This adds functions that wrap the netlink API used for adding, manipulating,
and removing traffic control filters.
The API summary:
A bpf_tc_hook represents a location where a TC-BPF filter can be attached.
This means that creating a hook leads to creation of the backing qdisc,
while destruction either removes all filters attached to a hook, or destroys
qdisc if requested explicitly (as discussed below).
The TC-BPF API functions operate on this bpf_tc_hook to attach, replace,
query, and detach tc filters. All functions return 0 on success, and a
negative error code on failure.
bpf_tc_hook_create - Create a hook
Parameters:
@hook - Cannot be NULL, ifindex > 0, attach_point must be set to
proper enum constant. Note that parent must be unset when
attach_point is one of BPF_TC_INGRESS or BPF_TC_EGRESS. Note
that as an exception BPF_TC_INGRESS|BPF_TC_EGRESS is also a
valid value for attach_point.
Returns -EOPNOTSUPP when hook has attach_point as BPF_TC_CUSTOM.
bpf_tc_hook_destroy - Destroy a hook
Parameters:
@hook - Cannot be NULL. The behaviour depends on value of
attach_point. If BPF_TC_INGRESS, all filters attached to
the ingress hook will be detached. If BPF_TC_EGRESS, all
filters attached to the egress hook will be detached. If
BPF_TC_INGRESS|BPF_TC_EGRESS, the clsact qdisc will be
deleted, also detaching all filters. As before, parent must
be unset for these attach_points, and set for BPF_TC_CUSTOM.
It is advised that if the qdisc is operated on by many programs,
then the program at least check that there are no other existing
filters before deleting the clsact qdisc. An example is shown
below:
DECLARE_LIBBPF_OPTS(bpf_tc_hook, .ifindex = if_nametoindex("lo"),
.attach_point = BPF_TC_INGRESS);
/* set opts as NULL, as we're not really interested in
* getting any info for a particular filter, but just
* detecting its presence.
*/
r = bpf_tc_query(&hook, NULL);
if (r == -ENOENT) {
/* no filters */
hook.attach_point = BPF_TC_INGRESS|BPF_TC_EGREESS;
return bpf_tc_hook_destroy(&hook);
} else {
/* failed or r == 0, the latter means filters do exist */
return r;
}
Note that there is a small race between checking for no
filters and deleting the qdisc. This is currently unavoidable.
Returns -EOPNOTSUPP when hook has attach_point as BPF_TC_CUSTOM.
bpf_tc_attach - Attach a filter to a hook
Parameters:
@hook - Cannot be NULL. Represents the hook the filter will be
attached to. Requirements for ifindex and attach_point are
same as described in bpf_tc_hook_create, but BPF_TC_CUSTOM
is also supported. In that case, parent must be set to the
handle where the filter will be attached (using BPF_TC_PARENT).
E.g. to set parent to 1:16 like in tc command line, the
equivalent would be BPF_TC_PARENT(1, 16).
@opts - Cannot be NULL. The following opts are optional:
* handle - The handle of the filter
* priority - The priority of the filter
Must be >= 0 and <= UINT16_MAX
Note that when left unset, they will be auto-allocated by
the kernel. The following opts must be set:
* prog_fd - The fd of the loaded SCHED_CLS prog
The following opts must be unset:
* prog_id - The ID of the BPF prog
The following opts are optional:
* flags - Currently only BPF_TC_F_REPLACE is allowed. It
allows replacing an existing filter instead of
failing with -EEXIST.
The following opts will be filled by bpf_tc_attach on a
successful attach operation if they are unset:
* handle - The handle of the attached filter
* priority - The priority of the attached filter
* prog_id - The ID of the attached SCHED_CLS prog
This way, the user can know what the auto allocated values
for optional opts like handle and priority are for the newly
attached filter, if they were unset.
Note that some other attributes are set to fixed default
values listed below (this holds for all bpf_tc_* APIs):
protocol as ETH_P_ALL, direct action mode, chain index of 0,
and class ID of 0 (this can be set by writing to the
skb->tc_classid field from the BPF program).
bpf_tc_detach
Parameters:
@hook - Cannot be NULL. Represents the hook the filter will be
detached from. Requirements are same as described above
in bpf_tc_attach.
@opts - Cannot be NULL. The following opts must be set:
* handle, priority
The following opts must be unset:
* prog_fd, prog_id, flags
bpf_tc_query
Parameters:
@hook - Cannot be NULL. Represents the hook where the filter lookup will
be performed. Requirements are same as described above in
bpf_tc_attach().
