Add a comment explaining how the user addresses provided to read(2) and
write(2) are validated in the DAX I/O path.
We call dax_copy_from_iter() or copy_to_iter() on these without calling
access_ok() first in the DAX code, and there was a concern that the user
might be able to read/write to arbitrary kernel addresses with this
path.
Link: http://lkml.kernel.org/r/20170816173615.10098-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we no longer insert struct page pointers in DAX radix trees the
page cache code no longer needs to know anything about DAX exceptional
entries. Move all the DAX exceptional entry definitions from dax.h to
fs/dax.c.
Link: http://lkml.kernel.org/r/20170724170616.25810-6-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we no longer insert struct page pointers in DAX radix trees we
can remove the special casing for DAX in page_cache_tree_insert().
This also allows us to make dax_wake_mapping_entry_waiter() local to
fs/dax.c, removing it from dax.h.
Link: http://lkml.kernel.org/r/20170724170616.25810-5-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When servicing mmap() reads from file holes the current DAX code
allocates a page cache page of all zeroes and places the struct page
pointer in the mapping->page_tree radix tree.
This has three major drawbacks:
1) It consumes memory unnecessarily. For every 4k page that is read via
a DAX mmap() over a hole, we allocate a new page cache page. This
means that if you read 1GiB worth of pages, you end up using 1GiB of
zeroed memory. This is easily visible by looking at the overall
memory consumption of the system or by looking at /proc/[pid]/smaps:
7f62e72b3000-7f63272b3000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 1048576 kB
Pss: 1048576 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 1048576 kB
Private_Dirty: 0 kB
Referenced: 1048576 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
2) It is slower than using a common zero page because each page fault
has more work to do. Instead of just inserting a common zero page we
have to allocate a page cache page, zero it, and then insert it. Here
are the average latencies of dax_load_hole() as measured by ftrace on
a random test box:
Old method, using zeroed page cache pages: 3.4 us
New method, using the common 4k zero page: 0.8 us
This was the average latency over 1 GiB of sequential reads done by
this simple fio script:
[global]
size=1G
filename=/root/dax/data
fallocate=none
[io]
rw=read
ioengine=mmap
3) The fact that we had to check for both DAX exceptional entries and
for page cache pages in the radix tree made the DAX code more
complex.
Solve these issues by following the lead of the DAX PMD code and using a
common 4k zero page instead. As with the PMD code we will now insert a
DAX exceptional entry into the radix tree instead of a struct page
pointer which allows us to remove all the special casing in the DAX
code.
Note that we do still pretty aggressively check for regular pages in the
DAX radix tree, especially where we take action based on the bits set in
the page. If we ever find a regular page in our radix tree now that
most likely means that someone besides DAX is inserting pages (which has
happened lots of times in the past), and we want to find that out early
and fail loudly.
This solution also removes the extra memory consumption. Here is that
same /proc/[pid]/smaps after 1GiB of reading from a hole with the new
code:
7f2054a74000-7f2094a74000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 0 kB
Pss: 0 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 0 kB
Referenced: 0 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
Overall system memory consumption is similarly improved.
Another major change is that we remove dax_pfn_mkwrite() from our fault
flow, and instead rely on the page fault itself to make the PTE dirty
and writeable. The following description from the patch adding the
vm_insert_mixed_mkwrite() call explains this a little more:
"To be able to use the common 4k zero page in DAX we need to have our
PTE fault path look more like our PMD fault path where a PTE entry
can be marked as dirty and writeable as it is first inserted rather
than waiting for a follow-up dax_pfn_mkwrite() =>
finish_mkwrite_fault() call.
Right now we can rely on having a dax_pfn_mkwrite() call because we
can distinguish between these two cases in do_wp_page():
case 1: 4k zero page => writable DAX storage
case 2: read-only DAX storage => writeable DAX storage
This distinction is made by via vm_normal_page(). vm_normal_page()
returns false for the common 4k zero page, though, just as it does
for DAX ptes. Instead of special casing the DAX + 4k zero page case
we will simplify our DAX PTE page fault sequence so that it matches
our DAX PMD sequence, and get rid of the dax_pfn_mkwrite() helper.
We will instead use dax_iomap_fault() to handle write-protection
faults.
This means that insert_pfn() needs to follow the lead of
insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If
'mkwrite' is set insert_pfn() will do the work that was previously
done by wp_page_reuse() as part of the dax_pfn_mkwrite() call path"
Link: http://lkml.kernel.org/r/20170724170616.25810-4-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dax_load_hole() will soon need to call dax_insert_mapping_entry(), so it
needs to be moved lower in dax.c so the definition exists.
dax_wake_mapping_entry_waiter() will soon be removed from dax.h and be
made static to dax.c, so we need to move its definition above all its
callers.
Link: http://lkml.kernel.org/r/20170724170616.25810-3-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range()
and make sure it is bracketed by calls to *_invalidate_range_start()/end().
Note that because we can not presume the pmd value or pte value we have
to assume the worst and unconditionaly report an invalidation as
happening.
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Bernhard Held <berny156@gmx.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In DAX there are two separate places where the 2MiB range of a PMD is
defined.
The first is in the page tables, where a PMD mapping inserted for a
given address spans from (vmf->address & PMD_MASK) to ((vmf->address &
PMD_MASK) + PMD_SIZE - 1). That is, from the 2MiB boundary below the
address to the 2MiB boundary above the address.
So, for example, a fault at address 3MiB (0x30 0000) falls within the
PMD that ranges from 2MiB (0x20 0000) to 4MiB (0x40 0000).
The second PMD range is in the mapping->page_tree, where a given file
offset is covered by a radix tree entry that spans from one 2MiB aligned
file offset to another 2MiB aligned file offset.
So, for example, the file offset for 3MiB (pgoff 768) falls within the
PMD range for the order 9 radix tree entry that ranges from 2MiB (pgoff
512) to 4MiB (pgoff 1024).
This system works so long as the addresses and file offsets for a given
mapping both have the same offsets relative to the start of each PMD.
Consider the case where the starting address for a given file isn't 2MiB
aligned - say our faulting address is 3 MiB (0x30 0000), but that
corresponds to the beginning of our file (pgoff 0). Now all the PMDs in
the mapping are misaligned so that the 2MiB range defined in the page
tables never matches up with the 2MiB range defined in the radix tree.
The current code notices this case for DAX faults to storage with the
following test in dax_pmd_insert_mapping():
if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
goto unlock_fallback;
This test makes sure that the pfn we get from the driver is 2MiB
aligned, and relies on the assumption that the 2MiB alignment of the pfn
we get back from the driver matches the 2MiB alignment of the faulting
address.
However, faults to holes were not checked and we could hit the problem
described above.
This was reported in response to the NVML nvml/src/test/pmempool_sync
TEST5:
$ cd nvml/src/test/pmempool_sync
$ make TEST5
You can grab NVML here:
https://github.com/pmem/nvml/
The dmesg warning you see when you hit this error is:
WARNING: CPU: 13 PID: 2900 at fs/dax.c:641 dax_insert_mapping_entry+0x2df/0x310
Where we notice in dax_insert_mapping_entry() that the radix tree entry
we are about to replace doesn't match the locked entry that we had
previously inserted into the tree. This happens because the initial
insertion was done in grab_mapping_entry() using a pgoff calculated from
the faulting address (vmf->address), and the replacement in
dax_pmd_load_hole() => dax_insert_mapping_entry() is done using
vmf->pgoff.
In our failure case those two page offsets (one calculated from
vmf->address, one using vmf->pgoff) point to different order 9 radix
tree entries.
This failure case can result in a deadlock because the radix tree unlock
also happens on the pgoff calculated from vmf->address. This means that
the locked radix tree entry that we swapped in to the tree in
dax_insert_mapping_entry() using vmf->pgoff is never unlocked, so all
future faults to that 2MiB range will block forever.
Fix this by validating that the faulting address's PMD offset matches
the PMD offset from the start of the file. This check is done at the
very beginning of the fault and covers faults that would have mapped to
storage as well as faults to holes. I left the COLOUR check in
dax_pmd_insert_mapping() in place in case we ever hit the insanity
condition where the alignment of the pfn we get from the driver doesn't
match the alignment of the userspace address.
