Commit Graph

73 Commits

Author SHA1 Message Date
Mel Gorman 4b10e7d562 mm: mempolicy: Implement change_prot_numa() in terms of change_protection()
This patch converts change_prot_numa() to use change_protection(). As
pte_numa and friends check the PTE bits directly it is necessary for
change_protection() to use pmd_mknuma(). Hence the required
modifications to change_protection() are a little clumsy but the
end result is that most of the numa page table helpers are just one or
two instructions.

Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:44 +00:00
Mel Gorman 4daae3b4b9 mm: mempolicy: Use _PAGE_NUMA to migrate pages
Note: Based on "mm/mpol: Use special PROT_NONE to migrate pages" but
	sufficiently different that the signed-off-bys were dropped

Combine our previous _PAGE_NUMA, mpol_misplaced and migrate_misplaced_page()
pieces into an effective migrate on fault scheme.

Note that (on x86) we rely on PROT_NONE pages being !present and avoid
the TLB flush from try_to_unmap(TTU_MIGRATION). This greatly improves the
page-migration performance.

Based-on-work-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:42 +00:00
Mel Gorman d10e63f294 mm: numa: Create basic numa page hinting infrastructure
Note: This patch started as "mm/mpol: Create special PROT_NONE
	infrastructure" and preserves the basic idea but steals *very*
	heavily from "autonuma: numa hinting page faults entry points" for
	the actual fault handlers without the migration parts.	The end
	result is barely recognisable as either patch so all Signed-off
	and Reviewed-bys are dropped. If Peter, Ingo and Andrea are ok with
	this version, I will re-add the signed-offs-by to reflect the history.

In order to facilitate a lazy -- fault driven -- migration of pages, create
a special transient PAGE_NUMA variant, we can then use the 'spurious'
protection faults to drive our migrations from.

The meaning of PAGE_NUMA depends on the architecture but on x86 it is
effectively PROT_NONE. Actual PROT_NONE mappings will not generate these
NUMA faults for the reason that the page fault code checks the permission on
the VMA (and will throw a segmentation fault on actual PROT_NONE mappings),
before it ever calls handle_mm_fault.

[dhillf@gmail.com: Fix typo]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:42:39 +00:00
David Rientjes b676b293fb mm, thp: fix mapped pages avoiding unevictable list on mlock
When a transparent hugepage is mapped and it is included in an mlock()
range, follow_page() incorrectly avoids setting the page's mlock bit and
moving it to the unevictable lru.

This is evident if you try to mlock(), munlock(), and then mlock() a
range again.  Currently:

	#define MAP_SIZE	(4 << 30)	/* 4GB */

	void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
			 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
	mlock(ptr, MAP_SIZE);

		$ grep -E "Unevictable|Inactive\(anon" /proc/meminfo
		Inactive(anon):     6304 kB
		Unevictable:     4213924 kB

	munlock(ptr, MAP_SIZE);

		Inactive(anon):  4186252 kB
		Unevictable:       19652 kB

	mlock(ptr, MAP_SIZE);

		Inactive(anon):  4198556 kB
		Unevictable:       21684 kB

Notice that less than 2MB was added to the unevictable list; this is
because these pages in the range are not transparent hugepages since the
4GB range was allocated with mmap() and has no specific alignment.  If
posix_memalign() were used instead, unevictable would not have grown at
all on the second mlock().

The fix is to call mlock_vma_page() so that the mlock bit is set and the
page is added to the unevictable list.  With this patch:

	mlock(ptr, MAP_SIZE);

		Inactive(anon):     4056 kB
		Unevictable:     4213940 kB

	munlock(ptr, MAP_SIZE);

		Inactive(anon):  4198268 kB
		Unevictable:       19636 kB

	mlock(ptr, MAP_SIZE);

		Inactive(anon):     4008 kB
		Unevictable:     4213940 kB

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:23:02 +09:00
Gerald Schaefer e3ebcf6438 thp: remove assumptions on pgtable_t type
The thp page table pre-allocation code currently assumes that pgtable_t is
of type "struct page *".  This may not be true for all architectures, so
this patch removes that assumption by replacing the functions
prepare_pmd_huge_pte() and get_pmd_huge_pte() with two new functions that
can be defined architecture-specific.

It also removes two VM_BUG_ON checks for page_count() and page_mapcount()
operating on a pgtable_t.  Apart from the VM_BUG_ON removal, there will be
no functional change introduced by this patch.

