cycles == tk->tkr_mono.cycle_last (in the following, "cycle_last" for
brevity). Then, cycle_between() at the first call site, with effective
argument values cycle_between(cycle_last, cycles, now), returns false,
enabling interpolation. During interpolation,
get_device_system_crosststamp() will then call cycle_between() at the
second call site (if a history_begin was supplied). The effective argument
values are cycle_between(history_begin->cycles, cycles, cycles), since
system_counterval.cycles == interval_start == cycles, per the assumption.
Due to the test against the open interval, cycle_between() returns false
again. This causes get_device_system_crosststamp() to return -EINVAL.
This failure should be avoided, since get_device_system_crosststamp() works
both when cycles follows cycle_last (no interpolation), and when cycles
precedes cycle_last (interpolation). For the case cycles == cycle_last,
interpolation is actually unneeded.
Fix this by changing cycle_between() into timestamp_in_interval(), which
now checks against the closed interval, rather than the open interval.
This changes the get_device_system_crosststamp() behavior for three corner
cases:
1. Bypass interpolation in the case cycles == tk->tkr_mono.cycle_last,
fixing the problem described above.
2. At the first timestamp_in_interval() call site, cycles == now no longer
causes failure.
3. At the second timestamp_in_interval() call site, history_begin->cycles
== system_counterval.cycles no longer causes failure.
adjust_historical_crosststamp() also works for this corner case,
where partial_history_cycles == total_history_cycles.
These behavioral changes should not cause any problems.
Fixes: 2c756feb18 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231218073849.35294-3-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 84dccadd3e2a3f1a373826ad71e5ced5e76b0c00 ]
cycle_between() decides whether get_device_system_crosststamp() will
interpolate for older counter readings.
cycle_between() yields wrong results for a counter wrap-around where after
< before < test, and for the case after < test < before.
Fix the comparison logic.
Fixes: 2c756feb18 ("time: Add history to cross timestamp interface supporting slower devices")
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20231218073849.35294-2-peter.hilber@opensynergy.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 133e267ef4a26d19c93996a874714e9f3f8c70aa ]
'days' is a s64 (from div_s64), and so should use a %lld specifier.
This was found by extending KUnit's assertion macros to use gcc's
__printf attribute.
Fixes: 2760105516 ("time: Improve performance of time64_to_tm()")
Signed-off-by: David Gow <davidgow@google.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Justin Stitt <justinstitt@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e7539ffc9a770f36bacedcf0fbfb4bf2f244f4a5 ]
Just like is done for the kworker performing nodes initialization,
gracefully handle the possible allocation failure of the RCU expedited
grace period main kworker.
While at it perform a rename of the related checking functions to better
reflect the expedited specifics.
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes: 9621fbee44 ("rcu: Move expedited grace period (GP) work to RT kthread_worker")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a636c5e6f8fc34be520277e69c7c6ee1d4fc1d17 ]
Under CONFIG_RCU_EXP_KTHREAD=y, the nodes initialization for expedited
grace periods is queued to a kworker. However if the allocation of that
kworker failed, the nodes initialization is performed synchronously by
the caller instead.
Now the check for kworker initialization failure relies on the kworker
pointer to be NULL while its value might actually encapsulate an
allocation failure error.
Make sure to handle this case.
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes: 9621fbee44 ("rcu: Move expedited grace period (GP) work to RT kthread_worker")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 15930da42f8981dc42c19038042947b475b19f47 ]
For wq_update_node_max_active(), @off_cpu of -1 indicates that no CPU is
going down. The function was incorrectly calling cpumask_test_cpu() with -1
CPU leading to oopses like the following on some archs:
Unable to handle kernel paging request at virtual address ffff0002100296e0
..
pc : wq_update_node_max_active+0x50/0x1fc
lr : wq_update_node_max_active+0x1f0/0x1fc
...
Call trace:
wq_update_node_max_active+0x50/0x1fc
apply_wqattrs_commit+0xf0/0x114
apply_workqueue_attrs_locked+0x58/0xa0
alloc_workqueue+0x5ac/0x774
workqueue_init_early+0x460/0x540
start_kernel+0x258/0x684
__primary_switched+0xb8/0xc0
Code: 9100a273 35000d01 53067f00 d0016dc1 (f8607a60)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Attempted to kill the idle task!
---[ end Kernel panic - not syncing: Attempted to kill the idle task! ]---
Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: http://lkml.kernel.org/r/91eacde0-df99-4d5c-a980-91046f66e612@samsung.com
Fixes: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5797b1c18919cd9c289ded7954383e499f729ce0 ]
A pool_workqueue (pwq) represents the connection between a workqueue and a
worker_pool. One of the roles that a pwq plays is enforcement of the
max_active concurrency limit. Before 636b927eba ("workqueue: Make unbound
workqueues to use per-cpu pool_workqueues"), there was one pwq per each CPU
for per-cpu workqueues and per each NUMA node for unbound workqueues, which
was a natural result of per-cpu workqueues being served by per-cpu pools and
unbound by per-NUMA pools.
In terms of max_active enforcement, this was, while not perfect, workable.
For per-cpu workqueues, it was fine. For unbound, it wasn't great in that
NUMA machines would get max_active that's multiplied by the number of nodes
but didn't cause huge problems because NUMA machines are relatively rare and
the node count is usually pretty low.
However, cache layouts are more complex now and sharing a worker pool across
a whole node didn't really work well for unbound workqueues. Thus, a series
of commits culminating on 8639ecebc9 ("workqueue: Make unbound workqueues
to use per-cpu pool_workqueues") implemented more flexible affinity
mechanism for unbound workqueues which enables using e.g. last-level-cache
aligned pools. In the process, 636b927eba ("workqueue: Make unbound
workqueues to use per-cpu pool_workqueues") made unbound workqueues use
per-cpu pwqs like per-cpu workqueues.
While the change was necessary to enable more flexible affinity scopes, this
came with the side effect of blowing up the effective max_active for unbound
workqueues. Before, the effective max_active for unbound workqueues was
multiplied by the number of nodes. After, by the number of CPUs.
636b927eba ("workqueue: Make unbound workqueues to use per-cpu
pool_workqueues") claims that this should generally be okay. It is okay for
users which self-regulates concurrency level which are the vast majority;
however, there are enough use cases which actually depend on max_active to
prevent the level of concurrency from going bonkers including several IO
handling workqueues that can issue a work item for each in-flight IO. With
targeted benchmarks, the misbehavior can easily be exposed as reported in
http://lkml.kernel.org/r/dbu6wiwu3sdhmhikb2w6lns7b27gbobfavhjj57kwi2quafgwl@htjcc5oikcr3.
Unfortunately, there is no way to express what these use cases need using
per-cpu max_active. A CPU may issue most of in-flight IOs, so we don't want
to set max_active too low but as soon as we increase max_active a bit, we
can end up with unreasonable number of in-flight work items when many CPUs
issue IOs at the same time. ie. The acceptable lowest max_active is higher
than the acceptable highest max_active.
Ideally, max_active for an unbound workqueue should be system-wide so that
the users can regulate the total level of concurrency regardless of node and
cache layout. The reasons workqueue hasn't implemented that yet are:
- One max_active enforcement decouples from pool boundaires, chaining
execution after a work item finishes requires inter-pool operations which
would require lock dancing, which is nasty.
- Sharing a single nr_active count across the whole system can be pretty
expensive on NUMA machines.
- Per-pwq enforcement had been more or less okay while we were using
per-node pools.
It looks like we no longer can avoid decoupling max_active enforcement from
pool boundaries. This patch implements system-wide nr_active mechanism with
the following design characteristics:
- To avoid sharing a single counter across multiple nodes, the configured
max_active is split across nodes according to the proportion of each
workqueue's online effective CPUs per node. e.g. A node with twice more
online effective CPUs will get twice higher portion of max_active.
- Workqueue used to be able to process a chain of interdependent work items
which is as long as max_active. We can't do this anymore as max_active is
distributed across the nodes. Instead, a new parameter min_active is
introduced which determines the minimum level of concurrency within a node
regardless of how max_active distribution comes out to be.
It is set to the smaller of max_active and WQ_DFL_MIN_ACTIVE which is 8.
This can lead to higher effective max_weight than configured and also
deadlocks if a workqueue was depending on being able to handle chains of
interdependent work items that are longer than 8.
I believe these should be fine given that the number of CPUs in each NUMA
node is usually higher than 8 and work item chain longer than 8 is pretty
unlikely. However, if these assumptions turn out to be wrong, we'll need
to add an interface to adjust min_active.
- Each unbound wq has an array of struct wq_node_nr_active which tracks
per-node nr_active. When its pwq wants to run a work item, it has to
obtain the matching node's nr_active. If over the node's max_active, the
pwq is queued on wq_node_nr_active->pending_pwqs. As work items finish,
the completion path round-robins the pending pwqs activating the first
inactive work item of each, which involves some pool lock dancing and
kicking other pools. It's not the simplest code but doesn't look too bad.
v4: - wq_adjust_max_active() updated to invoke wq_update_node_max_active().
- wq_adjust_max_active() is now protected by wq->mutex instead of
wq_pool_mutex.
v3: - wq_node_max_active() used to calculate per-node max_active on the fly
based on system-wide CPU online states. Lai pointed out that this can
lead to skewed distributions for workqueues with restricted cpumasks.
Update the max_active distribution to use per-workqueue effective
online CPU counts instead of system-wide and cache the calculation
results in node_nr_active->max.
v2: - wq->min/max_active now uses WRITE/READ_ONCE() as suggested by Lai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Naohiro Aota <Naohiro.Aota@wdc.com>
Link: http://lkml.kernel.org/r/dbu6wiwu3sdhmhikb2w6lns7b27gbobfavhjj57kwi2quafgwl@htjcc5oikcr3
Fixes: 636b927eba ("workqueue: Make unbound workqueues to use per-cpu pool_workqueues")
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 91ccc6e7233bb10a9c176aa4cc70d6f432a441a5 ]
Currently, for both percpu and unbound workqueues, max_active applies
per-cpu, which is a recent change for unbound workqueues. The change for
unbound workqueues was a significant departure from the previous behavior of
per-node application. It made some use cases create undesirable number of
concurrent work items and left no good way of fixing them. To address the
problem, workqueue is implementing a NUMA node segmented global nr_active
mechanism, which will be explained further in the next patch.
As a preparation, this patch introduces struct wq_node_nr_active. It's a
data structured allocated for each workqueue and NUMA node pair and
currently only tracks the workqueue's number of active work items on the
node. This is split out from the next patch to make it easier to understand
and review.
Note that there is an extra wq_node_nr_active allocated for the invalid node
nr_node_ids which is used to track nr_active for pools which don't have NUMA
node associated such as the default fallback system-wide pool.
This doesn't cause any behavior changes visible to userland yet. The next
patch will expand to implement the control mechanism on top.
v4: - Fixed out-of-bound access when freeing per-cpu workqueues.
v3: - Use flexible array for wq->node_nr_active as suggested by Lai.
v2: - wq->max_active now uses WRITE/READ_ONCE() as suggested by Lai.
- Lai pointed out that pwq_tryinc_nr_active() incorrectly dropped
pwq->max_active check. Restored. As the next patch replaces the
max_active enforcement mechanism, this doesn't change the end result.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9f66cff212bb3c1cd25996aaa0dfd0c9e9d8baab ]
wq->cpu_pwq is RCU protected but wq->dfl_pwq isn't. This is okay because
currently wq->dfl_pwq is used only accessed to install it into wq->cpu_pwq
which doesn't require RCU access. However, we want to be able to access
wq->dfl_pwq under RCU in the future to access its __pod_cpumask and the code
can be made easier to read by making the two pwq fields behave in the same
way.
- Make wq->dfl_pwq RCU protected.
- Add unbound_pwq_slot() and unbound_pwq() which can access both ->dfl_pwq
and ->cpu_pwq. The former returns the double pointer that can be used
access and update the pwqs. The latter performs locking check and
dereferences the double pointer.
- pwq accesses and updates are converted to use unbound_pwq[_slot]().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c5404d4e6df6faba1007544b5f4e62c7c14416dd ]
wq_adjust_max_active() needs to activate work items after max_active is
increased. Previously, it did that by visiting each pwq once activating all
that could be activated. While this makes sense with per-pwq nr_active,
nr_active will be shared across multiple pwqs for unbound wqs. Then, we'd
want to round-robin through pwqs to be fairer.
In preparation, this patch makes wq_adjust_max_active() round-robin pwqs
while activating. While the activation ordering changes, this shouldn't
cause user-noticeable behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1c270b79ce0b8290f146255ea9057243f6dd3c17 ]
__queue_work(), pwq_dec_nr_in_flight() and wq_adjust_max_active() were
open-coding nr_active handling, which is fine given that the operations are
trivial. However, the planned unbound nr_active update will make them more
complicated, so let's move them into helpers.
- pwq_tryinc_nr_active() is added. It increments nr_active if under
max_active limit and return a boolean indicating whether inc was
successful. Note that the function is structured to accommodate future
changes. __queue_work() is updated to use the new helper.
- pwq_activate_first_inactive() is updated to use pwq_tryinc_nr_active() and
thus no longer assumes that nr_active is under max_active and returns a
boolean to indicate whether a work item has been activated.
- wq_adjust_max_active() no longer tests directly whether a work item can be
activated. Instead, it's updated to use the return value of
pwq_activate_first_inactive() to tell whether a work item has been
activated.
- nr_active decrement and activating the first inactive work item is
factored into pwq_dec_nr_active().
v3: - WARN_ON_ONCE(!WORK_STRUCT_INACTIVE) added to __pwq_activate_work() as
now we're calling the function unconditionally from
pwq_activate_first_inactive().
v2: - wq->max_active now uses WRITE/READ_ONCE() as suggested by Lai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4c6380305d21e36581b451f7337a36c93b64e050 ]
To prepare for unbound nr_active handling improvements, move work activation
part of pwq_activate_inactive_work() into __pwq_activate_work() and add
pwq_activate_work() which tests WORK_STRUCT_INACTIVE and updates nr_active.
pwq_activate_first_inactive() and try_to_grab_pending() are updated to use
pwq_activate_work(). The latter conversion is functionally identical. For
the former, this conversion adds an unnecessary WORK_STRUCT_INACTIVE
testing. This is temporary and will be removed by the next patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a045a272d887575da17ad86d6573e82871b50c27 ]
max_active is a workqueue-wide setting and the configured value is stored in
wq->saved_max_active; however, the effective value was stored in
pwq->max_active. While this is harmless, it makes max_active update process
more complicated and gets in the way of the planned max_active semantic
updates for unbound workqueues.
This patches moves pwq->max_active to wq->max_active. This simplifies the
code and makes freezing and noop max_active updates cheaper too. No
user-visible behavior change is intended.
As wq->max_active is updated while holding wq mutex but read without any
locking, it now uses WRITE/READ_ONCE(). A new locking locking rule WO is
added for it.
v2: wq->max_active now uses WRITE/READ_ONCE() as suggested by Lai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 31c89007285d365aa36f71d8fb0701581c770a27 ]
Currently we limit the size of the workqueue name to 24 characters due to
commit ecf6881ff3 ("workqueue: make workqueue->name[] fixed len")
Increase the size to 32 characters and print a warning in the event
the requested name is larger than the limit of 32 characters.
Signed-off-by: Audra Mitchell <audra@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Stable-dep-of: 5797b1c18919 ("workqueue: Implement system-wide nr_active enforcement for unbound workqueues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2487007aa3b9fafbd2cb14068f49791ce1d7ede5 ]
When running an XDP program that is attached to a cpumap entry, we don't
initialise the xdp_rxq_info data structure being used in the xdp_buff
that backs the XDP program invocation. Tobias noticed that this leads to
random values being returned as the xdp_md->rx_queue_index value for XDP
programs running in a cpumap.
This means we're basically returning the contents of the uninitialised
memory, which is bad. Fix this by zero-initialising the rxq data
structure before running the XDP program.
Fixes: 9216477449 ("bpf: cpumap: Add the possibility to attach an eBPF program to cpumap")
Reported-by: Tobias Böhm <tobias@aibor.de>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20240305213132.11955-1-toke@redhat.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e9a8e5a587ca55fec6c58e4881742705d45bee54 ]
When comparing current and cached states verifier should consider
bpf_func_state->callback_depth. Current state cannot be pruned against
cached state, when current states has more iterations left compared to
cached state. Current state has more iterations left when it's
callback_depth is smaller.
Below is an example illustrating this bug, minimized from mailing list
discussion [0] (assume that BPF_F_TEST_STATE_FREQ is set).
The example is not a safe program: if loop_cb point (1) is followed by
loop_cb point (2), then division by zero is possible at point (4).
struct ctx {
__u64 a;
__u64 b;
__u64 c;
};
static void loop_cb(int i, struct ctx *ctx)
{
/* assume that generated code is "fallthrough-first":
* if ... == 1 goto
* if ... == 2 goto
* <default>
*/
switch (bpf_get_prandom_u32()) {
case 1: /* 1 */ ctx->a = 42; return 0; break;
case 2: /* 2 */ ctx->b = 42; return 0; break;
default: /* 3 */ ctx->c = 42; return 0; break;
}
}
SEC("tc")
__failure
__flag(BPF_F_TEST_STATE_FREQ)
int test(struct __sk_buff *skb)
{
struct ctx ctx = { 7, 7, 7 };
bpf_loop(2, loop_cb, &ctx, 0); /* 0 */
/* assume generated checks are in-order: .a first */
if (ctx.a == 42 && ctx.b == 42 && ctx.c == 7)
asm volatile("r0 /= 0;":::"r0"); /* 4 */
return 0;
}
Prior to this commit verifier built the following checkpoint tree for
this example:
.------------------------------------- Checkpoint / State name
| .-------------------------------- Code point number
| | .---------------------------- Stack state {ctx.a,ctx.b,ctx.c}
| | | .------------------- Callback depth in frame #0
v v v v
- (0) {7P,7P,7},depth=0
- (3) {7P,7P,7},depth=1
- (0) {7P,7P,42},depth=1
- (3) {7P,7,42},depth=2
- (0) {7P,7,42},depth=2 loop terminates because of depth limit
- (4) {7P,7,42},depth=0 predicted false, ctx.a marked precise
- (6) exit
(a) - (2) {7P,7,42},depth=2
- (0) {7P,42,42},depth=2 loop terminates because of depth limit
- (4) {7P,42,42},depth=0 predicted false, ctx.a marked precise
- (6) exit
(b) - (1) {7P,7P,42},depth=2
- (0) {42P,7P,42},depth=2 loop terminates because of depth limit
- (4) {42P,7P,42},depth=0 predicted false, ctx.{a,b} marked precise
- (6) exit
- (2) {7P,7,7},depth=1 considered safe, pruned using checkpoint (a)
(c) - (1) {7P,7P,7},depth=1 considered safe, pruned using checkpoint (b)
Here checkpoint (b) has callback_depth of 2, meaning that it would
never reach state {42,42,7}.
While checkpoint (c) has callback_depth of 1, and thus
could yet explore the state {42,42,7} if not pruned prematurely.
This commit makes forbids such premature pruning,
allowing verifier to explore states sub-tree starting at (c):
(c) - (1) {7,7,7P},depth=1
- (0) {42P,7,7P},depth=1
...
- (2) {42,7,7},depth=2
- (0) {42,42,7},depth=2 loop terminates because of depth limit
- (4) {42,42,7},depth=0 predicted true, ctx.{a,b,c} marked precise
- (5) division by zero
[0] https://lore.kernel.org/bpf/9b251840-7cb8-4d17-bd23-1fc8071d8eef@linux.dev/
Fixes: bb124da69c47 ("bpf: keep track of max number of bpf_loop callback iterations")
Suggested-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240222154121.6991-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0281b919e175bb9c3128bd3872ac2903e9436e3f ]
The following race is possible between bpf_timer_cancel_and_free
and bpf_timer_cancel. It will lead a UAF on the timer->timer.
bpf_timer_cancel();
spin_lock();
t = timer->time;
spin_unlock();
bpf_timer_cancel_and_free();
spin_lock();
t = timer->timer;
timer->timer = NULL;
spin_unlock();
hrtimer_cancel(&t->timer);
kfree(t);
/* UAF on t */
hrtimer_cancel(&t->timer);
In bpf_timer_cancel_and_free, this patch frees the timer->timer
after a rcu grace period. This requires a rcu_head addition
to the "struct bpf_hrtimer". Another kfree(t) happens in bpf_timer_init,
this does not need a kfree_rcu because it is still under the
spin_lock and timer->timer has not been visible by others yet.
In bpf_timer_cancel, rcu_read_lock() is added because this helper
can be used in a non rcu critical section context (e.g. from
a sleepable bpf prog). Other timer->timer usages in helpers.c
have been audited, bpf_timer_cancel() is the only place where
timer->timer is used outside of the spin_lock.
Another solution considered is to mark a t->flag in bpf_timer_cancel
and clear it after hrtimer_cancel() is done. In bpf_timer_cancel_and_free,
it busy waits for the flag to be cleared before kfree(t). This patch
goes with a straight forward solution and frees timer->timer after
a rcu grace period.
Fixes: b00628b1c7 ("bpf: Introduce bpf timers.")
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/bpf/20240215211218.990808-1-martin.lau@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 079be8fc630943d9fc70a97807feb73d169ee3fc upstream.
The validation of the value written to sched_rt_period_us was broken
because:
- the sysclt_sched_rt_period is declared as unsigned int
- parsed by proc_do_intvec()
- the range is asserted after the value parsed by proc_do_intvec()
Because of this negative values written to the file were written into a
unsigned integer that were later on interpreted as large positive
integers which did passed the check:
if (sysclt_sched_rt_period <= 0)
return EINVAL;
This commit fixes the parsing by setting explicit range for both
perid_us and runtime_us into the sched_rt_sysctls table and processes
the values with proc_dointvec_minmax() instead.
Alternatively if we wanted to use full range of unsigned int for the
period value we would have to split the proc_handler and use
proc_douintvec() for it however even the
Documentation/scheduller/sched-rt-group.rst describes the range as 1 to
INT_MAX.
As far as I can tell the only problem this causes is that the sysctl
file allows writing negative values which when read back may confuse
userspace.
There is also a LTP test being submitted for these sysctl files at:
http://patchwork.ozlabs.org/project/ltp/patch/20230901144433.2526-1-chrubis@suse.cz/
Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231002115553.3007-2-chrubis@suse.cz
Cc: Mahmoud Adam <mngyadam@amazon.com>
Signed-off-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5264a2f4bb3baf712e19f1f053caaa8d7d3afa2e upstream.
The eventfs_create_dir() function returns error pointers, it never returns
NULL. Update the check to reflect that.
Link: https://lore.kernel.org/linux-trace-kernel/ff641474-84e2-46a7-9d7a-62b251a1050c@moroto.mountain
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 5790b1fb3d67 ("eventfs: Remove eventfs_file and just use eventfs_inode")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5ddd8baa4857709b4e5d84b376d735152851955b upstream.
The system_callback() function in trace_events.c is only used within that
file. The "static" annotation was missed.
Fixes: 5790b1fb3d672 ("eventfs: Remove eventfs_file and just use eventfs_inode")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202310051743.y9EobbUr-lkp@intel.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 944d5fe50f3f03daacfea16300e656a1691c4a23 upstream.
On some systems, sys_membarrier can be very expensive, causing overall
slowdowns for everything. So put a lock on the path in order to
serialize the accesses to prevent the ability for this to be called at
too high of a frequency and saturate the machine.
Reviewed-and-tested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Fixes: 22e4ebb975 ("membarrier: Provide expedited private command")
Fixes: c5f58bd58f ("membarrier: Provide GLOBAL_EXPEDITED command")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2819f23ac12ce93ff79ca7a54597df9a4a1f6331 upstream.
The update to removing the eventfs_file changed the way the events top
level directory was handled. Instead of returning a dentry, it now returns
the eventfs_inode. In this changed, the removing of the events top level
directory is not much different than removing any of the other
directories. Because of this, the removal just called eventfs_remove_dir()
instead of eventfs_remove_events_dir().
Although eventfs_remove_dir() does the clean up, it misses out on the
dget() of the ei->dentry done in eventfs_create_events_dir(). It makes
more sense to match eventfs_create_events_dir() with a specific function
eventfs_remove_events_dir() and this specific function can then perform
the dput() to the dentry that had the dget() when it was created.
Fixes: 5790b1fb3d67 ("eventfs: Remove eventfs_file and just use eventfs_inode")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202310051743.y9EobbUr-lkp@intel.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5790b1fb3d672d9a1fe3881a7181dfdbe741568f upstream.
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bdbddb109c75365d22ec4826f480c5e75869e1cb upstream.
Commit a8b9cf62ade1 ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by
default") attempted to fix an issue with direct trampolines on x86, see
its description for details. However, it wrongly referenced the
HAVE_DYNAMIC_FTRACE_WITH_REGS config option and the problem is still
present.
Add the missing "CONFIG_" prefix for the logic to work as intended.
Link: https://lore.kernel.org/linux-trace-kernel/20240213132434.22537-1-petr.pavlu@suse.com
Fixes: a8b9cf62ade1 ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by default")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a8b9cf62ade1bf17261a979fc97e40c2d7842353 upstream.
The commit 60c8971899 ("ftrace: Make DIRECT_CALLS work WITH_ARGS
and !WITH_REGS") changed DIRECT_CALLS to use SAVE_ARGS when there
are multiple ftrace_ops at the same function, but since the x86 only
support to jump to direct_call from ftrace_regs_caller, when we set
the function tracer on the same target function on x86, ftrace-direct
does not work as below (this actually works on arm64.)
At first, insmod ftrace-direct.ko to put a direct_call on
'wake_up_process()'.
# insmod kernel/samples/ftrace/ftrace-direct.ko
# less trace
...
<idle>-0 [006] ..s1. 564.686958: my_direct_func: waking up rcu_preempt-17
<idle>-0 [007] ..s1. 564.687836: my_direct_func: waking up kcompactd0-63
<idle>-0 [006] ..s1. 564.690926: my_direct_func: waking up rcu_preempt-17
<idle>-0 [006] ..s1. 564.696872: my_direct_func: waking up rcu_preempt-17
<idle>-0 [007] ..s1. 565.191982: my_direct_func: waking up kcompactd0-63
Setup a function filter to the 'wake_up_process' too, and enable it.
# cd /sys/kernel/tracing/
# echo wake_up_process > set_ftrace_filter
# echo function > current_tracer
# less trace
...
<idle>-0 [006] ..s3. 686.180972: wake_up_process <-call_timer_fn
<idle>-0 [006] ..s3. 686.186919: wake_up_process <-call_timer_fn
<idle>-0 [002] ..s3. 686.264049: wake_up_process <-call_timer_fn
<idle>-0 [002] d.h6. 686.515216: wake_up_process <-kick_pool
<idle>-0 [002] d.h6. 686.691386: wake_up_process <-kick_pool
Then, only function tracer is shown on x86.
But if you enable 'kprobe on ftrace' event (which uses SAVE_REGS flag)
on the same function, it is shown again.
# echo 'p wake_up_process' >> dynamic_events
# echo 1 > events/kprobes/p_wake_up_process_0/enable
# echo > trace
# less trace
...
<idle>-0 [006] ..s2. 2710.345919: p_wake_up_process_0: (wake_up_process+0x4/0x20)
<idle>-0 [006] ..s3. 2710.345923: wake_up_process <-call_timer_fn
<idle>-0 [006] ..s1. 2710.345928: my_direct_func: waking up rcu_preempt-17
<idle>-0 [006] ..s2. 2710.349931: p_wake_up_process_0: (wake_up_process+0x4/0x20)
<idle>-0 [006] ..s3. 2710.349934: wake_up_process <-call_timer_fn
<idle>-0 [006] ..s1. 2710.349937: my_direct_func: waking up rcu_preempt-17
To fix this issue, use SAVE_REGS flag for multiple ftrace_ops flag of
direct_call by default.
Link: https://lore.kernel.org/linux-trace-kernel/170484558617.178953.1590516949390270842.stgit@devnote2
Fixes: 60c8971899 ("ftrace: Make DIRECT_CALLS work WITH_ARGS and !WITH_REGS")
Cc: stable@vger.kernel.org
Cc: Florent Revest <revest@chromium.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 66bbea9ed6446b8471d365a22734dc00556c4785 upstream.