Link: http://lkml.kernel.org/r/20170822222436.18926-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: "Slusarz, Marcin" <marcin.slusarz@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL
5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG
aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR
hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5
hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T
tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a
BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z
Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0
t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv
OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh
oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0
yKWjj9wfYRQ0vSUqhsI5
=3Z93
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull Writeback error handling updates from Jeff Layton:
"This pile represents the bulk of the writeback error handling fixes
that I have for this cycle. Some of the earlier patches in this pile
may look trivial but they are prerequisites for later patches in the
series.
The aim of this set is to improve how we track and report writeback
errors to userland. Most applications that care about data integrity
will periodically call fsync/fdatasync/msync to ensure that their
writes have made it to the backing store.
For a very long time, we have tracked writeback errors using two flags
in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a
writeback error occurs (via mapping_set_error) and are cleared as a
side-effect of filemap_check_errors (as you noted yesterday). This
model really sucks for userland.
Only the first task to call fsync (or msync or fdatasync) will see the
error. Any subsequent task calling fsync on a file will get back 0
(unless another writeback error occurs in the interim). If I have
several tasks writing to a file and calling fsync to ensure that their
writes got stored, then I need to have them coordinate with one
another. That's difficult enough, but in a world of containerized
setups that coordination may even not be possible.
But wait...it gets worse!
The calls to filemap_check_errors can be buried pretty far down in the
call stack, and there are internal callers of filemap_write_and_wait
and the like that also end up clearing those errors. Many of those
callers ignore the error return from that function or return it to
userland at nonsensical times (e.g. truncate() or stat()). If I get
back -EIO on a truncate, there is no reason to think that it was
because some previous writeback failed, and a subsequent fsync() will
(incorrectly) return 0.
This pile aims to do three things:
1) ensure that when a writeback error occurs that that error will be
reported to userland on a subsequent fsync/fdatasync/msync call,
regardless of what internal callers are doing
2) report writeback errors on all file descriptions that were open at
the time that the error occurred. This is a user-visible change,
but I think most applications are written to assume this behavior
anyway. Those that aren't are unlikely to be hurt by it.
3) document what filesystems should do when there is a writeback
error. Today, there is very little consistency between them, and a
lot of cargo-cult copying. We need to make it very clear what
filesystems should do in this situation.
To achieve this, the set adds a new data type (errseq_t) and then
builds new writeback error tracking infrastructure around that. Once
all of that is in place, we change the filesystems to use the new
infrastructure for reporting wb errors to userland.
Note that this is just the initial foray into cleaning up this mess.
There is a lot of work remaining here:
1) convert the rest of the filesystems in a similar fashion. Once the
initial set is in, then I think most other fs' will be fairly
simple to convert. Hopefully most of those can in via individual
filesystem trees.
2) convert internal waiters on writeback to use errseq_t for
detecting errors instead of relying on the AS_* flags. I have some
draft patches for this for ext4, but they are not quite ready for
prime time yet.
This was a discussion topic this year at LSF/MM too. If you're
interested in the gory details, LWN has some good articles about this:
https://lwn.net/Articles/718734/https://lwn.net/Articles/724307/"
* tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
xfs: minimal conversion to errseq_t writeback error reporting
ext4: use errseq_t based error handling for reporting data writeback errors
fs: convert __generic_file_fsync to use errseq_t based reporting
block: convert to errseq_t based writeback error tracking
dax: set errors in mapping when writeback fails
Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors
mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error
fs: new infrastructure for writeback error handling and reporting
lib: add errseq_t type and infrastructure for handling it
mm: don't TestClearPageError in __filemap_fdatawait_range
mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
jbd2: don't clear and reset errors after waiting on writeback
buffer: set errors in mapping at the time that the error occurs
fs: check for writeback errors after syncing out buffers in generic_file_fsync
buffer: use mapping_set_error instead of setting the flag
mm: fix mapping_set_error call in me_pagecache_dirty
* Introduce the _flushcache() family of memory copy helpers and use them
for persistent memory write operations on x86. The _flushcache()
semantic indicates that the cache is either bypassed for the copy
operation (movnt) or any lines dirtied by the copy operation are
written back (clwb, clflushopt, or clflush).
* Extend dax_operations with ->copy_from_iter() and ->flush()
operations. These operations and other infrastructure updates allow
all persistent memory specific dax functionality to be pushed into
libnvdimm and the pmem driver directly. It also allows dax-specific
sysfs attributes to be linked to a host device, for example:
/sys/block/pmem0/dax/write_cache
* Add support for the new NVDIMM platform/firmware mechanisms introduced
in ACPI 6.2 and UEFI 2.7. This support includes the v1.2 namespace
label format, extensions to the address-range-scrub command set, new
error injection commands, and a new BTT (block-translation-table)
layout. These updates support inter-OS and pre-OS compatibility.
* Fix a longstanding memory corruption bug in nfit_test.
* Make the pmem and nvdimm-region 'badblocks' sysfs files poll(2)
capable.
* Miscellaneous fixes and small updates across libnvdimm and the nfit
driver.
Acknowledgements that came after the branch was pushed:
commit 6aa734a2f3 "libnvdimm, region, pmem: fix 'badblocks'
sysfs_get_dirent() reference lifetime"
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXsUtAAoJEB7SkWpmfYgCOXcP/06bncqTEvtgrOF2b7O8w+8e
mTySD51RUn6UpkFd37SMRch+rmbojuqj465TAE7XIXgyLgIOJixKaTlHYUoEnP3X
rC4Q/g5mN0nittMDwL+vQaa1lQWd2kbjOlrqCgnLHVEEJpHmiQussunjvir4G1U7
5ROooP8W+qMK5y5XPLJAg/gyGhYkjpRSlDg3Eo5meZZ0IdURbI7+WCLKrPcQUERT
WmDc9gLhJdSQVxBV/0m2gdAER4ADmFjcrlm8kjXRBhdlUmEFjM0zpvlHJutHTkks
rNZWCmCJs0Sas+DmRKszFmvVFHRHqUVA3dWK4P6PJEX+tl7BwlPcxpbfacHTG2EZ
btArFc584DZ+EIrim1cXXRvLFlxnKOFBtBeteFs7l2kZjEcN6S4I5OZgTyeDpe/i
2WDpHWLQWibkcIzH9y1EuMBkYnQjTJl1pecHzJoTaC+jAQ+opLiY7EecjLmCmQS6
MBYUeQZNufLGfT5b8KXfpKeiXhpFkYrAGp+ErfoH/6RKy2zqTdagN1yVhos2y+a7
JJu/Weetpn8qv+KTGUShO8TGyWv3wU46YkG2rKWl0FL1+C+6LMMw1/L0A97lwVlg
BpypVVyaNu1D22ifZ8O5wbqPIYghoZ5akA0CiduhX19cpl5rTeTd8EvLjvcYhZEZ
pMHuMAqIcIyLhIe2/sRF
=xKQB
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"libnvdimm updates for the latest ACPI and UEFI specifications. This
pull request also includes new 'struct dax_operations' enabling to
undo the abuse of copy_user_nocache() for copy operations to pmem.
The dax work originally missed 4.12 to address concerns raised by Al.
Summary:
- Introduce the _flushcache() family of memory copy helpers and use
them for persistent memory write operations on x86. The
_flushcache() semantic indicates that the cache is either bypassed
for the copy operation (movnt) or any lines dirtied by the copy
operation are written back (clwb, clflushopt, or clflush).
- Extend dax_operations with ->copy_from_iter() and ->flush()
operations. These operations and other infrastructure updates allow
all persistent memory specific dax functionality to be pushed into
libnvdimm and the pmem driver directly. It also allows dax-specific
sysfs attributes to be linked to a host device, for example:
/sys/block/pmem0/dax/write_cache
- Add support for the new NVDIMM platform/firmware mechanisms
introduced in ACPI 6.2 and UEFI 2.7. This support includes the v1.2
namespace label format, extensions to the address-range-scrub
command set, new error injection commands, and a new BTT
(block-translation-table) layout. These updates support inter-OS
and pre-OS compatibility.
- Fix a longstanding memory corruption bug in nfit_test.
- Make the pmem and nvdimm-region 'badblocks' sysfs files poll(2)
capable.