@opts - Cannot be NULL. The following opts must be set:
* handle, priority
The following opts must be unset:
* prog_fd, prog_id, flags
The following fields will be filled by bpf_tc_query upon a
successful lookup:
* prog_id
Some usage examples (using BPF skeleton infrastructure):
BPF program (test_tc_bpf.c):
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
SEC("classifier")
int cls(struct __sk_buff *skb)
{
return 0;
}
Userspace loader:
struct test_tc_bpf *skel = NULL;
int fd, r;
skel = test_tc_bpf__open_and_load();
if (!skel)
return -ENOMEM;
fd = bpf_program__fd(skel->progs.cls);
DECLARE_LIBBPF_OPTS(bpf_tc_hook, hook, .ifindex =
if_nametoindex("lo"), .attach_point =
BPF_TC_INGRESS);
/* Create clsact qdisc */
r = bpf_tc_hook_create(&hook);
if (r < 0)
goto end;
DECLARE_LIBBPF_OPTS(bpf_tc_opts, opts, .prog_fd = fd);
r = bpf_tc_attach(&hook, &opts);
if (r < 0)
goto end;
/* Print the auto allocated handle and priority */
printf("Handle=%u", opts.handle);
printf("Priority=%u", opts.priority);
opts.prog_fd = opts.prog_id = 0;
bpf_tc_detach(&hook, &opts);
end:
test_tc_bpf__destroy(skel);
This is equivalent to doing the following using tc command line:
# tc qdisc add dev lo clsact
# tc filter add dev lo ingress bpf obj foo.o sec classifier da
# tc filter del dev lo ingress handle <h> prio <p> bpf
... where the handle and priority can be found using:
# tc filter show dev lo ingress
Another example replacing a filter (extending prior example):
/* We can also choose both (or one), let's try replacing an
* existing filter.
*/
DECLARE_LIBBPF_OPTS(bpf_tc_opts, replace_opts, .handle =
opts.handle, .priority = opts.priority,
.prog_fd = fd);
r = bpf_tc_attach(&hook, &replace_opts);
if (r == -EEXIST) {
/* Expected, now use BPF_TC_F_REPLACE to replace it */
replace_opts.flags = BPF_TC_F_REPLACE;
return bpf_tc_attach(&hook, &replace_opts);
} else if (r < 0) {
return r;
}
/* There must be no existing filter with these
* attributes, so cleanup and return an error.
*/
replace_opts.prog_fd = replace_opts.prog_id = 0;
bpf_tc_detach(&hook, &replace_opts);
return -1;
To obtain info of a particular filter:
/* Find info for filter with handle 1 and priority 50 */
DECLARE_LIBBPF_OPTS(bpf_tc_opts, info_opts, .handle = 1,
.priority = 50);
r = bpf_tc_query(&hook, &info_opts);
if (r == -ENOENT)
printf("Filter not found");
else if (r < 0)
return r;
printf("Prog ID: %u", info_opts.prog_id);
return 0;
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> # libbpf API design
[ Daniel: also did major patch cleanup ]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210512103451.989420-3-memxor@gmail.com
The API gives access to inner map for map in map types (array or
hash of map). It will be used to dynamically set max_entries in it.
Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210408061310.95877-7-yauheni.kaliuta@redhat.com
Unfortunately some distros don't have their kernel version defined
accurately in <linux/version.h> due to different long term support
reasons.
It is important to have a way to override the bpf kern_version
attribute during runtime: some old kernels might still check for
kern_version attribute during bpf_prog_load().
Signed-off-by: Rafael David Tinoco <rafaeldtinoco@ubuntu.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20210323040952.2118241-1-rafaeldtinoco@ubuntu.com
Introduce BPF static linker APIs to libbpf. BPF static linker allows to
perform static linking of multiple BPF object files into a single combined
resulting object file, preserving all the BPF programs, maps, global
variables, etc.
Data sections (.bss, .data, .rodata, .maps, maps, etc) with the same name are
concatenated together. Similarly, code sections are also concatenated. All the
symbols and ELF relocations are also concatenated in their respective ELF
sections and are adjusted accordingly to the new object file layout.
Static variables and functions are handled correctly as well, adjusting BPF
instructions offsets to reflect new variable/function offset within the
combined ELF section. Such relocations are referencing STT_SECTION symbols and
that stays intact.
Data sections in different files can have different alignment requirements, so
that is taken care of as well, adjusting sizes and offsets as necessary to
satisfy both old and new alignment requirements.
DWARF data sections are stripped out, currently. As well as LLLVM_ADDRSIG
section, which is ignored by libbpf in bpf_object__open() anyways. So, in
a way, BPF static linker is an analogue to `llvm-strip -g`, which is a pretty
nice property, especially if resulting .o file is then used to generate BPF
skeleton.
Original string sections are ignored and instead we construct our own set of
unique strings using libbpf-internal `struct strset` API.
To reduce the size of the patch, all the .BTF and .BTF.ext processing was
moved into a separate patch.
The high-level API consists of just 4 functions:
- bpf_linker__new() creates an instance of BPF static linker. It accepts
output filename and (currently empty) options struct;
- bpf_linker__add_file() takes input filename and appends it to the already
processed ELF data; it can be called multiple times, one for each BPF
ELF object file that needs to be linked in;
- bpf_linker__finalize() needs to be called to dump final ELF contents into
the output file, specified when bpf_linker was created; after
bpf_linker__finalize() is called, no more bpf_linker__add_file() and
bpf_linker__finalize() calls are allowed, they will return error;
- regardless of whether bpf_linker__finalize() was called or not,
bpf_linker__free() will free up all the used resources.