The return type for ring_buffer_poll_wait() is __poll_t. This is behind
the scenes an unsigned where we can set event bits. In case of a
non-allocated CPU, we do return instead -EINVAL (0xffffffea). Lucky us,
this ends up setting few error bits (EPOLLERR | EPOLLHUP | EPOLLNVAL), so
user-space at least is aware something went wrong.
Nonetheless, this is an incorrect code. Replace that -EINVAL with a
proper EPOLLERR to clean that output. As this doesn't change the
behaviour, there's no need to treat this change as a bug fix.
Link: https://lore.kernel.org/linux-trace-kernel/20240131140955.3322792-1-vdonnefort@google.com
Cc: stable@vger.kernel.org
Fixes: 6721cb6002 ("ring-buffer: Do not poll non allocated cpu buffers")
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aac8a59537dfc704ff344f1aacfd143c089ee20f upstream.
This reverts commit ca10d851b9.
The commit allowed workqueue_apply_unbound_cpumask() to clear __WQ_ORDERED
on now removed implicitly ordered workqueues. This was incorrect in that
system-wide config change shouldn't break ordering properties of all
workqueues. The reason why apply_workqueue_attrs() path was allowed to do so
was because it was targeting the specific workqueue - either the workqueue
had WQ_SYSFS set or the workqueue user specifically tried to change
max_active, both of which indicate that the workqueue doesn't need to be
ordered.
The implicitly ordered workqueue promotion was removed by the previous
commit 3bc1e711c26b ("workqueue: Don't implicitly make UNBOUND workqueues w/
@max_active==1 ordered"). However, it didn't update this path and broke
build. Let's revert the commit which was incorrect in the first place which
also fixes build.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 3bc1e711c26b ("workqueue: Don't implicitly make UNBOUND workqueues w/ @max_active==1 ordered")
Fixes: ca10d851b9 ("workqueue: Override implicit ordered attribute in workqueue_apply_unbound_cpumask()")
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9704669c386f9bbfef2e002e7e690c56b7dcf5de upstream.
Fix to search a field from the structure which has anonymous union
correctly.
Since the reference `type` pointer was updated in the loop, the search
loop suddenly aborted where it hits an anonymous union. Thus it can not
find the field after the anonymous union. This avoids updating the
cursor `type` pointer in the loop.
Link: https://lore.kernel.org/all/170791694361.389532.10047514554799419688.stgit@devnote2/
Fixes: 302db0f5b3 ("tracing/probes: Add a function to search a member of a struct/union")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9a571c1e275cedacd48c66a6bddd0c23f1dffdbf upstream.
Since the BTF type setting updates probe_arg::type, the type size
calculation and setting print-fmt should be done after that.
Without this fix, the argument size and print-fmt can be wrong.
Link: https://lore.kernel.org/all/170602218196.215583.6417859469540955777.stgit@devnote2/
Fixes: b576e09701 ("tracing/probes: Support function parameters if BTF is available")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8c427cc2fa73684ea140999e121b7b6c1c717632 upstream.
Fix to show a parse error for bad type (non-string) for $comm/$COMM and
immediate-string. With this fix, error_log file shows appropriate error
message as below.
/sys/kernel/tracing # echo 'p vfs_read $comm:u32' >> kprobe_events
sh: write error: Invalid argument
/sys/kernel/tracing # echo 'p vfs_read \"hoge":u32' >> kprobe_events
sh: write error: Invalid argument
/sys/kernel/tracing # cat error_log
[ 30.144183] trace_kprobe: error: $comm and immediate-string only accepts string type
Command: p vfs_read $comm:u32
^
[ 62.618500] trace_kprobe: error: $comm and immediate-string only accepts string type
Command: p vfs_read \"hoge":u32
^
Link: https://lore.kernel.org/all/170602215411.215583.2238016352271091852.stgit@devnote2/
Fixes: 3dd1f7f24f ("tracing: probeevent: Fix to make the type of $comm string")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9b6326354cf9a41521b79287da3bfab022ae0b6d upstream.
Fix trace_string() by assigning the string length to the return variable
which got lost in commit ddeea494a1 ("tracing/synthetic: Use union
instead of casts") and caused trace_string() to always return 0.
Link: https://lore.kernel.org/linux-trace-kernel/20240214220555.711598-1-thorsten.blum@toblux.com
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ddeea494a1 ("tracing/synthetic: Use union instead of casts")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 44dc5c41b5b1267d4dd037d26afc0c4d3a568acb upstream.
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.
The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.
The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.
In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.
Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.
This is similar to a recommendation that Linus had made about eventfs_inode names:
https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/
Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.
Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.
Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0958b33ef5a04ed91f61cef4760ac412080c4e08 upstream.
Fix register_snapshot_trigger() to return error code if it failed to
allocate a snapshot instead of 0 (success). Unless that, it will register
snapshot trigger without an error.
Link: https://lore.kernel.org/linux-trace-kernel/170622977792.270660.2789298642759362200.stgit@devnote2
Fixes: 0bbe7f7199 ("tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation")
Cc: stable@vger.kernel.org
Cc: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dad6a09f3148257ac1773cd90934d721d68ab595 upstream.
The hrtimers migration on CPU-down hotplug process has been moved
earlier, before the CPU actually goes to die. This leaves a small window
of opportunity to queue an hrtimer in a blind spot, leaving it ignored.
For example a practical case has been reported with RCU waking up a
SCHED_FIFO task right before the CPUHP_AP_IDLE_DEAD stage, queuing that
way a sched/rt timer to the local offline CPU.
Make sure such situations never go unnoticed and warn when that happens.
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240129235646.3171983-4-boqun.feng@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 388a1fb7da6aaa1970c7e2a7d7fcd983a87a8484 ]
Thomas reported that commit 652ffc2104ec ("perf/core: Fix narrow
startup race when creating the perf nr_addr_filters sysfs file") made
the entire attribute group vanish, instead of only the nr_addr_filters
attribute.
Additionally a stray return.
Insufficient coffee was involved with both writing and merging the
patch.
Fixes: 652ffc2104ec ("perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file")
Reported-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Link: https://lkml.kernel.org/r/20231122100756.GP8262@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 06e5c999f10269a532304e89a6adb2fbfeb0593c ]
generic_map_{delete,update}_batch() doesn't set uattr->batch.count as
zero before it tries to allocate memory for key. If the memory
allocation fails, the value of uattr->batch.count will be incorrect.
Fix it by setting uattr->batch.count as zero beore batched update or
deletion.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 79d93b3c6ffd79abcd8e43345980aa1e904879c4 ]
Both map deletion operation, map release and map free operation use
fd_array_map_delete_elem() to remove the element from fd array and
need_defer is always true in fd_array_map_delete_elem(). For the map
deletion operation and map release operation, need_defer=true is
necessary, because the bpf program, which accesses the element in fd
array, may still alive. However for map free operation, it is certain
that the bpf program which owns the fd array has already been exited, so
setting need_defer as false is appropriate for map free operation.
So fix it by adding need_defer parameter to bpf_fd_array_map_clear() and
adding a new helper __fd_array_map_delete_elem() to handle the map
deletion, map release and map free operations correspondingly.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 022732e3d846e197539712e51ecada90ded0572a ]
When auditd_set sets the auditd_conn pointer, audit messages can
immediately be put on the socket by other kernel threads. If the backlog
is large or the rate is high, this can immediately fill the socket
buffer. If the audit daemon requested an ACK for this operation, a full
socket buffer causes the ACK to get dropped, also setting ENOBUFS on the
socket.
To avoid this race and ensure ACKs get through, fast-track the ACK in
this specific case to ensure it is sent before auditd_conn is set.
Signed-off-by: Chris Riches <chris.riches@nutanix.com>
[PM: fix some tab vs space damage]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 9a574ea9069be30b835a3da772c039993c43369b upstream.
Commit 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs
CPU hotplug") preserved total idle sleep time and iowait sleeptime across
CPU hotplug events.
Similar reasoning applies to the number of idle calls and idle sleeps to
get the proper average of sleep time per idle invocation.
Preserve those fields too.
Fixes: 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug")
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122233534.3094238-1-tim.c.chen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 644649553508b9bacf0fc7a5bdc4f9e0165576a5 upstream.
There have been reports of the watchdog marking clocksources unstable on
machines with 8 NUMA nodes:
clocksource: timekeeping watchdog on CPU373:
Marking clocksource 'tsc' as unstable because the skew is too large:
clocksource: 'hpet' wd_nsec: 14523447520
clocksource: 'tsc' cs_nsec: 14524115132
The measured clocksource skew - the absolute difference between cs_nsec
and wd_nsec - was 668 microseconds:
cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612
The kernel used 200 microseconds for the uncertainty_margin of both the
clocksource and watchdog, resulting in a threshold of 400 microseconds (the
md variable). Both the cs_nsec and the wd_nsec value indicate that the
readout interval was circa 14.5 seconds. The observed behaviour is that
watchdog checks failed for large readout intervals on 8 NUMA node
machines. This indicates that the size of the skew was directly proportinal
to the length of the readout interval on those machines. The measured
clocksource skew, 668 microseconds, was evaluated against a threshold (the
md variable) that is suited for readout intervals of roughly
WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second.
The intention of 2e27e793e2 ("clocksource: Reduce clocksource-skew
threshold") was to tighten the threshold for evaluating skew and set the
lower bound for the uncertainty_margin of clocksources to twice
WATCHDOG_MAX_SKEW. Later in c37e85c135 ("clocksource: Loosen clocksource
watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to
125 microseconds to fit the limit of NTP, which is able to use a
clocksource that suffers from up to 500 microseconds of skew per second.
Both the TSC and the HPET use default uncertainty_margin. When the
readout interval gets stretched the default uncertainty_margin is no
longer a suitable lower bound for evaluating skew - it imposes a limit
that is far stricter than the skew with which NTP can deal.
The root causes of the skew being directly proportinal to the length of
the readout interval are:
* the inaccuracy of the shift/mult pairs of clocksources and the watchdog
* the conversion to nanoseconds is imprecise for large readout intervals
Prevent this by skipping the current watchdog check if the readout
interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout
interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin
(of the TSC and HPET) corresponds to a limit on clocksource skew of 250
ppm (microseconds of skew per second). To keep the limit imposed by NTP
(500 microseconds of skew per second) for all possible readout intervals,
the margins would have to be scaled so that the threshold value is
proportional to the length of the actual readout interval.
As for why the readout interval may get stretched: Since the watchdog is
executed in softirq context the expiration of the watchdog timer can get
severely delayed on account of a ksoftirqd thread not getting to run in a
timely manner. Surely, a system with such belated softirq execution is not
working well and the scheduling issue should be looked into but the
clocksource watchdog should be able to deal with it accordingly.
Fixes: 2e27e793e2 ("clocksource: Reduce clocksource-skew threshold")
Suggested-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Jiri Wiesner <jwiesner@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122172350.GA740@incl
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b184c8c2889ceef0a137c7d0567ef9fe3d92276e upstream.
For a CONFIG_SPARSE_IRQ=n kernel, early_irq_init() is supposed to
initialize all interrupt descriptors.
It does except for irq_desc::resend_node, which ia only initialized for the
first descriptor.
Use the indexed decriptor and not the base pointer to address that.
Fixes: bc06a9e087 ("genirq: Use hlist for managing resend handlers")
Signed-off-by: Dawei Li <dawei.li@shingroup.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122085716.2999875-5-dawei.li@shingroup.cn
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 53e380d21441909b12b6e0782b77187ae4b971c4 ]
As prep for adding unix socket support to the cgroup sockaddr hooks,
let's add a kfunc bpf_sock_addr_set_sun_path() that allows modifying a unix
sockaddr from bpf. While this is already possible for AF_INET and AF_INET6,
we'll need this kfunc when we add unix socket support since modifying the
address for those requires modifying both the address and the sockaddr
length.
Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Link: https://lore.kernel.org/r/20231011185113.140426-4-daan.j.demeyer@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Stable-dep-of: c5114710c8ce ("xsk: fix usage of multi-buffer BPF helpers for ZC XDP")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fefba7d1ae198dcbf8b3b432de46a4e29f8dbd8c ]
As prep for adding unix socket support to the cgroup sockaddr hooks,
let's propagate the sockaddr length back to the caller after running
a bpf cgroup sockaddr hook program. While not important for AF_INET or
AF_INET6, the sockaddr length is important when working with AF_UNIX
sockaddrs as the size of the sockaddr cannot be determined just from the
address family or the sockaddr's contents.
__cgroup_bpf_run_filter_sock_addr() is modified to take the uaddrlen as
an input/output argument. After running the program, the modified sockaddr
length is stored in the uaddrlen pointer.
Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Link: https://lore.kernel.org/r/20231011185113.140426-3-daan.j.demeyer@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Stable-dep-of: c5114710c8ce ("xsk: fix usage of multi-buffer BPF helpers for ZC XDP")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e787644caf7628ad3269c1fbd321c3255cf51710 ]
When the CPU goes idle for the last time during the CPU down hotplug
process, RCU reports a final quiescent state for the current CPU. If
this quiescent state propagates up to the top, some tasks may then be
woken up to complete the grace period: the main grace period kthread
and/or the expedited main workqueue (or kworker).
If those kthreads have a SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU. Since this happens
after hrtimers have been migrated at CPUHP_AP_HRTIMERS_DYING stage, the
timer gets ignored. Therefore if the RCU kthreads are waiting for RT
bandwidth to be available, they may never be actually scheduled.
This triggers TREE03 rcutorture hangs:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 4-...!: (1 GPs behind) idle=9874/1/0x4000000000000000 softirq=0/0 fqs=20 rcuc=21071 jiffies(starved)
rcu: (t=21035 jiffies g=938281 q=40787 ncpus=6)
rcu: rcu_preempt kthread starved for 20964 jiffies! g938281 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_preempt state:R running task stack:14896 pid:14 tgid:14 ppid:2 flags:0x00004000
Call Trace:
<TASK>
__schedule+0x2eb/0xa80
schedule+0x1f/0x90
schedule_timeout+0x163/0x270
? __pfx_process_timeout+0x10/0x10
rcu_gp_fqs_loop+0x37c/0x5b0
? __pfx_rcu_gp_kthread+0x10/0x10
rcu_gp_kthread+0x17c/0x200
kthread+0xde/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2b/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The situation can't be solved with just unpinning the timer. The hrtimer
infrastructure and the nohz heuristics involved in finding the best
remote target for an unpinned timer would then also need to handle
enqueues from an offline CPU in the most horrendous way.
So fix this on the RCU side instead and defer the wake up to an online
CPU if it's too late for the local one.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2b44760609e9eaafc9d234a6883d042fc21132a7 ]
Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:
$ while true; do
echo hist:key=id.syscall:val=hitcount > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
sleep 0.001
done
$ stress-ng --sysbadaddr $(nproc)
The warning looks as follows:
[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626] tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220] hist_show+0x124/0x800
[ 2911.195692] seq_read_iter+0x1d4/0x4e8
[ 2911.196193] seq_read+0xe8/0x138
[ 2911.196638] vfs_read+0xc8/0x300
[ 2911.197078] ksys_read+0x70/0x108
[ 2911.197534] __arm64_sys_read+0x24/0x38
[ 2911.198046] invoke_syscall+0x78/0x108
[ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157] do_el0_svc+0x28/0x40
[ 2911.199613] el0_svc+0x40/0x178
[ 2911.200048] el0t_64_sync_handler+0x13c/0x158
[ 2911.200621] el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---
The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().
The check for the presence of an element with a given key in this
function is:
val = READ_ONCE(entry->val);
if (val && keys_match(key, val->key, map->key_size)) ...
The write of a new entry is:
elt = get_free_elt(map);
memcpy(elt->key, key, map->key_size);
entry->val = elt;
The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;"
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn't match
an already present val->key and subsequently insert a new element,
resulting in a duplicate.
Fix the problem by adding a write barrier between
"memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for
good measure, also use WRITE_ONCE(entry->val, elt) for publishing the
element. The sequence pairs with the mentioned "READ_ONCE(entry->val);"
and the "val->key" check which has an address dependency.
The barrier is placed on a path executed when adding an element for
a new key. Subsequent updates targeting the same key remain unaffected.
From the user's perspective, the issue was introduced by commit
c193707dde ("tracing: Remove code which merges duplicates"), which
followed commit cbf4100efb ("tracing: Add support to detect and avoid
duplicates"). The previous code operated differently; it inherently
expected potential races which result in duplicates but merged them
later when they occurred.
Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com
Fixes: c193707dde ("tracing: Remove code which merges duplicates")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bb124da69c47dd98d69361ec13244ece50bec63e upstream.
In some cases verifier can't infer convergence of the bpf_loop()
iteration. E.g. for the following program:
static int cb(__u32 idx, struct num_context* ctx)
{
ctx->i++;
return 0;
}
SEC("?raw_tp")
int prog(void *_)
{
struct num_context ctx = { .i = 0 };
__u8 choice_arr[2] = { 0, 1 };
bpf_loop(2, cb, &ctx, 0);
return choice_arr[ctx.i];
}
Each 'cb' simulation would eventually return to 'prog' and reach
'return choice_arr[ctx.i]' statement. At which point ctx.i would be
marked precise, thus forcing verifier to track multitude of separate
states with {.i=0}, {.i=1}, ... at bpf_loop() callback entry.
This commit allows "brute force" handling for such cases by limiting
number of callback body simulations using 'umax' value of the first
bpf_loop() parameter.
For this, extend bpf_func_state with 'callback_depth' field.
Increment this field when callback visiting state is pushed to states
traversal stack. For frame #N it's 'callback_depth' field counts how
many times callback with frame depth N+1 had been executed.
Use bpf_func_state specifically to allow independent tracking of
callback depths when multiple nested bpf_loop() calls are present.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-11-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ab5cfac139ab8576fb54630d4cca23c3e690ee90 upstream.
Prior to this patch callbacks were handled as regular function calls,
execution of callback body was modeled exactly once.
This patch updates callbacks handling logic as follows:
- introduces a function push_callback_call() that schedules callback
body verification in env->head stack;
- updates prepare_func_exit() to reschedule callback body verification
upon BPF_EXIT;
- as calls to bpf_*_iter_next(), calls to callback invoking functions
are marked as checkpoints;
- is_state_visited() is updated to stop callback based iteration when
some identical parent state is found.
Paths with callback function invoked zero times are now verified first,
which leads to necessity to modify some selftests:
- the following negative tests required adding release/unlock/drop
calls to avoid previously masked unrelated error reports:
- cb_refs.c:underflow_prog
- exceptions_fail.c:reject_rbtree_add_throw
- exceptions_fail.c:reject_with_cp_reference
- the following precision tracking selftests needed change in expected
log trace:
- verifier_subprog_precision.c:callback_result_precise
(note: r0 precision is no longer propagated inside callback and
I think this is a correct behavior)
- verifier_subprog_precision.c:parent_callee_saved_reg_precise_with_callback
- verifier_subprog_precision.c:parent_stack_slot_precise_with_callback
Reported-by: Andrew Werner <awerner32@gmail.com>
Closes: https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-7-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 58124a98cb8eda69d248d7f1de954c8b2767c945 upstream.
Move code for simulated stack frame creation to a separate utility
function. This function would be used in the follow-up change for
callbacks handling.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 683b96f9606ab7308ffb23c46ab43cecdef8a241 upstream.
Split check_reg_arg() into two utility functions:
- check_reg_arg() operating on registers from current verifier state;
- __check_reg_arg() operating on a specific set of registers passed as
a parameter;
The __check_reg_arg() function would be used by a follow-up change for
callbacks handling.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-5-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b4d8239534fddc036abe4a0fdbf474d9894d4641 upstream.
Additional logging in is_state_visited(): if infinite loop is detected
print full verifier state for both current and equivalent states.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-8-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2a0992829ea3864939d917a5c7b48be6629c6217 upstream.
It turns out that .branches > 0 in is_state_visited() is not a
sufficient condition to identify if two verifier states form a loop
when iterators convergence is computed. This commit adds logic to
distinguish situations like below:
(I) initial (II) initial
| |
V V
.---------> hdr ..
| | |
| V V
| .------... .------..
| | | | |
| V V V V
| ... ... .-> hdr ..
| | | | | |
| V V | V V
| succ <- cur | succ <- cur
| | | |
| V | V
| ... | ...
| | | |
'----' '----'
For both (I) and (II) successor 'succ' of the current state 'cur' was
previously explored and has branches count at 0. However, loop entry
'hdr' corresponding to 'succ' might be a part of current DFS path.
If that is the case 'succ' and 'cur' are members of the same loop
and have to be compared exactly.
Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reviewed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2793a8b015f7f1caadb9bce9c63dc659f7522676 upstream.
Convergence for open coded iterators is computed in is_state_visited()
by examining states with branches count > 1 and using states_equal().
states_equal() computes sub-state relation using read and precision marks.
Read and precision marks are propagated from children states,
thus are not guaranteed to be complete inside a loop when branches
count > 1. This could be demonstrated using the following unsafe program:
1. r7 = -16
2. r6 = bpf_get_prandom_u32()
3. while (bpf_iter_num_next(&fp[-8])) {
4. if (r6 != 42) {
5. r7 = -32
6. r6 = bpf_get_prandom_u32()
7. continue
8. }
9. r0 = r10
10. r0 += r7
11. r8 = *(u64 *)(r0 + 0)
12. r6 = bpf_get_prandom_u32()
13. }
Here verifier would first visit path 1-3, create a checkpoint at 3
with r7=-16, continue to 4-7,3 with r7=-32.
Because instructions at 9-12 had not been visitied yet existing
checkpoint at 3 does not have read or precision mark for r7.
Thus states_equal() would return true and verifier would discard
current state, thus unsafe memory access at 11 would not be caught.
This commit fixes this loophole by introducing exact state comparisons
for iterator convergence logic:
- registers are compared using regs_exact() regardless of read or
precision marks;
- stack slots have to have identical type.
Unfortunately, this is too strict even for simple programs like below:
i = 0;
while(iter_next(&it))
i++;
At each iteration step i++ would produce a new distinct state and
eventually instruction processing limit would be reached.
To avoid such behavior speculatively forget (widen) range for
imprecise scalar registers, if those registers were not precise at the
end of the previous iteration and do not match exactly.
This a conservative heuristic that allows to verify wide range of
programs, however it precludes verification of programs that conjure
an imprecise value on the first loop iteration and use it as precise
on the second.
Test case iter_task_vma_for_each() presents one of such cases:
unsigned int seen = 0;
...
bpf_for_each(task_vma, vma, task, 0) {
if (seen >= 1000)
break;
...
seen++;
}
Here clang generates the following code:
<LBB0_4>:
24: r8 = r6 ; stash current value of
... body ... 'seen'
29: r1 = r10
30: r1 += -0x8
31: call bpf_iter_task_vma_next
32: r6 += 0x1 ; seen++;
33: if r0 == 0x0 goto +0x2 <LBB0_6> ; exit on next() == NULL
34: r7 += 0x10
35: if r8 < 0x3e7 goto -0xc <LBB0_4> ; loop on seen < 1000
<LBB0_6>:
... exit ...
Note that counter in r6 is copied to r8 and then incremented,
conditional jump is done using r8. Because of this precision mark for
r6 lags one state behind of precision mark on r8 and widening logic
kicks in.
Adding barrier_var(seen) after conditional is sufficient to force
clang use the same register for both counting and conditional jump.
This issue was discussed in the thread [1] which was started by
Andrew Werner <awerner32@gmail.com> demonstrating a similar bug
in callback functions handling. The callbacks would be addressed
in a followup patch.
[1] https://lore.kernel.org/bpf/97a90da09404c65c8e810cf83c94ac703705dc0e.camel@gmail.com/
Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c97259abc9bc8df7712f76f58ce385581876857 upstream.
Extract same_callsites() from clean_live_states() as a utility function.
This function would be used by the next patch in the set.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3c4e420cb6536026ddd50eaaff5f30e4f144200d upstream.
Subsequent patches would make use of explored_state() function.
Move it up to avoid adding unnecessary prototype.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7bb943806ff61e83ae4cceef8906b7fe52453e8a upstream.
syscore_shutdown() runs driver and module callbacks to get the system into
a state where it can be correctly shut down. In commit 6f389a8f1d ("PM
/ reboot: call syscore_shutdown() after disable_nonboot_cpus()")
syscore_shutdown() was removed from kernel_restart_prepare() and hence got
(incorrectly?) removed from the kexec flow. This was innocuous until
commit 6735150b69 ("KVM: Use syscore_ops instead of reboot_notifier to
hook restart/shutdown") changed the way that KVM registered its shutdown
callbacks, switching from reboot notifiers to syscore_ops.shutdown. As
syscore_shutdown() is missing from kexec, KVM's shutdown hook is not run
and virtualisation is left enabled on the boot CPU which results in triple
faults when switching to the new kernel on Intel x86 VT-x with VMXE
enabled.
Fix this by adding syscore_shutdown() to the kexec sequence. In terms of
where to add it, it is being added after migrating the kexec task to the
boot CPU, but before APs are shut down. It is not totally clear if this
is the best place: in commit 6f389a8f1d ("PM / reboot: call
syscore_shutdown() after disable_nonboot_cpus()") it is stated that
"syscore_ops operations should be carried with one CPU on-line and
interrupts disabled." APs are only offlined later in machine_shutdown(),
so this syscore_shutdown() is being run while APs are still online. This
seems to be the correct place as it matches where syscore_shutdown() is
run in the reboot and halt flows - they also run it before APs are shut
down. The assumption is that the commit message in commit 6f389a8f1d
("PM / reboot: call syscore_shutdown() after disable_nonboot_cpus()") is
no longer valid.
KVM has been discussed here as it is what broke loudly by not having
syscore_shutdown() in kexec, but this change impacts more than just KVM;
all drivers/modules which register a syscore_ops.shutdown callback will
now be invoked in the kexec flow. Looking at some of them like x86 MCE it
is probably more correct to also shut these down during kexec.
Maintainers of all drivers which use syscore_ops.shutdown are added on CC
for visibility. They are:
arch/powerpc/platforms/cell/spu_base.c .shutdown = spu_shutdown,
arch/x86/kernel/cpu/mce/core.c .shutdown = mce_syscore_shutdown,
arch/x86/kernel/i8259.c .shutdown = i8259A_shutdown,
drivers/irqchip/irq-i8259.c .shutdown = i8259A_shutdown,
drivers/irqchip/irq-sun6i-r.c .shutdown = sun6i_r_intc_shutdown,
drivers/leds/trigger/ledtrig-cpu.c .shutdown = ledtrig_cpu_syscore_shutdown,
drivers/power/reset/sc27xx-poweroff.c .shutdown = sc27xx_poweroff_shutdown,
kernel/irq/generic-chip.c .shutdown = irq_gc_shutdown,
virt/kvm/kvm_main.c .shutdown = kvm_shutdown,
This has been tested by doing a kexec on x86_64 and aarch64.
Link: https://lkml.kernel.org/r/20231213064004.2419447-1-jgowans@amazon.com
Fixes: 6735150b69 ("KVM: Use syscore_ops instead of reboot_notifier to hook restart/shutdown")
Signed-off-by: James Gowans <jgowans@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Jernej Skrabec <jernej.skrabec@gmail.com>
Cc: Samuel Holland <samuel@sholland.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Orson Zhai <orsonzhai@gmail.com>
Cc: Alexander Graf <graf@amazon.de>
Cc: Jan H. Schoenherr <jschoenh@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 71cd7e80cfde548959952eac7063aeaea1f2e1c6 upstream.
An S4 (suspend to disk) test on the LoongArch 3A6000 platform sometimes
fails with the following error messaged in the dmesg log:
Invalid LZO compressed length
That happens because when compressing/decompressing the image, the
synchronization between the control thread and the compress/decompress/crc
thread is based on a relaxed ordering interface, which is unreliable, and the
following situation may occur:
CPU 0 CPU 1
save_image_lzo lzo_compress_threadfn
atomic_set(&d->stop, 1);
atomic_read(&data[thr].stop)
data[thr].cmp = data[thr].cmp_len;
WRITE data[thr].cmp_len
Then CPU0 gets a stale cmp_len and writes it to disk. During resume from S4,
wrong cmp_len is loaded.
To maintain data consistency between the two threads, use the acquire/release
variants of atomic set and read operations.
Fixes: 081a9d043c ("PM / Hibernate: Improve performance of LZO/plain hibernation, checksum image")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn>
Co-developed-by: Weihao Li <liweihao@loongson.cn>
Signed-off-by: Weihao Li <liweihao@loongson.cn>
[ rjw: Subject rewrite and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7d4b5d7a37bdd63a5a3371b988744b060d5bb86f upstream.