- Miscellaneous fixes and small updates across libnvdimm and the nfit
driver.
Acknowledgements that came after the branch was pushed: commit
6aa734a2f3 ("libnvdimm, region, pmem: fix 'badblocks'
sysfs_get_dirent() reference lifetime") was reviewed by Toshi Kani
<toshi.kani@hpe.com>"
* tag 'libnvdimm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (42 commits)
libnvdimm, namespace: record 'lbasize' for pmem namespaces
acpi/nfit: Issue Start ARS to retrieve existing records
libnvdimm: New ACPI 6.2 DSM functions
acpi, nfit: Show bus_dsm_mask in sysfs
libnvdimm, acpi, nfit: Add bus level dsm mask for pass thru.
acpi, nfit: Enable DSM pass thru for root functions.
libnvdimm: passthru functions clear to send
libnvdimm, btt: convert some info messages to warn/err
libnvdimm, region, pmem: fix 'badblocks' sysfs_get_dirent() reference lifetime
libnvdimm: fix the clear-error check in nsio_rw_bytes
libnvdimm, btt: fix btt_rw_page not returning errors
acpi, nfit: quiet invalid block-aperture-region warnings
libnvdimm, btt: BTT updates for UEFI 2.7 format
acpi, nfit: constify *_attribute_group
libnvdimm, pmem: disable dax flushing when pmem is fronting a volatile region
libnvdimm, pmem, dax: export a cache control attribute
dax: convert to bitmask for flags
dax: remove default copy_from_iter fallback
libnvdimm, nfit: enable support for volatile ranges
libnvdimm, pmem: fix persistence warning
...
Track the following reclaim counters for every memory cgroup: PGREFILL,
PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED.
These values are exposed using the memory.stats interface of cgroup v2.
The meaning of each value is the same as for global counters, available
using /proc/vmstat.
Also, for consistency, rename mem_cgroup_count_vm_event() to
count_memcg_event_mm().
Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Kara's description for this patch is much better than mine, so I'm
quoting it verbatim here:
DAX currently doesn't set errors in the mapping when cache flushing
fails in dax_writeback_mapping_range(). Since this function can get
called only from fsync(2) or sync(2), this is actually as good as it can
currently get since we correctly propagate the error up from
dax_writeback_mapping_range() to filemap_fdatawrite()
However, in the future better writeback error handling will enable us to
properly report these errors on fsync(2) even if there are multiple file
descriptors open against the file or if sync(2) gets called before
fsync(2). So convert DAX to using standard error reporting through the
mapping.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-and-tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Now that all callers of the pmem api have been converted to dax helpers that
call back to the pmem driver, we can remove include/linux/pmem.h and
asm/pmem.h.
Cc: <x86@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Oliver O'Halloran <oohall@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
dax_writeback_mapping_range() fails to update iteration index when
searching radix tree for entries needing cache flushing. Thus each
pagevec worth of entries is searched starting from the start which is
inefficient and prone to livelocks. Update index properly.
Link: http://lkml.kernel.org/r/20170619124531.21491-1-jack@suse.cz
Fixes: 9973c98ecf ("dax: add support for fsync/sync")
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The clear_pmem() helper simply combines a memset() plus a cache flush.
Now that the flush routine is optionally provided by the dax device
driver we can avoid unnecessary cache management on dax devices fronting
volatile memory.
With clear_pmem() gone we can follow on with a patch to make pmem cache
management completely defined within the pmem driver.
Cc: <x86@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Filesystem-DAX flushes caches whenever it writes to the address returned
through dax_direct_access() and when writing back dirty radix entries.
That flushing is only required in the pmem case, so the dax_flush()
helper skips cache management work when the underlying driver does not
specify a flush method.
We still do all the dirty tracking since the radix entry will already be
there for locking purposes. However, the work to clean the entry will be
a nop for some dax drivers.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that all possible providers of the dax_operations copy_from_iter
method are implemented, switch filesytem-dax to call the driver rather
than copy_to_iter_pmem.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We currently have two related PMD vs PTE races in the DAX code. These
can both be easily triggered by having two threads reading and writing
simultaneously to the same private mapping, with the key being that
private mapping reads can be handled with PMDs but private mapping
writes are always handled with PTEs so that we can COW.
Here is the first race:
CPU 0 CPU 1
(private mapping write)
__handle_mm_fault()
create_huge_pmd() - FALLBACK
handle_pte_fault()
passes check for pmd_devmap()
(private mapping read)
__handle_mm_fault()
create_huge_pmd()
dax_iomap_pmd_fault() inserts PMD
dax_iomap_pte_fault() does a PTE fault, but we already have a DAX PMD
installed in our page tables at this spot.
Here's the second race:
CPU 0 CPU 1
(private mapping read)
__handle_mm_fault()
passes check for pmd_none()
create_huge_pmd()
dax_iomap_pmd_fault() inserts PMD
(private mapping write)
__handle_mm_fault()
create_huge_pmd() - FALLBACK
(private mapping read)
__handle_mm_fault()
passes check for pmd_none()
create_huge_pmd()
handle_pte_fault()
dax_iomap_pte_fault() inserts PTE
dax_iomap_pmd_fault() inserts PMD,
but we already have a PTE at
this spot.
The core of the issue is that while there is isolation between faults to
the same range in the DAX fault handlers via our DAX entry locking,
there is no isolation between faults in the code in mm/memory.c. This
means for instance that this code in __handle_mm_fault() can run:
if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
ret = create_huge_pmd(&vmf);
But by the time we actually get to run the fault handler called by
create_huge_pmd(), the PMD is no longer pmd_none() because a racing PTE
fault has installed a normal PMD here as a parent. This is the cause of
the 2nd race. The first race is similar - there is the following check
in handle_pte_fault():
} else {
/* See comment in pte_alloc_one_map() */
if (pmd_devmap(*vmf->pmd) || pmd_trans_unstable(vmf->pmd))
return 0;
So if a pmd_devmap() PMD (a DAX PMD) has been installed at vmf->pmd, we
will bail and retry the fault. This is correct, but there is nothing
preventing the PMD from being installed after this check but before we
actually get to the DAX PTE fault handlers.
In my testing these races result in the following types of errors:
BUG: Bad rss-counter state mm:ffff8800a817d280 idx:1 val:1
BUG: non-zero nr_ptes on freeing mm: 15
Fix this issue by having the DAX fault handlers verify that it is safe
to continue their fault after they have taken an entry lock to block
other racing faults.
[ross.zwisler@linux.intel.com: improve fix for colliding PMD & PTE entries]
Link: http://lkml.kernel.org/r/20170526195932.32178-1-ross.zwisler@linux.intel.com
Link: http://lkml.kernel.org/r/20170522215749.23516-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Pawel Lebioda <pawel.lebioda@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Pawel Lebioda <pawel.lebioda@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Xiong Zhou <xzhou@redhat.com>
Cc: Eryu Guan <eguan@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc fixes from Andrew Morton:
"15 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm, docs: update memory.stat description with workingset* entries
mm: vmscan: scan until it finds eligible pages
mm, thp: copying user pages must schedule on collapse
dax: fix PMD data corruption when fault races with write
dax: fix data corruption when fault races with write
ext4: return to starting transaction in ext4_dax_huge_fault()
mm: fix data corruption due to stale mmap reads
dax: prevent invalidation of mapped DAX entries
Tigran has moved
mm, vmalloc: fix vmalloc users tracking properly
mm/khugepaged: add missed tracepoint for collapse_huge_page_swapin
gcov: support GCC 7.1
mm, vmstat: Remove spurious WARN() during zoneinfo print
time: delete current_fs_time()
hwpoison, memcg: forcibly uncharge LRU pages
This is based on a patch from Jan Kara that fixed the equivalent race in
the DAX PTE fault path.
Currently DAX PMD read fault can race with write(2) in the following
way:
CPU1 - write(2) CPU2 - read fault
dax_iomap_pmd_fault()
->iomap_begin() - sees hole
dax_iomap_rw()
iomap_apply()
->iomap_begin - allocates blocks
dax_iomap_actor()
invalidate_inode_pages2_range()
- there's nothing to invalidate
grab_mapping_entry()
- we add huge zero page to the radix tree
and map it to page tables
The result is that hole page is mapped into page tables (and thus zeros
are seen in mmap) while file has data written in that place.