Currently, BPF static linker doesn't resolve cross-object file references
(extern variables and/or functions). This will be added in the follow up patch
set.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210318194036.3521577-7-andrii@kernel.org
Add btf__add_type() API that performs shallow copy of a given BTF type from
the source BTF into the destination BTF. All the information and type IDs are
preserved, but all the strings encountered are added into the destination BTF
and corresponding offsets are rewritten. BTF type IDs are assumed to be
correct or such that will be (somehow) modified afterwards.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210318194036.3521577-6-andrii@kernel.org
The logic follows that of BTF_KIND_INT most of the time. Sanitization
replaces BTF_KIND_FLOATs with equally-sized empty BTF_KIND_STRUCTs on
older kernels, for example, the following:
[4] FLOAT 'float' size=4
becomes the following:
[4] STRUCT '(anon)' size=4 vlen=0
With dwarves patch [1] and this patch, the older kernels, which were
failing with the floating-point-related errors, will now start working
correctly.
[1] https://github.com/iii-i/dwarves/commit/btf-kind-float-v2
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226202256.116518-4-iii@linux.ibm.com
This provides a convenient perf ringbuf -> libbpf ringbuf migration
path for users of external polling systems. It is analogous to
perf_buffer__epoll_fd.
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201214113812.305274-1-jackmanb@google.com
Add support for separation of eBPF program load and xsk socket
creation.
This is needed for use-case when you want to privide as little
privileges as possible to the data plane application that will
handle xsk socket creation and incoming traffic.
With this patch the data entity container can be run with only
CAP_NET_RAW capability to fulfill its purpose of creating xsk
socket and handling packages. In case your umem is larger or
equal process limit for MEMLOCK you need either increase the
limit or CAP_IPC_LOCK capability.
To resolve privileges issue two APIs are introduced:
- xsk_setup_xdp_prog - loads the built in XDP program. It can
also return xsks_map_fd which is needed by unprivileged process
to update xsks_map with AF_XDP socket "fd"
- xsk_socket__update_xskmap - inserts an AF_XDP socket into an xskmap
for a particular xsk_socket
Signed-off-by: Mariusz Dudek <mariuszx.dudek@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Magnus Karlsson <magnus.karlsson@intel.com>
Link: https://lore.kernel.org/bpf/20201203090546.11976-2-mariuszx.dudek@intel.com
Support split BTF operation, in which one BTF (base BTF) provides basic set of
types and strings, while another one (split BTF) builds on top of base's types
and strings and adds its own new types and strings. From API standpoint, the
fact that the split BTF is built on top of the base BTF is transparent.
Type numeration is transparent. If the base BTF had last type ID #N, then all
types in the split BTF start at type ID N+1. Any type in split BTF can
reference base BTF types, but not vice versa. Programmatically construction of
a split BTF on top of a base BTF is supported: one can create an empty split
BTF with btf__new_empty_split() and pass base BTF as an input, or pass raw
binary data to btf__new_split(), or use btf__parse_xxx_split() variants to get
initial set of split types/strings from the ELF file with .BTF section.
String offsets are similarly transparent and are a logical continuation of
base BTF's strings. When building BTF programmatically and adding a new string
(explicitly with btf__add_str() or implicitly through appending new
types/members), string-to-be-added would first be looked up from the base
BTF's string section and re-used if it's there. If not, it will be looked up
and/or added to the split BTF string section. Similarly to type IDs, types in
split BTF can refer to strings from base BTF absolutely transparently (but not
vice versa, of course, because base BTF doesn't "know" about existence of
split BTF).
Internal type index is slightly adjusted to be zero-indexed, ignoring a fake
[0] VOID type. This allows to handle split/base BTF type lookups transparently
by using btf->start_id type ID offset, which is always 1 for base/non-split
BTF and equals btf__get_nr_types(base_btf) + 1 for the split BTF.
BTF deduplication is not yet supported for split BTF and support for it will
be added in separate patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201105043402.2530976-5-andrii@kernel.org
This adds support for supplying a target btf ID for the bpf_link_create()
operation, and adds a new bpf_program__attach_freplace() high-level API for
attaching freplace functions with a target.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/160138355387.48470.18026176785351166890.stgit@toke.dk
Teach BTF to recognized wrong endianness and transparently convert it
internally to host endianness. Original endianness of BTF will be preserved
and used during btf__get_raw_data() to convert resulting raw data to the same
endianness and a source raw_data. This means that little-endian host can parse
big-endian BTF with no issues, all the type data will be presented to the
client application in native endianness, but when it's time for emitting BTF
to persist it in a file (e.g., after BTF deduplication), original non-native
endianness will be preserved and stored.
It's possible to query original endianness of BTF data with new
btf__endianness() API. It's also possible to override desired output
endianness with btf__set_endianness(), so that if application needs to load,
say, big-endian BTF and store it as little-endian BTF, it's possible to
manually override this. If btf__set_endianness() was used to change
endianness, btf__endianness() will reflect overridden endianness.