In preparation for subsequent changes, introduce a specialized variant
of async_schedule_dev() that will not invoke the argument function
synchronously when it cannot be scheduled for asynchronous execution.
The new function, async_schedule_dev_nocall(), will be used for fixing
possible deadlocks in the system-wide power management core code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com> for the series.
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6aa09a5bccd8e224d917afdb4c278fc66aacde4d upstream.
In preparation for subsequent changes, split async_schedule_node_domain()
in two pieces so as to allow the bottom part of it to be called from a
somewhat different code path.
No functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4f41d30cd6dc865c3cbc1a852372321eba6d4e4c ]
When appending "[defcmd]" to 'kdb_prompt_str', the size of the string
already in the buffer should be taken into account.
An option could be to switch from strncat() to strlcat() which does the
correct test to avoid such an overflow.
However, this actually looks as dead code, because 'defcmd_in_progress'
can't be true here.
See a more detailed explanation at [1].
[1]: https://lore.kernel.org/all/CAD=FV=WSh7wKN7Yp-3wWiDgX4E3isQ8uh0LCzTmd1v9Cg9j+nQ@mail.gmail.com/
Fixes: 5d5314d679 ("kdb: core for kgdb back end (1 of 2)")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 715d82ba636cb3629a6e18a33bb9dbe53f9936ee upstream.
The following case can cause a crash due to missing attach_btf:
1) load rawtp program
2) load fentry program with rawtp as target_fd
3) create tracing link for fentry program with target_fd = 0
4) repeat 3
In the end we have:
- prog->aux->dst_trampoline == NULL
- tgt_prog == NULL (because we did not provide target_fd to link_create)
- prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X)
- the program was loaded for tgt_prog but we have no way to find out which one
BUG: kernel NULL pointer dereference, address: 0000000000000058
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15b/0x430
? fixup_exception+0x22/0x330
? exc_page_fault+0x6f/0x170
? asm_exc_page_fault+0x22/0x30
? bpf_tracing_prog_attach+0x279/0x560
? btf_obj_id+0x5/0x10
bpf_tracing_prog_attach+0x439/0x560
__sys_bpf+0x1cf4/0x2de0
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x41/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Return -EINVAL in this situation.
Fixes: f3a9507554 ("bpf: Allow trampoline re-attach for tracing and lsm programs")
Cc: stable@vger.kernel.org
Signed-off-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-4-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 71fee48fb772ac4f6cfa63dbebc5629de8b4cc09 upstream.
When offlining and onlining CPUs the overall reported idle and iowait
times as reported by /proc/stat jump backward and forward:
cpu 132 0 176 225249 47 6 6 21 0 0
cpu0 80 0 115 112575 33 3 4 18 0 0
cpu1 52 0 60 112673 13 3 1 2 0 0
cpu 133 0 177 226681 47 6 6 21 0 0
cpu0 80 0 116 113387 33 3 4 18 0 0
cpu 133 0 178 114431 33 6 6 21 0 0 <---- jump backward
cpu0 80 0 116 114247 33 3 4 18 0 0
cpu1 52 0 61 183 0 3 1 2 0 0 <---- idle + iowait start with 0
cpu 133 0 178 228956 47 6 6 21 0 0 <---- jump forward
cpu0 81 0 117 114929 33 3 4 18 0 0
Reason for this is that get_idle_time() in fs/proc/stat.c has different
sources for both values depending on if a CPU is online or offline:
- if a CPU is online the values may be taken from its per cpu
tick_cpu_sched structure
- if a CPU is offline the values are taken from its per cpu cpustat
structure
The problem is that the per cpu tick_cpu_sched structure is set to zero on
CPU offline. See tick_cancel_sched_timer() in kernel/time/tick-sched.c.
Therefore when a CPU is brought offline and online afterwards both its idle
and iowait sleeptime will be zero, causing a jump backward in total system
idle and iowait sleeptime. In a similar way if a CPU is then brought
offline again the total idle and iowait sleeptimes will jump forward.
It looks like this behavior was introduced with commit 4b0c0f294f
("tick: Cleanup NOHZ per cpu data on cpu down").
This was only noticed now on s390, since we switched to generic idle time
reporting with commit be76ea6144 ("s390/idle: remove arch_cpu_idle_time()
and corresponding code").
Fix this by preserving the values of idle_sleeptime and iowait_sleeptime
members of the per-cpu tick_sched structure on CPU hotplug.
Fixes: 4b0c0f294f ("tick: Cleanup NOHZ per cpu data on cpu down")
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240115163555.1004144-1-hca@linux.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7ac5c53e00735d183a0f5e2cfce5eeb6c16319f2 ]
At present, bpf memory allocator uses check_obj_size() to ensure that
ksize() of allocated pointer is equal with the unit_size of used
bpf_mem_cache. Its purpose is to prevent bpf_mem_free() from selecting
a bpf_mem_cache which has different unit_size compared with the
bpf_mem_cache used for allocation. But as reported by lkp, the return
value of ksize() or kmalloc_size_roundup() may change due to slab merge
and it will lead to the warning report in check_obj_size().
The reported warning happened as follows:
(1) in bpf_mem_cache_adjust_size(), kmalloc_size_roundup(96) returns the
object_size of kmalloc-96 instead of kmalloc-cg-96. The object_size of
kmalloc-96 is 96, so size_index for 96 is not adjusted accordingly.
(2) the object_size of kmalloc-cg-96 is adjust from 96 to 128 due to
slab merge in __kmem_cache_alias(). For SLAB, SLAB_HWCACHE_ALIGN is
enabled by default for kmalloc slab, so align is 64 and size is 128 for
kmalloc-cg-96. SLUB has a similar merge logic, but its object_size will
not be changed, because its align is 8 under x86-64.
(3) when unit_alloc() does kmalloc_node(96, __GFP_ACCOUNT, node),
ksize() returns 128 instead of 96 for the returned pointer.
(4) the warning in check_obj_size() is triggered.
Considering the slab merge can happen in anytime (e.g, a slab created in
a new module), the following case is also possible: during the
initialization of bpf_global_ma, there is no slab merge and ksize() for
a 96-bytes object returns 96. But after that a new slab created by a
kernel module is merged to kmalloc-cg-96 and the object_size of
kmalloc-cg-96 is adjust from 96 to 128 (which is possible for x86-64 +
CONFIG_SLAB, because its alignment requirement is 64 for 96-bytes slab).
So soon or later, when bpf_global_ma frees a 96-byte-sized pointer
which is allocated from bpf_mem_cache with unit_size=96, bpf_mem_free()
will free the pointer through a bpf_mem_cache in which unit_size is 128,
because the return value of ksize() changes. The warning for the
mismatch will be triggered again.
A feasible fix is introducing similar APIs compared with ksize() and
kmalloc_size_roundup() to return the actually-allocated size instead of
size which may change due to slab merge, but it will introduce
unnecessary dependency on the implementation details of mm subsystem.
As for now the pointer of bpf_mem_cache is saved in the 8-bytes area
(or 4-bytes under 32-bit host) above the returned pointer, using
unit_size in the saved bpf_mem_cache to select the target cache instead
of inferring the size from the pointer itself. Beside no extra
dependency on mm subsystem, the performance for bpf_mem_free_rcu() is
also improved as shown below.
Before applying the patch, the performances of bpf_mem_alloc() and
bpf_mem_free_rcu() on 8-CPUs VM with one producer are as follows:
kmalloc : alloc 11.69 ± 0.28M/s free 29.58 ± 0.93M/s
percpu : alloc 14.11 ± 0.52M/s free 14.29 ± 0.99M/s
After apply the patch, the performance for bpf_mem_free_rcu() increases
9% and 146% for kmalloc memory and per-cpu memory respectively:
kmalloc: alloc 11.01 ± 0.03M/s free 32.42 ± 0.48M/s
percpu: alloc 12.84 ± 0.12M/s free 35.24 ± 0.23M/s
After the fixes, there is no need to adjust size_index to fix the
mismatch between allocation and free, so remove it as well. Also return
NULL instead of ZERO_SIZE_PTR for zero-sized alloc in bpf_mem_alloc(),
because there is no bpf_mem_cache pointer saved above ZERO_SIZE_PTR.
Fixes: 9077fc228f ("bpf: Use kmalloc_size_roundup() to adjust size_index")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/bpf/202310302113.9f8fe705-oliver.sang@intel.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231216131052.27621-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3f2189e4f77b7a3e979d143dc4ff586488c7e8a5 ]
For bpf_global_percpu_ma, the pointer passed to bpf_mem_free_rcu() is
allocated by kmalloc() and its size is fixed (16-bytes on x86-64). So
no matter which cache allocates the dynamic per-cpu area, on x86-64
cache[2] will always be used to free the per-cpu area.
Fix the unbalance by checking whether the bpf memory allocator is
per-cpu or not and use pcpu_alloc_size() instead of ksize() to
find the correct cache for per-cpu free.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7ac5c53e0073 ("bpf: Use c->unit_size to select target cache during free")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit baa8fdecd87bb8751237b45e3bcb5a179e5a12ca ]
With pcpu_alloc_size() in place, check whether or not the size of
the dynamic per-cpu area is matched with unit_size.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7ac5c53e0073 ("bpf: Use c->unit_size to select target cache during free")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d6d1e6c17cab2dcb7b8530c599f00e7de906d380 ]
An abnormally big cnt may also be assigned to kprobe_multi.cnt when
attaching multiple kprobes. It will trigger the following warning in
kvmalloc_node():
if (unlikely(size > INT_MAX)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
Fix the warning by limiting the maximal number of kprobes in
bpf_kprobe_multi_link_attach(). If the number of kprobes is greater than
MAX_KPROBE_MULTI_CNT, the attachment will fail and return -E2BIG.
Fixes: 0dcac27254 ("bpf: Add multi kprobe link")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231215100708.2265609-3-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8b2efe51ba85ca83460941672afac6fca4199df6 ]
An abnormally big cnt may be passed to link_create.uprobe_multi.cnt,
and it will trigger the following warning in kvmalloc_node():
if (unlikely(size > INT_MAX)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
Fix the warning by limiting the maximal number of uprobes in
bpf_uprobe_multi_link_attach(). If the number of uprobes is greater than
MAX_UPROBE_MULTI_CNT, the attachment will return -E2BIG.
Fixes: 89ae89f53d ("bpf: Add multi uprobe link")
Reported-by: Xingwei Lee <xrivendell7@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Closes: https://lore.kernel.org/bpf/CABOYnLwwJY=yFAGie59LFsUsBAgHfroVqbzZ5edAXbFE3YiNVA@mail.gmail.com
Link: https://lore.kernel.org/bpf/20231215100708.2265609-2-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b07bc2347672cc8c7293c64499f1488278c5ca3d ]
Reproduced with below sequence:
dma_declare_coherent_memory()->dma_release_coherent_memory()
->dma_declare_coherent_memory()->"return -EBUSY" error
It will return -EBUSY from the dma_assign_coherent_memory()
in dma_declare_coherent_memory(), the reason is that dev->dma_mem
pointer has not been set to NULL after it's freed.
Fixes: cf65a0f6f6 ("dma-mapping: move all DMA mapping code to kernel/dma")
Signed-off-by: Joakim Zhang <joakim.zhang@cixtech.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 59e5791f59dd83e8aa72a4e74217eabb6e8cfd90 ]
When running `./test_progs -j` in my local vm with latest kernel,
I once hit a kasan error like below:
[ 1887.184724] BUG: KASAN: slab-use-after-free in bpf_rb_root_free+0x1f8/0x2b0
[ 1887.185599] Read of size 4 at addr ffff888106806910 by task kworker/u12:2/2830
[ 1887.186498]
[ 1887.186712] CPU: 3 PID: 2830 Comm: kworker/u12:2 Tainted: G OEL 6.7.0-rc3-00699-g90679706d486-dirty #494
[ 1887.188034] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 1887.189618] Workqueue: events_unbound bpf_map_free_deferred
[ 1887.190341] Call Trace:
[ 1887.190666] <TASK>
[ 1887.190949] dump_stack_lvl+0xac/0xe0
[ 1887.191423] ? nf_tcp_handle_invalid+0x1b0/0x1b0
[ 1887.192019] ? panic+0x3c0/0x3c0
[ 1887.192449] print_report+0x14f/0x720
[ 1887.192930] ? preempt_count_sub+0x1c/0xd0
[ 1887.193459] ? __virt_addr_valid+0xac/0x120
[ 1887.194004] ? bpf_rb_root_free+0x1f8/0x2b0
[ 1887.194572] kasan_report+0xc3/0x100
[ 1887.195085] ? bpf_rb_root_free+0x1f8/0x2b0
[ 1887.195668] bpf_rb_root_free+0x1f8/0x2b0
[ 1887.196183] ? __bpf_obj_drop_impl+0xb0/0xb0
[ 1887.196736] ? preempt_count_sub+0x1c/0xd0
[ 1887.197270] ? preempt_count_sub+0x1c/0xd0
[ 1887.197802] ? _raw_spin_unlock+0x1f/0x40
[ 1887.198319] bpf_obj_free_fields+0x1d4/0x260
[ 1887.198883] array_map_free+0x1a3/0x260
[ 1887.199380] bpf_map_free_deferred+0x7b/0xe0
[ 1887.199943] process_scheduled_works+0x3a2/0x6c0
[ 1887.200549] worker_thread+0x633/0x890
[ 1887.201047] ? __kthread_parkme+0xd7/0xf0
[ 1887.201574] ? kthread+0x102/0x1d0
[ 1887.202020] kthread+0x1ab/0x1d0
[ 1887.202447] ? pr_cont_work+0x270/0x270
[ 1887.202954] ? kthread_blkcg+0x50/0x50
[ 1887.203444] ret_from_fork+0x34/0x50
[ 1887.203914] ? kthread_blkcg+0x50/0x50
[ 1887.204397] ret_from_fork_asm+0x11/0x20
[ 1887.204913] </TASK>
[ 1887.204913] </TASK>
[ 1887.205209]
[ 1887.205416] Allocated by task 2197:
[ 1887.205881] kasan_set_track+0x3f/0x60
[ 1887.206366] __kasan_kmalloc+0x6e/0x80
[ 1887.206856] __kmalloc+0xac/0x1a0
[ 1887.207293] btf_parse_fields+0xa15/0x1480
[ 1887.207836] btf_parse_struct_metas+0x566/0x670
[ 1887.208387] btf_new_fd+0x294/0x4d0
[ 1887.208851] __sys_bpf+0x4ba/0x600
[ 1887.209292] __x64_sys_bpf+0x41/0x50
[ 1887.209762] do_syscall_64+0x4c/0xf0
[ 1887.210222] entry_SYSCALL_64_after_hwframe+0x63/0x6b
[ 1887.210868]
[ 1887.211074] Freed by task 36:
[ 1887.211460] kasan_set_track+0x3f/0x60
[ 1887.211951] kasan_save_free_info+0x28/0x40
[ 1887.212485] ____kasan_slab_free+0x101/0x180
[ 1887.213027] __kmem_cache_free+0xe4/0x210
[ 1887.213514] btf_free+0x5b/0x130
[ 1887.213918] rcu_core+0x638/0xcc0
[ 1887.214347] __do_softirq+0x114/0x37e
The error happens at bpf_rb_root_free+0x1f8/0x2b0:
00000000000034c0 <bpf_rb_root_free>:
; {
34c0: f3 0f 1e fa endbr64
34c4: e8 00 00 00 00 callq 0x34c9 <bpf_rb_root_free+0x9>
34c9: 55 pushq %rbp
34ca: 48 89 e5 movq %rsp, %rbp
...
; if (rec && rec->refcount_off >= 0 &&
36aa: 4d 85 ed testq %r13, %r13
36ad: 74 a9 je 0x3658 <bpf_rb_root_free+0x198>
36af: 49 8d 7d 10 leaq 0x10(%r13), %rdi
36b3: e8 00 00 00 00 callq 0x36b8 <bpf_rb_root_free+0x1f8>
<==== kasan function
36b8: 45 8b 7d 10 movl 0x10(%r13), %r15d
<==== use-after-free load
36bc: 45 85 ff testl %r15d, %r15d
36bf: 78 8c js 0x364d <bpf_rb_root_free+0x18d>
So the problem is at rec->refcount_off in the above.
I did some source code analysis and find the reason.
CPU A CPU B
bpf_map_put:
...
btf_put with rcu callback
...
bpf_map_free_deferred
with system_unbound_wq
... ... ...
... btf_free_rcu: ...
... ... bpf_map_free_deferred:
... ...
... ---------> btf_struct_metas_free()
... | race condition ...
... ---------> map->ops->map_free()
...
... btf->struct_meta_tab = NULL
In the above, map_free() corresponds to array_map_free() and eventually
calling bpf_rb_root_free() which calls:
...
__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
...
Here, 'value_rec' is assigned in btf_check_and_fixup_fields() with following code:
meta = btf_find_struct_meta(btf, btf_id);
if (!meta)
return -EFAULT;
rec->fields[i].graph_root.value_rec = meta->record;
So basically, 'value_rec' is a pointer to the record in struct_metas_tab.
And it is possible that that particular record has been freed by
btf_struct_metas_free() and hence we have a kasan error here.
Actually it is very hard to reproduce the failure with current bpf/bpf-next
code, I only got the above error once. To increase reproducibility, I added
a delay in bpf_map_free_deferred() to delay map->ops->map_free(), which
significantly increased reproducibility.
# diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
# index 5e43ddd1b83f..aae5b5213e93 100644
# --- a/kernel/bpf/syscall.c
# +++ b/kernel/bpf/syscall.c
# @@ -695,6 +695,7 @@ static void bpf_map_free_deferred(struct work_struct *work)
# struct bpf_map *map = container_of(work, struct bpf_map, work);
# struct btf_record *rec = map->record;
#
# + mdelay(100);
# security_bpf_map_free(map);
# bpf_map_release_memcg(map);
# /* implementation dependent freeing */
Hao also provided test cases ([1]) for easily reproducing the above issue.
There are two ways to fix the issue, the v1 of the patch ([2]) moving
btf_put() after map_free callback, and the v5 of the patch ([3]) using
a kptr style fix which tries to get a btf reference during
map_check_btf(). Each approach has its pro and cons. The first approach
delays freeing btf while the second approach needs to acquire reference
depending on context which makes logic not very elegant and may
complicate things with future new data structures. Alexei
suggested in [4] going back to v1 which is what this patch
tries to do.
Rerun './test_progs -j' with the above mdelay() hack for a couple
of times and didn't observe the error for the above rb_root test cases.
Running Hou's test ([1]) is also successful.
[1] https://lore.kernel.org/bpf/20231207141500.917136-1-houtao@huaweicloud.com/
[2] v1: https://lore.kernel.org/bpf/20231204173946.3066377-1-yonghong.song@linux.dev/
[3] v5: https://lore.kernel.org/bpf/20231208041621.2968241-1-yonghong.song@linux.dev/
[4] v4: https://lore.kernel.org/bpf/CAADnVQJ3FiXUhZJwX_81sjZvSYYKCFB3BT6P8D59RS2Gu+0Z7g@mail.gmail.com/
Cc: Hou Tao <houtao@huaweicloud.com>
Fixes: 958cf2e273 ("bpf: Introduce bpf_obj_new")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231214203815.1469107-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6b4a64bafd107e521c01eec3453ce94a3fb38529 ]
Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.
This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.
Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.
This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.
A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231208032519.260451-3-andreimatei1@gmail.com
Closes: https://lore.kernel.org/bpf/CABWLsev9g8UP_c3a=1qbuZUi20tGoUXoU07FPf-5FLvhOKOY+Q@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1d38a9ee81570c4bd61f557832dead4d6f816760 ]
This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.
[1] 815fb87b75/kernel/bpf/verifier.c (L7494-L7498)
[2] 815fb87b75/kernel/bpf/verifier.c (L11904)
Reported-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-4-andreimatei1@gmail.com
Stable-dep-of: 6b4a64bafd10 ("bpf: Fix accesses to uninit stack slots")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a833a17aeac73b33f79433d7cee68d5cafd71e4f ]
This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.
The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).
Thanks Hao for reporting!
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-2-andreimatei1@gmail.com
Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ab125ed3ec1c10ccc36bc98c7a4256ad114a3dae ]
When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].
To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.
Fixes: 27113c59b6 ("bpf: Check the other end of slot_type for STACK_SPILL")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 876673364161da50eed6b472d746ef88242b2368 ]
When updating or deleting an inner map in map array or map htab, the map
may still be accessed by non-sleepable program or sleepable program.
However bpf_map_fd_put_ptr() decreases the ref-counter of the inner map
directly through bpf_map_put(), if the ref-counter is the last one
(which is true for most cases), the inner map will be freed by
ops->map_free() in a kworker. But for now, most .map_free() callbacks
don't use synchronize_rcu() or its variants to wait for the elapse of a
RCU grace period, so after the invocation of ops->map_free completes,
the bpf program which is accessing the inner map may incur
use-after-free problem.
Fix the free of inner map by invoking bpf_map_free_deferred() after both
one RCU grace period and one tasks trace RCU grace period if the inner
map has been removed from the outer map before. The deferment is
accomplished by using call_rcu() or call_rcu_tasks_trace() when
releasing the last ref-counter of bpf map. The newly-added rcu_head
field in bpf_map shares the same storage space with work field to
reduce the size of bpf_map.
Fixes: bba1dc0b55 ("bpf: Remove redundant synchronize_rcu.")
Fixes: 638e4b825d ("bpf: Allows per-cpu maps and map-in-map in sleepable programs")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 20c20bd11a0702ce4dc9300c3da58acf551d9725 ]
map is the pointer of outer map, and need_defer needs some explanation.
need_defer tells the implementation to defer the reference release of
the passed element and ensure that the element is still alive before
the bpf program, which may manipulate it, exits.
The following three cases will invoke map_fd_put_ptr() and different
need_defer values will be passed to these callers:
1) release the reference of the old element in the map during map update
or map deletion. The release must be deferred, otherwise the bpf
program may incur use-after-free problem, so need_defer needs to be
true.
2) release the reference of the to-be-added element in the error path of
map update. The to-be-added element is not visible to any bpf
program, so it is OK to pass false for need_defer parameter.
3) release the references of all elements in the map during map release.
Any bpf program which has access to the map must have been exited and
released, so need_defer=false will be OK.
These two parameters will be used by the following patches to fix the
potential use-after-free problem for map-in-map.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 876673364161 ("bpf: Defer the free of inner map when necessary")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0acd03a5bd188b0c501d285d938439618bd855c4 ]
Given verifier checks actual value, r0 has to be precise, so we need to
propagate precision properly. r0 also has to be marked as read,
otherwise subsequent state comparisons will ignore such register as
unimportant and precision won't really help here.
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b8e3a87a627b575896e448021e5c2f8a3bc19931 ]
Currently get_perf_callchain only supports user stack walking for
the current task. Passing the correct *crosstask* param will return
0 frames if the task passed to __bpf_get_stack isn't the current
one instead of a single incorrect frame/address. This change
passes the correct *crosstask* param but also does a preemptive
check in __bpf_get_stack if the task is current and returns
-EOPNOTSUPP if it is not.
This issue was found using bpf_get_task_stack inside a BPF
iterator ("iter/task"), which iterates over all tasks.
bpf_get_task_stack works fine for fetching kernel stacks
but because get_perf_callchain relies on the caller to know
if the requested *task* is the current one (via *crosstask*)
it was failing in a confusing way.
It might be possible to get user stacks for all tasks utilizing
something like access_process_vm but that requires the bpf
program calling bpf_get_task_stack to be sleepable and would
therefore be a breaking change.
Fixes: fa28dcb82a ("bpf: Introduce helper bpf_get_task_stack()")
Signed-off-by: Jordan Rome <jordalgo@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231108112334.3433136-1-jordalgo@meta.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9b75dbeb36fcd9fc7ed51d370310d0518a387769 ]
When looking up an element in LPM trie, the condition 'matchlen ==
trie->max_prefixlen' will never return true, if key->prefixlen is larger
than trie->max_prefixlen. Consequently all elements in the LPM trie will
be visited and no element is returned in the end.
To resolve this, check key->prefixlen first before walking the LPM trie.
Fixes: b95a5c4db0 ("bpf: add a longest prefix match trie map implementation")
Signed-off-by: Florian Lehner <dev@der-flo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231105085801.3742-1-dev@der-flo.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5068d84054b766efe7c6202fc71b2350d1c326f1 ]
Since reweight_entity() may have chance to change the weight of
cfs_rq->curr entity, we should also update_min_vruntime() if
this is the case
Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight")
Signed-off-by: Yiwei Lin <s921975628@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Link: https://lore.kernel.org/r/20231117080106.12890-1-s921975628@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a4aebe936554dac6a91e5d091179c934f8325708 ]
Only the posix timer system calls use this (when the posix timer support
is disabled, which does not actually happen in any normal case), because
they had debug code to print out a warning about missing system calls.
Get rid of that special case, and just use the standard COND_SYSCALL
interface that creates weak system call stubs that return -ENOSYS for
when the system call does not exist.
This fixes a kCFI issue with the SYS_NI() hackery:
CFI failure at int80_emulation+0x67/0xb0 (target: sys_ni_posix_timers+0x0/0x70; expected type: 0xb02b34d9)
WARNING: CPU: 0 PID: 48 at int80_emulation+0x67/0xb0
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 712292308af2265cd9b126aedfa987f10f452a33 ]
As the ring buffer recording requires cmpxchg() to work, if the
architecture does not support cmpxchg in NMI, then do not do any recording
within an NMI.
Link: https://lore.kernel.org/linux-trace-kernel/20231213175403.6fc18540@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1cc111b9cddc71ce161cd388f11f0e9048edffdb ]
KASAN report following issue. The root cause is when opening 'hist'
file of an instance and accessing 'trace_event_file' in hist_show(),
but 'trace_event_file' has been freed due to the instance being removed.
'hist_debug' file has the same problem. To fix it, call
tracing_{open,release}_file_tr() in file_operations callback to have
the ref count and avoid 'trace_event_file' being freed.
BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278
Read of size 8 at addr ffff242541e336b8 by task head/190
CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x98/0xf8
show_stack+0x1c/0x30
dump_stack_lvl+0x44/0x58
print_report+0xf0/0x5a0
kasan_report+0x80/0xc0
__asan_report_load8_noabort+0x1c/0x28
hist_show+0x11e0/0x1278
seq_read_iter+0x344/0xd78
seq_read+0x128/0x1c0
vfs_read+0x198/0x6c8
ksys_read+0xf4/0x1e0
__arm64_sys_read+0x70/0xa8
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xb0/0x280
do_el0_svc+0x44/0x60
el0_svc+0x34/0x68
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x168/0x170
Allocated by task 188:
kasan_save_stack+0x28/0x50
kasan_set_track+0x28/0x38
kasan_save_alloc_info+0x20/0x30
__kasan_slab_alloc+0x6c/0x80
kmem_cache_alloc+0x15c/0x4a8
trace_create_new_event+0x84/0x348
__trace_add_new_event+0x18/0x88
event_trace_add_tracer+0xc4/0x1a0
trace_array_create_dir+0x6c/0x100
trace_array_create+0x2e8/0x568
instance_mkdir+0x48/0x80
tracefs_syscall_mkdir+0x90/0xe8
vfs_mkdir+0x3c4/0x610
do_mkdirat+0x144/0x200
__arm64_sys_mkdirat+0x8c/0xc0
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xb0/0x280
do_el0_svc+0x44/0x60
el0_svc+0x34/0x68
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x168/0x170
Freed by task 191:
kasan_save_stack+0x28/0x50
kasan_set_track+0x28/0x38
kasan_save_free_info+0x34/0x58
__kasan_slab_free+0xe4/0x158
kmem_cache_free+0x19c/0x508
event_file_put+0xa0/0x120
remove_event_file_dir+0x180/0x320
event_trace_del_tracer+0xb0/0x180
__remove_instance+0x224/0x508
instance_rmdir+0x44/0x78
tracefs_syscall_rmdir+0xbc/0x140
vfs_rmdir+0x1cc/0x4c8
do_rmdir+0x220/0x2b8
__arm64_sys_unlinkat+0xc0/0x100
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xb0/0x280
do_el0_svc+0x44/0x60
el0_svc+0x34/0x68
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x168/0x170
Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 60be76eeabb3d83858cc6577fc65c7d0f36ffd42 ]
If for some reason the trace_marker write does not have a nul byte for the
string, it will overflow the print:
trace_seq_printf(s, ": %s", field->buf);
The field->buf could be missing the nul byte. To prevent overflow, add the
max size that the buf can be by using the event size and the field
location.
int max = iter->ent_size - offsetof(struct print_entry, buf);
trace_seq_printf(s, ": %*.s", max, field->buf);
Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 659aa050a53817157b7459529538598a6449c1d3 ]
Currently get_free_mem_region() searches for available capacity
in increments equal to the region size being requested. This can
cause the search to take giant steps through the resource leaving
needless gaps and missing available space.