Fix the problem by locking exception entry before mapping blocks for the
fault. That way we are sure invalidate_inode_pages2_range() call for
racing write will either block on entry lock waiting for the fault to
finish (and unmap stale page tables after that) or read fault will see
already allocated blocks by write(2).
Fixes: 9f141d6ef6 ("dax: Call ->iomap_begin without entry lock during dax fault")
Link: http://lkml.kernel.org/r/20170510172700.18991-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently DAX read fault can race with write(2) in the following way:
CPU1 - write(2) CPU2 - read fault
dax_iomap_pte_fault()
->iomap_begin() - sees hole
dax_iomap_rw()
iomap_apply()
->iomap_begin - allocates blocks
dax_iomap_actor()
invalidate_inode_pages2_range()
- there's nothing to invalidate
grab_mapping_entry()
- we add zero page in the radix tree
and map it to page tables
The result is that hole page is mapped into page tables (and thus zeros
are seen in mmap) while file has data written in that place.
Fix the problem by locking exception entry before mapping blocks for the
fault. That way we are sure invalidate_inode_pages2_range() call for
racing write will either block on entry lock waiting for the fault to
finish (and unmap stale page tables after that) or read fault will see
already allocated blocks by write(2).
Fixes: 9f141d6ef6
Link: http://lkml.kernel.org/r/20170510085419.27601-5-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we didn't invalidate page tables during invalidate_inode_pages2()
for DAX. That could result in e.g. 2MiB zero page being mapped into
page tables while there were already underlying blocks allocated and
thus data seen through mmap were different from data seen by read(2).
The following sequence reproduces the problem:
- open an mmap over a 2MiB hole
- read from a 2MiB hole, faulting in a 2MiB zero page
- write to the hole with write(3p). The write succeeds but we
incorrectly leave the 2MiB zero page mapping intact.
- via the mmap, read the data that was just written. Since the zero
page mapping is still intact we read back zeroes instead of the new
data.
Fix the problem by unconditionally calling invalidate_inode_pages2_range()
in dax_iomap_actor() for new block allocations and by properly
invalidating page tables in invalidate_inode_pages2_range() for DAX
mappings.
Fixes: c6dcf52c23
Link: http://lkml.kernel.org/r/20170510085419.27601-3-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm,dax: Fix data corruption due to mmap inconsistency",
v4.
This series fixes data corruption that can happen for DAX mounts when
page faults race with write(2) and as a result page tables get out of
sync with block mappings in the filesystem and thus data seen through
mmap is different from data seen through read(2).
The series passes testing with t_mmap_stale test program from Ross and
also other mmap related tests on DAX filesystem.
This patch (of 4):
dax_invalidate_mapping_entry() currently removes DAX exceptional entries
only if they are clean and unlocked. This is done via:
invalidate_mapping_pages()
invalidate_exceptional_entry()
dax_invalidate_mapping_entry()
However, for page cache pages removed in invalidate_mapping_pages()
there is an additional criteria which is that the page must not be
mapped. This is noted in the comments above invalidate_mapping_pages()
and is checked in invalidate_inode_page().
For DAX entries this means that we can can end up in a situation where a
DAX exceptional entry, either a huge zero page or a regular DAX entry,
could end up mapped but without an associated radix tree entry. This is
inconsistent with the rest of the DAX code and with what happens in the
page cache case.
We aren't able to unmap the DAX exceptional entry because according to
its comments invalidate_mapping_pages() isn't allowed to block, and
unmap_mapping_range() takes a write lock on the mapping->i_mmap_rwsem.
Since we essentially never have unmapped DAX entries to evict from the
radix tree, just remove dax_invalidate_mapping_entry().
Fixes: c6dcf52c23 ("mm: Invalidate DAX radix tree entries only if appropriate")
Link: http://lkml.kernel.org/r/20170510085419.27601-2-jack@suse.cz
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org> [4.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull libnvdimm fixes from Dan Williams:
"Incremental fixes and a small feature addition on top of the main
libnvdimm 4.12 pull request:
- Geert noticed that tinyconfig was bloated by BLOCK selecting DAX.
The size regression is fixed by moving all dax helpers into the
dax-core and only specifying "select DAX" for FS_DAX and
dax-capable drivers. He also asked for clarification of the
NR_DEV_DAX config option which, on closer look, does not need to be
a config option at all. Mike also throws in a DEV_DAX_PMEM fixup
for good measure.
- Ben's attention to detail on -stable patch submissions caught a
case where the recent fixes to arch_copy_from_iter_pmem() missed a
condition where we strand dirty data in the cache. This is tagged
for -stable and will also be included in the rework of the pmem api
to a proposed {memcpy,copy_user}_flushcache() interface for 4.13.
- Vishal adds a feature that missed the initial pull due to pending
review feedback. It allows the kernel to clear media errors when
initializing a BTT (atomic sector update driver) instance on a pmem
namespace.
- Ross noticed that the dax_device + dax_operations conversion broke
__dax_zero_page_range(). The nvdimm unit tests fail to check this
path, but xfstests immediately trips over it. No excuse for missing
this before submitting the 4.12 pull request.
These all pass the nvdimm unit tests and an xfstests spot check. The
set has received a build success notification from the kbuild robot"
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
filesystem-dax: fix broken __dax_zero_page_range() conversion
libnvdimm, btt: ensure that initializing metadata clears poison
libnvdimm: add an atomic vs process context flag to rw_bytes
x86, pmem: Fix cache flushing for iovec write < 8 bytes
device-dax: kill NR_DEV_DAX
block, dax: move "select DAX" from BLOCK to FS_DAX
device-dax: Tell kbuild DEV_DAX_PMEM depends on DEV_DAX
The conversion of __dax_zero_page_range() to 'struct dax_operations'
caused it to frequently fail. The mistake was treating the @size
parameter as a dax mapping length rather than just a length of the
clear_pmem() operation. The dax mapping length is assumed to be hard
coded as PAGE_SIZE.
Without this fix any page unaligned zeroing request will trigger a
-EINVAL return from bdev_dax_pgoff().
Cc: Jan Kara <jack@suse.com>
Cc: Christoph Hellwig <hch@lst.de>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Fixes: cccbce6715 ("filesystem-dax: convert to dax_direct_access()")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a tracepoint to dax_insert_mapping(), following the same logging
conventions as the rest of DAX. This tracepoint, along with the one in
dax_load_hole(), lets us know how a DAX PTE fault was serviced.
Here is an example DAX fault that inserts a PTE mapping:
small-1126 [007] ....
145.451604: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220
small-1126 [007] ....
145.452317: dax_insert_mapping: dev 259:0 ino 0x1003 shared write address 0x10420000 radix_entry 0x100006
small-1126 [007] ....
145.452399: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 MAJOR|NOPAGE
Link: http://lkml.kernel.org/r/20170221195116.13278-7-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a tracepoint to dax_writeback_one(), following the same logging
conventions as the rest of DAX.
Here is an example range writeback which ends up flushing one PMD and
one PTE:
test-1265 [003] ....
496.615250: dax_writeback_range: dev 259:0 ino 0x1003 pgoff 0x0-0x7ffffffffffff
test-1265 [003] ....
496.616263: dax_writeback_one: dev 259:0 ino 0x1003 pgoff 0x0 pglen 0x200
test-1265 [003] ....
496.616270: dax_writeback_one: dev 259:0 ino 0x1003 pgoff 0x305 pglen 0x1
test-1265 [003] ....
496.616272: dax_writeback_range_done: dev 259:0 ino 0x1003 pgoff 0x0-0x7ffffffffffff
[akpm@linux-foundation.org: struct blk_dax_ctl has disappeared]
Link: http://lkml.kernel.org/r/20170221195116.13278-6-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add tracepoints to dax_writeback_mapping_range(), following the same
logging conventions as the rest of DAX.
Here is an example writeback call:
msync-1085 [006] ....
200.902565: dax_writeback_range: dev 259:0 ino 0x1003 pgoff 0x200-0x2ff
msync-1085 [006] ....