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:29 +09:00
Alex Shi 2099597401 mm: move is_vma_temporary_stack() declaration to huge_mm.h
When transparent_hugepage_enabled() is used outside mm/, such as in
arch/x86/xx/tlb.c:

+       if (!cpu_has_invlpg || vma->vm_flags & VM_HUGETLB
+                       || transparent_hugepage_enabled(vma)) {
+               flush_tlb_mm(vma->vm_mm);

is_vma_temporary_stack() isn't referenced in huge_mm.h, so it has compile
errors:

  arch/x86/mm/tlb.c: In function `flush_tlb_range':
  arch/x86/mm/tlb.c:324:4: error: implicit declaration of function `is_vma_temporary_stack' [-Werror=implicit-function-declaration]

Since is_vma_temporay_stack() is just used in rmap.c and huge_memory.c, it
is better to move it to huge_mm.h from rmap.h to avoid such errors.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:21 -07:00
Naoya Horiguchi d8c37c4806 thp: add HPAGE_PMD_* definitions for !CONFIG_TRANSPARENT_HUGEPAGE
These macros will be used in a later patch, where all usages are expected
to be optimized away without #ifdef CONFIG_TRANSPARENT_HUGEPAGE.  But to
detect unexpected usages, we convert the existing BUG() to BUILD_BUG().

[akpm@linux-foundation.org: fix build in mm/pgtable-generic.c]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:55:02 -07:00
Naoya Horiguchi 025c5b2451 thp: optimize away unnecessary page table locking
Currently when we check if we can handle thp as it is or we need to split
it into regular sized pages, we hold page table lock prior to check
whether a given pmd is mapping thp or not.  Because of this, when it's not
"huge pmd" we suffer from unnecessary lock/unlock overhead.  To remove it,
this patch introduces a optimized check function and replace several
similar logics with it.

[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Shaohua Li f21760b15d thp: add tlb_remove_pmd_tlb_entry
We have tlb_remove_tlb_entry to indicate a pte tlb flush entry should be
flushed, but not a corresponding API for pmd entry.  This isn't a
problem so far because THP is only for x86 currently and tlb_flush()
under x86 will flush entire TLB.  But this is confusion and could be
missed if thp is ported to other arch.

Also convert tlb->need_flush = 1 to a VM_BUG_ON(!tlb->need_flush) in
__tlb_remove_page() as suggested by Andrea Arcangeli.  The
__tlb_remove_page() function is supposed to be called after
tlb_remove_xxx_tlb_entry() and we can catch any misuse.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Andrea Arcangeli 37a1c49a91 thp: mremap support and TLB optimization
This adds THP support to mremap (decreases the number of split_huge_page()
calls).

Here are also some benchmarks with a proggy like this:

===
#define _GNU_SOURCE
#include <sys/mman.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>

#define SIZE (5UL*1024*1024*1024)

int main()
{
        static struct timeval oldstamp, newstamp;
	long diffsec;
	char *p, *p2, *p3, *p4;
	if (posix_memalign((void **)&p, 2*1024*1024, SIZE))
		perror("memalign"), exit(1);
	if (posix_memalign((void **)&p2, 2*1024*1024, SIZE))
		perror("memalign"), exit(1);
	if (posix_memalign((void **)&p3, 2*1024*1024, 4096))
		perror("memalign"), exit(1);

	memset(p, 0xff, SIZE);
	memset(p2, 0xff, SIZE);
	memset(p3, 0x77, 4096);
	gettimeofday(&oldstamp, NULL);
	p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3);
	gettimeofday(&newstamp, NULL);
	diffsec = newstamp.tv_sec - oldstamp.tv_sec;
	diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec;
	printf("usec %ld\n", diffsec);
	if (p == MAP_FAILED || p4 != p3)
	//if (p == MAP_FAILED)
		perror("mremap"), exit(1);
	if (memcmp(p4, p2, SIZE))
		printf("mremap bug\n"), exit(1);
	printf("ok\n");

	return 0;
}
===

THP on

 Performance counter stats for './largepage13' (3 runs):

          69195836 dTLB-loads                 ( +-   3.546% )  (scaled from 50.30%)
             60708 dTLB-load-misses           ( +-  11.776% )  (scaled from 52.62%)
         676266476 dTLB-stores                ( +-   5.654% )  (scaled from 69.54%)
             29856 dTLB-store-misses          ( +-   4.081% )  (scaled from 89.22%)
        1055848782 iTLB-loads                 ( +-   4.526% )  (scaled from 80.18%)
              8689 iTLB-load-misses           ( +-   2.987% )  (scaled from 58.20%)

        7.314454164  seconds time elapsed   ( +-   0.023% )

THP off

 Performance counter stats for './largepage13' (3 runs):

        1967379311 dTLB-loads                 ( +-   0.506% )  (scaled from 60.59%)
           9238687 dTLB-load-misses           ( +-  22.547% )  (scaled from 61.87%)
        2014239444 dTLB-stores                ( +-   0.692% )  (scaled from 60.40%)
           3312335 dTLB-store-misses          ( +-   7.304% )  (scaled from 67.60%)
        6764372065 iTLB-loads                 ( +-   0.925% )  (scaled from 79.00%)
              8202 iTLB-load-misses           ( +-   0.475% )  (scaled from 70.55%)

        9.693655243  seconds time elapsed   ( +-   0.069% )

grep thp /proc/vmstat
thp_fault_alloc 35849
thp_fault_fallback 0
thp_collapse_alloc 3
thp_collapse_alloc_failed 0
thp_split 0

thp_split 0 confirms no thp split despite plenty of hugepages allocated.