Specifically 'cxl create-region' fails with ERANGE even though capacity
of the given size and CXL's expected 256M x InterleaveWays alignment can
be satisfied.
Replace the total-request-size increment with a next alignment increment
so that the next possible address is always examined for availability.
Fixes: 14b80582c4 ("resource: Introduce alloc_free_mem_region()")
Reported-by: Dmytro Adamenko <dmytro.adamenko@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20231113221324.1118092-1-alison.schofield@intel.com
Cc: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a80712b9cc7e57830260ec5e1feb9cdb59e1da2f ]
The commit:
cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
has changed the semantics of what is to be considered an idle task in
such a way that the idle task of an offline CPU may not carry the
PF_IDLE flag anymore.
However RCU-tasks-trace tests the opposite assertion, still assuming
that idle tasks carry the PF_IDLE flag during their whole lifecycle.
Remove this assumption to avoid spurious warnings but keep the initial
test verifying that the idle task is the current task on any offline
CPU.
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9715ed501b585d47444865071674c961c0cc0020 ]
The commit:
cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
has changed the semantics of what is to be considered an idle task in
such a way that CPU boot code preceding the actual idle loop is excluded
from it.
This has however introduced new potential RCU-tasks stalls when either:
1) Grace period is started before init/0 had a chance to set PF_IDLE,
keeping it stuck in the holdout list until idle ever schedules.
2) Grace period is started when some possible CPUs have never been
online, keeping their idle tasks stuck in the holdout list until the
CPU ever boots up.
3) Similar to 1) but with secondary CPUs: Grace period is started
concurrently with secondary CPU booting, putting its idle task in
the holdout list because PF_IDLE isn't yet observed on it. It stays
then stuck in the holdout list until that CPU ever schedules. The
effect is mitigated here by the hotplug AP thread that must run to
bring the CPU up.
Fix this with handling the new semantics of PF_IDLE, keeping in mind
that it may or may not be set on an idle task. Take advantage of that to
strengthen the coverage of an RCU-tasks quiescent state within an idle
task, excluding the CPU boot code from it. Only the code running within
the idle loop is now a quiescent state, along with offline CPUs.
Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2be4686d866ad5896f2bb94d82fe892197aea9c7 ]
Export the RCU point of view as to when a CPU is considered offline
(ie: when does RCU consider that a CPU is sufficiently down in the
hotplug process to not feature any possible read side).
This will be used by RCU-tasks whose vision of an offline CPU should
reasonably match the one of RCU core.
Fixes: cff9b2332a ("kernel/sched: Modify initial boot task idle setup")
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 85d68222ddc5f4522e456d97d201166acb50f716 ]
Commit 851a723e45 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") added a kfree() call to free any user
provided affinity mask, if present. It was changed later to use
kfree_rcu() in commit 9a5418bc48 ("sched/core: Use kfree_rcu()
in do_set_cpus_allowed()") to avoid a circular locking dependency
problem.
It turns out that even kfree_rcu() isn't safe for avoiding
circular locking problem. As reported by kernel test robot,
the following circular locking dependency now exists:
&rdp->nocb_lock --> rcu_node_0 --> &rq->__lock
Solve this by breaking the rcu_node_0 --> &rq->__lock chain by moving
the resched_cpu() out from under rcu_node lock.
[peterz: heavily borrowed from Waiman's Changelog]
[paulmck: applied Z qiang feedback]
Fixes: 851a723e45 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/oe-lkp/202310302207.a25f1a30-oliver.sang@intel.com
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 39a7dc23a1ed0fe81141792a09449d124c5953bd upstream.
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.
That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.
This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.
But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.
Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.
Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f51 ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d05cb470663a2a1879277e544f69e660208f08f2 upstream.
Masami Hiramatsu reported a memory leak in register_ftrace_direct() where
if the number of new entries are added is large enough to cause two
allocations in the loop:
for (i = 0; i < size; i++) {
hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
if (!new)
goto out_remove;
entry->direct = addr;
}
}
Where ftrace_add_rec_direct() has:
if (ftrace_hash_empty(direct_functions) ||
direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
struct ftrace_hash *new_hash;
int size = ftrace_hash_empty(direct_functions) ? 0 :
direct_functions->count + 1;
if (size < 32)
size = 32;
new_hash = dup_hash(direct_functions, size);
if (!new_hash)
return NULL;
*free_hash = direct_functions;
direct_functions = new_hash;
}
The "*free_hash = direct_functions;" can happen twice, losing the previous
allocation of direct_functions.
But this also exposed a more serious bug.
The modification of direct_functions above is not safe. As
direct_functions can be referenced at any time to find what direct caller
it should call, the time between:
new_hash = dup_hash(direct_functions, size);
and
direct_functions = new_hash;
can have a race with another CPU (or even this one if it gets interrupted),
and the entries being moved to the new hash are not referenced.
That's because the "dup_hash()" is really misnamed and is really a
"move_hash()". It moves the entries from the old hash to the new one.
Now even if that was changed, this code is not proper as direct_functions
should not be updated until the end. That is the best way to handle
function reference changes, and is the way other parts of ftrace handles
this.
The following is done:
1. Change add_hash_entry() to return the entry it created and inserted
into the hash, and not just return success or not.
2. Replace ftrace_add_rec_direct() with add_hash_entry(), and remove
the former.
3. Allocate a "new_hash" at the start that is made for holding both the
new hash entries as well as the existing entries in direct_functions.
4. Copy (not move) the direct_function entries over to the new_hash.
5. Copy the entries of the added hash to the new_hash.
6. If everything succeeds, then use rcu_pointer_assign() to update the
direct_functions with the new_hash.
This simplifies the code and fixes both the memory leak as well as the
race condition mentioned above.
Link: https://lore.kernel.org/all/170368070504.42064.8960569647118388081.stgit@devnote2/
Link: https://lore.kernel.org/linux-trace-kernel/20231229115134.08dd5174@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: 763e34e74b ("ftrace: Add register_ftrace_direct()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 623b1f896fa8a669a277ee5a258307a16c7377a3 upstream.
The tracefs file "buffer_percent" is to allow user space to set a
water-mark on how much of the tracing ring buffer needs to be filled in
order to wake up a blocked reader.
0 - is to wait until any data is in the buffer
1 - is to wait for 1% of the sub buffers to be filled
50 - would be half of the sub buffers are filled with data
100 - is not to wake the waiter until the ring buffer is completely full
Unfortunately the test for being full was:
dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
return (dirty * 100) > (full * nr_pages);
Where "full" is the value for "buffer_percent".
There is two issues with the above when full == 100.
1. dirty * 100 > 100 * nr_pages will never be true
That is, the above is basically saying that if the user sets
buffer_percent to 100, more pages need to be dirty than exist in the
ring buffer!
2. The page that the writer is on is never considered dirty, as dirty
pages are only those that are full. When the writer goes to a new
sub-buffer, it clears the contents of that sub-buffer.
That is, even if the check was ">=" it would still not be equal as the
most pages that can be considered "dirty" is nr_pages - 1.
To fix this, add one to dirty and use ">=" in the compare.
Link: https://lore.kernel.org/linux-trace-kernel/20231226125902.4a057f1d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: 03329f9939 ("tracing: Add tracefs file buffer_percentage")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e63bde3d9417f8318d6dd0d0fafa35ebf307aabd ]
All other users of crypto code use 'select' instead of 'depends on', so do
the same thing with KEXEC_FILE for consistency.
In practice this makes very little difference as kernels with kexec
support are very likely to also include some other feature that already
selects both crypto and crypto_sha256, but being consistent here helps for
usability as well as to avoid potential circular dependencies.
This reverts the dependency back to what it was originally before commit
74ca317c26 ("kexec: create a new config option CONFIG_KEXEC_FILE for
new syscall"), which changed changed it with the comment "This should be
safer as "select" is not recursive", but that appears to have been done in
error, as "select" is indeed recursive, and there are no other
dependencies that prevent CRYPTO_SHA256 from being selected here.
Link: https://lkml.kernel.org/r/20231023110308.1202042-2-arnd@kernel.org
Fixes: 74ca317c26 ("kexec: create a new config option CONFIG_KEXEC_FILE for new syscall")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric DeVolder <eric_devolder@yahoo.com>
Tested-by: Eric DeVolder <eric_devolder@yahoo.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Conor Dooley <conor@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c1ad12ee0efc07244be37f69311e6f7c4ac98e62 ]
The cleanup for the CONFIG_KEXEC Kconfig logic accidentally changed the
'depends on CRYPTO=y' dependency to a plain 'depends on CRYPTO', which
causes a link failure when all the crypto support is in a loadable module
and kexec_file support is built-in:
x86_64-linux-ld: vmlinux.o: in function `__x64_sys_kexec_file_load':
(.text+0x32e30a): undefined reference to `crypto_alloc_shash'
x86_64-linux-ld: (.text+0x32e58e): undefined reference to `crypto_shash_update'
x86_64-linux-ld: (.text+0x32e6ee): undefined reference to `crypto_shash_final'
Both s390 and x86 have this problem, while ppc64 and riscv have the
correct dependency already. On riscv, the dependency is only used for the
purgatory, not for the kexec_file code itself, which may be a bit
surprising as it means that with CONFIG_CRYPTO=m, it is possible to enable
KEXEC_FILE but then the purgatory code is silently left out.
Move this into the common Kconfig.kexec file in a way that is correct
everywhere, using the dependency on CRYPTO_SHA256=y only when the
purgatory code is available. This requires reversing the dependency
between ARCH_SUPPORTS_KEXEC_PURGATORY and KEXEC_FILE, but the effect
remains the same, other than making riscv behave like the other ones.
On s390, there is an additional dependency on CRYPTO_SHA256_S390, which
should technically not be required but gives better performance. Remove
this dependency here, noting that it was not present in the initial
Kconfig code but was brought in without an explanation in commit
71406883fd ("s390/kexec_file: Add kexec_file_load system call").
[arnd@arndb.de: fix riscv build]
Link: https://lkml.kernel.org/r/67ddd260-d424-4229-a815-e3fcfb864a77@app.fastmail.com
Link: https://lkml.kernel.org/r/20231023110308.1202042-1-arnd@kernel.org
Fixes: 6af5138083 ("x86/kexec: refactor for kernel/Kconfig.kexec")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric DeVolder <eric_devolder@yahoo.com>
Tested-by: Eric DeVolder <eric_devolder@yahoo.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Conor Dooley <conor@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 88b30c7f5d27e1594d70dc2bd7199b18f2b57fa9 upstream.
The synth_event_gen_test module can be built in, if someone wants to run
the tests at boot up and not have to load them.
The synth_event_gen_test_init() function creates and enables the synthetic
events and runs its tests.
The synth_event_gen_test_exit() disables the events it created and
destroys the events.
If the module is builtin, the events are never disabled. The issue is, the
events should be disable after the tests are run. This could be an issue
if the rest of the boot up tests are enabled, as they expect the events to
be in a known state before testing. That known state happens to be
disabled.
When CONFIG_SYNTH_EVENT_GEN_TEST=y and CONFIG_EVENT_TRACE_STARTUP_TEST=y
a warning will trigger:
Running tests on trace events:
Testing event create_synth_test:
Enabled event during self test!
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1 at kernel/trace/trace_events.c:4150 event_trace_self_tests+0x1c2/0x480
Modules linked in:
CPU: 2 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-test-00031-gb803d7c664d5-dirty #276
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:event_trace_self_tests+0x1c2/0x480
Code: bb e8 a2 ab 5d fc 48 8d 7b 48 e8 f9 3d 99 fc 48 8b 73 48 40 f6 c6 01 0f 84 d6 fe ff ff 48 c7 c7 20 b6 ad bb e8 7f ab 5d fc 90 <0f> 0b 90 48 89 df e8 d3 3d 99 fc 48 8b 1b 4c 39 f3 0f 85 2c ff ff
RSP: 0000:ffffc9000001fdc0 EFLAGS: 00010246
RAX: 0000000000000029 RBX: ffff88810399ca80 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffb9f19478 RDI: ffff88823c734e64
RBP: ffff88810399f300 R08: 0000000000000000 R09: fffffbfff79eb32a
R10: ffffffffbcf59957 R11: 0000000000000001 R12: ffff888104068090
R13: ffffffffbc89f0a0 R14: ffffffffbc8a0f08 R15: 0000000000000078
FS: 0000000000000000(0000) GS:ffff88823c700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001f6282001 CR4: 0000000000170ef0
Call Trace:
<TASK>
? __warn+0xa5/0x200
? event_trace_self_tests+0x1c2/0x480
? report_bug+0x1f6/0x220
? handle_bug+0x6f/0x90
? exc_invalid_op+0x17/0x50
? asm_exc_invalid_op+0x1a/0x20
? tracer_preempt_on+0x78/0x1c0
? event_trace_self_tests+0x1c2/0x480
? __pfx_event_trace_self_tests_init+0x10/0x10
event_trace_self_tests_init+0x27/0xe0
do_one_initcall+0xd6/0x3c0
? __pfx_do_one_initcall+0x10/0x10
? kasan_set_track+0x25/0x30
? rcu_is_watching+0x38/0x60
kernel_init_freeable+0x324/0x450
? __pfx_kernel_init+0x10/0x10
kernel_init+0x1f/0x1e0
? _raw_spin_unlock_irq+0x33/0x50
ret_from_fork+0x34/0x60
? __pfx_kernel_init+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
This is because the synth_event_gen_test_init() left the synthetic events
that it created enabled. By having it disable them after testing, the
other selftests will run fine.
Link: https://lore.kernel.org/linux-trace-kernel/20231220111525.2f0f49b0@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 9fe41efaca ("tracing: Add synth event generation test module")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reported-by: Alexander Graf <graf@amazon.com>
Tested-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b803d7c664d55705831729d2f2e29c874bcd62ea ]
To synchronize the timestamps with the ring buffer reservation, there are
two timestamps that are saved in the buffer meta data.
1. before_stamp
2. write_stamp
When the two are equal, the write_stamp is considered valid, as in, it may
be used to calculate the delta of the next event as the write_stamp is the
timestamp of the previous reserved event on the buffer.
This is done by the following:
/*A*/ w = current position on the ring buffer
before = before_stamp
after = write_stamp
ts = read current timestamp
if (before != after) {
write_stamp is not valid, force adding an absolute
timestamp.
}
/*B*/ before_stamp = ts
/*C*/ write = local_add_return(event length, position on ring buffer)
if (w == write - event length) {
/* Nothing interrupted between A and C */
/*E*/ write_stamp = ts;
delta = ts - after
/*
* If nothing interrupted again,
* before_stamp == write_stamp and write_stamp
* can be used to calculate the delta for
* events that come in after this one.
*/
} else {
/*
* The slow path!
* Was interrupted between A and C.
*/
This is the place that there's a bug. We currently have:
after = write_stamp
ts = read current timestamp
/*F*/ if (write == current position on the ring buffer &&
after < ts && cmpxchg(write_stamp, after, ts)) {
delta = ts - after;
} else {
delta = 0;
}
The assumption is that if the current position on the ring buffer hasn't
moved between C and F, then it also was not interrupted, and that the last
event written has a timestamp that matches the write_stamp. That is the
write_stamp is valid.
But this may not be the case:
If a task context event was interrupted by softirq between B and C.
And the softirq wrote an event that got interrupted by a hard irq between
C and E.
and the hard irq wrote an event (does not need to be interrupted)
We have:
/*B*/ before_stamp = ts of normal context
---> interrupted by softirq
/*B*/ before_stamp = ts of softirq context
---> interrupted by hardirq
/*B*/ before_stamp = ts of hard irq context
/*E*/ write_stamp = ts of hard irq context
/* matches and write_stamp valid */
<----
/*E*/ write_stamp = ts of softirq context
/* No longer matches before_stamp, write_stamp is not valid! */
<---
w != write - length, go to slow path
// Right now the order of events in the ring buffer is:
//
// |-- softirq event --|-- hard irq event --|-- normal context event --|
//
after = write_stamp (this is the ts of softirq)
ts = read current timestamp
if (write == current position on the ring buffer [true] &&
after < ts [true] && cmpxchg(write_stamp, after, ts) [true]) {
delta = ts - after [Wrong!]
The delta is to be between the hard irq event and the normal context
event, but the above logic made the delta between the softirq event and
the normal context event, where the hard irq event is between the two. This
will shift all the remaining event timestamps on the sub-buffer
incorrectly.
The write_stamp is only valid if it matches the before_stamp. The cmpxchg
does nothing to help this.
Instead, the following logic can be done to fix this:
before = before_stamp
ts = read current timestamp
before_stamp = ts
after = write_stamp
if (write == current position on the ring buffer &&
after == before && after < ts) {
delta = ts - after
} else {
delta = 0;
}
The above will only use the write_stamp if it still matches before_stamp
and was tested to not have changed since C.
As a bonus, with this logic we do not need any 64-bit cmpxchg() at all!
This means the 32-bit rb_time_t workaround can finally be removed. But
that's for a later time.
Link: https://lore.kernel.org/linux-trace-kernel/20231218175229.58ec3daf@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231218230712.3a76b081@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Fixes: dd93942570789 ("ring-buffer: Do not try to put back write_stamp")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 083e9f65bd215582bf8f6a920db729fadf16704f ]
When filtering is enabled, a temporary buffer is created to place the
content of the trace event output so that the filter logic can decide
from the trace event output if the trace event should be filtered out or
not. If it is to be filtered out, the content in the temporary buffer is
simply discarded, otherwise it is written into the trace buffer.
But if an interrupt were to come in while a previous event was using that
temporary buffer, the event written by the interrupt would actually go
into the ring buffer itself to prevent corrupting the data on the
temporary buffer. If the event is to be filtered out, the event in the
ring buffer is discarded, or if it fails to discard because another event
were to have already come in, it is turned into padding.
The update to the write_stamp in the rb_try_to_discard() happens after a
fix was made to force the next event after the discard to use an absolute
timestamp by setting the before_stamp to zero so it does not match the
write_stamp (which causes an event to use the absolute timestamp).
But there's an effort in rb_try_to_discard() to put back the write_stamp
to what it was before the event was added. But this is useless and
wasteful because nothing is going to be using that write_stamp for
calculations as it still will not match the before_stamp.
Remove this useless update, and in doing so, we remove another
cmpxchg64()!
Also update the comments to reflect this change as well as remove some
extra white space in another comment.
Link: https://lore.kernel.org/linux-trace-kernel/20231215081810.1f4f38fe@rorschach.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Fixes: b2dd797543cf ("ring-buffer: Force absolute timestamp on discard of event")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dec890089bf79a4954b61482715ee2d084364856 ]
The following race can cause rb_time_read() to observe a corrupted time
stamp:
rb_time_cmpxchg()
[...]
if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
return false;
if (!rb_time_read_cmpxchg(&t->top, top, top2))
return false;
<interrupted before updating bottom>
__rb_time_read()
[...]
do {
c = local_read(&t->cnt);
top = local_read(&t->top);
bottom = local_read(&t->bottom);
msb = local_read(&t->msb);
} while (c != local_read(&t->cnt));
*cnt = rb_time_cnt(top);
/* If top and msb counts don't match, this interrupted a write */
if (*cnt != rb_time_cnt(msb))
return false;
^ this check fails to catch that "bottom" is still not updated.
So the old "bottom" value is returned, which is wrong.
Fix this by checking that all three of msb, top, and bottom 2-bit cnt
values match.
The reason to favor checking all three fields over requiring a specific
update order for both rb_time_set() and rb_time_cmpxchg() is because
checking all three fields is more robust to handle partial failures of
rb_time_cmpxchg() when interrupted by nested rb_time_set().
Link: https://lore.kernel.org/lkml/20231211201324.652870-1-mathieu.desnoyers@efficios.com/
Link: https://lore.kernel.org/linux-trace-kernel/20231212193049.680122-1-mathieu.desnoyers@efficios.com
Fixes: f458a1453424e ("ring-buffer: Test last update in 32bit version of __rb_time_read()")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4b7de801606e504e69689df71475d27e35336fb3 upstream.
Lee pointed out issue found by syscaller [0] hitting BUG in prog array
map poke update in prog_array_map_poke_run function due to error value
returned from bpf_arch_text_poke function.
There's race window where bpf_arch_text_poke can fail due to missing
bpf program kallsym symbols, which is accounted for with check for
-EINVAL in that BUG_ON call.
The problem is that in such case we won't update the tail call jump
and cause imbalance for the next tail call update check which will
fail with -EBUSY in bpf_arch_text_poke.
I'm hitting following race during the program load:
CPU 0 CPU 1
bpf_prog_load
bpf_check
do_misc_fixups
prog_array_map_poke_track
map_update_elem
bpf_fd_array_map_update_elem
prog_array_map_poke_run
bpf_arch_text_poke returns -EINVAL
bpf_prog_kallsyms_add
After bpf_arch_text_poke (CPU 1) fails to update the tail call jump, the next
poke update fails on expected jump instruction check in bpf_arch_text_poke
with -EBUSY and triggers the BUG_ON in prog_array_map_poke_run.
Similar race exists on the program unload.
Fixing this by moving the update to bpf_arch_poke_desc_update function which
makes sure we call __bpf_arch_text_poke that skips the bpf address check.
Each architecture has slightly different approach wrt looking up bpf address
in bpf_arch_text_poke, so instead of splitting the function or adding new
'checkip' argument in previous version, it seems best to move the whole
map_poke_run update as arch specific code.
[0] https://syzkaller.appspot.com/bug?extid=97a4fe20470e9bc30810
Fixes: ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Reported-by: syzbot+97a4fe20470e9bc30810@syzkaller.appspotmail.com
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Cc: Lee Jones <lee@kernel.org>
Cc: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/bpf/20231206083041.1306660-2-jolsa@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0aa0e5289cfe984a8a9fdd79ccf46ccf080151f7 upstream.
The rb_time_cmpxchg() on 32-bit architectures requires setting three
32-bit words to represent the 64-bit timestamp, with some salt for
synchronization. Those are: msb, top, and bottom
The issue is, the rb_time_cmpxchg() did not properly salt the msb portion,
and the msb that was written was stale.
Link: https://lore.kernel.org/linux-trace-kernel/20231215084114.20899342@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: f03f2abce4 ("ring-buffer: Have 32 bit time stamps use all 64 bits")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dd939425707898da992e59ab0fcfae4652546910 upstream.
If an update to an event is interrupted by another event between the time
the initial event allocated its buffer and where it wrote to the
write_stamp, the code try to reset the write stamp back to the what it had
just overwritten. It knows that it was overwritten via checking the
before_stamp, and if it didn't match what it wrote to the before_stamp
before it allocated its space, it knows it was overwritten.
To put back the write_stamp, it uses the before_stamp it read. The problem
here is that by writing the before_stamp to the write_stamp it makes the
two equal again, which means that the write_stamp can be considered valid
as the last timestamp written to the ring buffer. But this is not
necessarily true. The event that interrupted the event could have been
interrupted in a way that it was interrupted as well, and can end up
leaving with an invalid write_stamp. But if this happens and returns to
this context that uses the before_stamp to update the write_stamp again,
it can possibly incorrectly make it valid, causing later events to have in
correct time stamps.
As it is OK to leave this function with an invalid write_stamp (one that
doesn't match the before_stamp), there's no reason to try to make it valid
again in this case. If this race happens, then just leave with the invalid
write_stamp and the next event to come along will just add a absolute
timestamp and validate everything again.
Bonus points: This gets rid of another cmpxchg64!
Link: https://lore.kernel.org/linux-trace-kernel/20231214222921.193037a7@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Fixes: a389d86f7f ("ring-buffer: Have nested events still record running time stamp")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fff88fa0fbc7067ba46dde570912d63da42c59a9 upstream.
Mathieu Desnoyers pointed out an issue in the rb_time_cmpxchg() for 32 bit
architectures. That is:
static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
{
unsigned long cnt, top, bottom, msb;
unsigned long cnt2, top2, bottom2, msb2;
u64 val;
/* The cmpxchg always fails if it interrupted an update */
if (!__rb_time_read(t, &val, &cnt2))
return false;
if (val != expect)
return false;
<<<< interrupted here!
cnt = local_read(&t->cnt);
The problem is that the synchronization counter in the rb_time_t is read
*after* the value of the timestamp is read. That means if an interrupt
were to come in between the value being read and the counter being read,
it can change the value and the counter and the interrupted process would
be clueless about it!
The counter needs to be read first and then the value. That way it is easy
to tell if the value is stale or not. If the counter hasn't been updated,
then the value is still good.
Link: https://lore.kernel.org/linux-trace-kernel/20231211201324.652870-1-mathieu.desnoyers@efficios.com/
Link: https://lore.kernel.org/linux-trace-kernel/20231212115301.7a9c9a64@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: 10464b4aa6 ("ring-buffer: Add rb_time_t 64 bit operations for speeding up 32 bit")
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b3ae7b67b87fed771fa5bf95389df06b0433603e upstream.
The maximum ring buffer data size is the maximum size of data that can be
recorded on the ring buffer. Events must be smaller than the sub buffer
data size minus any meta data. This size is checked before trying to
allocate from the ring buffer because the allocation assumes that the size
will fit on the sub buffer.
The maximum size was calculated as the size of a sub buffer page (which is
currently PAGE_SIZE minus the sub buffer header) minus the size of the
meta data of an individual event. But it missed the possible adding of a
time stamp for events that are added long enough apart that the event meta
data can't hold the time delta.
When an event is added that is greater than the current BUF_MAX_DATA_SIZE
minus the size of a time stamp, but still less than or equal to
BUF_MAX_DATA_SIZE, the ring buffer would go into an infinite loop, looking
for a page that can hold the event. Luckily, there's a check for this loop
and after 1000 iterations and a warning is emitted and the ring buffer is
disabled. But this should never happen.
This can happen when a large event is added first, or after a long period
where an absolute timestamp is prefixed to the event, increasing its size
by 8 bytes. This passes the check and then goes into the algorithm that
causes the infinite loop.
For events that are the first event on the sub-buffer, it does not need to
add a timestamp, because the sub-buffer itself contains an absolute
timestamp, and adding one is redundant.
The fix is to check if the event is to be the first event on the
sub-buffer, and if it is, then do not add a timestamp.
This also fixes 32 bit adding a timestamp when a read of before_stamp or
write_stamp is interrupted. There's still no need to add that timestamp if
the event is going to be the first event on the sub buffer.
Also, if the buffer has "time_stamp_abs" set, then also check if the
length plus the timestamp is greater than the BUF_MAX_DATA_SIZE.
Link: https://lore.kernel.org/all/20231212104549.58863438@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231212071837.5fdd6c13@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231212111617.39e02849@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: a4543a2fa9 ("ring-buffer: Get timestamp after event is allocated")
Fixes: 58fbc3c632 ("ring-buffer: Consolidate add_timestamp to remove some branches")
Reported-by: Kent Overstreet <kent.overstreet@linux.dev> # (on IRC)
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b049525855fdd0024881c9b14b8fbec61c3f53d3 upstream.
For the ring buffer iterator (non-consuming read), the event needs to be
copied into the iterator buffer to make sure that a writer does not
overwrite it while the user is reading it. If a write happens during the
copy, the buffer is simply discarded.
But the temp buffer itself was not big enough. The allocation of the
buffer was only BUF_MAX_DATA_SIZE, which is the maximum data size that can
be passed into the ring buffer and saved. But the temp buffer needs to
hold the meta data as well. That would be BUF_PAGE_SIZE and not
BUF_MAX_DATA_SIZE.
Link: https://lore.kernel.org/linux-trace-kernel/20231212072558.61f76493@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 785888c544 ("ring-buffer: Have rb_iter_head_event() handle concurrent writer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9e45e39dc249c970d99d2681f6bcb55736fd725c upstream.
The ring buffer timestamps are synchronized by two timestamp placeholders.
One is the "before_stamp" and the other is the "write_stamp" (sometimes
referred to as the "after stamp" but only in the comments. These two
stamps are key to knowing how to handle nested events coming in with a
lockless system.