200.902579: dax_writeback_range_done: dev 259:0 ino 0x1003 pgoff 0x200-0x2ff
[ross.zwisler@linux.intel.com: fix regression in dax_writeback_mapping_range()]
Link: http://lkml.kernel.org/r/20170314215358.31451-1-ross.zwisler@linux.intel.com
Link: http://lkml.kernel.org/r/20170221195116.13278-5-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add tracepoints to dax_load_hole(), following the same logging conventions
as the rest of DAX.
Here is the logging generated by a PTE read from a hole:
read-1075 [002] ....
62.362108: dax_pte_fault: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280
read-1075 [002] ....
62.362140: dax_load_hole: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 NOPAGE
read-1075 [002] ....
62.362141: dax_pte_fault_done: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 NOPAGE
Link: http://lkml.kernel.org/r/20170221195116.13278-4-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add tracepoints to dax_pfn_mkwrite(), following the same logging
conventions as the rest of DAX.
Here is an example PTE fault followed by a pfn_mkwrite:
small_aligned-1094 [002] ....
374.084998: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200
small_aligned-1094 [002] ....
374.085145: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 MAJOR|NOPAGE
small_aligned-1094 [002] ....
374.085165: dax_pfn_mkwrite: dev 259:0 ino 0x1003 shared WRITE|MKWRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 NOPAGE
Link: http://lkml.kernel.org/r/20170221195116.13278-3-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "second round of tracepoints for DAX".
This second round of DAX tracepoint patches adds tracing to the PTE
fault path (dax_iomap_pte_fault(), dax_pfn_mkwrite(), dax_load_hole(),
dax_insert_mapping()) and to the writeback path
(dax_writeback_mapping_range(), dax_writeback_one()).
The purpose of this tracing is to give us a high level view of what DAX
is doing, whether faults are being serviced by PMDs or PTEs, and by real
storage or by zero pages covering holes.
I do have some patches nearly ready which also add tracing to
grab_mapping_entry() and dax_insert_mapping_entry(). These are more
targeted at logging how we are interacting with the radix tree, how we
use empty entries for locking, whether we "downgrade" huge zero pages to
4k PTE sized allocations, etc. In the end it seemed to me that this
might be too detailed to have as constantly present tracepoints, but if
anyone sees value in having tracepoints like this in the DAX code
permanently (Jan?), please let me know and I'll add those last two
patches.
All these tracepoints were done to be consistent with the style of the
XFS tracepoints and with the existing DAX PMD tracepoints.
This patch (of 6):
Add tracepoints to dax_iomap_pte_fault(), following the same logging
conventions as the rest of DAX.
Here is an example fault that initially tries to be serviced by the PMD
fault handler but which falls back to PTEs because the VMA isn't large
enough to hold a PMD:
small-1086 [005] ....
71.140014: xfs_filemap_huge_fault: dev 259:0 ino 0x1003
small-1086 [005] ....
71.140027: dax_pmd_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 vm_start 0x10200000 vm_end 0x10500000 pgoff 0x220 max_pgoff 0x1400
small-1086 [005] ....
71.140028: dax_pmd_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 vm_start 0x10200000 vm_end 0x10500000 pgoff 0x220 max_pgoff 0x1400 FALLBACK
small-1086 [005] ....
71.140035: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220
small-1086 [005] ....
71.140396: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 MAJOR|NOPAGE
Link: http://lkml.kernel.org/r/20170221195116.13278-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Region media error reporting: A libnvdimm region device is the parent
to one or more namespaces. To date, media errors have been reported via
the "badblocks" attribute attached to pmem block devices for namespaces
in "raw" or "memory" mode. Given that namespaces can be in "device-dax"
or "btt-sector" mode this new interface reports media errors
generically, i.e. independent of namespace modes or state. This
subsequently allows userspace tooling to craft "ACPI 6.1 Section
9.20.7.6 Function Index 4 - Clear Uncorrectable Error" requests and
submit them via the ioctl path for NVDIMM root bus devices.
* Introduce 'struct dax_device' and 'struct dax_operations': Prompted by
a request from Linus and feedback from Christoph this allows for dax
capable drivers to publish their own custom dax operations. This fixes
the broken assumption that all dax operations are related to a
persistent memory device, and makes it easier for other architectures
and platforms to add customized persistent memory support.
* 'libnvdimm' core updates: A new "deep_flush" sysfs attribute is
available for storage appliance applications to manually trigger memory
controllers to drain write-pending buffers that would otherwise be
flushed automatically by the platform ADR (asynchronous-DRAM-refresh)
mechanism at a power loss event. Support for "locked" DIMMs is included
to prevent namespaces from surfacing when the namespace label data area
is locked. Finally, fixes for various reported deadlocks and crashes,
also tagged for -stable.
* ACPI / nfit driver updates: General updates of the nfit driver to add
DSM command overrides, ACPI 6.1 health state flags support, DSM payload
debug available by default, and various fixes.
Acknowledgements that came after the branch was pushed:
commmit 565851c972 "device-dax: fix sysfs attribute deadlock"
Tested-by: Yi Zhang <yizhan@redhat.com>
commit 23f4984483 "libnvdimm: rework region badblocks clearing"
Tested-by: Toshi Kani <toshi.kani@hpe.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZDONJAAoJEB7SkWpmfYgC3SsP/2KrLvTUcz646ViuPOgZ2cC4
W6wAx6cvDSt+H52kLnFEsYoFt7WAj20ggPirb/Bc5jkGlvwE0lT9Xtmso9GpVkYT
J9ZJ9pP/4YaAD3II1gmTwaUjYi0FxoOdx3Eb92yuWkO/8ylz4b2Nu3cBpYwyziGQ
nIfEVwDXRLE86u6x0bWuf6TlVuvsbdiAI55CDqDMVQC6xIOLbSez7b8QIHlpiKEb
Mw+xqdQva0esoreZEOXEhWNO+qtfILx8/ceBEGTNMp4e/JjZ2FbrSNplM+9bH5k7
ywqP8lW+mBEw0fmBBkYoVG/xyesiiBb55JLnbi8Ew+7IUxw8a3iV7wftRi62lHcK
zAjsHe4L+MansgtZsCL8wluvIPaktAdtB4xr7l9VNLKRYRUG73jEWU0gcUNryHIL
BkQJ52pUS1PkClyAsWbBBHl1I/CvzVPd21VW0YELmLR4OywKy1c+eKw2bcYgjrb4
59HZSv6S6EoKaQC+2qvVNpePil7cdfg5V2ubH/ki9HoYVyoxDptEWHnvf0NNatIH
Y7mNcOPvhOksJmnKSyHbDjtRur7WoHIlC9D7UjEFkSBWsKPjxJHoidN4SnCMRtjQ
WKQU0seoaKj04b68Bs/Qm9NozVgnsPFIUDZeLMikLFX2Jt7YSPu+Jmi2s4re6WLh
TmJQ3Ly9t3o3/weHSzmn
=Ox0s
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"The bulk of this has been in multiple -next releases. There were a few
late breaking fixes and small features that got added in the last
couple days, but the whole set has received a build success
notification from the kbuild robot.
Change summary:
- Region media error reporting: A libnvdimm region device is the
parent to one or more namespaces. To date, media errors have been
reported via the "badblocks" attribute attached to pmem block
devices for namespaces in "raw" or "memory" mode. Given that
namespaces can be in "device-dax" or "btt-sector" mode this new
interface reports media errors generically, i.e. independent of
namespace modes or state.
This subsequently allows userspace tooling to craft "ACPI 6.1
Section 9.20.7.6 Function Index 4 - Clear Uncorrectable Error"
requests and submit them via the ioctl path for NVDIMM root bus
devices.
- Introduce 'struct dax_device' and 'struct dax_operations': Prompted
by a request from Linus and feedback from Christoph this allows for
dax capable drivers to publish their own custom dax operations.
This fixes the broken assumption that all dax operations are
related to a persistent memory device, and makes it easier for
other architectures and platforms to add customized persistent
memory support.
- 'libnvdimm' core updates: A new "deep_flush" sysfs attribute is
available for storage appliance applications to manually trigger
memory controllers to drain write-pending buffers that would
otherwise be flushed automatically by the platform ADR
(asynchronous-DRAM-refresh) mechanism at a power loss event.