The measurement of only the mremap time (so excluding the 3 long
memset and final long 10GB memory accessing memcmp):

THP on

usec 14824
usec 14862
usec 14859

THP off

usec 256416
usec 255981
usec 255847

With an older kernel without the mremap optimizations (the below patch
optimizes the non THP version too).

THP on

usec 392107
usec 390237
usec 404124

THP off

usec 444294
usec 445237
usec 445820

I guess with a threaded program that sends more IPI on large SMP it'd
create an even larger difference.

All debug options are off except DEBUG_VM to avoid skewing the
results.

The only problem for native 2M mremap like it happens above both the
source and destination address must be 2M aligned or the hugepmd can't be
moved without a split but that is an hardware limitation.

[akpm@linux-foundation.org: coding-style nitpicking]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31 17:30:48 -07:00
Peter Zijlstra 2b575eb64f mm: convert anon_vma->lock to a mutex
Straightforward conversion of anon_vma->lock to a mutex.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:19 -07:00
Andrea Arcangeli 78f11a2557 mm: thp: fix /dev/zero MAP_PRIVATE and vm_flags cleanups
The huge_memory.c THP page fault was allowed to run if vm_ops was null
(which would succeed for /dev/zero MAP_PRIVATE, as the f_op->mmap wouldn't
setup a special vma->vm_ops and it would fallback to regular anonymous
memory) but other THP logics weren't fully activated for vmas with vm_file
not NULL (/dev/zero has a not NULL vma->vm_file).

So this removes the vm_file checks so that /dev/zero also can safely use
THP (the other albeit safer approach to fix this bug would have been to
prevent the THP initial page fault to run if vm_file was set).

After removing the vm_file checks, this also makes huge_memory.c stricter
in khugepaged for the DEBUG_VM=y case.  It doesn't replace the vm_file
check with a is_pfn_mapping check (but it keeps checking for VM_PFNMAP
under VM_BUG_ON) because for a is_cow_mapping() mapping VM_PFNMAP should
only be allowed to exist before the first page fault, and in turn when
vma->anon_vma is null (so preventing khugepaged registration).  So I tend
to think the previous comment saying if vm_file was set, VM_PFNMAP might
have been set and we could still be registered in khugepaged (despite
anon_vma was not NULL to be registered in khugepaged) was too paranoid.
The is_linear_pfn_mapping check is also I think superfluous (as described
by comment) but under DEBUG_VM it is safe to stay.

Addresses https://bugzilla.kernel.org/show_bug.cgi?id=33682

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Caspar Zhang <bugs@casparzhang.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@kernel.org>		[2.6.38.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-04-28 11:28:20 -07:00
Andrea Arcangeli a7d6e4ecdb thp: prevent hugepages during args/env copying into the user stack
Transparent hugepages can only be created if rmap is fully
functional. So we must prevent hugepages to be created while
is_vma_temporary_stack() is true.

This also optmizes away some harmless but unnecessary setting of
khugepaged_scan.address and it switches some BUG_ON to VM_BUG_ON.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-15 15:21:11 -08:00
Andrea Arcangeli 22e5c47ee2 thp: add compound_trans_head() helper
Cleanup some code with common compound_trans_head helper.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:48 -08:00
Andrea Arcangeli 60ab3244ec thp: khugepaged: make khugepaged aware about madvise
MADV_HUGEPAGE and MADV_NOHUGEPAGE were fully effective only if run after
mmap and before touching the memory.  While this is enough for most
usages, it's little effort to make madvise more dynamic at runtime on an
existing mapping by making khugepaged aware about madvise.

MADV_HUGEPAGE: register in khugepaged immediately without waiting a page
fault (that may not ever happen if all pages are already mapped and the
"enabled" knob was set to madvise during the initial page faults).

MADV_NOHUGEPAGE: skip vmas marked VM_NOHUGEPAGE in khugepaged to stop
collapsing pages where not needed.