When moving across sub-buffers, the before stamp is updated but the write
stamp is not. There's an effort to put back the before stamp to something
that seems logical in case there's nested events. But as the current event
is about to cross sub-buffers, and so will any new nested event that happens,
updating the before stamp is useless, and could even introduce new race
conditions.
The first event on a sub-buffer simply uses the sub-buffer's timestamp
and keeps a "delta" of zero. The "before_stamp" and "write_stamp" are not
used in the algorithm in this case. There's no reason to try to fix the
before_stamp when this happens.
As a bonus, it removes a cmpxchg() when crossing sub-buffers!
Link: https://lore.kernel.org/linux-trace-kernel/20231211114420.36dde01b@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: a389d86f7f ("ring-buffer: Have nested events still record running time stamp")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d06aff1cb13d2a0d52b48e605462518149c98c81 upstream.
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.
Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.
When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.
Also fix typo in comment just above the code change.
Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ad909e21bb ("tracing: Add internal tracing_snapshot() functions")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 17d801758157bec93f26faaf5ff1a8b9a552d67a upstream.
Reading the ring buffer does a swap of a sub-buffer within the ring buffer
with a empty sub-buffer. This allows the reader to have full access to the
content of the sub-buffer that was swapped out without having to worry
about contention with the writer.
The readers call ring_buffer_alloc_read_page() to allocate a page that
will be used to swap with the ring buffer. When the code is finished with
the reader page, it calls ring_buffer_free_read_page(). Instead of freeing
the page, it stores it as a spare. Then next call to
ring_buffer_alloc_read_page() will return this spare instead of calling
into the memory management system to allocate a new page.
Unfortunately, on freeing of the ring buffer, this spare page is not
freed, and causes a memory leak.
Link: https://lore.kernel.org/linux-trace-kernel/20231210221250.7b9cc83c@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 73a757e631 ("ring-buffer: Return reader page back into existing ring buffer")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c41bd2514184d75db087fe4c1221237fb7922875 upstream.
In commit f8ff23429c62 ("kernel/Kconfig.kexec: drop select of KEXEC for
CRASH_DUMP") we tried to fix a config regression, where CONFIG_CRASH_DUMP
required CONFIG_KEXEC.
However, it was not enough at least for arm64 platforms. While further
testing the patch with our arm64 config I noticed that CONFIG_CRASH_DUMP
is unavailable in menuconfig. This is because CONFIG_CRASH_DUMP still
depends on the new CONFIG_ARCH_SUPPORTS_KEXEC introduced in commit
91506f7e5d ("arm64/kexec: refactor for kernel/Kconfig.kexec") and on
arm64 CONFIG_ARCH_SUPPORTS_KEXEC requires CONFIG_PM_SLEEP_SMP=y, which in
turn requires either CONFIG_SUSPEND=y or CONFIG_HIBERNATION=y neither of
which are set in our config.
Given that we already established that CONFIG_KEXEC (which is a switch for
kexec system call itself) is not required for CONFIG_CRASH_DUMP drop
CONFIG_ARCH_SUPPORTS_KEXEC dependency as well. The arm64 kernel builds
just fine with CONFIG_CRASH_DUMP=y and with both CONFIG_KEXEC=n and
CONFIG_KEXEC_FILE=n after f8ff23429c62 ("kernel/Kconfig.kexec: drop select
of KEXEC for CRASH_DUMP") and this patch are applied given that the
necessary shared bits are included via CONFIG_KEXEC_CORE dependency.
[bhe@redhat.com: don't export some symbols when CONFIG_MMU=n]
Link: https://lkml.kernel.org/r/ZW03ODUKGGhP1ZGU@MiWiFi-R3L-srv
[bhe@redhat.com: riscv, kexec: fix dependency of two items]
Link: https://lkml.kernel.org/r/ZW04G/SKnhbE5mnX@MiWiFi-R3L-srv
Link: https://lkml.kernel.org/r/20231129220409.55006-1-ignat@cloudflare.com
Fixes: 91506f7e5d ("arm64/kexec: refactor for kernel/Kconfig.kexec")
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: <stable@vger.kernel.org> # 6.6+: f8ff234: kernel/Kconfig.kexec: drop select of KEXEC for CRASH_DUMP
Cc: <stable@vger.kernel.org> # 6.6+
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7e2c1e4b34f07d9aa8937fab88359d4a0fce468e upstream.
When lockdep is enabled, the for_each_sibling_event(sibling, event)
macro checks that event->ctx->mutex is held. When creating a new group
leader event, we call perf_event_validate_size() on a partially
initialized event where event->ctx is NULL, and so when
for_each_sibling_event() attempts to check event->ctx->mutex, we get a
splat, as reported by Lucas De Marchi:
WARNING: CPU: 8 PID: 1471 at kernel/events/core.c:1950 __do_sys_perf_event_open+0xf37/0x1080
This only happens for a new event which is its own group_leader, and in
this case there cannot be any sibling events. Thus it's safe to skip the
check for siblings, which avoids having to make invasive and ugly
changes to for_each_sibling_event().
Avoid the splat by bailing out early when the new event is its own
group_leader.
Fixes: 382c27f4ed28f803 ("perf: Fix perf_event_validate_size()")
Closes: https://lore.kernel.org/lkml/20231214000620.3081018-1-lucas.demarchi@intel.com/
Closes: https://lore.kernel.org/lkml/ZXpm6gQ%2Fd59jGsuW@xpf.sh.intel.com/
Reported-by: Lucas De Marchi <lucas.demarchi@intel.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231215112450.3972309-1-mark.rutland@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f8fa5d76925991976b3e7076f9d1052515ec1fca upstream.
There are multiple ways to grab references to credentials, and the only
protection we have against overflowing it is the memory required to do
so.
With memory sizes only moving in one direction, let's bump the reference
count to 64-bit and move it outside the realm of feasibly overflowing.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d839a656d0f3caca9f96e9bf912fd394ac6a11bc upstream.
It seems that the pointer-to-kretprobe "rp" within the kretprobe_holder is
RCU-managed, based on the (non-rethook) implementation of get_kretprobe().
The thought behind this patch is to make use of the RCU API where possible
when accessing this pointer so that the needed barriers are always in place
and to self-document the code.
The __rcu annotation to "rp" allows for sparse RCU checking. Plain writes
done to the "rp" pointer are changed to make use of the RCU macro for
assignment. For the single read, the implementation of get_kretprobe()
is simplified by making use of an RCU macro which accomplishes the same,
but note that the log warning text will be more generic.
I did find that there is a difference in assembly generated between the
usage of the RCU macros vs without. For example, on arm64, when using
rcu_assign_pointer(), the corresponding store instruction is a
store-release (STLR) which has an implicit barrier. When normal assignment
is done, a regular store (STR) is found. In the macro case, this seems to
be a result of rcu_assign_pointer() using smp_store_release() when the
value to write is not NULL.
Link: https://lore.kernel.org/all/20231122132058.3359-1-inwardvessel@gmail.com/
Fixes: d741bf41d7 ("kprobes: Remove kretprobe hash")
Cc: stable@vger.kernel.org
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 382c27f4ed28f803b1f1473ac2d8db0afc795a1b ]
Budimir noted that perf_event_validate_size() only checks the size of
the newly added event, even though the sizes of all existing events
can also change due to not all events having the same read_format.
When we attach the new event, perf_group_attach(), we do re-compute
the size for all events.
Fixes: a723968c0e ("perf: Fix u16 overflows")
Reported-by: Budimir Markovic <markovicbudimir@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4a6c5607d4502ccd1b15b57d57f17d12b6f257a7 upstream.
During boot, depending on how the housekeeping and workqueue.unbound_cpus
masks are set, wq_unbound_cpumask can end up empty. Since 8639ecebc9
("workqueue: Implement non-strict affinity scope for unbound workqueues"),
this may end up feeding -1 as a CPU number into scheduler leading to oopses.
BUG: unable to handle page fault for address: ffffffff8305e9c0
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
...
Call Trace:
<TASK>
select_idle_sibling+0x79/0xaf0
select_task_rq_fair+0x1cb/0x7b0
try_to_wake_up+0x29c/0x5c0
wake_up_process+0x19/0x20
kick_pool+0x5e/0xb0
__queue_work+0x119/0x430
queue_work_on+0x29/0x30
...
An empty wq_unbound_cpumask is a clear misconfiguration and already
disallowed once system is booted up. Let's warn on and ignore
unbound_cpumask restrictions which lead to no unbound cpus. While at it,
also remove now unncessary empty check on wq_unbound_cpumask in
wq_select_unbound_cpu().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-Tested-by: Yong He <alexyonghe@tencent.com>
Link: http://lkml.kernel.org/r/20231120121623.119780-1-alexyonghe@tencent.com
Fixes: 8639ecebc9 ("workqueue: Implement non-strict affinity scope for unbound workqueues")
Cc: stable@vger.kernel.org # v6.6+
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c0591b1cccf708a47bc465c62436d669a4213323 upstream.
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().
The following race is currently possible:
* Function trace_buffered_event_disable() is called on CPU 0. It
increments trace_buffered_event_cnt on each CPU and waits via
synchronize_rcu() for each user of trace_buffered_event to complete.
* After synchronize_rcu() is finished, function
trace_buffered_event_disable() has the exclusive access to
trace_buffered_event. All counters trace_buffered_event_cnt are at 1
and all pointers trace_buffered_event are still valid.
* At this point, on a different CPU 1, the execution reaches
trace_event_buffer_lock_reserve(). The function calls
preempt_disable_notrace() and only now enters an RCU read-side
critical section. The function proceeds and reads a still valid
pointer from trace_buffered_event[CPU1] into the local variable
"entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
which happens later.
* Function trace_buffered_event_disable() continues. It frees
trace_buffered_event[CPU1] and decrements
trace_buffered_event_cnt[CPU1] back to 0.
* Function trace_event_buffer_lock_reserve() continues. It reads and
increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
believe that it can use the "entry" that it already obtained but the
pointer is now invalid and any access results in a use-after-free.
Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7fed14f7ac9cf5e38c693836fe4a874720141845 upstream.
The following warning appears when using buffered events:
[ 203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420
[...]
[ 203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G E 6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a
[ 203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
[ 203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420
[ 203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff
[ 203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202
[ 203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000
[ 203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400
[ 203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000
[ 203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[ 203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008
[ 203.781846] FS: 00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000
[ 203.781851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0
[ 203.781862] Call Trace:
[ 203.781870] <TASK>
[ 203.851949] trace_event_buffer_commit+0x1ea/0x250
[ 203.851967] trace_event_raw_event_sys_enter+0x83/0xe0
[ 203.851983] syscall_trace_enter.isra.0+0x182/0x1a0
[ 203.851990] do_syscall_64+0x3a/0xe0
[ 203.852075] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 203.852090] RIP: 0033:0x7f4cd870fa77
[ 203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48
[ 203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089
[ 203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77
[ 203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0
[ 203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0
[ 203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40
[ 204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0
[ 204.049256] </TASK>
For instance, it can be triggered by running these two commands in
parallel:
$ while true; do
echo hist:key=id.syscall:val=hitcount > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger;
done
$ stress-ng --sysinfo $(nproc)
The warning indicates that the current ring_buffer_per_cpu is not in the
committing state. It happens because the active ring_buffer_event
doesn't actually come from the ring_buffer_per_cpu but is allocated from
trace_buffered_event.
The bug is in function trace_buffered_event_disable() where the
following normally happens:
* The code invokes disable_trace_buffered_event() via
smp_call_function_many() and follows it by synchronize_rcu(). This
increments the per-CPU variable trace_buffered_event_cnt on each
target CPU and grants trace_buffered_event_disable() the exclusive
access to the per-CPU variable trace_buffered_event.
* Maintenance is performed on trace_buffered_event, all per-CPU event
buffers get freed.
* The code invokes enable_trace_buffered_event() via
smp_call_function_many(). This decrements trace_buffered_event_cnt and
releases the access to trace_buffered_event.
A problem is that smp_call_function_many() runs a given function on all
target CPUs except on the current one. The following can then occur:
* Task X executing trace_buffered_event_disable() runs on CPU 0.
* The control reaches synchronize_rcu() and the task gets rescheduled on
another CPU 1.
* The RCU synchronization finishes. At this point,
trace_buffered_event_disable() has the exclusive access to all
trace_buffered_event variables except trace_buffered_event[CPU0]
because trace_buffered_event_cnt[CPU0] is never incremented and if the
buffer is currently unused, remains set to 0.
* A different task Y is scheduled on CPU 0 and hits a trace event. The
code in trace_event_buffer_lock_reserve() sees that
trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the
buffer provided by trace_buffered_event[CPU0].
* Task X continues its execution in trace_buffered_event_disable(). The
code incorrectly frees the event buffer pointed by
trace_buffered_event[CPU0] and resets the variable to NULL.
* Task Y writes event data to the now freed buffer and later detects the
created inconsistency.
The issue is observable since commit dea499781a ("tracing: Fix warning
in trace_buffered_event_disable()") which moved the call of
trace_buffered_event_disable() in __ftrace_event_enable_disable()
earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..).
The underlying problem in trace_buffered_event_disable() is however
present since the original implementation in commit 0fc1b09ff1
("tracing: Use temp buffer when filtering events").
Fix the problem by replacing the two smp_call_function_many() calls with
on_each_cpu_mask() which invokes a given callback on all CPUs.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Fixes: dea499781a ("tracing: Fix warning in trace_buffered_event_disable()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b538bf7d0ec11ca49f536dfda742a5f6db90a798 upstream.
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.
Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.
Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d78ab792705c7be1b91243b2544d1a79406a2ad7 upstream.
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.
Simply stop the running tracer before resizing the buffers and enable it
again when finished.
Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 3928a8a2d9 ("ftrace: make work with new ring buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7be76461f302ec05cbd62b90b2a05c64299ca01f upstream.
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.
Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:
# cd /sys/kernel/tracing
# echo 1500 > buffer_size_kb
# mkdir instances/foo
# echo irqsoff > instances/foo/current_tracer
# echo 1000 > instances/foo/buffer_size_kb
Produces:
WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320
Which is:
ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);
if (ret == -EBUSY) {
[..]
}
WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); <== here
That's because ring_buffer_swap_cpu() has:
int ret = -EINVAL;
[..]
/* At least make sure the two buffers are somewhat the same */
if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
goto out;
[..]
out:
return ret;
}
Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.
Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cff5f49d433fcd0063c8be7dd08fa5bf190c6c37 upstream.
__thaw_task() was recently updated to warn if the task being thawed was
part of a freezer cgroup that is still currently freezing:
void __thaw_task(struct task_struct *p)
{
...
if (WARN_ON_ONCE(freezing(p)))
goto unlock;
This has exposed a bug in cgroup1 freezing where when CGROUP_FROZEN is
asserted, the CGROUP_FREEZING bits are not also cleared at the same
time. Meaning, when a cgroup is marked FROZEN it continues to be marked
FREEZING as well. This causes the WARNING to trigger, because
cgroup_freezing() thinks the cgroup is still freezing.
There are two ways to fix this:
1. Whenever FROZEN is set, clear FREEZING for the cgroup and all
children cgroups.
2. Update cgroup_freezing() to also verify that FROZEN is not set.
This patch implements option (2), since it's smaller and more
straightforward.
Signed-off-by: Tim Van Patten <timvp@google.com>
Tested-by: Mark Hasemeyer <markhas@chromium.org>
Fixes: f5d39b0208 ("freezer,sched: Rewrite core freezer logic")
Cc: stable@vger.kernel.org # v6.1+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b2dd797543cfa6580eac8408dd67fa02164d9e56 upstream.
There's a race where if an event is discarded from the ring buffer and an
interrupt were to happen at that time and insert an event, the time stamp
is still used from the discarded event as an offset. This can screw up the
timings.
If the event is going to be discarded, set the "before_stamp" to zero.
When a new event comes in, it compares the "before_stamp" with the
"write_stamp" and if they are not equal, it will insert an absolute
timestamp. This will prevent the timings from getting out of sync due to
the discarded event.
Link: https://lore.kernel.org/linux-trace-kernel/20231206100244.5130f9b3@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 6f6be606e7 ("ring-buffer: Force before_stamp and write_stamp to be different on discard")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f458a1453424e03462b5bb539673c9a3cddda480 upstream.
Since 64 bit cmpxchg() is very expensive on 32bit architectures, the
timestamp used by the ring buffer does some interesting tricks to be able
to still have an atomic 64 bit number. It originally just used 60 bits and
broke it up into two 32 bit words where the extra 2 bits were used for
synchronization. But this was not enough for all use cases, and all 64
bits were required.
The 32bit version of the ring buffer timestamp was then broken up into 3
32bit words using the same counter trick. But one update was not done. The
check to see if the read operation was done without interruption only
checked the first two words and not last one (like it had before this
update). Fix it by making sure all three updates happen without
interruption by comparing the initial counter with the last updated
counter.
Link: https://lore.kernel.org/linux-trace-kernel/20231206100050.3100b7bb@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: f03f2abce4 ("ring-buffer: Have 32 bit time stamps use all 64 bits")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a1461f1fd6cfdc4b8917c9d4a91e92605d1f28dc upstream.
Since the rethook::handler is an RCU-maganged pointer so that it will
notice readers the rethook is stopped (unregistered) or not, it should
be an __rcu pointer and use appropriate functions to be accessed. This
will use appropriate memory barrier when accessing it. OTOH,
rethook::data is never changed, so we don't need to check it in
get_kretprobe().
NOTE: To avoid sparse warning, rethook::handler is defined by a raw
function pointer type with __rcu instead of rethook_handler_t.
Link: https://lore.kernel.org/all/170126066201.398836.837498688669005979.stgit@devnote2/
Fixes: 54ecbe6f1e ("rethook: Add a generic return hook")
Cc: stable@vger.kernel.org
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202311241808.rv9ceuAh-lkp@intel.com/
Tested-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dccf78d39f1069a5ddf4328bf0c97aa5f2f4296e ]
Ignat Korchagin complained that a potential config regression was
introduced by commit 89cde45591 ("kexec: consolidate kexec and crash
options into kernel/Kconfig.kexec"). Before the commit, CONFIG_CRASH_DUMP
has no dependency on CONFIG_KEXEC. After the commit, CRASH_DUMP selects
KEXEC. That enforces system to have CONFIG_KEXEC=y as long as
CONFIG_CRASH_DUMP=Y which people may not want.
In Ignat's case, he sets CONFIG_CRASH_DUMP=y, CONFIG_KEXEC_FILE=y and
CONFIG_KEXEC=n because kexec_load interface could have security issue if
kernel/initrd has no chance to be signed and verified.
CRASH_DUMP has select of KEXEC because Eric, author of above commit, met a
LKP report of build failure when posting patch of earlier version. Please
see below link to get detail of the LKP report:
https://lore.kernel.org/all/3e8eecd1-a277-2cfb-690e-5de2eb7b988e@oracle.com/T/#u
In fact, that LKP report is triggered because arm's <asm/kexec.h> is
wrapped in CONFIG_KEXEC ifdeffery scope. That is wrong. CONFIG_KEXEC
controls the enabling/disabling of kexec_load interface, but not kexec
feature. Removing the wrongly added CONFIG_KEXEC ifdeffery scope in
<asm/kexec.h> of arm allows us to drop the select KEXEC for CRASH_DUMP.
Meanwhile, change arch/arm/kernel/Makefile to let machine_kexec.o
relocate_kernel.o depend on KEXEC_CORE.
Link: https://lkml.kernel.org/r/20231128054457.659452-1-bhe@redhat.com
Fixes: 89cde45591 ("kexec: consolidate kexec and crash options into kernel/Kconfig.kexec")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Tested-by: Ignat Korchagin <ignat@cloudflare.com> [compile-time only]
Tested-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Eric DeVolder <eric_devolder@yahoo.com>
Tested-by: Eric DeVolder <eric_devolder@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 34209fe83ef8404353f91ab4ea4035dbc9922d04 ]
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.
The situation can occur as follows:
* The counter trace_buffered_event_ref is at 0.
* The soft mode gets enabled for some event and
trace_buffered_event_enable() is called. The function increments
trace_buffered_event_ref to 1 and starts allocating event pages.
* The allocation fails for some page and trace_buffered_event_disable()
is called for cleanup.
* Function trace_buffered_event_disable() decrements
trace_buffered_event_ref back to 0, recognizes that it was the last
use of buffered events and frees all allocated pages.
* The control goes back to trace_buffered_event_enable() which returns.
The caller of trace_buffered_event_enable() has no information that
the function actually failed.
* Some time later, the soft mode is disabled for the same event.
Function trace_buffered_event_disable() is called. It warns on
"WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.
Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dfce9cb3140592b886838e06f3e0c25fea2a9cae ]
Bpf cpu=v4 support is introduced in [1] and Commit 4cd58e9af8
("bpf: Support new 32bit offset jmp instruction") added support for new
32bit offset jmp instruction. Unfortunately, in function
bpf_adj_delta_to_off(), for new branch insn with 32bit offset, the offset
(plus/minor a small delta) compares to 16-bit offset bound
[S16_MIN, S16_MAX], which caused the following verification failure:
$ ./test_progs-cpuv4 -t verif_scale_pyperf180
...
insn 10 cannot be patched due to 16-bit range
...
libbpf: failed to load object 'pyperf180.bpf.o'
scale_test:FAIL:expect_success unexpected error: -12 (errno 12)
#405 verif_scale_pyperf180:FAIL
Note that due to recent llvm18 development, the patch [2] (already applied
in bpf-next) needs to be applied to bpf tree for testing purpose.
The fix is rather simple. For 32bit offset branch insn, the adjusted
offset compares to [S32_MIN, S32_MAX] and then verification succeeded.
[1] https://lore.kernel.org/all/20230728011143.3710005-1-yonghong.song@linux.dev
[2] https://lore.kernel.org/bpf/20231110193644.3130906-1-yonghong.song@linux.dev
Fixes: 4cd58e9af8 ("bpf: Support new 32bit offset jmp instruction")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231201024640.3417057-1-yonghong.song@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5c0930ccaad5a74d74e8b18b648c5eb21ed2fe94 ]
2b8272ff4a ("cpu/hotplug: Prevent self deadlock on CPU hot-unplug")
solved the straight forward CPU hotplug deadlock vs. the scheduler
bandwidth timer. Yu discovered a more involved variant where a task which
has a bandwidth timer started on the outgoing CPU holds a lock and then
gets throttled. If the lock required by one of the CPU hotplug callbacks
the hotplug operation deadlocks because the unthrottling timer event is not
handled on the dying CPU and can only be recovered once the control CPU
reaches the hotplug state which pulls the pending hrtimers from the dead
CPU.
Solve this by pushing the hrtimers away from the dying CPU in the dying
callbacks. Nothing can queue a hrtimer on the dying CPU at that point because
all other CPUs spin in stop_machine() with interrupts disabled and once the
operation is finished the CPU is marked offline.
Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Liu Tie <liutie4@huawei.com>
Link: https://lore.kernel.org/r/87a5rphara.ffs@tglx
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 75a442581d05edaee168222ffbe00d4389785636 ]
bpf_mem_cache_alloc_flags() may call __alloc() directly when there is no
free object in free list, but it doesn't initialize the allocation hint
for the returned pointer. It may lead to bad memory dereference when
freeing the pointer, so fix it by initializing the allocation hint.
Fixes: 822fb26bdb ("bpf: Add a hint to allocated objects.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231111043821.2258513-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 793838138c157d4c49f4fb744b170747e3dabf58 ]
systemd-254 tries to use prctl(PR_SET_MDWE) for it's MemoryDenyWriteExecute
functionality, but fails on parisc which still needs executable stacks in
certain combinations of gcc/glibc/kernel.
Disable prctl(PR_SET_MDWE) by returning -EINVAL for now on parisc, until
userspace has catched up.
Signed-off-by: Helge Deller <deller@gmx.de>
Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Sam James <sam@gentoo.org>
Closes: https://github.com/systemd/systemd/issues/29775
Tested-by: Sam James <sam@gentoo.org>
Link: https://lore.kernel.org/all/875y2jro9a.fsf@gentoo.org/
Cc: <stable@vger.kernel.org> # v6.3+
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 24e41bf8a6b424c76c5902fb999e9eca61bdf83d ]
This extends the current PR_SET_MDWE prctl arg with a bit to indicate that
the process doesn't want MDWE protection to propagate to children.
To implement this no-inherit mode, the tag in current->mm->flags must be
absent from MMF_INIT_MASK. This means that the encoding for "MDWE but
without inherit" is different in the prctl than in the mm flags. This
leads to a bit of bit-mangling in the prctl implementation.
Link: https://lkml.kernel.org/r/20230828150858.393570-6-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexey Izbyshev <izbyshev@ispras.ru>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ayush Jain <ayush.jain3@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Szabolcs Nagy <Szabolcs.Nagy@arm.com>
Cc: Topi Miettinen <toiwoton@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 793838138c15 ("prctl: Disable prctl(PR_SET_MDWE) on parisc")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bca4104b00fec60be330cd32818dd5c70db3d469 ]
Kent reported an occasional KASAN splat in lockdep. Mark then noted:
> I suspect the dodgy access is to chain_block_buckets[-1], which hits the last 4
> bytes of the redzone and gets (incorrectly/misleadingly) attributed to
> nr_large_chain_blocks.
That would mean @size == 0, at which point size_to_bucket() returns -1
and the above happens.
alloc_chain_hlocks() has 'size - req', for the first with the
precondition 'size >= rq', which allows the 0.
This code is trying to split a block, del_chain_block() takes what we
need, and add_chain_block() puts back the remainder, except in the
above case the remainder is 0 sized and things go sideways.
Fixes: 810507fe6f ("locking/lockdep: Reuse freed chain_hlocks entries")
Reported-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kent Overstreet <kent.overstreet@linux.dev>
Link: https://lkml.kernel.org/r/20231121114126.GH8262@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6d7e4782bcf549221b4ccfffec2cf4d1a473f1a3 ]
should_we_balance is called for the decision to do load-balancing.
When sched ticks invoke this function, only one CPU should return
true. However, in the current code, two CPUs can return true. The
following situation, where b means busy and i means idle, is an
example, because CPU 0 and CPU 2 return true.
[0, 1] [2, 3]
b b i b
This fix checks if there exists an idle CPU with busy sibling(s)
after looking for a CPU on an idle core. If some idle CPUs with busy
siblings are found, just the first one should do load-balancing.
Fixes: b1bfeab9b0 ("sched/fair: Consider the idle state of the whole core for load balance")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231031133821.1570861-1-keisuke.nishimura@inria.fr
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit eab03c23c2a162085b13200d7942fc5a00b5ccc8 ]
vruntime of the (on_rq && !0-lag) entity needs to be adjusted when
it gets re-weighted, and the calculations can be simplified based
on the fact that re-weight won't change the w-average of all the
entities. Please check the proofs in comments.
But adjusting vruntime can also cause position change in RB-tree
hence require re-queue to fix up which might be costly. This might
be avoided by deferring adjustment to the time the entity actually
leaves tree (dequeue/pick), but that will negatively affect task
selection and probably not good enough either.
Fixes: 147f3efaa2 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231107090510.71322-2-wuyun.abel@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 53c87e846e335e3c18044c397cc35178163d7827 upstream.
Limit the free list length to the size of the IO TLB. Transient pool can be
smaller than IO_TLB_SEGSIZE, but the free list is initialized with the
assumption that the total number of slots is a multiple of IO_TLB_SEGSIZE.
As a result, swiotlb_area_find_slots() may allocate slots past the end of
a transient IO TLB buffer.
Reported-by: Niklas Schnelle <schnelle@linux.ibm.com>
Closes: https://lore.kernel.org/linux-iommu/104a8c8fedffd1ff8a2890983e2ec1c26bff6810.camel@linux.ibm.com/
Fixes: 79636caad3 ("swiotlb: if swiotlb is full, fall back to a transient memory pool")
Cc: stable@vger.kernel.org
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a5e3b127455d073f146a2a4ea3e7117635d34c5c upstream.
Fix these two error paths:
1. When set_memory_decrypted() fails, pages may be left fully or partially
decrypted.
2. Decrypted pages may be freed if swiotlb_alloc_tlb() determines that the
physical address is too high.
To fix the first issue, call set_memory_encrypted() on the allocated region
after a failed decryption attempt. If that also fails, leak the pages.
To fix the second issue, check that the TLB physical address is below the
requested limit before decrypting.
Let the caller differentiate between unsuitable physical address (=> retry
from a lower zone) and allocation failures (=> no point in retrying).