Support for "locked" DIMMs is included to prevent namespaces from
surfacing when the namespace label data area is locked. Finally,
fixes for various reported deadlocks and crashes, also tagged for
-stable.
- ACPI / nfit driver updates: General updates of the nfit driver to
add DSM command overrides, ACPI 6.1 health state flags support, DSM
payload debug available by default, and various fixes.
Acknowledgements that came after the branch was pushed:
- commmit 565851c972 "device-dax: fix sysfs attribute deadlock":
Tested-by: Yi Zhang <yizhan@redhat.com>
- commit 23f4984483 "libnvdimm: rework region badblocks clearing"
Tested-by: Toshi Kani <toshi.kani@hpe.com>"
* tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (52 commits)
libnvdimm, pfn: fix 'npfns' vs section alignment
libnvdimm: handle locked label storage areas
libnvdimm: convert NDD_ flags to use bitops, introduce NDD_LOCKED
brd: fix uninitialized use of brd->dax_dev
block, dax: use correct format string in bdev_dax_supported
device-dax: fix sysfs attribute deadlock
libnvdimm: restore "libnvdimm: band aid btt vs clear poison locking"
libnvdimm: fix nvdimm_bus_lock() vs device_lock() ordering
libnvdimm: rework region badblocks clearing
acpi, nfit: kill ACPI_NFIT_DEBUG
libnvdimm: fix clear length of nvdimm_forget_poison()
libnvdimm, pmem: fix a NULL pointer BUG in nd_pmem_notify
libnvdimm, region: sysfs trigger for nvdimm_flush()
libnvdimm: fix phys_addr for nvdimm_clear_poison
x86, dax, pmem: remove indirection around memcpy_from_pmem()
block: remove block_device_operations ->direct_access()
block, dax: convert bdev_dax_supported() to dax_direct_access()
filesystem-dax: convert to dax_direct_access()
Revert "block: use DAX for partition table reads"
ext2, ext4, xfs: retrieve dax_device for iomap operations
...
Pull block layer updates from Jens Axboe:
- Add BFQ IO scheduler under the new blk-mq scheduling framework. BFQ
was initially a fork of CFQ, but subsequently changed to implement
fairness based on B-WF2Q+, a modified variant of WF2Q. BFQ is meant
to be used on desktop type single drives, providing good fairness.
From Paolo.
- Add Kyber IO scheduler. This is a full multiqueue aware scheduler,
using a scalable token based algorithm that throttles IO based on
live completion IO stats, similary to blk-wbt. From Omar.
- A series from Jan, moving users to separately allocated backing
devices. This continues the work of separating backing device life
times, solving various problems with hot removal.
- A series of updates for lightnvm, mostly from Javier. Includes a
'pblk' target that exposes an open channel SSD as a physical block
device.
- A series of fixes and improvements for nbd from Josef.
- A series from Omar, removing queue sharing between devices on mostly
legacy drivers. This helps us clean up other bits, if we know that a
queue only has a single device backing. This has been overdue for
more than a decade.
- Fixes for the blk-stats, and improvements to unify the stats and user
windows. This both improves blk-wbt, and enables other users to
register a need to receive IO stats for a device. From Omar.
- blk-throttle improvements from Shaohua. This provides a scalable
framework for implementing scalable priotization - particularly for
blk-mq, but applicable to any type of block device. The interface is
marked experimental for now.
- Bucketized IO stats for IO polling from Stephen Bates. This improves
efficiency of polled workloads in the presence of mixed block size
IO.
- A few fixes for opal, from Scott.
- A few pulls for NVMe, including a lot of fixes for NVMe-over-fabrics.
From a variety of folks, mostly Sagi and James Smart.
- A series from Bart, improving our exposed info and capabilities from
the blk-mq debugfs support.
- A series from Christoph, cleaning up how handle WRITE_ZEROES.
- A series from Christoph, cleaning up the block layer handling of how
we track errors in a request. On top of being a nice cleanup, it also
shrinks the size of struct request a bit.
- Removal of mg_disk and hd (sorry Linus) by Christoph. The former was
never used by platforms, and the latter has outlived it's usefulness.
- Various little bug fixes and cleanups from a wide variety of folks.
* 'for-4.12/block' of git://git.kernel.dk/linux-block: (329 commits)
block: hide badblocks attribute by default
blk-mq: unify hctx delay_work and run_work
block: add kblock_mod_delayed_work_on()
blk-mq: unify hctx delayed_run_work and run_work
nbd: fix use after free on module unload
MAINTAINERS: bfq: Add Paolo as maintainer for the BFQ I/O scheduler
blk-mq-sched: alloate reserved tags out of normal pool
mtip32xx: use runtime tag to initialize command header
scsi: Implement blk_mq_ops.show_rq()
blk-mq: Add blk_mq_ops.show_rq()
blk-mq: Show operation, cmd_flags and rq_flags names
blk-mq: Make blk_flags_show() callers append a newline character
blk-mq: Move the "state" debugfs attribute one level down
blk-mq: Unregister debugfs attributes earlier
blk-mq: Only unregister hctxs for which registration succeeded
blk-mq-debugfs: Rename functions for registering and unregistering the mq directory
blk-mq: Let blk_mq_debugfs_register() look up the queue name
blk-mq: Register <dev>/queue/mq after having registered <dev>/queue
ide-pm: always pass 0 error to ide_complete_rq in ide_do_devset
ide-pm: always pass 0 error to __blk_end_request_all
..
Now that a dax_device is plumbed through all dax-capable drivers we can
switch from block_device_operations to dax_operations for invoking
->direct_access.
This also lets us kill off some usages of struct blk_dax_ctl on the way
to its eventual removal.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
commit d1a5f2b4d8 ("block: use DAX for partition table reads") was
part of a stalled effort to allow dax mappings of block devices. Since
then the device-dax mechanism has filled the role of dax-mapping static
device ranges.
Now that we are moving ->direct_access() from a block_device operation
to a dax_inode operation we would need block devices to map and carry
their own dax_inode reference.
Unless / until we decide to revive dax mapping of raw block devices
through the dax_inode scheme, there is no need to carry
read_dax_sector(). Its removal in turn allows for the removal of
bdev_direct_access() and should have been included in commit
2237570168 ("block_dev: remove DAX leftovers").
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Turn the existing discard flag into a new BLKDEV_ZERO_UNMAP flag with
similar semantics, but without referring to diѕcard.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
While running generic/340 in my test setup I hit the following race. It
can happen with kernels that support FS DAX PMDs, so v4.10 thru
v4.11-rc5.
Thread 1 Thread 2
-------- --------
dax_iomap_pmd_fault()
grab_mapping_entry()
spin_lock_irq()
get_unlocked_mapping_entry()
'entry' is NULL, can't call lock_slot()
spin_unlock_irq()
radix_tree_preload()
dax_iomap_pmd_fault()
grab_mapping_entry()
spin_lock_irq()
get_unlocked_mapping_entry()
...
lock_slot()
spin_unlock_irq()
dax_pmd_insert_mapping()
<inserts a PMD mapping>
spin_lock_irq()
__radix_tree_insert() fails with -EEXIST
<fall back to 4k fault, and die horribly
when inserting a 4k entry where a PMD exists>
The issue is that we have to drop mapping->tree_lock while calling
radix_tree_preload(), but since we didn't have a radix tree entry to
lock (unlike in the pmd_downgrade case) we have no protection against
Thread 2 coming along and inserting a PMD at the same index. For 4k
entries we handled this with a special-case response to -EEXIST coming
from the __radix_tree_insert(), but this doesn't save us for PMDs
because the -EEXIST case can also mean that we collided with a 4k entry
in the radix tree at a different index, but one that is covered by our
PMD range.
So, correctly handle both the 4k and 2M collision cases by explicitly
re-checking the radix tree for an entry at our index once we reacquire
mapping->tree_lock.
This patch has made it through a clean xfstests run with the current
v4.11-rc5 based linux/master, and it also ran generic/340 500 times in a
loop. It used to fail within the first 10 iterations.
Link: http://lkml.kernel.org/r/20170406212944.2866-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: <stable@vger.kernel.org> [4.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of including the full <linux/signal.h>, we are going to include the
types-only <linux/signal_types.h> header in <linux/sched.h>, to further
decouple the scheduler header from the signal headers.