Given there are no known use cases for supporting cross-endianness for
.BTF.ext, loading .BTF.ext in non-native endianness is not supported.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200929043046.1324350-3-andriin@fb.com
BTF strings are used not just for names, they can be arbitrary strings used
for CO-RE relocations, line/func infos, etc. Thus "name_by_offset" terminology
is too specific and might be misleading. Instead, introduce
btf__str_by_offset() API which uses generic string terminology.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200929020533.711288-3-andriin@fb.com
Add APIs for appending new BTF types at the end of BTF object.
Each BTF kind has either one API of the form btf__add_<kind>(). For types
that have variable amount of additional items (struct/union, enum, func_proto,
datasec), additional API is provided to emit each such item. E.g., for
emitting a struct, one would use the following sequence of API calls:
btf__add_struct(...);
btf__add_field(...);
...
btf__add_field(...);
Each btf__add_field() will ensure that the last BTF type is of STRUCT or
UNION kind and will automatically increment that type's vlen field.
All the strings are provided as C strings (const char *), not a string offset.
This significantly improves usability of BTF writer APIs. All such strings
will be automatically appended to string section or existing string will be
re-used, if such string was already added previously.
Each API attempts to do all the reasonable validations, like enforcing
non-empty names for entities with required names, proper value bounds, various
bit offset restrictions, etc.
Type ID validation is minimal because it's possible to emit a type that refers
to type that will be emitted later, so libbpf has no way to enforce such
cases. User must be careful to properly emit all the necessary types and
specify type IDs that will be valid in the finally generated BTF.
Each of btf__add_<kind>() APIs return new type ID on success or negative
value on error. APIs like btf__add_field() that emit additional items
return zero on success and negative value on error.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200929020533.711288-2-andriin@fb.com
Add an ability to create an empty BTF object from scratch. This is going to be
used by pahole for BTF encoding. And also by selftest for convenient creation
of BTF objects.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200926011357.2366158-7-andriin@fb.com
Allow internal BTF representation to switch from default read-only mode, in
which raw BTF data is a single non-modifiable block of memory with BTF header,
types, and strings layed out sequentially and contiguously in memory, into
a writable representation with types and strings data split out into separate
memory regions, that can be dynamically expanded.
Such writable internal representation is transparent to users of libbpf APIs,
but allows to append new types and strings at the end of BTF, which is
a typical use case when generating BTF programmatically. All the basic
guarantees of BTF types and strings layout is preserved, i.e., user can get
`struct btf_type *` pointer and read it directly. Such btf_type pointers might
be invalidated if BTF is modified, so some care is required in such mixed
read/write scenarios.
Switch from read-only to writable configuration happens automatically the
first time when user attempts to modify BTF by either adding a new type or new
string. It is still possible to get raw BTF data, which is a single piece of
memory that can be persisted in ELF section or into a file as raw BTF. Such
raw data memory is also still owned by BTF and will be freed either when BTF
object is freed or if another modification to BTF happens, as any modification
invalidates BTF raw representation.
This patch adds the first two BTF manipulation APIs: btf__add_str(), which
allows to add arbitrary strings to BTF string section, and btf__find_str()
which allows to find existing string offset, but not add it if it's missing.
All the added strings are automatically deduplicated. This is achieved by
maintaining an additional string lookup index for all unique strings. Such
index is built when BTF is switched to modifiable mode. If at that time BTF
strings section contained duplicate strings, they are not de-duplicated. This
is done specifically to not modify the existing content of BTF (types, their
string offsets, etc), which can cause confusion and is especially important
property if there is struct btf_ext associated with struct btf. By following
this "imperfect deduplication" process, btf_ext is kept consitent and correct.
If deduplication of strings is necessary, it can be forced by doing BTF
deduplication, at which point all the strings will be eagerly deduplicated and
all string offsets both in struct btf and struct btf_ext will be updated.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200926011357.2366158-6-andriin@fb.com
Add bpf_prog_test_run_opts() with support of new fields in bpf_attr.test,
namely, flags and cpu. Also extend _opts operations to support outputs via
opts.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200925205432.1777-3-songliubraving@fb.com
The patch adds a simple wrapper bpf_prog_bind_map around the syscall.
When the libbpf tries to load a program, it will probe the kernel for
the support of this syscall and unconditionally bind .rodata section
to the program.
Signed-off-by: YiFei Zhu <zhuyifei@google.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Link: https://lore.kernel.org/bpf/20200915234543.3220146-4-sdf@google.com
BPF program title is ambigious and misleading term. It is ELF section name, so
let's just call it that and deprecate bpf_program__title() API in favor of
bpf_program__section_name().
Additionally, using bpf_object__find_program_by_title() is now inherently
dangerous and ambiguous, as multiple BPF program can have the same section
name. So deprecate this API as well and recommend to switch to non-ambiguous
bpf_object__find_program_by_name().