[akpm@linux-foundation.org: tweak comment]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:47 -08:00
Andrea Arcangeli a664b2d855 thp: madvise(MADV_NOHUGEPAGE)
Add madvise MADV_NOHUGEPAGE to mark regions that are not important to be
hugepage backed.  Return -EINVAL if the vma is not of an anonymous type,
or the feature isn't built into the kernel.  Never silently return
success.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:47 -08:00
Rik van Riel 2c888cfbc1 thp: fix anon memory statistics with transparent hugepages
Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
statistics, so the Active(anon) and Inactive(anon) statistics in
/proc/meminfo are correct.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:46 -08:00
Andrea Arcangeli 94fcc585fb thp: avoid breaking huge pmd invariants in case of vma_adjust failures
An huge pmd can only be mapped if the corresponding 2M virtual range is
fully contained in the vma.  At times the VM calls split_vma twice, if the
first split_vma succeeds and the second fail, the first split_vma remains
in effect and it's not rolled back.  For split_vma or vma_adjust to fail
an allocation failure is needed so it's a very unlikely event (the out of
memory killer would normally fire before any allocation failure is visible
to kernel and userland and if an out of memory condition happens it's
unlikely to happen exactly here).  Nevertheless it's safer to ensure that
no huge pmd can be left around if the vma is adjusted in a way that can't
fit hugepages anymore at the new vm_start/vm_end address.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:45 -08:00
Johannes Weiner cd7548ab36 thp: mprotect: transparent huge page support
Natively handle huge pmds when changing page tables on behalf of
mprotect().

I left out update_mmu_cache() because we do not need it on x86 anyway but
more importantly the interface works on ptes, not pmds.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:44 -08:00
Johannes Weiner 0ca1634d41 thp: mincore transparent hugepage support
Handle transparent huge page pmd entries natively instead of splitting
them into subpages.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:44 -08:00
Andrea Arcangeli ba76149f47 thp: khugepaged
Add khugepaged to relocate fragmented pages into hugepages if new
hugepages become available.  (this is indipendent of the defrag logic that
will have to make new hugepages available)

The fundamental reason why khugepaged is unavoidable, is that some memory
can be fragmented and not everything can be relocated.  So when a virtual
machine quits and releases gigabytes of hugepages, we want to use those
freely available hugepages to create huge-pmd in the other virtual
machines that may be running on fragmented memory, to maximize the CPU
efficiency at all times.  The scan is slow, it takes nearly zero cpu time,
except when it copies data (in which case it means we definitely want to
pay for that cpu time) so it seems a good tradeoff.

In addition to the hugepages being released by other process releasing
memory, we have the strong suspicion that the performance impact of
potentially defragmenting hugepages during or before each page fault could
lead to more performance inconsistency than allocating small pages at
first and having them collapsed into large pages later...  if they prove
themselfs to be long lived mappings (khugepaged scan is slow so short
lived mappings have low probability to run into khugepaged if compared to
long lived mappings).

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:43 -08:00
Andrea Arcangeli 0af4e98b6b thp: madvise(MADV_HUGEPAGE)
Add madvise MADV_HUGEPAGE to mark regions that are important to be
hugepage backed.  Return -EINVAL if the vma is not of an anonymous type,
or the feature isn't built into the kernel.  Never silently return
success.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:42 -08:00
Andrea Arcangeli 71e3aac072 thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs.  Some of the restrictions I'd like to
see removed:

1) hugepages have to be swappable or the guest physical memory remains
   locked in RAM and can't be paged out to swap

2) if a hugepage allocation fails, regular pages should be allocated
   instead and mixed in the same vma without any failure and without
   userland noticing

3) if some task quits and more hugepages become available in the
   buddy, guest physical memory backed by regular pages should be
   relocated on hugepages automatically in regions under
   madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
   kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
   not null)

4) avoidance of reservation and maximization of use of hugepages whenever
   possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
   1 machine with 1 database with 1 database cache with 1 database cache size
   known at boot time. It's definitely not feasible with a virtualization
   hypervisor usage like RHEV-H that runs an unknown number of virtual machines
   with an unknown size of each virtual machine with an unknown amount of
   pagecache that could be potentially useful in the host for guest not using
   O_DIRECT (aka cache=off).

hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...).  Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario.  So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).

The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas.  This is what this patch tries to achieve in the
least intrusive possible way.  We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).

The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails!  This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...

Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail.  This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM.  Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*.  The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle).  In short the
very value of split_huge_page is that it can't fail.

The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon.  It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode.  collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later.  collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).

The default I like is that transparent hugepages are used at page fault
time.  This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled.  The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used.  /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".

The pmd_trans_splitting/pmd_trans_huge locking is very solid.  The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head.  I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view.  In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...).  And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.

If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet).  But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.

Swap and oom works fine (well just like with regular pages ;).  MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.

NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores.  I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks.  One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault).  Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only.  If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot.  If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time.  It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).

This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone.  Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation.  hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits.  hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.

Some performance result:

vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988

============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#define SIZE (3UL*1024*1024*1024)

int main()
{
	char *p = malloc(SIZE), *p2;
	struct timeval before, after;

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset page fault %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	return 0;
}
============

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:42 -08:00