This means that various files which relied on the full <linux/signal.h> need
to be updated to gain an explicit dependency on it.
Update the code that relies on sched.h's inclusion of the <linux/signal.h> header.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The two alternative implementations of dax_iomap_fault have different
prototypes, and one of them is obviously wrong as seen from this build
warning:
fs/dax.c: In function 'dax_iomap_fault':
fs/dax.c:1462:35: error: passing argument 2 of 'dax_iomap_pmd_fault' discards 'const' qualifier from pointer target type [-Werror=discarded-qualifiers]
This marks the argument 'const' as in all the related functions.
Fixes: a2d581675d ("mm,fs,dax: change ->pmd_fault to ->huge_fault")
Link: http://lkml.kernel.org/r/20170227203349.3318733-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the introduction of FAULT_FLAG_SIZE to the vm_fault flag, it has
been somewhat painful with getting the flags set and removed at the
correct locations. More than one kernel oops was introduced due to
difficulties of getting the placement correctly.
Remove the flag values and introduce an input parameter to huge_fault
that indicates the size of the page entry. This makes the code easier
to trace and should avoid the issues we see with the fault flags where
removal of the flag was necessary in the fallback paths.
Link: http://lkml.kernel.org/r/148615748258.43180.1690152053774975329.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "1G transparent hugepage support for device dax", v2.
The following series implements support for 1G trasparent hugepage on
x86 for device dax. The bulk of the code was written by Mathew Wilcox a
while back supporting transparent 1G hugepage for fs DAX. I have
forward ported the relevant bits to 4.10-rc. The current submission has
only the necessary code to support device DAX.
Comments from Dan Williams: So the motivation and intended user of this
functionality mirrors the motivation and users of 1GB page support in
hugetlbfs. Given expected capacities of persistent memory devices an
in-memory database may want to reduce tlb pressure beyond what they can
already achieve with 2MB mappings of a device-dax file. We have
customer feedback to that effect as Willy mentioned in his previous
version of these patches [1].
[1]: https://lkml.org/lkml/2016/1/31/52
Comments from Nilesh @ Oracle:
There are applications which have a process model; and if you assume
10,000 processes attempting to mmap all the 6TB memory available on a
server; we are looking at the following:
processes : 10,000
memory : 6TB
pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB
pmd @ 2M page size: 120,000 / 512 = ~240GB
pud @ 1G page size: 240GB / 512 = ~480MB
As you can see with 2M pages, this system will use up an exorbitant
amount of DRAM to hold the page tables; but the 1G pages finally brings
it down to a reasonable level. Memory sizes will keep increasing; so
this number will keep increasing.
An argument can be made to convert the applications from process model
to thread model, but in the real world that may not be always practical.
Hopefully this helps explain the use case where this is valuable.
This patch (of 3):
In preparation for adding the ability to handle PUD pages, convert
vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The
vm_fault structure is extended to include a union of the different page
table pointers that may be needed, and three flag bits are reserved to
indicate which type of pointer is in the union.
[ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()]
Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com
[dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path]
Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
"142 patches:
- DAX updates
- various misc bits
- OCFS2 updates
- most of MM"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (142 commits)
mm/z3fold.c: limit first_num to the actual range of possible buddy indexes
mm: fix <linux/pagemap.h> stray kernel-doc notation
zram: remove obsolete sysfs attrs
mm/memblock.c: remove unnecessary log and clean up
oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA
mm: drop unused argument of zap_page_range()
mm: drop zap_details::check_swap_entries
mm: drop zap_details::ignore_dirty
mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled
mm: help __GFP_NOFAIL allocations which do not trigger OOM killer
mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically
mm: consolidate GFP_NOFAIL checks in the allocator slowpath
lib/show_mem.c: teach show_mem to work with the given nodemask
arch, mm: remove arch specific show_mem
mm, page_alloc: warn_alloc print nodemask
mm, page_alloc: do not report all nodes in show_mem
Revert "mm: bail out in shrink_inactive_list()"
mm, vmscan: consider eligible zones in get_scan_count
mm, vmscan: cleanup lru size claculations
mm, vmscan: do not count freed pages as PGDEACTIVATE
...
- Various cleanups
- Livelock fixes for eofblocks scanning
- Improved input verification for on-disk metadata
- Fix races in the copy on write remap mechanism
- Fix buffer io error timeout controls
- Streamlining of directio copy on write
- Asynchronous discard support
- Fix asserts when splitting delalloc reservations
- Don't bloat bmbt when right shifting extents
- Inode alignment fixes for 32k block sizes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJYp85wAAoJEPh/dxk0SrTr5HgP/jcx/oI+ap/NaXMi1Q8K65mh
C3gf27cgUxtdGnEO5KRUE1Jyscuu4ZpzugDdLQISwR55kesT5FU0xpgbsfiICc86
dxLAhg8auwpTfHV+96Do2hfpO3IhYoBC2w5jo32+C+SaQUqTdPixncZukX89tjyP
HOFLrQnpc336hCO2rv1Q9hSkD6IUCkSAtk+Dh1xMvbsmKFLGdmkTdqUQfl1U4YnV
2S98k9QSRdiVyzj3lAGOy+IU9aTcPX/PptMEYaQZEaod5WWNjy91lQZNM6zRc4QW
8P199yiH6CQa2vESO2SV72cJ40WihM1KQXqnrlJjAMGQ7mMGTGJcTwxhuZYUbDYZ
cuk6bAUaijt/PzfmydJKlcH8vFerX4aU4CGkxPU0nph0iTR5kxYlIAMmFw2cdRzf
Iar3SBb8Pc9jiNnEZMFsQ0Fd9hNk9rNoUSpKqm4FtSRocU6JjmpAdPqNYdTVKc2l
2EY7JMo0xCaTVC1WT6sE2NsxsFvm0R7H6HHG2vMFIMNkhI24GRijIXH6dQlaGCQJ
5oTHrSM7503qPlEQNsxF7zI02LpJT+duf+2ODw/FSjA1z/TWwOUYYUrPUOyQNdzP
NrRnMa6LWsEehkuvz2FFko8PKXD55lTuUP1KdjigjqKp8Jzkc/PP+uvuwF5vUFfd
pWRvE5m/NePWBZetbL3Q
=Ga1F
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"Here are the XFS changes for 4.11. We aren't introducing any major
features in this release cycle except for this being the first merge
window I've managed on my own. :)
Changes since last update:
- Various cleanups
- Livelock fixes for eofblocks scanning
- Improved input verification for on-disk metadata
- Fix races in the copy on write remap mechanism
- Fix buffer io error timeout controls
- Streamlining of directio copy on write
- Asynchronous discard support
- Fix asserts when splitting delalloc reservations
- Don't bloat bmbt when right shifting extents
- Inode alignment fixes for 32k block sizes"
* tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (39 commits)
xfs: remove XFS_ALLOCTYPE_ANY_AG and XFS_ALLOCTYPE_START_AG
xfs: simplify xfs_rtallocate_extent
xfs: tune down agno asserts in the bmap code
xfs: Use xfs_icluster_size_fsb() to calculate inode chunk alignment
xfs: don't reserve blocks for right shift transactions
xfs: fix len comparison in xfs_extent_busy_trim
xfs: fix uninitialized variable in _reflink_convert_cow
xfs: split indlen reservations fairly when under reserved
xfs: handle indlen shortage on delalloc extent merge
xfs: resurrect debug mode drop buffered writes mechanism
xfs: clear delalloc and cache on buffered write failure
xfs: don't block the log commit handler for discards
xfs: improve busy extent sorting
xfs: improve handling of busy extents in the low-level allocator
xfs: don't fail xfs_extent_busy allocation
xfs: correct null checks and error processing in xfs_initialize_perag
xfs: update ctime and mtime on clone destinatation inodes
xfs: allocate direct I/O COW blocks in iomap_begin
xfs: go straight to real allocations for direct I/O COW writes
xfs: return the converted extent in __xfs_reflink_convert_cow
...
pmd_fault() and related functions really only need the vmf parameter since
the additional parameters are all included in the vmf struct. Remove the
additional parameter and simplify pmd_fault() and friends.