Cc: stable@vger.kernel.org
Fixes: 79636caad3 ("swiotlb: if swiotlb is full, fall back to a transient memory pool")
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ce51e6153f7781bcde0f8bb4c81d6fd85ee422e6 upstream.
Fix to check the tracepoint event is not valid with $retval.
The commit 08c9306fc2 ("tracing/fprobe-event: Assume fprobe is
a return event by $retval") introduced automatic return probe
conversion with $retval. But since tracepoint event does not
support return probe, $retval is not acceptable.
Without this fix, ftracetest, tprobe_syntax_errors.tc fails;
[22] Tracepoint probe event parser error log check [FAIL]
----
# tail 22-tprobe_syntax_errors.tc-log.mRKroL
+ ftrace_errlog_check trace_fprobe t kfree ^$retval dynamic_events
+ printf %s t kfree
+ wc -c
+ pos=8
+ printf %s t kfree ^$retval
+ tr -d ^
+ command=t kfree $retval
+ echo Test command: t kfree $retval
Test command: t kfree $retval
+ echo
----
So 't kfree $retval' should fail (tracepoint doesn't support
return probe) but passed it.
Link: https://lore.kernel.org/all/169944555933.45057.12831706585287704173.stgit@devnote2/
Fixes: 08c9306fc2 ("tracing/fprobe-event: Assume fprobe is a return event by $retval")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cca42bd8eb1b54a4c9bbf48c79d120e66619a3e4 ]
The stuttering code isn't functioning as expected. Ideally, it should
pause the torture threads for a designated period before resuming. Yet,
it fails to halt the test for the correct duration. Additionally, a race
condition exists, potentially causing the stuttering code to pause for
an extended period if the 'spt' variable is non-zero due to the stutter
orchestration thread's inadequate CPU time.
Moreover, over-stuttering can hinder RCU's progress on TREE07 kernels.
This happens as the stuttering code may run within a softirq due to RCU
callbacks. Consequently, ksoftirqd keeps a CPU busy for several seconds,
thus obstructing RCU's progress. This situation triggers a warning
message in the logs:
[ 2169.481783] rcu_torture_writer: rtort_pipe_count: 9
This warning suggests that an RCU torture object, although invisible to
RCU readers, couldn't make it past the pipe array and be freed -- a
strong indication that there weren't enough grace periods during the
stutter interval.
To address these issues, this patch sets the "stutter end" time to an
absolute point in the future set by the main stutter thread. This is
then used for waiting in stutter_wait(). While the stutter thread still
defines this absolute time, the waiters' waiting logic doesn't rely on
the stutter thread receiving sufficient CPU time to halt the stuttering
as the halting is now self-controlled.
Cc: stable@vger.kernel.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a741deac787f0d2d7068638c067db20af9e63752 ]
The current torture-test sleeps are waiting for a duration, but there
are situations where it is better to wait for an absolute time, for
example, when ending a stutter interval. This commit therefore adds
an hrtimer mode parameter to torture_hrtimeout_ns(). Why not also the
other torture_hrtimeout_*() functions? The theory is that most absolute
times will be in nanoseconds, especially not (say) jiffies.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Stable-dep-of: cca42bd8eb1b ("rcutorture: Fix stuttering races and other issues")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4f7969bcd6d33042d62e249b41b5578161e4c868 upstream.
A synthetic event is created by the synthetic event interface that can
read both user or kernel address memory. In reality, it reads any
arbitrary memory location from within the kernel. If the address space is
in USER (where CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE is set) then
it uses strncpy_from_user_nofault() to copy strings otherwise it uses
strncpy_from_kernel_nofault().
But since both functions use the same variable there's no annotation to
what that variable is (ie. __user). This makes sparse complain.
Quiet sparse by typecasting the strncpy_from_user_nofault() variable to
a __user pointer.
Link: https://lore.kernel.org/linux-trace-kernel/20231031151033.73c42e23@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: 0934ae9977 ("tracing: Fix reading strings from synthetic events");
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202311010013.fm8WTxa5-lkp@intel.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 60466c067927abbcaff299845abd4b7069963139 upstream.
As the emergency restart does not call kernel_restart_prepare(), the
system_state stays in SYSTEM_RUNNING.
Since bae1d3a05a, this hinders i2c_in_atomic_xfer_mode() from becoming
active, and therefore might lead to avoidable warnings in the restart
handlers, e.g.:
[ 12.667612] WARNING: CPU: 1 PID: 1 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x33c/0x6b0
[ 12.676926] Voluntary context switch within RCU read-side critical section!
...
[ 12.742376] schedule_timeout from wait_for_completion_timeout+0x90/0x114
[ 12.749179] wait_for_completion_timeout from tegra_i2c_wait_completion+0x40/0x70
...
[ 12.994527] atomic_notifier_call_chain from machine_restart+0x34/0x58
[ 13.001050] machine_restart from panic+0x2a8/0x32c
Avoid these by setting the correct system_state.
Fixes: bae1d3a05a ("i2c: core: remove use of in_atomic()")
Cc: stable@vger.kernel.org # v5.2+
Reviewed-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Tested-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Benjamin Bara <benjamin.bara@skidata.com>
Link: https://lore.kernel.org/r/20230327-tegra-pmic-reboot-v7-1-18699d5dcd76@skidata.com
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5f98fd034ca6fd1ab8c91a3488968a0e9caaabf6 upstream.
Since the actual slab freeing is deferred when calling kvfree_rcu(), so
is the kmemleak_free() callback informing kmemleak of the object
deletion. From the perspective of the kvfree_rcu() caller, the object is
freed and it may remove any references to it. Since kmemleak does not
scan RCU internal data storing the pointer, it will report such objects
as leaks during the grace period.
Tell kmemleak to ignore such objects on the kvfree_call_rcu() path. Note
that the tiny RCU implementation does not have such issue since the
objects can be tracked from the rcu_ctrlblk structure.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Christoph Paasch <cpaasch@apple.com>
Closes: https://lore.kernel.org/all/F903A825-F05F-4B77-A2B5-7356282FBA2C@apple.com/
Cc: <stable@vger.kernel.org>
Tested-by: Christoph Paasch <cpaasch@apple.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d08970df1980476f27936e24d452550f3e9e92e1 upstream.
In snapshot_write_next(), sync_read is set and unset in three different
spots unnecessiarly. As a result there is a subtle bug where the first
page after the meta data has been loaded unconditionally sets sync_read
to 0. If this first PFN was actually a highmem page, then the returned
buffer will be the global "buffer," and the page needs to be loaded
synchronously.
That is, I'm not sure we can always assume the following to be safe:
handle->buffer = get_buffer(&orig_bm, &ca);
handle->sync_read = 0;
Because get_buffer() can call get_highmem_page_buffer() which can
return 'buffer'.
The easiest way to address this is just set sync_read before
snapshot_write_next() returns if handle->buffer == buffer.
Signed-off-by: Brian Geffon <bgeffon@google.com>
Fixes: 8357376d3d ("[PATCH] swsusp: Improve handling of highmem")
Cc: All applicable <stable@vger.kernel.org>
[ rjw: Subject and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f0c7183008b41e92fa676406d87f18773724b48b upstream.
We found at least one situation where the safe pages list was empty and
get_buffer() would gladly try to use a NULL pointer.
Signed-off-by: Brian Geffon <bgeffon@google.com>
Fixes: 8357376d3d ("[PATCH] swsusp: Improve handling of highmem")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b96e7a5fa0ba9cda32888e04f8f4bac42d49a7f8 upstream.
There are instances where rcu_cpu_stall_reset() is called when jiffies
did not get a chance to update for a long time. Before jiffies is
updated, the CPU stall detector can go off triggering false-positives
where a just-started grace period appears to be ages old. In the past,
we disabled stall detection in rcu_cpu_stall_reset() however this got
changed [1]. This is resulting in false-positives in KGDB usecase [2].
Fix this by deferring the update of jiffies to the third run of the FQS
loop. This is more robust, as, even if rcu_cpu_stall_reset() is called
just before jiffies is read, we would end up pushing out the jiffies
read by 3 more FQS loops. Meanwhile the CPU stall detection will be
delayed and we will not get any false positives.
[1] https://lore.kernel.org/all/20210521155624.174524-2-senozhatsky@chromium.org/
[2] https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Tested with rcutorture.cpu_stall option as well to verify stall behavior
with/without patch.
Tested-by: Huacai Chen <chenhuacai@loongson.cn>
Reported-by: Binbin Zhou <zhoubinbin@loongson.cn>
Closes: https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Suggested-by: Paul McKenney <paulmck@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: a80be428fb ("rcu: Do not disable GP stall detection in rcu_cpu_stall_reset()")
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5ebde09d91707a4a9bec1e3d213e3c12ffde348f upstream.
Igor Raits and Bagas Sanjaya report a RQCF_ACT_SKIP leak warning.
This warning may be triggered in the following situations:
CPU0 CPU1
__schedule()
*rq->clock_update_flags <<= 1;* unregister_fair_sched_group()
pick_next_task_fair+0x4a/0x410 destroy_cfs_bandwidth()
newidle_balance+0x115/0x3e0 for_each_possible_cpu(i) *i=0*
rq_unpin_lock(this_rq, rf) __cfsb_csd_unthrottle()
raw_spin_rq_unlock(this_rq)
rq_lock(*CPU0_rq*, &rf)
rq_clock_start_loop_update()
rq->clock_update_flags & RQCF_ACT_SKIP <--
raw_spin_rq_lock(this_rq)
The purpose of RQCF_ACT_SKIP is to skip the update rq clock,
but the update is very early in __schedule(), but we clear
RQCF_*_SKIP very late, causing it to span that gap above
and triggering this warning.
In __schedule() we can clear the RQCF_*_SKIP flag immediately
after update_rq_clock() to avoid this RQCF_ACT_SKIP leak warning.
And set rq->clock_update_flags to RQCF_UPDATED to avoid
rq->clock_update_flags < RQCF_ACT_SKIP warning that may be triggered later.
Fixes: ebb83d84e4 ("sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()")
Closes: https://lore.kernel.org/all/20230913082424.73252-1-jiahao.os@bytedance.com
Reported-by: Igor Raits <igor.raits@gmail.com>
Reported-by: Bagas Sanjaya <bagasdotme@gmail.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/a5dd536d-041a-2ce9-f4b7-64d8d85c86dc@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5e7afb2eb7b2a7c81e9f608cbdf74a07606fd1b5 upstream.
irq_remove_generic_chip() calculates the Linux interrupt number for removing the
handler and interrupt chip based on gc::irq_base as a linear function of
the bit positions of set bits in the @msk argument.
When the generic chip is present in an irq domain, i.e. created with a call
to irq_alloc_domain_generic_chips(), gc::irq_base contains not the base
Linux interrupt number. It contains the base hardware interrupt for this
chip. It is set to 0 for the first chip in the domain, 0 + N for the next
chip, where $N is the number of hardware interrupts per chip.
That means the Linux interrupt number cannot be calculated based on
gc::irq_base for irqdomain based chips without a domain map lookup, which
is currently missing.
Rework the code to take the irqdomain case into account and calculate the
Linux interrupt number by a irqdomain lookup of the domain specific
hardware interrupt number.
[ tglx: Massage changelog. Reshuffle the logic and add a proper comment. ]
Fixes: cfefd21e69 ("genirq: Add chip suspend and resume callbacks")
Signed-off-by: Herve Codina <herve.codina@bootlin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20231024150335.322282-1-herve.codina@bootlin.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8b793bcda61f6c3ed4f5b2ded7530ef6749580cb upstream.
Setting softlockup_panic from do_sysctl_args() causes it to take effect
later in boot. The lockup detector is enabled before SMP is brought
online, but do_sysctl_args runs afterwards. If a user wants to set
softlockup_panic on boot and have it trigger should a softlockup occur
during onlining of the non-boot processors, they could do this prior to
commit f117955a22 ("kernel/watchdog.c: convert {soft/hard}lockup boot
parameters to sysctl aliases"). However, after this commit the value
of softlockup_panic is set too late to be of help for this type of
problem. Restore the prior behavior.
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Cc: stable@vger.kernel.org
Fixes: f117955a22 ("kernel/watchdog.c: convert {soft/hard}lockup boot parameters to sysctl aliases")
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 969d90ec212bae4b45bf9d21d7daa30aa6cf055e upstream.
eBPF can end up calling into the audit code from some odd places, and
some of these places don't have @current set properly so we end up
tripping the `WARN_ON_ONCE(!current->mm)` near the top of
`audit_exe_compare()`. While the basic `!current->mm` check is good,
the `WARN_ON_ONCE()` results in some scary console messages so let's
drop that and just do the regular `!current->mm` check to avoid
problems.
Cc: <stable@vger.kernel.org>
Fixes: 47846d51348d ("audit: don't take task_lock() in audit_exe_compare() code path")
Reported-by: Artem Savkov <asavkov@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 47846d51348dd62e5231a83be040981b17c955fa upstream.
The get_task_exe_file() function locks the given task with task_lock()
which when used inside audit_exe_compare() can cause deadlocks on
systems that generate audit records when the task_lock() is held. We
resolve this problem with two changes: ignoring those cases where the
task being audited is not the current task, and changing our approach
to obtaining the executable file struct to not require task_lock().
With the intent of the audit exe filter being to filter on audit events
generated by processes started by the specified executable, it makes
sense that we would only want to use the exe filter on audit records
associated with the currently executing process, e.g. @current. If
we are asked to filter records using a non-@current task_struct we can
safely ignore the exe filter without negatively impacting the admin's
expectations for the exe filter.
Knowing that we only have to worry about filtering the currently
executing task in audit_exe_compare() we can do away with the
task_lock() and call get_mm_exe_file() with @current->mm directly.
Cc: <stable@vger.kernel.org>
Fixes: 5efc244346 ("audit: fix exe_file access in audit_exe_compare")
Reported-by: Andreas Steinmetz <anstein99@googlemail.com>
Reviewed-by: John Johansen <john.johanse@canonical.com>
Reviewed-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8b39d20eceeda6c4eb23df1497f9ed2fffdc8f69 upstream.
519fabc7aa ("psi: remove 500ms min window size limitation for
triggers") breaks unprivileged psi polling on cgroups.
Historically, we had a privilege check for polling in the open() of a
pressure file in /proc, but were erroneously missing it for the open()
of cgroup pressure files.
When unprivileged polling was introduced in d82caa2735 ("sched/psi:
Allow unprivileged polling of N*2s period"), it needed to filter
privileges depending on the exact polling parameters, and as such
moved the CAP_SYS_RESOURCE check from the proc open() callback to
psi_trigger_create(). Both the proc files as well as cgroup files go
through this during write(). This implicitly added the missing check
for privileges required for HT polling for cgroups.
When 519fabc7aa ("psi: remove 500ms min window size limitation for
triggers") followed right after to remove further restrictions on the
RT polling window, it incorrectly assumed the cgroup privilege check
was still missing and added it to the cgroup open(), mirroring what we
used to do for proc files in the past.
As a result, unprivileged poll requests that would be supported now
get rejected when opening the cgroup pressure file for writing.
Remove the cgroup open() check. psi_trigger_create() handles it.
Fixes: 519fabc7aa ("psi: remove 500ms min window size limitation for triggers")
Reported-by: Luca Boccassi <bluca@debian.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Luca Boccassi <bluca@debian.org>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Cc: stable@vger.kernel.org # 6.5+
Link: https://lore.kernel.org/r/20231026164114.2488682-1-hannes@cmpxchg.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b56ebe7c896dc78b5865ec2c4b1dae3c93537517 upstream.
commit ef8dd01538 ("genirq/msi: Make interrupt allocation less
convoluted"), reworked the code so that the x86 specific quirk for affinity
setting of non-maskable PCI/MSI interrupts is not longer activated if
necessary.
This could be solved by restoring the original logic in the core MSI code,
but after a deeper analysis it turned out that the quirk flag is not
required at all.
The quirk is only required when the PCI/MSI device cannot mask the MSI
interrupts, which in turn also prevents reservation mode from being enabled
for the affected interrupt.
This allows ot remove the NOMASK quirk bit completely as msi_set_affinity()
can instead check whether reservation mode is enabled for the interrupt,
which gives exactly the same answer.
Even in the momentary non-existing case that the reservation mode would be
not set for a maskable MSI interrupt this would not cause any harm as it
just would cause msi_set_affinity() to go needlessly through the
functionaly equivalent slow path, which works perfectly fine with maskable
interrupts as well.
Rework msi_set_affinity() to query the reservation mode and remove all
NOMASK quirk logic from the core code.
[ tglx: Massaged changelog ]
Fixes: ef8dd01538 ("genirq/msi: Make interrupt allocation less convoluted")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Koichiro Den <den@valinux.co.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20231026032036.2462428-1-den@valinux.co.jp
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 291d044fd51f8484066300ee42afecf8c8db7b3a upstream.
BPF_END and BPF_NEG has a different specification for the source bit in
the opcode compared to other ALU/ALU64 instructions, and is either
reserved or use to specify the byte swap endianness. In both cases the
source bit does not encode source operand location, and src_reg is a
reserved field.
backtrack_insn() currently does not differentiate BPF_END and BPF_NEG
from other ALU/ALU64 instructions, which leads to r0 being incorrectly
marked as precise when processing BPF_ALU | BPF_TO_BE | BPF_END
instructions. This commit teaches backtrack_insn() to correctly mark
precision for such case.
While precise tracking of BPF_NEG and other BPF_END instructions are
correct and does not need fixing, this commit opt to process all BPF_NEG
and BPF_END instructions within the same if-clause to better align with
current convention used in the verifier (e.g. check_alu_op).
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Cc: stable@vger.kernel.org
Reported-by: Mohamed Mahmoud <mmahmoud@redhat.com>
Closes: https://lore.kernel.org/r/87jzrrwptf.fsf@toke.dk
Tested-by: Toke Høiland-Jørgensen <toke@redhat.com>
Tested-by: Tao Lyu <tao.lyu@epfl.ch>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231102053913.12004-2-shung-hsi.yu@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 10e14e9652bf9e8104151bfd9200433083deae3d ]
When BPF program is verified in privileged mode, BPF verifier allows
bounded loops. This means that from CFG point of view there are
definitely some back-edges. Original commit adjusted check_cfg() logic
to not detect back-edges in control flow graph if they are resulting
from conditional jumps, which the idea that subsequent full BPF
verification process will determine whether such loops are bounded or
not, and either accept or reject the BPF program. At least that's my
reading of the intent.
Unfortunately, the implementation of this idea doesn't work correctly in
all possible situations. Conditional jump might not result in immediate
back-edge, but just a few unconditional instructions later we can arrive
at back-edge. In such situations check_cfg() would reject BPF program
even in privileged mode, despite it might be bounded loop. Next patch
adds one simple program demonstrating such scenario.
To keep things simple, instead of trying to detect back edges in
privileged mode, just assume every back edge is valid and let subsequent
BPF verification prove or reject bounded loops.
Note a few test changes. For unknown reason, we have a few tests that
are specified to detect a back-edge in a privileged mode, but looking at
their code it seems like the right outcome is passing check_cfg() and
letting subsequent verification to make a decision about bounded or not
bounded looping.
Bounded recursion case is also interesting. The example should pass, as
recursion is limited to just a few levels and so we never reach maximum
number of nested frames and never exhaust maximum stack depth. But the
way that max stack depth logic works today it falsely detects this as
exceeding max nested frame count. This patch series doesn't attempt to
fix this orthogonal problem, so we just adjust expected verifier failure.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 2589726d12 ("bpf: introduce bounded loops")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110061412.2995786-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4bb7ea946a370707315ab774432963ce47291946 ]
Fix an edge case in __mark_chain_precision() which prematurely stops
backtracking instructions in a state if it happens that state's first
and last instruction indexes are the same. This situations doesn't
necessarily mean that there were no instructions simulated in a state,
but rather that we starting from the instruction, jumped around a bit,
and then ended up at the same instruction before checkpointing or
marking precision.
To distinguish between these two possible situations, we need to consult
jump history. If it's empty or contain a single record "bridging" parent
state and first instruction of processed state, then we indeed
backtracked all instructions in this state. But if history is not empty,
we are definitely not done yet.
Move this logic inside get_prev_insn_idx() to contain it more nicely.
Use -ENOENT return code to denote "we are out of instructions"
situation.
This bug was exposed by verifier_loop1.c's bounded_recursion subtest, once
the next fix in this patch set is applied.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3feb263bb516ee7e1da0acd22b15afbb9a7daa19 ]
ldimm64 instructions are 16-byte long, and so have to be handled
appropriately in check_cfg(), just like the rest of BPF verifier does.
This has implications in three places:
- when determining next instruction for non-jump instructions;
- when determining next instruction for callback address ldimm64
instructions (in visit_func_call_insn());
- when checking for unreachable instructions, where second half of
ldimm64 is expected to be unreachable;
We take this also as an opportunity to report jump into the middle of
ldimm64. And adjust few test_verifier tests accordingly.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Fixes: 475fb78fbf ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dd712d3d45807db9fcae28a522deee85c1f2fde6 ]
When entering kdb/kgdb on a kernel panic, it was be observed that the
console isn't flushed before the `kdb` prompt came up. Specifically,
when using the buddy lockup detector on arm64 and running:
echo HARDLOCKUP > /sys/kernel/debug/provoke-crash/DIRECT
I could see:
[ 26.161099] lkdtm: Performing direct entry HARDLOCKUP
[ 32.499881] watchdog: Watchdog detected hard LOCKUP on cpu 6
[ 32.552865] Sending NMI from CPU 5 to CPUs 6:
[ 32.557359] NMI backtrace for cpu 6
... [backtrace for cpu 6] ...
[ 32.558353] NMI backtrace for cpu 5
... [backtrace for cpu 5] ...
[ 32.867471] Sending NMI from CPU 5 to CPUs 0-4,7:
[ 32.872321] NMI backtrace forP cpuANC: Hard LOCKUP
Entering kdb (current=..., pid 0) on processor 5 due to Keyboard Entry
[5]kdb>
As you can see, backtraces for the other CPUs start printing and get
interleaved with the kdb PANIC print.
Let's replicate the commands to flush the console in the kdb panic
entry point to avoid this.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20230822131945.1.I5b460ae8f954e4c4f628a373d6e74713c06dd26f@changeid
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8f4f68e788c3a7a696546291258bfa5fdb215523 ]
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst->flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won't call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&wait->completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst->flags |= PADATA_RESET;
err = -EBUSY |
if (pinst->flags & PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask.
Signed-off-by: Lu Jialin <lujialin4@huawei.com>
Signed-off-by: Guo Zihua <guozihua@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ca0776571d3163bd03b3e8c9e3da936abfaecbf6 ]
Currently, there is no overflow-check with memdup_user().
Use the new function memdup_array_user() instead of memdup_user() for
duplicating the user-space array safely.
Suggested-by: David Airlie <airlied@redhat.com>
Signed-off-by: Philipp Stanner <pstanner@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Zack Rusin <zackr@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230920123612.16914-5-pstanner@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 569c8d82f95eb5993c84fb61a649a9c4ddd208b3 ]
Currently, there is no overflow-check with memdup_user().
Use the new function memdup_array_user() instead of memdup_user() for
duplicating the user-space array safely.
Suggested-by: David Airlie <airlied@redhat.com>
Signed-off-by: Philipp Stanner <pstanner@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Zack Rusin <zackr@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230920123612.16914-4-pstanner@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1a8a315f008a58f54fecb012b928aa6a494435b3 ]
Verifier emits relevant register state involved in any given instruction
next to it after `;` to the right, if possible. Or, worst case, on the
separate line repeating instruction index.
E.g., a nice and simple case would be:
2: (d5) if r0 s<= 0x0 goto pc+1 ; R0_w=0
But if there is some intervening extra output (e.g., precision
backtracking log) involved, we are supposed to see the state after the
precision backtrack log:
4: (75) if r0 s>= 0x0 goto pc+1
mark_precise: frame0: last_idx 4 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r0 stack= before 2: (d5) if r0 s<= 0x0 goto pc+1
mark_precise: frame0: regs=r0 stack= before 1: (b7) r0 = 0
6: R0_w=0
First off, note that in `6: R0_w=0` instruction index corresponds to the
next instruction, not to the conditional jump instruction itself, which
is wrong and we'll get to that.
But besides that, the above is a happy case that does work today. Yet,
if it so happens that precision backtracking had to traverse some of the
parent states, this `6: R0_w=0` state output would be missing.
This is due to a quirk of print_verifier_state() routine, which performs
mark_verifier_state_clean(env) at the end. This marks all registers as
"non-scratched", which means that subsequent logic to print *relevant*
registers (that is, "scratched ones") fails and doesn't see anything
relevant to print and skips the output altogether.
print_verifier_state() is used both to print instruction context, but
also to print an **entire** verifier state indiscriminately, e.g.,
during precision backtracking (and in a few other situations, like
during entering or exiting subprogram). Which means if we have to print
entire parent state before getting to printing instruction context
state, instruction context is marked as clean and is omitted.
Long story short, this is definitely not intentional. So we fix this
behavior in this patch by teaching print_verifier_state() to clear
scratch state only if it was used to print instruction state, not the
parent/callback state. This is determined by print_all option, so if
it's not set, we don't clear scratch state. This fixes missing
instruction state for these cases.
As for the mismatched instruction index, we fix that by making sure we
call print_insn_state() early inside check_cond_jmp_op() before we
adjusted insn_idx based on jump branch taken logic. And with that we get
desired correct information:
9: (16) if w4 == 0x1 goto pc+9
mark_precise: frame0: last_idx 9 first_idx 9 subseq_idx -1
mark_precise: frame0: parent state regs=r4 stack=: R2_w=1944 R4_rw=P1 R10=fp0
mark_precise: frame0: last_idx 8 first_idx 0 subseq_idx 9
mark_precise: frame0: regs=r4 stack= before 8: (66) if w4 s> 0x3 goto pc+5
mark_precise: frame0: regs=r4 stack= before 7: (b7) r4 = 1
9: R4=1
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231011223728.3188086-6-andrii@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 66d9111f3517f85ef2af0337ece02683ce0faf21 ]
Now that bpf_throw kfunc is the first such call instruction that has
noreturn semantics within the verifier, this also kicks in dead code
elimination in unprecedented ways. For one, any instruction following
a bpf_throw call will never be marked as seen. Moreover, if a callchain
ends up throwing, any instructions after the call instruction to the
eventually throwing subprog in callers will also never be marked as
seen.
The tempting way to fix this would be to emit extra 'int3' instructions
which bump the jited_len of a program, and ensure that during runtime
when a program throws, we can discover its boundaries even if the call
instruction to bpf_throw (or to subprogs that always throw) is emitted
as the final instruction in the program.
An example of such a program would be this:
do_something():
...
r0 = 0
exit
foo():
r1 = 0
call bpf_throw
r0 = 0
exit
bar(cond):
if r1 != 0 goto pc+2
call do_something
exit
call foo
r0 = 0 // Never seen by verifier
exit //
main(ctx):
r1 = ...
call bar
r0 = 0
exit
Here, if we do end up throwing, the stacktrace would be the following:
bpf_throw
foo
bar
main
In bar, the final instruction emitted will be the call to foo, as such,
the return address will be the subsequent instruction (which the JIT
emits as int3 on x86). This will end up lying outside the jited_len of
the program, thus, when unwinding, we will fail to discover the return
address as belonging to any program and end up in a panic due to the
unreliable stack unwinding of BPF programs that we never expect.
To remedy this case, make bpf_prog_ksym_find treat IP == ksym.end as
part of the BPF program, so that is_bpf_text_address returns true when
such a case occurs, and we are able to unwind reliably when the final
instruction ends up being a call instruction.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 265f3ed077036f053981f5eea0b5b43e7c5b39ff ]
All callers of work_on_cpu() share the same lock class key for all the
functions queued. As a result the workqueue related locking scenario for
a function A may be spuriously accounted as an inversion against the
locking scenario of function B such as in the following model:
long A(void *arg)
{
mutex_lock(&mutex);
mutex_unlock(&mutex);
}
long B(void *arg)
{
}
void launchA(void)
{
work_on_cpu(0, A, NULL);
}
void launchB(void)
{
mutex_lock(&mutex);
work_on_cpu(1, B, NULL);
mutex_unlock(&mutex);
}
launchA and launchB running concurrently have no chance to deadlock.
However the above can be reported by lockdep as a possible locking
inversion because the works containing A() and B() are treated as
belonging to the same locking class.