Internally, clean up usage and mis-usage of BPF program section name for
denoting BPF program name. Shorten the field name to prog->sec_name to be
consistent with all other prog->sec_* variables.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200903203542.15944-11-andriin@fb.com
Add support for shared umems between hardware queues and devices to
the AF_XDP part of libbpf. This so that zero-copy can be achieved in
applications that want to send and receive packets between HW queues
on one device or between different devices/netdevs.
In order to create sockets that share a umem between hardware queues
and devices, a new function has been added called
xsk_socket__create_shared(). It takes the same arguments as
xsk_socket_create() plus references to a fill ring and a completion
ring. So for every socket that share a umem, you need to have one more
set of fill and completion rings. This in order to maintain the
single-producer single-consumer semantics of the rings.
You can create all the sockets via the new xsk_socket__create_shared()
call, or create the first one with xsk_socket__create() and the rest
with xsk_socket__create_shared(). Both methods work.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Link: https://lore.kernel.org/bpf/1598603189-32145-14-git-send-email-magnus.karlsson@intel.com
Add a set of APIs to perf_buffer manage to allow applications to integrate
perf buffer polling into existing epoll-based infrastructure. One example is
applications using libevent already and wanting to plug perf_buffer polling,
instead of relying on perf_buffer__poll() and waste an extra thread to do it.
But perf_buffer is still extremely useful to set up and consume perf buffer
rings even for such use cases.
So to accomodate such new use cases, add three new APIs:
- perf_buffer__buffer_cnt() returns number of per-CPU buffers maintained by
given instance of perf_buffer manager;
- perf_buffer__buffer_fd() returns FD of perf_event corresponding to
a specified per-CPU buffer; this FD is then polled independently;
- perf_buffer__consume_buffer() consumes data from single per-CPU buffer,
identified by its slot index.
To support a simpler, but less efficient, way to integrate perf_buffer into
external polling logic, also expose underlying epoll FD through
perf_buffer__epoll_fd() API. It will need to be followed by
perf_buffer__poll(), wasting extra syscall, or perf_buffer__consume(), wasting
CPU to iterate buffers with no data. But could be simpler and more convenient
for some cases.
These APIs allow for great flexiblity, but do not sacrifice general usability
of perf_buffer.
Also exercise and check new APIs in perf_buffer selftest.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/20200821165927.849538-1-andriin@fb.com
With libbpf and BTF it is pretty common to have libbpf built for one
architecture, while BTF information was generated for a different architecture
(typically, but not always, BPF). In such case, the size of a pointer might
differ betweem architectures. libbpf previously was always making an
assumption that pointer size for BTF is the same as native architecture
pointer size, but that breaks for cases where libbpf is built as 32-bit
library, while BTF is for 64-bit architecture.
To solve this, add heuristic to determine pointer size by searching for `long`
or `unsigned long` integer type and using its size as a pointer size. Also,
allow to override the pointer size with a new API btf__set_pointer_size(), for
cases where application knows which pointer size should be used. User
application can check what libbpf "guessed" by looking at the result of
btf__pointer_size(). If it's not 0, then libbpf successfully determined a
pointer size, otherwise native arch pointer size will be used.
For cases where BTF is parsed from ELF file, use ELF's class (32-bit or
64-bit) to determine pointer size.
Fixes: 8a138aed4a ("bpf: btf: Add BTF support to libbpf")
Fixes: 351131b51c ("libbpf: add btf_dump API for BTF-to-C conversion")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200813204945.1020225-5-andriin@fb.com
Add public APIs to parse BTF from raw data file (e.g.,
/sys/kernel/btf/vmlinux), as well as generic btf__parse(), which will try to
determine correct format, currently either raw or ELF.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200802013219.864880-2-andriin@fb.com
Sync UAPI header and add support for using bpf_link-based XDP attachment.
Make xdp/ prog type set expected attach type. Kernel didn't enforce
attach_type for XDP programs before, so there is no backwards compatiblity
issues there.
Also fix section_names selftest to recognize that xdp prog types now have
expected attach type.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200722064603.3350758-8-andriin@fb.com
Make libbpf aware of the newly added program type, and assign it a
section name.
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200717103536.397595-13-jakub@cloudflare.com
Add setter for BTF FD to allow application more fine-grained control in more
advanced scenarios. Storing BTF FD inside `struct btf` provides little benefit
and probably would be better done differently (e.g., btf__load() could just
return FD on success), but we are stuck with this due to backwards
compatibility. The main problem is that it's impossible to load BTF and than
free user-space memory, but keep FD intact, because `struct btf` assumes
ownership of that FD upon successful load and will attempt to close it during
btf__free(). To allow callers (e.g., libbpf itself for BTF sanitization) to
have more control over this, add btf__set_fd() to allow to reset FD
arbitrarily, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200708015318.3827358-3-andriin@fb.com
Currently, bpf_object__load() (and by induction skeleton's load), will always
attempt to prepare, relocate, and load into kernel every single BPF program
found inside the BPF object file. This is often convenient and the right thing
to do and what users expect.