The following shows an existing example of such a spurious lockdep splat:
======================================================
WARNING: possible circular locking dependency detected
6.6.0-rc1-00065-g934ebd6e5359 #35409 Not tainted
------------------------------------------------------
kworker/0:1/9 is trying to acquire lock:
ffffffff9bc72f30 (cpu_hotplug_lock){++++}-{0:0}, at: _cpu_down+0x57/0x2b0
but task is already holding lock:
ffff9e3bc0057e60 ((work_completion)(&wfc.work)){+.+.}-{0:0}, at: process_scheduled_works+0x216/0x500
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 ((work_completion)(&wfc.work)){+.+.}-{0:0}:
__flush_work+0x83/0x4e0
work_on_cpu+0x97/0xc0
rcu_nocb_cpu_offload+0x62/0xb0
rcu_nocb_toggle+0xd0/0x1d0
kthread+0xe6/0x120
ret_from_fork+0x2f/0x40
ret_from_fork_asm+0x1b/0x30
-> #1 (rcu_state.barrier_mutex){+.+.}-{3:3}:
__mutex_lock+0x81/0xc80
rcu_nocb_cpu_deoffload+0x38/0xb0
rcu_nocb_toggle+0x144/0x1d0
kthread+0xe6/0x120
ret_from_fork+0x2f/0x40
ret_from_fork_asm+0x1b/0x30
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
__lock_acquire+0x1538/0x2500
lock_acquire+0xbf/0x2a0
percpu_down_write+0x31/0x200
_cpu_down+0x57/0x2b0
__cpu_down_maps_locked+0x10/0x20
work_for_cpu_fn+0x15/0x20
process_scheduled_works+0x2a7/0x500
worker_thread+0x173/0x330
kthread+0xe6/0x120
ret_from_fork+0x2f/0x40
ret_from_fork_asm+0x1b/0x30
other info that might help us debug this:
Chain exists of:
cpu_hotplug_lock --> rcu_state.barrier_mutex --> (work_completion)(&wfc.work)
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock((work_completion)(&wfc.work));
lock(rcu_state.barrier_mutex);
lock((work_completion)(&wfc.work));
lock(cpu_hotplug_lock);
*** DEADLOCK ***
2 locks held by kworker/0:1/9:
#0: ffff900481068b38 ((wq_completion)events){+.+.}-{0:0}, at: process_scheduled_works+0x212/0x500
#1: ffff9e3bc0057e60 ((work_completion)(&wfc.work)){+.+.}-{0:0}, at: process_scheduled_works+0x216/0x500
stack backtrace:
CPU: 0 PID: 9 Comm: kworker/0:1 Not tainted 6.6.0-rc1-00065-g934ebd6e5359 #35409
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Workqueue: events work_for_cpu_fn
Call Trace:
rcu-torture: rcu_torture_read_exit: Start of episode
<TASK>
dump_stack_lvl+0x4a/0x80
check_noncircular+0x132/0x150
__lock_acquire+0x1538/0x2500
lock_acquire+0xbf/0x2a0
? _cpu_down+0x57/0x2b0
percpu_down_write+0x31/0x200
? _cpu_down+0x57/0x2b0
_cpu_down+0x57/0x2b0
__cpu_down_maps_locked+0x10/0x20
work_for_cpu_fn+0x15/0x20
process_scheduled_works+0x2a7/0x500
worker_thread+0x173/0x330
? __pfx_worker_thread+0x10/0x10
kthread+0xe6/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK
Fix this with providing one lock class key per work_on_cpu() caller.
Reported-and-tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 38685e2a0476127db766f81b1c06019ddc4c9ffa ]
If a system has isolated CPUs via the "isolcpus=" command line parameter,
then an attempt to offline the last housekeeping CPU will result in a
WARN_ON() when rebuilding the scheduler domains and a subsequent panic due
to and unhandled empty CPU mas in partition_sched_domains_locked().
cpuset_hotplug_workfn()
rebuild_sched_domains_locked()
ndoms = generate_sched_domains(&doms, &attr);
cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN));
Thus results in an empty CPU mask which triggers the warning and then the
subsequent crash:
WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408
Call trace:
build_sched_domains+0x120c/0x1408
partition_sched_domains_locked+0x234/0x880
rebuild_sched_domains_locked+0x37c/0x798
rebuild_sched_domains+0x30/0x58
cpuset_hotplug_workfn+0x2a8/0x930
Unable to handle kernel paging request at virtual address fffe80027ab37080
partition_sched_domains_locked+0x318/0x880
rebuild_sched_domains_locked+0x37c/0x798
Aside of the resulting crash, it does not make any sense to offline the last
last housekeeping CPU.
Prevent this by masking out the non-housekeeping CPUs when selecting a
target CPU for initiating the CPU unplug operation via the work queue.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/202310171709530660462@zte.com.cn
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 94b3f0b5af2c7af69e3d6e0cdd9b0ea535f22186 ]
The CSD lock seems to get stuck in 2 "modes". When it gets stuck
temporarily, it usually gets released in a few seconds, and sometimes
up to one or two minutes.
If the CSD lock stays stuck for more than several minutes, it never
seems to get unstuck, and gradually more and more things in the system
end up also getting stuck.
In the latter case, we should just give up, so the system can dump out
a little more information about what went wrong, and, with panic_on_oops
and a kdump kernel loaded, dump a whole bunch more information about what
might have gone wrong. In addition, there is an smp.panic_on_ipistall
kernel boot parameter that by default retains the old behavior, but when
set enables the panic after the CSD lock has been stuck for more than
the specified number of milliseconds, as in 300,000 for five minutes.
[ paulmck: Apply Imran Khan feedback. ]
[ paulmck: Apply Leonardo Bras feedback. ]
Link: https://lore.kernel.org/lkml/bc7cc8b0-f587-4451-8bcd-0daae627bcc7@paulmck-laptop/
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Imran Khan <imran.f.khan@oracle.com>
Reviewed-by: Leonardo Bras <leobras@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8a77f38bcd28d3c22ab7dd8eff3f299d43c00411 ]
Acceleration in SRCU happens on enqueue time for each new callback. This
operation is expected not to fail and therefore any similar attempt
from other places shouldn't find any remaining callbacks to accelerate.
Moreover accelerations performed beyond enqueue time are error prone
because rcu_seq_snap() then may return the snapshot for a new grace
period that is not going to be started.
Remove these dangerous and needless accelerations and introduce instead
assertions reporting leaking unaccelerated callbacks beyond enqueue
time.
Co-developed-by: Yong He <alexyonghe@tencent.com>
Signed-off-by: Yong He <alexyonghe@tencent.com>
Co-developed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Reviewed-by: Like Xu <likexu@tencent.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d8d5b7bf6f2105883bbd91bbd4d5b67e4e3dff71 ]
The value of a bitwise expression 1 << (cpu - sdp->mynode->grplo)
is subject to overflow due to a failure to cast operands to a larger
data type before performing the bitwise operation.
The maximum result of this subtraction is defined by the RCU_FANOUT_LEAF
Kconfig option, which on 64-bit systems defaults to 16 (resulting in a
maximum shift of 15), but which can be set up as high as 64 (resulting
in a maximum shift of 63). A value of 31 can result in sign extension,
resulting in 0xffffffff80000000 instead of the desired 0x80000000.
A value of 32 or greater triggers undefined behavior per the C standard.
This bug has not been known to cause issues because almost all kernels
take the default CONFIG_RCU_FANOUT_LEAF=16. Furthermore, as long as a
given compiler gives a deterministic non-zero result for 1<<N for N>=32,
the code correctly invokes all SRCU callbacks, albeit wasting CPU time
along the way.
This commit therefore substitutes the correct 1UL for the buggy 1.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Signed-off-by: Denis Arefev <arefev@swemel.ru>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: David Laight <David.Laight@aculab.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 54aee5f15b83437f23b2b2469bcf21bdd9823916 ]
When perf-record with a large AUX area, e.g 4GB, it fails with:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)
and it reveals a WARNING with __alloc_pages():
------------[ cut here ]------------
WARNING: CPU: 44 PID: 17573 at mm/page_alloc.c:5568 __alloc_pages+0x1ec/0x248
Call trace:
__alloc_pages+0x1ec/0x248
__kmalloc_large_node+0xc0/0x1f8
__kmalloc_node+0x134/0x1e8
rb_alloc_aux+0xe0/0x298
perf_mmap+0x440/0x660
mmap_region+0x308/0x8a8
do_mmap+0x3c0/0x528
vm_mmap_pgoff+0xf4/0x1b8
ksys_mmap_pgoff+0x18c/0x218
__arm64_sys_mmap+0x38/0x58
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0x58/0x188
do_el0_svc+0x34/0x50
el0_svc+0x34/0x108
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x1a4/0x1a8
'rb->aux_pages' allocated by kcalloc() is a pointer array which is used to
maintains AUX trace pages. The allocated page for this array is physically
contiguous (and virtually contiguous) with an order of 0..MAX_ORDER. If the
size of pointer array crosses the limitation set by MAX_ORDER, it reveals a
WARNING.
So bail out early with -ENOMEM if the request AUX area is out of bound,
e.g.:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)
Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bccdd808902f8c677317cec47c306e42b93b849e ]
In some cases running with the test-ww_mutex code, I was seeing
odd behavior where sometimes it seemed flush_workqueue was
returning before all the work threads were finished.
Often this would cause strange crashes as the mutexes would be
freed while they were being used.
Looking at the code, there is a lifetime problem as the
controlling thread that spawns the work allocates the
"struct stress" structures that are passed to the workqueue
threads. Then when the workqueue threads are finished,
they free the stress struct that was passed to them.
Unfortunately the workqueue work_struct node is in the stress
struct. Which means the work_struct is freed before the work
thread returns and while flush_workqueue is waiting.
It seems like a better idea to have the controlling thread
both allocate and free the stress structures, so that we can
be sure we don't corrupt the workqueue by freeing the structure
prematurely.
So this patch reworks the test to do so, and with this change
I no longer see the early flush_workqueue returns.
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230922043616.19282-3-jstultz@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f032c53bea6d2057c14553832d846be2f151cfb2 ]
The order of descriptions should be consistent with the argument list of
the function, so "kretprobe" should be the second one.
int __kprobe_event_gen_cmd_start(struct dynevent_cmd *cmd, bool kretprobe,
const char *name, const char *loc, ...)
Link: https://lore.kernel.org/all/20231031041305.3363712-1-yujie.liu@intel.com/
Fixes: 2a588dd1d5 ("tracing: Add kprobe event command generation functions")
Suggested-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 17fc8084aa8f9d5235f252fc3978db657dd77e92 ]
We consistently switched from kmalloc() to vmalloc() in module
decompression to prevent potential memory allocation failures with large
modules, however vmalloc() is not as memory-efficient and fast as
kmalloc().
Since we don't know in general the size of the workspace required by the
decompression algorithm, it is more reasonable to use kvmalloc()
consistently, also considering that we don't have special memory
requirements here.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fd381ce60a2d79cc967506208085336d3d268ae0 ]
When there are concurrent uref release and bpf timer init operations,
the following sequence diagram is possible. It will break the guarantee
provided by bpf_timer: bpf_timer will still be alive after userspace
application releases or unpins the map. It also will lead to kmemleak
for old kernel version which doesn't release bpf_timer when map is
released.
bpf program X:
bpf_timer_init()
lock timer->lock
read timer->timer as NULL
read map->usercnt != 0
process Y:
close(map_fd)
// put last uref
bpf_map_put_uref()
atomic_dec_and_test(map->usercnt)
array_map_free_timers()
bpf_timer_cancel_and_free()
// just return
read timer->timer is NULL
t = bpf_map_kmalloc_node()
timer->timer = t
unlock timer->lock
Fix the problem by checking map->usercnt after timer->timer is assigned,
so when there are concurrent uref release and bpf timer init, either
bpf_timer_cancel_and_free() from uref release reads a no-NULL timer
or the newly-added atomic64_read() returns a zero usercnt.
Because atomic_dec_and_test(map->usercnt) and READ_ONCE(timer->timer)
in bpf_timer_cancel_and_free() are not protected by a lock, so add
a memory barrier to guarantee the order between map->usercnt and
timer->timer. Also use WRITE_ONCE(timer->timer, x) to match the lockless
read of timer->timer in bpf_timer_cancel_and_free().
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Closes: https://lore.kernel.org/bpf/CABcoxUaT2k9hWsS1tNgXyoU3E-=PuOgMn737qK984fbFmfYixQ@mail.gmail.com
Fixes: b00628b1c7 ("bpf: Introduce bpf timers.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231030063616.1653024-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 67e18e132f0fd738f8c8cac3aa1420312073f795 ]
Without the newline character, the log may not be printed immediately
after the error occurs.
Fixes: ca376a9374 ("livepatch: Prevent module-specific KLP rela sections from referencing vmlinux symbols")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230914072644.4098857-1-zhengyejian1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7ddc21e317b360c3444de3023bcc83b85fabae2f ]
In a high-load arm64 environment, the pcrypt_aead01 test in LTP can lead
to system UAF (Use-After-Free) issues. Due to the lengthy analysis of
the pcrypt_aead01 function call, I'll describe the problem scenario
using a simplified model:
Suppose there's a user of padata named `user_function` that adheres to
the padata requirement of calling `padata_free_shell` after `serial()`
has been invoked, as demonstrated in the following code:
```c
struct request {
struct padata_priv padata;
struct completion *done;
};
void parallel(struct padata_priv *padata) {
do_something();
}
void serial(struct padata_priv *padata) {
struct request *request = container_of(padata,
struct request,
padata);
complete(request->done);
}
void user_function() {
DECLARE_COMPLETION(done)
padata->parallel = parallel;
padata->serial = serial;
padata_do_parallel();
wait_for_completion(&done);
padata_free_shell();
}
```
In the corresponding padata.c file, there's the following code:
```c
static void padata_serial_worker(struct work_struct *serial_work) {
...
cnt = 0;
while (!list_empty(&local_list)) {
...
padata->serial(padata);
cnt++;
}
local_bh_enable();
if (refcount_sub_and_test(cnt, &pd->refcnt))
padata_free_pd(pd);
}
```
Because of the high system load and the accumulation of unexecuted
softirq at this moment, `local_bh_enable()` in padata takes longer
to execute than usual. Subsequently, when accessing `pd->refcnt`,
`pd` has already been released by `padata_free_shell()`, resulting
in a UAF issue with `pd->refcnt`.
The fix is straightforward: add `refcount_dec_and_test` before calling
`padata_free_pd` in `padata_free_shell`.
Fixes: 07928d9bfc ("padata: Remove broken queue flushing")
Signed-off-by: WangJinchao <wangjinchao@xfusion.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3737df782c740b944912ed93420c57344b1cf864 ]
Use a similar approach as commit a419beac4a ("module/decompress: use
vmalloc() for zstd decompression workspace") and replace kmalloc() with
vmalloc() also for the gzip module decompression workspace.
In this case the workspace is represented by struct inflate_workspace
that can be fairly large for kmalloc() and it can potentially lead to
allocation errors on certain systems:
$ pahole inflate_workspace
struct inflate_workspace {
struct inflate_state inflate_state; /* 0 9544 */
/* --- cacheline 149 boundary (9536 bytes) was 8 bytes ago --- */
unsigned char working_window[32768]; /* 9544 32768 */
/* size: 42312, cachelines: 662, members: 2 */
/* last cacheline: 8 bytes */
};
Considering that there is no need to use continuous physical memory,
simply switch to vmalloc() to provide a more reliable in-kernel module
decompression.
Fixes: b1ae6dc41e ("module: add in-kernel support for decompressing")
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d35381aa73f7e1e8b25f3ed5283287a64d9ddff5 ]
htab_lock_bucket uses the following logic to avoid recursion:
1. preempt_disable();
2. check percpu counter htab->map_locked[hash] for recursion;
2.1. if map_lock[hash] is already taken, return -BUSY;
3. raw_spin_lock_irqsave();
However, if an IRQ hits between 2 and 3, BPF programs attached to the IRQ
logic will not able to access the same hash of the hashtab and get -EBUSY.
This -EBUSY is not really necessary. Fix it by disabling IRQ before
checking map_locked:
1. preempt_disable();
2. local_irq_save();
3. check percpu counter htab->map_locked[hash] for recursion;
3.1. if map_lock[hash] is already taken, return -BUSY;
4. raw_spin_lock().
Similarly, use raw_spin_unlock() and local_irq_restore() in
htab_unlock_bucket().
Fixes: 20b6cc34ea ("bpf: Avoid hashtab deadlock with map_locked")
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/7a9576222aa40b1c84ad3a9ba3e64011d1a04d41.camel@linux.ibm.com
Link: https://lore.kernel.org/bpf/20231012055741.3375999-1-song@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 29a7e00ffadddd8d68eff311de1bf12ae10687bb ]
When employed within a sleepable program not under RCU protection, the
use of 'bpf_task_under_cgroup()' may trigger a warning in the kernel log,
particularly when CONFIG_PROVE_RCU is enabled:
[ 1259.662357] WARNING: suspicious RCU usage
[ 1259.662358] 6.5.0+ #33 Not tainted
[ 1259.662360] -----------------------------
[ 1259.662361] include/linux/cgroup.h:423 suspicious rcu_dereference_check() usage!
Other info that might help to debug this:
[ 1259.662366] rcu_scheduler_active = 2, debug_locks = 1
[ 1259.662368] 1 lock held by trace/72954:
[ 1259.662369] #0: ffffffffb5e3eda0 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xb0
Stack backtrace:
[ 1259.662385] CPU: 50 PID: 72954 Comm: trace Kdump: loaded Not tainted 6.5.0+ #33
[ 1259.662391] Call Trace:
[ 1259.662393] <TASK>
[ 1259.662395] dump_stack_lvl+0x6e/0x90
[ 1259.662401] dump_stack+0x10/0x20
[ 1259.662404] lockdep_rcu_suspicious+0x163/0x1b0
[ 1259.662412] task_css_set.part.0+0x23/0x30
[ 1259.662417] bpf_task_under_cgroup+0xe7/0xf0
[ 1259.662422] bpf_prog_7fffba481a3bcf88_lsm_run+0x5c/0x93
[ 1259.662431] bpf_trampoline_6442505574+0x60/0x1000
[ 1259.662439] bpf_lsm_bpf+0x5/0x20
[ 1259.662443] ? security_bpf+0x32/0x50
[ 1259.662452] __sys_bpf+0xe6/0xdd0
[ 1259.662463] __x64_sys_bpf+0x1a/0x30
[ 1259.662467] do_syscall_64+0x38/0x90
[ 1259.662472] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 1259.662479] RIP: 0033:0x7f487baf8e29
[...]
[ 1259.662504] </TASK>
This issue can be reproduced by executing a straightforward program, as
demonstrated below:
SEC("lsm.s/bpf")
int BPF_PROG(lsm_run, int cmd, union bpf_attr *attr, unsigned int size)
{
struct cgroup *cgrp = NULL;
struct task_struct *task;
int ret = 0;
if (cmd != BPF_LINK_CREATE)
return 0;
// The cgroup2 should be mounted first
cgrp = bpf_cgroup_from_id(1);
if (!cgrp)
goto out;
task = bpf_get_current_task_btf();
if (bpf_task_under_cgroup(task, cgrp))
ret = -1;
bpf_cgroup_release(cgrp);
out:
return ret;
}
After running the program, if you subsequently execute another BPF program,
you will encounter the warning.
It's worth noting that task_under_cgroup_hierarchy() is also utilized by
bpf_current_task_under_cgroup(). However, bpf_current_task_under_cgroup()
doesn't exhibit this issue because it cannot be used in sleepable BPF
programs.
Fixes: b5ad4cdc46 ("bpf: Add bpf_task_under_cgroup() kfunc")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Cc: Feng Zhou <zhoufeng.zf@bytedance.com>
Cc: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20231007135945.4306-1-laoar.shao@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 06d686f771ddc27a8554cd8f5b22e071040dc90e ]
The kfunc code to handle KF_ARG_PTR_TO_CALLBACK does not check the reg
type before using reg->subprogno. This can accidently permit invalid
pointers from being passed into callback helpers (e.g. silently from
different paths). Likewise, reg->subprogno from the per-register type
union may not be meaningful either. We need to reject any other type
except PTR_TO_FUNC.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Fixes: 5d92ddc3de ("bpf: Add callback validation to kfunc verifier logic")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2b5dcb31a19a2e0acd869b12c9db9b2d696ef544 ]
From commit ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT"), the tailcall on x64 works better than before.
From commit e411901c0b ("bpf: allow for tailcalls in BPF subprograms
for x64 JIT"), tailcall is able to run in BPF subprograms on x64.
From commit 5b92a28aae ("bpf: Support attaching tracing BPF program
to other BPF programs"), BPF program is able to trace other BPF programs.
How about combining them all together?
1. FENTRY/FEXIT on a BPF subprogram.
2. A tailcall runs in the BPF subprogram.
3. The tailcall calls the subprogram's caller.
As a result, a tailcall infinite loop comes up. And the loop would halt
the machine.
As we know, in tail call context, the tail_call_cnt propagates by stack
and rax register between BPF subprograms. So do in trampolines.
Fixes: ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Fixes: e411901c0b ("bpf: allow for tailcalls in BPF subprograms for x64 JIT")
Reviewed-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Leon Hwang <hffilwlqm@gmail.com>
Link: https://lore.kernel.org/r/20230912150442.2009-3-hffilwlqm@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a0b0bad10587ae2948a7c36ca4ffc206007fbcf3 ]
When a CPU is about to be offlined, x86 validates that all active
interrupts which are targeted to this CPU can be migrated to the remaining
online CPUs. If not, the offline operation is aborted.
The validation uses irq_matrix_allocated() to retrieve the number of
vectors which are allocated on the outgoing CPU. The returned number of
allocated vectors includes also vectors which are associated to managed
interrupts.
That's overaccounting because managed interrupts are:
- not migrated when the affinity mask of the interrupt targets only
the outgoing CPU
- migrated to another CPU, but in that case the vector is already
pre-allocated on the potential target CPUs and must not be taken into
account.
As a consequence the check whether the remaining online CPUs have enough
capacity for migrating the allocated vectors from the outgoing CPU might
fail incorrectly.
Let irq_matrix_allocated() return only the number of allocated non-managed
interrupts to make this validation check correct.
[ tglx: Amend changelog and fixup kernel-doc comment ]
Fixes: 2f75d9e1c9 ("genirq: Implement bitmap matrix allocator")
Reported-by: Wendy Wang <wendy.wang@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231020072522.557846-1-yu.c.chen@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f06cc667f79909e9175460b167c277b7c64d3df0 ]
Namhyung reported that bd27568117 ("perf: Rewrite core context handling")
regresses context switch overhead when perf-cgroup is in use together
with 'slow' PMUs like uncore.
Specifically, perf_cgroup_switch()'s perf_ctx_disable() /
ctx_sched_out() etc.. all iterate the full list of active PMUs for
that CPU, even if they don't have cgroup events.
Previously there was cgrp_cpuctx_list which linked the relevant PMUs
together, but that got lost in the rework. Instead of re-instruducing
a similar list, let the perf_event_pmu_context iteration skip those
that do not have cgroup events. This avoids growing multiple versions
of the perf_event_pmu_context iteration.
Measured performance (on a slightly different patch):
Before)
$ taskset -c 0 ./perf bench sched pipe -l 10000 -G AAA,BBB
# Running 'sched/pipe' benchmark:
# Executed 10000 pipe operations between two processes
Total time: 0.901 [sec]
90.128700 usecs/op
11095 ops/sec
After)
$ taskset -c 0 ./perf bench sched pipe -l 10000 -G AAA,BBB
# Running 'sched/pipe' benchmark:
# Executed 10000 pipe operations between two processes
Total time: 0.065 [sec]
6.560100 usecs/op
152436 ops/sec
Fixes: bd27568117 ("perf: Rewrite core context handling")
Reported-by: Namhyung Kim <namhyung@kernel.org>
Debugged-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231009210425.GC6307@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4a8e65b0c348e42107c64381e692e282900be361 ]
SRCU callbacks acceleration might fail if the preceding callbacks
advance also fails. This can happen when the following steps are met:
1) The RCU_WAIT_TAIL segment has callbacks (say for gp_num 8) and the
RCU_NEXT_READY_TAIL also has callbacks (say for gp_num 12).
2) The grace period for RCU_WAIT_TAIL is observed as started but not yet
completed so rcu_seq_current() returns 4 + SRCU_STATE_SCAN1 = 5.
3) This value is passed to rcu_segcblist_advance() which can't move
any segment forward and fails.
4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
But then the call to rcu_seq_snap() observes the grace period for the
RCU_WAIT_TAIL segment (gp_num 8) as completed and the subsequent one
for the RCU_NEXT_READY_TAIL segment as started
(ie: 8 + SRCU_STATE_SCAN1 = 9) so it returns a snapshot of the
next grace period, which is 16.
5) The value of 16 is passed to rcu_segcblist_accelerate() but the
freshly enqueued callback in RCU_NEXT_TAIL can't move to
RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
period (gp_num = 12). So acceleration fails.
6) Note in all these steps, srcu_invoke_callbacks() hadn't had a chance
to run srcu_invoke_callbacks().
Then some very bad outcome may happen if the following happens:
7) Some other CPU races and starts the grace period number 16 before the
CPU handling previous steps had a chance. Therefore srcu_gp_start()
isn't called on the latter sdp to fix the acceleration leak from
previous steps with a new pair of call to advance/accelerate.
8) The grace period 16 completes and srcu_invoke_callbacks() is finally
called. All the callbacks from previous grace periods (8 and 12) are
correctly advanced and executed but callbacks in RCU_NEXT_READY_TAIL
still remain. Then rcu_segcblist_accelerate() is called with a
snaphot of 20.
9) Since nothing started the grace period number 20, callbacks stay
unhandled.
This has been reported in real load:
[3144162.608392] INFO: task kworker/136:12:252684 blocked for more
than 122 seconds.
[3144162.615986] Tainted: G O K 5.4.203-1-tlinux4-0011.1 #1
[3144162.623053] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs"
disables this message.
[3144162.631162] kworker/136:12 D 0 252684 2 0x90004000
[3144162.631189] Workqueue: kvm-irqfd-cleanup irqfd_shutdown [kvm]
[3144162.631192] Call Trace:
[3144162.631202] __schedule+0x2ee/0x660
[3144162.631206] schedule+0x33/0xa0
[3144162.631209] schedule_timeout+0x1c4/0x340
[3144162.631214] ? update_load_avg+0x82/0x660
[3144162.631217] ? raw_spin_rq_lock_nested+0x1f/0x30
[3144162.631218] wait_for_completion+0x119/0x180
[3144162.631220] ? wake_up_q+0x80/0x80
[3144162.631224] __synchronize_srcu.part.19+0x81/0xb0
[3144162.631226] ? __bpf_trace_rcu_utilization+0x10/0x10
[3144162.631227] synchronize_srcu+0x5f/0xc0
[3144162.631236] irqfd_shutdown+0x3c/0xb0 [kvm]
[3144162.631239] ? __schedule+0x2f6/0x660
[3144162.631243] process_one_work+0x19a/0x3a0
[3144162.631244] worker_thread+0x37/0x3a0
[3144162.631247] kthread+0x117/0x140
[3144162.631247] ? process_one_work+0x3a0/0x3a0
[3144162.631248] ? __kthread_cancel_work+0x40/0x40
[3144162.631250] ret_from_fork+0x1f/0x30
Fix this with taking the snapshot for acceleration _before_ the read
of the current grace period number.
The only side effect of this solution is that callbacks advancing happen
then _after_ the full barrier in rcu_seq_snap(). This is not a problem
because that barrier only cares about:
1) Ordering accesses of the update side before call_srcu() so they don't
bleed.
2) See all the accesses prior to the grace period of the current gp_num
The only things callbacks advancing need to be ordered against are
carried by snp locking.
Reported-by: Yong He <alexyonghe@tencent.com>
Co-developed-by:: Yong He <alexyonghe@tencent.com>
Signed-off-by: Yong He <alexyonghe@tencent.com>
Co-developed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Link: http://lore.kernel.org/CANZk6aR+CqZaqmMWrC2eRRPY12qAZnDZLwLnHZbNi=xXMB401g@mail.gmail.com
Fixes: da915ad5cf ("srcu: Parallelize callback handling")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d91bdd96b55cc3ce98d883a60f133713821b80a6 ]
The SMT control mechanism got added as speculation attack vector
mitigation. The implemented logic relies on the primary thread mask to
be set up properly.
This turns out to be an issue with XEN/PV guests because their CPU hotplug
mechanics do not enumerate APICs and therefore the mask is never correctly
populated.