But there are plenty of cases (especially with BPF development constantly
picking up the pace), where BPF application is intended to work with old
kernels, with potentially reduced set of features. But on kernels supporting
extra features, it would like to take a full advantage of them, by employing
extra BPF program. This could be a choice of using fentry/fexit over
kprobe/kretprobe, if kernel is recent enough and is built with BTF. Or BPF
program might be providing optimized bpf_iter-based solution that user-space
might want to use, whenever available. And so on.
With libbpf and BPF CO-RE in particular, it's advantageous to not have to
maintain two separate BPF object files to achieve this. So to enable such use
cases, this patch adds ability to request not auto-loading chosen BPF
programs. In such case, libbpf won't attempt to perform relocations (which
might fail due to old kernel), won't try to resolve BTF types for
BTF-aware (tp_btf/fentry/fexit/etc) program types, because BTF might not be
present, and so on. Skeleton will also automatically skip auto-attachment step
for such not loaded BPF programs.
Overall, this feature allows to simplify development and deployment of
real-world BPF applications with complicated compatibility requirements.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200625232629.3444003-2-andriin@fb.com
Add a bunch of getter for various aspects of BPF map. Some of these attribute
(e.g., key_size, value_size, type, etc) are available right now in struct
bpf_map_def, but this patch adds getter allowing to fetch them individually.
bpf_map_def approach isn't very scalable, when ABI stability requirements are
taken into account. It's much easier to extend libbpf and add support for new
features, when each aspect of BPF map has separate getter/setter.
Getters follow the common naming convention of not explicitly having "get" in
its name: bpf_map__type() returns map type, bpf_map__key_size() returns
key_size. Setters, though, explicitly have set in their name:
bpf_map__set_type(), bpf_map__set_key_size().
This patch ensures we now have a getter and a setter for the following
map attributes:
- type;
- max_entries;
- map_flags;
- numa_node;
- key_size;
- value_size;
- ifindex.
bpf_map__resize() enforces unnecessary restriction of max_entries > 0. It is
unnecessary, because libbpf actually supports zero max_entries for some cases
(e.g., for PERF_EVENT_ARRAY map) and treats it specially during map creation
time. To allow setting max_entries=0, new bpf_map__set_max_entries() setter is
added. bpf_map__resize()'s behavior is preserved for backwards compatibility
reasons.
Map ifindex getter is added as well. There is a setter already, but no
corresponding getter. Fix this assymetry as well. bpf_map__set_ifindex()
itself is converted from void function into error-returning one, similar to
other setters. The only error returned right now is -EBUSY, if BPF map is
already loaded and has corresponding FD.
One lacking attribute with no ability to get/set or even specify it
declaratively is numa_node. This patch fixes this gap and both adds
programmatic getter/setter, as well as adds support for numa_node field in
BTF-defined map.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200621062112.3006313-1-andriin@fb.com
Add bpf_program__attach_nets(), which uses LINK_CREATE subcommand to create
an FD-based kernel bpf_link, for attach types tied to network namespace,
that is BPF_FLOW_DISSECTOR for the moment.
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-7-jakub@cloudflare.com
Declaring and instantiating BPF ring buffer doesn't require any changes to
libbpf, as it's just another type of maps. So using existing BTF-defined maps
syntax with __uint(type, BPF_MAP_TYPE_RINGBUF) and __uint(max_elements,
<size-of-ring-buf>) is all that's necessary to create and use BPF ring buffer.
This patch adds BPF ring buffer consumer to libbpf. It is very similar to
perf_buffer implementation in terms of API, but also attempts to fix some
minor problems and inconveniences with existing perf_buffer API.
ring_buffer support both single ring buffer use case (with just using
ring_buffer__new()), as well as allows to add more ring buffers, each with its
own callback and context. This allows to efficiently poll and consume
multiple, potentially completely independent, ring buffers, using single
epoll instance.
The latter is actually a problem in practice for applications
that are using multiple sets of perf buffers. They have to create multiple
instances for struct perf_buffer and poll them independently or in a loop,
each approach having its own problems (e.g., inability to use a common poll
timeout). struct ring_buffer eliminates this problem by aggregating many
independent ring buffer instances under the single "ring buffer manager".
Second, perf_buffer's callback can't return error, so applications that need
to stop polling due to error in data or data signalling the end, have to use
extra mechanisms to signal that polling has to stop. ring_buffer's callback
can return error, which will be passed through back to user code and can be
acted upon appropariately.
Two APIs allow to consume ring buffer data:
- ring_buffer__poll(), which will wait for data availability notification
and will consume data only from reported ring buffer(s); this API allows
to efficiently use resources by reading data only when it becomes
available;
- ring_buffer__consume(), will attempt to read new records regardless of
data availablity notification sub-system. This API is useful for cases
when lowest latency is required, in expense of burning CPU resources.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-3-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This new API, perf_buffer__consume, can be used as follows:
- When you have a perf ring where wakeup_events is higher than 1,
and you have remaining data in the rings you would like to pull
out on exit (or maybe based on a timeout).