This went unnoticed so far because by chance XEN/PV ends up with
smp_num_siblings == 2. So smt_hotplug_control stays at its default value
CPU_SMT_ENABLED and the primary thread mask is never evaluated in the
context of CPU hotplug.
This stopped "working" with the upcoming overhaul of the topology
evaluation which legitimately provides a fake topology for XEN/PV. That
sets smp_num_siblings to 1, which causes the core CPU hot-plug core to
refuse to bring up the APs.
This happens because smt_hotplug_control is set to CPU_SMT_NOT_SUPPORTED
which causes cpu_smt_allowed() to evaluate the unpopulated primary thread
mask with the conclusion that all non-boot CPUs are not valid to be
plugged.
Make cpu_smt_allowed() more robust and take CPU_SMT_NOT_SUPPORTED and
CPU_SMT_NOT_IMPLEMENTED into account. Rename it to cpu_bootable() while at
it as that makes it more clear what the function is about.
The primary mask issue on x86 XEN/PV needs to be addressed separately as
there are users outside of the CPU hotplug code too.
Fixes: 05736e4ac1 ("cpu/hotplug: Provide knobs to control SMT")
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.149440843@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6fcdb0183bf024a70abccb0439321c25891c708d ]
Commit a86ce68078 ("cgroup/cpuset: Extract out CS_CPU_EXCLUSIVE
& CS_SCHED_LOAD_BALANCE handling") adds a new helper function
update_partition_sd_lb() to update the load balance state of the
cpuset. However the new load balance is determined by just looking at
whether the cpuset is a valid isolated partition root or not. That is
not enough if the cpuset is not a valid partition root but its parent
is in the isolated state (load balance off). Update the function to
set the new state to be the same as its parent in this case like what
has been done in commit c8c926200c ("cgroup/cpuset: Inherit parent's
load balance state in v2").
Fixes: a86ce68078 ("cgroup/cpuset: Extract out CS_CPU_EXCLUSIVE & CS_SCHED_LOAD_BALANCE handling")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c73801ae4f22b390228ebf471d55668e824198b6 ]
On no-MMU, all futexes are treated as private because there is no need
to map a virtual address to physical to match the futex across
processes. This doesn't quite work though, because private futexes
include the current process's mm_struct as part of their key. This makes
it impossible for one process to wake up a shared futex being waited on
in another process.
Fix this bug by excluding the mm_struct from the key. With
a single address space, the futex address is already a unique key.
Fixes: 784bdf3bb6 ("futex: Assume all mappings are private on !MMU systems")
Signed-off-by: Ben Wolsieffer <ben.wolsieffer@hefring.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: André Almeida <andrealmeid@igalia.com>
Link: https://lore.kernel.org/r/20231019204548.1236437-2-ben.wolsieffer@hefring.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f0498d2a54e7966ce23cd7c7ff42c64fa0059b07 ]
Kuyo reported sporadic failures on a sched_setaffinity() vs CPU
hotplug stress-test -- notably affine_move_task() remains stuck in
wait_for_completion(), leading to a hung-task detector warning.
Specifically, it was reported that stop_one_cpu_nowait(.fn =
migration_cpu_stop) returns false -- this stopper is responsible for
the matching complete().
The race scenario is:
CPU0 CPU1
// doing _cpu_down()
__set_cpus_allowed_ptr()
task_rq_lock();
takedown_cpu()
stop_machine_cpuslocked(take_cpu_down..)
<PREEMPT: cpu_stopper_thread()
MULTI_STOP_PREPARE
...
__set_cpus_allowed_ptr_locked()
affine_move_task()
task_rq_unlock();
<PREEMPT: cpu_stopper_thread()\>
ack_state()
MULTI_STOP_RUN
take_cpu_down()
__cpu_disable();
stop_machine_park();
stopper->enabled = false;
/>
/>
stop_one_cpu_nowait(.fn = migration_cpu_stop);
if (stopper->enabled) // false!!!
That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the
stopper thread gets a chance to preempt and allows the cpu-down for
the target CPU to complete.
OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to
issue a wakeup, it must not be ran under the scheduler locks.
Solve this apparent contradiction by keeping preemption disabled over
the unlock + queue_stopper combination:
preempt_disable();
task_rq_unlock(...);
if (!stop_pending)
stop_one_cpu_nowait(...)
preempt_enable();
This respects the lock ordering contraints while still avoiding the
above race. That is, if we find the CPU is online under rq-lock, the
targeted stop_one_cpu_nowait() must succeed.
Apply this pattern to all similar stop_one_cpu_nowait() invocations.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 23c9519def98ee0fa97ea5871535e9b136f522fc ]
find_energy_efficient_cpu() bails out early if effective util of the
task is 0 as the delta at this point will be zero and there's nothing
for EAS to do. When uclamp is being used, this could lead to wrong
decisions when uclamp_max is set to 0. In this case the task is capped
to performance point 0, but it is actually running and consuming energy
and we can benefit from EAS energy calculations.
Rework the condition so that it bails out when both util and uclamp_min
are 0.
We can do that without needing to use uclamp_task_util(); remove it.
Fixes: d81304bc61 ("sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-3-qyousef@layalina.io
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6b00a40147653c8ea748e8f4396510f252763364 ]
When uclamp_max is being used, the util of the task could be higher than
the spare capacity of the CPU, but due to uclamp_max value we force-fit
it there.
The way the condition for checking for max_spare_cap in
find_energy_efficient_cpu() was constructed; it ignored any CPU that has
its spare_cap less than or _equal_ to max_spare_cap. Since we initialize
max_spare_cap to 0; this lead to never setting max_spare_cap_cpu and
hence ending up never performing compute_energy() for this cluster and
missing an opportunity for a better energy efficient placement to honour
uclamp_max setting.
max_spare_cap = 0;
cpu_cap = capacity_of(cpu) - cpu_util(p); // 0 if cpu_util(p) is high
...
util_fits_cpu(...); // will return true if uclamp_max forces it to fit
...
// this logic will fail to update max_spare_cap_cpu if cpu_cap is 0
if (cpu_cap > max_spare_cap) {
max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
}
prev_spare_cap suffers from a similar problem.
Fix the logic by converting the variables into long and treating -1
value as 'not populated' instead of 0 which is a viable and correct
spare capacity value. We need to be careful signed comparison is used
when comparing with cpu_cap in one of the conditions.
Fixes: 1d42509e47 ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-2-qyousef@layalina.io
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c0490bc9bb62d9376f3dd4ec28e03ca0fef97152 ]
We don't need to maintain per-queue leaf_cfs_rq_list on !SMP, since
it's used for cfs_rq load tracking & balancing on SMP.
But sched debug interface uses it to print per-cfs_rq stats.
This patch fixes the !SMP version of cfs_rq_is_decayed(), so the
per-queue leaf_cfs_rq_list is also maintained correctly on !SMP,
to fix the warning in assert_list_leaf_cfs_rq().
Fixes: 0a00a35464 ("sched/fair: Delete useless condition in tg_unthrottle_up()")
Reported-by: Leo Yu-Chi Liang <ycliang@andestech.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Leo Yu-Chi Liang <ycliang@andestech.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Closes: https://lore.kernel.org/all/ZN87UsqkWcFLDxea@swlinux02/
Link: https://lore.kernel.org/r/20230913132031.2242151-1-chengming.zhou@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bb32500fb9b78215e4ef6ee8b4345c5f5d7eafb4 upstream
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo 'p:sched schedule' > kprobe_events
# exec 5>>events/kprobes/sched/enable
# > kprobe_events
# exec 5>&-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn't matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.
Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: f5ca233e2e ("tracing: Increase trace array ref count on enable and filter files")
Reported-by: Beau Belgrave <beaub@linux.microsoft.com>
Tested-by: Beau Belgrave <beaub@linux.microsoft.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- tracing/kprobes: Fix kernel-doc warnings for the variable length
arguments.
- tracing/kprobes: Fix to count the symbols in modules even if the
module name is not specified so that user can probe the symbols in
the modules without module name.
-----BEGIN PGP SIGNATURE-----
iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmU82MUbHG1hc2FtaS5o
aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bMZ0H+wZHWVUsmqGLGNCt3gfi
m2EJX83VMwY8PzpwZ5ezrx4ibAcUyo7Dhh8OniGgEazC3BNeggoUu/HwpirS22gI
Tx0EMlgLOJQykauiUe6FPem0IbrlbQMI1gLplx6cVd8lgIYZQfMIM5gI0kuCywT3
Ka9sCgp6y3UKQNtHKFwtPRLYFTF3Afyy2C01wdsa800SEqeOAeTD9+8yz7ZnuFt+
bNgu6vJGFfJHkEkvYCwFFqZ1eIfXON6lUFpijNpCGvMN2h1XArLexSk8JRBf6j2+
8+1FrRQsTXRk3G6v9uQABeK7z5W2F8gufmSFyBlXajbZp2HT6j4s2S86u5lP9P9J
l1U=
=etyx
-----END PGP SIGNATURE-----
Merge tag 'probes-fixes-v6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes fixes from Masami Hiramatsu:
- tracing/kprobes: Fix kernel-doc warnings for the variable length
arguments
- tracing/kprobes: Fix to count the symbols in modules even if the
module name is not specified so that user can probe the symbols in
the modules without module name
* tag 'probes-fixes-v6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/kprobes: Fix symbol counting logic by looking at modules as well
tracing/kprobes: Fix the description of variable length arguments
Recent changes to count number of matching symbols when creating
a kprobe event failed to take into account kernel modules. As such, it
breaks kprobes on kernel module symbols, by assuming there is no match.
Fix this my calling module_kallsyms_on_each_symbol() in addition to
kallsyms_on_each_match_symbol() to perform a proper counting.
Link: https://lore.kernel.org/all/20231027233126.2073148-1-andrii@kernel.org/
Cc: Francis Laniel <flaniel@linux.microsoft.com>
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Fixes: b022f0c7e4 ("tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fix the following kernel-doc warnings:
kernel/trace/trace_kprobe.c:1029: warning: Excess function parameter 'args' description in '__kprobe_event_gen_cmd_start'
kernel/trace/trace_kprobe.c:1097: warning: Excess function parameter 'args' description in '__kprobe_event_add_fields'
Refer to the usage of variable length arguments elsewhere in the kernel
code, "@..." is the proper way to express it in the description.
Link: https://lore.kernel.org/all/20231027041315.2613166-1-yujie.liu@intel.com/
Fixes: 2a588dd1d5 ("tracing: Add kprobe event command generation functions")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202310190437.paI6LYJF-lkp@intel.com/
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
When allocating a new pool at runtime, reduce the number of slabs so
that the allocation order is at most MAX_ORDER. This avoids a kernel
warning in __alloc_pages().
The warning is relatively benign, because the pool size is subsequently
reduced when allocation fails, but it is silly to start with a request
that is known to fail, especially since this is the default behavior if
the kernel is built with CONFIG_SWIOTLB_DYNAMIC=y and booted without any
swiotlb= parameter.
Reported-by: Ben Greear <greearb@candelatech.com>
Closes: https://lore.kernel.org/netdev/4f173dd2-324a-0240-ff8d-abf5c191be18@candelatech.com/
Fixes: 1aaa736815 ("swiotlb: allocate a new memory pool when existing pools are full")
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
- kprobe-events: Fix kprobe events to reject if the attached symbol
is not unique name because it may not the function which the user
want to attach to. (User can attach a probe to such symbol using
the nearest unique symbol + offset.)
- selftest: Add a testcase to ensure the kprobe event rejects non
unique symbol correctly.
-----BEGIN PGP SIGNATURE-----
iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmUzdQobHG1hc2FtaS5o
aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bMNAH/inFWv8e+rMm8F5Po6ZI
CmBxuZbxy2l+KfYDjXqSHu7TLKngVd6Bhdb5H2K7fgdwiZxrS0i6qvdppo+Cxgop
Yod06peDTM80IKavioCcOJOwLPGXXpZkMlK5fdC48HN6vrf9km4vws5ZAagfc1ng
YhnYm1HHeXcIYwtLkE2dCr6HkwkaOebWTLdZ8c70d1OPw0L9rzxH+edjhKCq8uIw
6WUg9ERxJYPUuCkQxOxVJrTdzNMRXsgf28FHc0LyYRm8kDpECT2BP6e/Y+TBbsX5
2pN5cUY5qfI6t3Pc1HDs2KX8ui2QCmj0mCvT0VixhdjThdHpRf0VjIFFAANf3LNO
XVA=
=O1Aa
-----END PGP SIGNATURE-----
Merge tag 'probes-fixes-v6.6-rc6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes fixes from Masami Hiramatsu:
- kprobe-events: Fix kprobe events to reject if the attached symbol is
not unique name because it may not the function which the user want
to attach to. (User can attach a probe to such symbol using the
nearest unique symbol + offset.)
- selftest: Add a testcase to ensure the kprobe event rejects non
unique symbol correctly.
* tag 'probes-fixes-v6.6-rc6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
selftests/ftrace: Add new test case which checks non unique symbol
tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols
When a kprobe is attached to a function that's name is not unique (is
static and shares the name with other functions in the kernel), the
kprobe is attached to the first function it finds. This is a bug as the
function that it is attaching to is not necessarily the one that the
user wants to attach to.
Instead of blindly picking a function to attach to what is ambiguous,
error with EADDRNOTAVAIL to let the user know that this function is not
unique, and that the user must use another unique function with an
address offset to get to the function they want to attach to.
Link: https://lore.kernel.org/all/20231020104250.9537-2-flaniel@linux.microsoft.com/
Cc: stable@vger.kernel.org
Fixes: 413d37d1eb ("tracing: Add kprobe-based event tracer")
Suggested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Francis Laniel <flaniel@linux.microsoft.com>
Link: https://lore.kernel.org/lkml/20230819101105.b0c104ae4494a7d1f2eea742@kernel.org/
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTD6IQAKCRCRxhvAZXjc
opXLAQC9X+ECnGUAOy/kvOrEBkBb7G4BuZ8XsrnL976riVNp0gEA85LaJV9Ow7Xk
51k/1ujhYkglQbCsa0zo+mI4ueE3wAQ=
=Dqrj
-----END PGP SIGNATURE-----
Merge tag 'v6.6-rc7.vfs.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs fix from Christian Brauner:
"An openat() call from io_uring triggering an audit call can apparently
cause the refcount of struct filename to be incremented from multiple
threads concurrently during async execution, triggering a refcount
underflow and hitting a BUG_ON(). That bug has been lurking around
since at least v5.16 apparently.
Switch to an atomic counter to fix that. The underflow check is
downgraded from a BUG_ON() to a WARN_ON_ONCE() but we could easily
remove that check altogether tbh"
* tag 'v6.6-rc7.vfs.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
audit,io_uring: io_uring openat triggers audit reference count underflow
Because group consistency is non-atomic between parent (filedesc) and children
(inherited) events, it is possible for PERF_FORMAT_GROUP read() to try and sum
non-matching counter groups -- with non-sensical results.
Add group_generation to distinguish the case where a parent group removes and
adds an event and thus has the same number, but a different configuration of
events as inherited groups.
This became a problem when commit fa8c269353 ("perf/core: Invert
perf_read_group() loops") flipped the order of child_list and sibling_list.
Previously it would iterate the group (sibling_list) first, and for each
sibling traverse the child_list. In this order, only the group composition of
the parent is relevant. By flipping the order the group composition of the
child (inherited) events becomes an issue and the mis-match in group
composition becomes evident.
That said; even prior to this commit, while reading of a group that is not
equally inherited was not broken, it still made no sense.
(Ab)use ECHILD as error return to indicate issues with child process group
composition.
Fixes: fa8c269353 ("perf/core: Invert perf_read_group() loops")
Reported-by: Budimir Markovic <markovicbudimir@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231018115654.GK33217@noisy.programming.kicks-ass.net
An io_uring openat operation can update an audit reference count
from multiple threads resulting in the call trace below.
A call to io_uring_submit() with a single openat op with a flag of
IOSQE_ASYNC results in the following reference count updates.
These first part of the system call performs two increments that do not race.
do_syscall_64()
__do_sys_io_uring_enter()
io_submit_sqes()
io_openat_prep()
__io_openat_prep()
getname()
getname_flags() /* update 1 (increment) */
__audit_getname() /* update 2 (increment) */
The openat op is queued to an io_uring worker thread which starts the
opportunity for a race. The system call exit performs one decrement.
do_syscall_64()
syscall_exit_to_user_mode()
syscall_exit_to_user_mode_prepare()
__audit_syscall_exit()
audit_reset_context()
putname() /* update 3 (decrement) */
The io_uring worker thread performs one increment and two decrements.
These updates can race with the system call decrement.
io_wqe_worker()
io_worker_handle_work()
io_wq_submit_work()
io_issue_sqe()
io_openat()
io_openat2()
do_filp_open()
path_openat()
__audit_inode() /* update 4 (increment) */
putname() /* update 5 (decrement) */
__audit_uring_exit()
audit_reset_context()
putname() /* update 6 (decrement) */
The fix is to change the refcnt member of struct audit_names
from int to atomic_t.
kernel BUG at fs/namei.c:262!
Call Trace:
...
? putname+0x68/0x70
audit_reset_context.part.0.constprop.0+0xe1/0x300
__audit_uring_exit+0xda/0x1c0
io_issue_sqe+0x1f3/0x450
? lock_timer_base+0x3b/0xd0
io_wq_submit_work+0x8d/0x2b0
? __try_to_del_timer_sync+0x67/0xa0
io_worker_handle_work+0x17c/0x2b0
io_wqe_worker+0x10a/0x350
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/MW2PR2101MB1033FFF044A258F84AEAA584F1C9A@MW2PR2101MB1033.namprd21.prod.outlook.com/
Fixes: 5bd2182d58 ("audit,io_uring,io-wq: add some basic audit support to io_uring")
Signed-off-by: Dan Clash <daclash@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231012215518.GA4048@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
- In cgroup1, the `tasks` file could have duplicate pids which can trigger a
warning in seq_file. Fix it by removing duplicate items after sorting.
- Comment update.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZSh+2A4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGfASAP9dgEe1Ay6jkJoCCGROnjPRDj2j7Cm9WWcHV79X
0Pr3zQEA/vFIpUzRZGbisrvnyXwNNLX12Hq/nwRX6DzN4UIkDgE=
=tPdI
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.6-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
- In cgroup1, the `tasks` file could have duplicate pids which can
trigger a warning in seq_file. Fix it by removing duplicate items
after sorting
- Comment update
* tag 'cgroup-for-6.6-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Fix incorrect css_set_rwsem reference in comment
cgroup: Remove duplicates in cgroup v1 tasks file
* Fix access-after-free in pwq allocation error path.
* Implicitly ordered unbound workqueues should lose the implicit ordering if
an attribute change which isn't compatible with ordered operation is
requested. However, attribute changes requested through the sysfs
interface weren't doing that leaving no way to override the implicit
ordering through the sysfs interface. Fix it.
* Other doc and misc updates.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZSh9vQ4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGTG4AQCklH7aGqSbzGBPuV19gN6q+BPjkNNLTkEtOzW7
3t1gewEAuwGiGr5FwuxCuGhzTUm5dkELFFsKdzYk+Pt7B2M5Pg0=
=YQtE
-----END PGP SIGNATURE-----
Merge tag 'wq-for-6.6-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fixes from Tejun Heo:
- Fix access-after-free in pwq allocation error path
- Implicitly ordered unbound workqueues should lose the implicit
ordering if an attribute change which isn't compatible with ordered
operation is requested. However, attribute changes requested through
the sysfs interface weren't doing that leaving no way to override the
implicit ordering through the sysfs interface. Fix it.
- Other doc and misc updates
* tag 'wq-for-6.6-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: fix -Wformat-truncation in create_worker
workqueue: Override implicit ordered attribute in workqueue_apply_unbound_cpumask()
workqueue: Use the kmem_cache_free() instead of kfree() to release pwq
workqueue: doc: Fix function and sysfs path errors
workqueue: Fix UAF report by KASAN in pwq_release_workfn()
Previous releases - regressions:
- af_packet: fix fortified memcpy() without flex array.
- tcp: fix crashes trying to free half-baked MTU probes
- xdp: fix zero-size allocation warning in xskq_create()
- can: sja1000: always restart the tx queue after an overrun
- eth: mlx5e: again mutually exclude RX-FCS and RX-port-timestamp
- eth: nfp: avoid rmmod nfp crash issues
- eth: octeontx2-pf: fix page pool frag allocation warning
Previous releases - always broken:
- mctp: perform route lookups under a RCU read-side lock
- bpf: s390: fix clobbering the caller's backchain in the trampoline
- phy: lynx-28g: cancel the CDR check work item on the remove path
- dsa: qca8k: fix qca8k driver for Turris 1.x
- eth: ravb: fix use-after-free issue in ravb_tx_timeout_work()
- eth: ixgbe: fix crash with empty VF macvlan list
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmUnw0USHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOkN0EP/RKl317fLqlm6ZzRUMVP169CNRAgMaBG
7FIwxlCv4hfO2Rx09Mxu2wjDp+tBQKqBKaxfcwh8tEdLMqqCymOW2K5+tWVty8C8
TJJS+zggqLAo7DjXbnT8GBm5owHPLKGNxW6vRmnw9xraCD/nuV1wqolI2+l4IxB+
kqfliltepnJSakg0uXg7/uwAE87slBzX5VgB6K5JKLiiDMD8tYoAUmZzH8bMJd0l
Cl7+L+ucRfQkj0DPfuZM/FncM0el7oFB6imnKd36hD6vfDfCNxpyNBYG1yZ/61/N
7H3E595Hr9PA+YBZjja3UvQGbFXkyMHloQdYxmq4s0T2WHqKwRyjLlwPayMXvavn
OTJh2VAs68ivtti0ry5Nbgz4viiNfr32PLyZr6XySwCZ1/TCLjV4Cq9IYnaP3YeM
KA+CIl3d0asQdZuMXTBivmtF65Buawt9UX/gJzUst2mNdcqhV1RTNWDNWoFLQ0qW
gz8XN68V5LhbaaOq/Lat80krWgNLNZIlTNmSsE/Ie799w7dAHn/xvT6h+h5pF1XX
dhng9NK7RL7KVcI/9walArOnhz9ksGWc2+JPMQohuPM/ITMHW11oOUOX6NwAre5m
hBJKh+Rz7ylLDLn33C4qowUhxnJlqqm+rDCVDTmoYngEFQvhEl19mfndSsC8P/K/
xXQJ+diS/Jug
=orAS
-----END PGP SIGNATURE-----
Merge tag 'net-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Paolo Abeni:
"Including fixes from CAN and BPF.
We have a regression in TC currently under investigation, otherwise
the things that stand off most are probably the TCP and AF_PACKET
fixes, with both issues coming from 6.5.
Previous releases - regressions:
- af_packet: fix fortified memcpy() without flex array.
- tcp: fix crashes trying to free half-baked MTU probes
- xdp: fix zero-size allocation warning in xskq_create()
- can: sja1000: always restart the tx queue after an overrun
- eth: mlx5e: again mutually exclude RX-FCS and RX-port-timestamp
- eth: nfp: avoid rmmod nfp crash issues
- eth: octeontx2-pf: fix page pool frag allocation warning
Previous releases - always broken:
- mctp: perform route lookups under a RCU read-side lock
- bpf: s390: fix clobbering the caller's backchain in the trampoline
- phy: lynx-28g: cancel the CDR check work item on the remove path
- dsa: qca8k: fix qca8k driver for Turris 1.x
- eth: ravb: fix use-after-free issue in ravb_tx_timeout_work()
- eth: ixgbe: fix crash with empty VF macvlan list"
* tag 'net-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (54 commits)
rswitch: Fix imbalance phy_power_off() calling
rswitch: Fix renesas_eth_sw_remove() implementation
octeontx2-pf: Fix page pool frag allocation warning
nfc: nci: assert requested protocol is valid
af_packet: Fix fortified memcpy() without flex array.
net: tcp: fix crashes trying to free half-baked MTU probes
net/smc: Fix pos miscalculation in statistics
nfp: flower: avoid rmmod nfp crash issues
net: usb: dm9601: fix uninitialized variable use in dm9601_mdio_read
ethtool: Fix mod state of verbose no_mask bitset
net: nfc: fix races in nfc_llcp_sock_get() and nfc_llcp_sock_get_sn()
mctp: perform route lookups under a RCU read-side lock
net: skbuff: fix kernel-doc typos
s390/bpf: Fix unwinding past the trampoline
s390/bpf: Fix clobbering the caller's backchain in the trampoline
net/mlx5e: Again mutually exclude RX-FCS and RX-port-timestamp
net/smc: Fix dependency of SMC on ISM
ixgbe: fix crash with empty VF macvlan list
net/mlx5e: macsec: use update_pn flag instead of PN comparation
net: phy: mscc: macsec: reject PN update requests
...
Compiling with W=1 emitted the following warning
(Compiler: gcc (x86-64, ver. 13.2.1, .config: result of make allyesconfig,
"Treat warnings as errors" turned off):
kernel/workqueue.c:2188:54: warning: ‘%d’ directive output may be
truncated writing between 1 and 10 bytes into a region of size
between 5 and 14 [-Wformat-truncation=]
kernel/workqueue.c:2188:50: note: directive argument in the range
[0, 2147483647]
kernel/workqueue.c:2188:17: note: ‘snprintf’ output between 4 and 23 bytes
into a destination of size 16
setting "id_buf" to size 23 will silence the warning, since GCC
determines snprintf's output to be max. 23 bytes in line 2188.
Please let me know if there are any mistakes in my patch!
Signed-off-by: Lucy Mielke <lucymielke@icloud.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit 5c0338c687 ("workqueue: restore WQ_UNBOUND/max_active==1
to be ordered") enabled implicit ordered attribute to be added to
WQ_UNBOUND workqueues with max_active of 1. This prevented the changing
of attributes to these workqueues leading to fix commit 0a94efb5ac
("workqueue: implicit ordered attribute should be overridable").
However, workqueue_apply_unbound_cpumask() was not updated at that time.
So sysfs changes to wq_unbound_cpumask has no effect on WQ_UNBOUND
workqueues with implicit ordered attribute. Since not all WQ_UNBOUND
workqueues are visible on sysfs, we are not able to make all the
necessary cpumask changes even if we iterates all the workqueue cpumasks
in sysfs and changing them one by one.
Fix this problem by applying the corresponding change made
to apply_workqueue_attrs_locked() in the fix commit to
workqueue_apply_unbound_cpumask().
Fixes: 5c0338c687 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, the kfree() be used for pwq objects allocated with
kmem_cache_alloc() in alloc_and_link_pwqs(), this isn't wrong.
but usually, use "trace_kmem_cache_alloc/trace_kmem_cache_free"
to track memory allocation and free. this commit therefore use
kmem_cache_free() instead of kfree() in alloc_and_link_pwqs()
and also consistent with release of the pwq in rcu_free_pwq().
Signed-off-by: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The verifier, as part of check_return_code(), verifies that async
callbacks such as from e.g. timers, will return 0. It does this by
correctly checking that R0->var_off is in tnum_const(0), which
effectively checks that it's in a range of 0. If this condition fails,
however, it prints an error message which says that the value should
have been in (0x0; 0x1). This results in possibly confusing output such
as the following in which an async callback returns 1:
At async callback the register R0 has value (0x1; 0x0) should have been in (0x0; 0x1)
The fix is easy -- we should just pass the tnum_const(0) as the correct
range to verbose_invalid_scalar(), which will then print the following:
At async callback the register R0 has value (0x1; 0x0) should have been in (0x0; 0x0)
Fixes: bfc6bb74e4 ("bpf: Implement verifier support for validation of async callbacks.")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231009161414.235829-1-void@manifault.com
One PID may appear multiple times in a preloaded pidlist.
(Possibly due to PID recycling but we have reports of the same
task_struct appearing with different PIDs, thus possibly involving
transfer of PID via de_thread().)
Because v1 seq_file iterator uses PIDs as position, it leads to
a message:
> seq_file: buggy .next function kernfs_seq_next did not update position index
Conservative and quick fix consists of removing duplicates from `tasks`
file (as opposed to removing pidlists altogether). It doesn't affect
correctness (it's sufficient to show a PID once), performance impact
would be hidden by unconditional sorting of the pidlist already in place
(asymptotically).
Link: https://lore.kernel.org/r/20230823174804.23632-1-mkoutny@suse.com/
Suggested-by: Firo Yang <firo.yang@suse.com>
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org