- For low latency cases where you burn a CPU that constantly polls
the queues.
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159048487929.89441.7465713173442594608.stgit@ebuild
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Two new libbpf APIs are added to support bpf_iter:
- bpf_program__attach_iter
Given a bpf program and additional parameters, which is
none now, returns a bpf_link.
- bpf_iter_create
syscall level API to create a bpf iterator.
The macro BPF_SEQ_PRINTF are also introduced. The format
looks like:
BPF_SEQ_PRINTF(seq, "task id %d\n", pid);
This macro can help bpf program writers with
nicer bpf_seq_printf syntax similar to the kernel one.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175917.2476936-1-yhs@fb.com
Add bpf_program__attach_cgroup(), which uses BPF_LINK_CREATE subcommand to
create an FD-based kernel bpf_link. Also add low-level bpf_link_create() API.
If expected_attach_type is not specified explicitly with
bpf_program__set_expected_attach_type(), libbpf will try to determine proper
attach type from BPF program's section definition.
Also add support for bpf_link's underlying BPF program replacement:
- unconditional through high-level bpf_link__update_program() API;
- cmpxchg-like with specifying expected current BPF program through
low-level bpf_link_update() API.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200330030001.2312810-4-andriin@fb.com
Since BPF_PROG_TYPE_LSM uses the same attaching mechanism as
BPF_PROG_TYPE_TRACING, the common logic is refactored into a static
function bpf_program__attach_btf_id.
A new API call bpf_program__attach_lsm is still added to avoid userspace
conflicts if this ever changes in the future.
Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Florent Revest <revest@google.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200329004356.27286-7-kpsingh@chromium.org
For internal maps (most notably the maps backing global variables), libbpf
uses an internal mmaped area to store the data after opening the object.
This data is subsequently copied into the kernel map when the object is
loaded.
This adds a function to set a new value for that data, which can be used to
before it is loaded into the kernel. This is especially relevant for RODATA
maps, since those are frozen on load.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200329132253.232541-1-toke@redhat.com
This adds a new function to set the XDP fd while specifying the FD of the
program to replace, using the newly added IFLA_XDP_EXPECTED_FD netlink
parameter. The new function uses the opts struct mechanism to be extendable
in the future.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158515700857.92963.7052131201257841700.stgit@toke.dk
With bpf_link abstraction supported by kernel explicitly, add
pinning/unpinning API for links. Also allow to create (open) bpf_link from BPF
FS file.
This API allows to have an "ephemeral" FD-based BPF links (like raw tracepoint
or fexit/freplace attachments) surviving user process exit, by pinning them in
a BPF FS, which is an important use case for long-running BPF programs.
As part of this, expose underlying FD for bpf_link. While legacy bpf_link's
might not have a FD associated with them (which will be expressed as
a bpf_link with fd=-1), kernel's abstraction is based around FD-based usage,
so match it closely. This, subsequently, allows to have a generic
pinning/unpinning API for generalized bpf_link. For some types of bpf_links
kernel might not support pinning, in which case bpf_link__pin() will return
error.
With FD being part of generic bpf_link, also get rid of bpf_link_fd in favor
of using vanialla bpf_link.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200303043159.323675-3-andriin@fb.com
Currently when you want to attach a trace program to a bpf program
the section name needs to match the tracepoint/function semantics.
However the addition of the bpf_program__set_attach_target() API
allows you to specify the tracepoint/function dynamically.
The call flow would look something like this:
xdp_fd = bpf_prog_get_fd_by_id(id);
trace_obj = bpf_object__open_file("func.o", NULL);
prog = bpf_object__find_program_by_title(trace_obj,
"fentry/myfunc");
bpf_program__set_expected_attach_type(prog, BPF_TRACE_FENTRY);
bpf_program__set_attach_target(prog, xdp_fd,
"xdpfilt_blk_all");
bpf_object__load(trace_obj)
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/158220519486.127661.7964708960649051384.stgit@xdp-tutorial
Add minimal support for program extensions. bpf_object_open_opts() needs to be
called with attach_prog_fd = target_prog_fd and BPF program extension needs to
have in .c file section definition like SEC("freplace/func_to_be_replaced").
libbpf will search for "func_to_be_replaced" in the target_prog_fd's BTF and
will pass it in attach_btf_id to the kernel. This approach works for tests, but
more compex use case may need to request function name (and attach_btf_id that
kernel sees) to be more dynamic. Such API will be added in future patches.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200121005348.2769920-3-ast@kernel.org
This patch exposes bpf_find_kernel_btf() as a LIBBPF_API.
It will be used in 'bpftool map dump' in a following patch
to dump a map with btf_vmlinux_value_type_id set.
bpf_find_kernel_btf() is renamed to libbpf_find_kernel_btf()
and moved to btf.c. As <linux/kernel.h> is included,
some of the max/min type casting needs to be fixed.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200115230031.1102305-1-kafai@fb.com
Added four libbpf API functions to support map batch operations:
. int bpf_map_delete_batch( ... )
. int bpf_map_lookup_batch( ... )
. int bpf_map_lookup_and_delete_batch( ... )
. int bpf_map_update_batch( ... )
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-8-brianvv@google.com
This patch adds BPF STRUCT_OPS support to libbpf.
The only sec_name convention is SEC(".struct_ops") to identify the
struct_ops implemented in BPF,
e.g. To implement a tcp_congestion_ops:
SEC(".struct_ops")
struct tcp_congestion_ops dctcp = {
.init = (void *)dctcp_init, /* <-- a bpf_prog */
/* ... some more func prts ... */
.name = "bpf_dctcp",
};
Each struct_ops is defined as a global variable under SEC(".struct_ops")
as above. libbpf creates a map for each variable and the variable name
is the map's name. Multiple struct_ops is supported under
SEC(".struct_ops").
In the bpf_object__open phase, libbpf will look for the SEC(".struct_ops")
section and find out what is the btf-type the struct_ops is
implementing. Note that the btf-type here is referring to
a type in the bpf_prog.o's btf. A "struct bpf_map" is added
by bpf_object__add_map() as other maps do. It will then
collect (through SHT_REL) where are the bpf progs that the
func ptrs are referring to. No btf_vmlinux is needed in
the open phase.
In the bpf_object__load phase, the map-fields, which depend
on the btf_vmlinux, are initialized (in bpf_map__init_kern_struct_ops()).
It will also set the prog->type, prog->attach_btf_id, and
prog->expected_attach_type. Thus, the prog's properties do
not rely on its section name.
[ Currently, the bpf_prog's btf-type ==> btf_vmlinux's btf-type matching
process is as simple as: member-name match + btf-kind match + size match.
If these matching conditions fail, libbpf will reject.
The current targeting support is "struct tcp_congestion_ops" which
most of its members are function pointers.
The member ordering of the bpf_prog's btf-type can be different from
the btf_vmlinux's btf-type. ]
Then, all obj->maps are created as usual (in bpf_object__create_maps()).
Once the maps are created and prog's properties are all set,
the libbpf will proceed to load all the progs.
bpf_map__attach_struct_ops() is added to register a struct_ops
map to a kernel subsystem.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200109003514.3856730-1-kafai@fb.com
Introduce a new probe which checks whether kernel has large maximum
program size which was increased in the following commit:
c04c0d2b96 ("bpf: increase complexity limit and maximum program size")
Based on the similar check in Cilium[0], authored by Daniel Borkmann.
[0] 657d0f585a
Co-authored-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Michal Rostecki <mrostecki@opensuse.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Link: https://lore.kernel.org/bpf/20200108162428.25014-2-mrostecki@opensuse.org
Introduce a new bpf_prog_attach_xattr function that, in addition to
program fd, target fd and attach type, accepts an extendable struct
bpf_prog_attach_opts.
bpf_prog_attach_opts relies on DECLARE_LIBBPF_OPTS macro to maintain
backward and forward compatibility and has the following "optional"
attach attributes:
* existing attach_flags, since it's not required when attaching in NONE
mode. Even though it's quite often used in MULTI and OVERRIDE mode it
seems to be a good idea to reduce number of arguments to
bpf_prog_attach_xattr;
* newly introduced attribute of BPF_PROG_ATTACH command: replace_prog_fd
that is fd of previously attached cgroup-bpf program to replace if
BPF_F_REPLACE flag is used.
The new function is named to be consistent with other xattr-functions
(bpf_prog_test_run_xattr, bpf_create_map_xattr, bpf_load_program_xattr).
The struct bpf_prog_attach_opts is supposed to be used with
DECLARE_LIBBPF_OPTS macro.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/bd6e0732303eb14e4b79cb128268d9e9ad6db208.1576741281.git.rdna@fb.com
There are cases in which BPF resource (program, map, etc) has to outlive
userspace program that "installed" it in the system in the first place.
When BPF program is attached, libbpf returns bpf_link object, which
is supposed to be destroyed after no longer necessary through
bpf_link__destroy() API. Currently, bpf_link destruction causes both automatic
detachment and frees up any resources allocated to for bpf_link in-memory
representation. This is inconvenient for the case described above because of
coupling of detachment and resource freeing.
This patch introduces bpf_link__disconnect() API call, which marks bpf_link as
disconnected from its underlying BPF resouces. This means that when bpf_link
is destroyed later, all its memory resources will be freed, but BPF resource
itself won't be detached.
This design allows to follow strict and resource-leak-free design by default,
while giving easy and straightforward way for user code to opt for keeping BPF
resource attached beyond lifetime of a bpf_link. For some BPF programs (i.e.,
FS-based tracepoints, kprobes, raw tracepoint, etc), user has to make sure to
pin BPF program to prevent kernel to automatically detach it on process exit.
This should typically be achived by pinning BPF program (or map in some cases)
in BPF FS.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191218225039.2668205-1-andriin@fb.com