Link: http://lkml.kernel.org/r/1484085142-2297-8-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing in multiple parameters in the pmd_fault() handler,
a vmf can be passed in just like a fault() handler. This will simplify
code and remove the need for the actual pmd fault handlers to allocate a
vmf. Related functions are also modified to do the same.
[dave.jiang@intel.com: fix issue with xfs_tests stall when DAX option is off]
Link: http://lkml.kernel.org/r/148469861071.195597.3619476895250028518.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/1484085142-2297-7-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tracepoints are the standard way to capture debugging and tracing
information in many parts of the kernel, including the XFS and ext4
filesystems. Create a tracepoint header for FS DAX and add the first DAX
tracepoints to the PMD fault handler. This allows the tracing for DAX to
be done in the same way as the filesystem tracing so that developers can
look at them together and get a coherent idea of what the system is doing.
I added both an entry and exit tracepoint because future patches will add
tracepoints to child functions of dax_iomap_pmd_fault() like
dax_pmd_load_hole() and dax_pmd_insert_mapping(). We want those messages
to be wrapped by the parent function tracepoints so the code flow is more
easily understood. Having entry and exit tracepoints for faults also
allows us to easily see what filesystems functions were called during the
fault. These filesystem functions get executed via iomap_begin() and
iomap_end() calls, for example, and will have their own tracepoints.
For PMD faults we primarily want to understand the type of mapping, the
fault flags, the faulting address and whether it fell back to 4k faults.
If it fell back to 4k faults the tracepoints should let us understand why.
I named the new tracepoint header file "fs_dax.h" to allow for device DAX
to have its own separate tracing header in the same directory at some
point.
Here is an example output for these events from a successful PMD fault:
big-1441 [005] .... 32.582758: xfs_filemap_pmd_fault: dev 259:0 ino 0x1003
big-1441 [005] .... 32.582776: dax_pmd_fault: dev 259:0 ino 0x1003
shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400
big-1441 [005] .... 32.583292: dax_pmd_fault_done: dev 259:0 ino 0x1003
shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400 NOPAGE
Link: http://lkml.kernel.org/r/1484085142-2297-3-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
primarily used for testing, but which can be useful on production
systems when a scratch volume is being destroyed and the data on it
doesn't need to be saved. This found (and we fixed) a number of bugs
with ext4's recovery to corrupted file system --- the bugs increased
the amount of data that could be potentially lost, and in the case of
the inline data feature, could cause the kernel to BUG.
Also included are a number of other bug fixes, including in ext4's
fscrypt, DAX, inline data support.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlirXesACgkQ8vlZVpUN
gaMOzQf8Ct6uPatV+m855oR4dAbZr2+lY4A4C+vHDzBtSMkPRyLX8cuo8XcwfTIm
vPVyDnL6EPyhXPxxfItu+92wAq1m5mVpKo57d0Ft5lw0rHxNtJTgVSRzsQ7VDRjj
5qMHW2K7Bk7EjzTeW3SF8/3+hqpzkAvRtNCntcomk5h08+cWMC8JSnn1kqw+naIn
EcbrC72GZb8JUELogVXC2vU58lp50SSBdr3l005jqKc5BvljMvdJ0Izn/3RVyU7u
q7vtynhe2ScFcHe/UzL1QgmQOy32tJpbS0NHalW47aw3Ynmn4cSX0YhhT9FDjRNQ
VOOfo1m1sAg166x0E+Nn7FeghTSSyA==
=cPIf
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"For this cycle we add support for the shutdown ioctl, which is
primarily used for testing, but which can be useful on production
systems when a scratch volume is being destroyed and the data on it
doesn't need to be saved.
This found (and we fixed) a number of bugs with ext4's recovery to
corrupted file system --- the bugs increased the amount of data that
could be potentially lost, and in the case of the inline data feature,
could cause the kernel to BUG.
Also included are a number of other bug fixes, including in ext4's
fscrypt, DAX, inline data support"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (26 commits)
ext4: rename EXT4_IOC_GOINGDOWN to EXT4_IOC_SHUTDOWN
ext4: fix fencepost in s_first_meta_bg validation
ext4: don't BUG when truncating encrypted inodes on the orphan list
ext4: do not use stripe_width if it is not set
ext4: fix stripe-unaligned allocations
dax: assert that i_rwsem is held exclusive for writes
ext4: fix DAX write locking
ext4: add EXT4_IOC_GOINGDOWN ioctl
ext4: add shutdown bit and check for it
ext4: rename s_resize_flags to s_ext4_flags
ext4: return EROFS if device is r/o and journal replay is needed
ext4: preserve the needs_recovery flag when the journal is aborted
jbd2: don't leak modified metadata buffers on an aborted journal
ext4: fix inline data error paths
ext4: move halfmd4 into hash.c directly
ext4: fix use-after-iput when fscrypt contexts are inconsistent
jbd2: fix use after free in kjournald2()
ext4: fix data corruption in data=journal mode
ext4: trim allocation requests to group size
ext4: replace BUG_ON with WARN_ON in mb_find_extent()
...
Make sure all callers follow the same locking protocol, given that DAX
transparantly replaced the normal buffered I/O path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
Tetsuo has noticed that an OOM stress test which performs large write
requests can cause the full memory reserves depletion. He has tracked
this down to the following path
__alloc_pages_nodemask+0x436/0x4d0
alloc_pages_current+0x97/0x1b0
__page_cache_alloc+0x15d/0x1a0 mm/filemap.c:728
pagecache_get_page+0x5a/0x2b0 mm/filemap.c:1331
grab_cache_page_write_begin+0x23/0x40 mm/filemap.c:2773
iomap_write_begin+0x50/0xd0 fs/iomap.c:118
iomap_write_actor+0xb5/0x1a0 fs/iomap.c:190
? iomap_write_end+0x80/0x80 fs/iomap.c:150
iomap_apply+0xb3/0x130 fs/iomap.c:79
iomap_file_buffered_write+0x68/0xa0 fs/iomap.c:243
? iomap_write_end+0x80/0x80
xfs_file_buffered_aio_write+0x132/0x390 [xfs]
? remove_wait_queue+0x59/0x60
xfs_file_write_iter+0x90/0x130 [xfs]
__vfs_write+0xe5/0x140
vfs_write+0xc7/0x1f0
? syscall_trace_enter+0x1d0/0x380
SyS_write+0x58/0xc0
do_syscall_64+0x6c/0x200
entry_SYSCALL64_slow_path+0x25/0x25
the oom victim has access to all memory reserves to make a forward
progress to exit easier. But iomap_file_buffered_write and other
callers of iomap_apply loop to complete the full request. We need to
check for fatal signals and back off with a short write instead.
As the iomap_apply delegates all the work down to the actor we have to
hook into those. All callers that work with the page cache are calling
iomap_write_begin so we will check for signals there. dax_iomap_actor
has to handle the situation explicitly because it copies data to the
userspace directly. Other callers like iomap_page_mkwrite work on a
single page or iomap_fiemap_actor do not allocate memory based on the
given len.
Fixes: 68a9f5e700 ("xfs: implement iomap based buffered write path")
Link: http://lkml.kernel.org/r/20170201092706.9966-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
As reported by Arnd:
https://lkml.org/lkml/2017/1/10/756
Compiling with the following configuration:
# CONFIG_EXT2_FS is not set
# CONFIG_EXT4_FS is not set
# CONFIG_XFS_FS is not set
# CONFIG_FS_IOMAP depends on the above filesystems, as is not set
CONFIG_FS_DAX=y
generates build warnings about unused functions in fs/dax.c:
fs/dax.c:878:12: warning: `dax_insert_mapping' defined but not used [-Wunused-function]
static int dax_insert_mapping(struct address_space *mapping,
^~~~~~~~~~~~~~~~~~
fs/dax.c:572:12: warning: `copy_user_dax' defined but not used [-Wunused-function]
static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
^~~~~~~~~~~~~
fs/dax.c:542:12: warning: `dax_load_hole' defined but not used [-Wunused-function]
static int dax_load_hole(struct address_space *mapping, void **entry,
^~~~~~~~~~~~~
fs/dax.c:312:14: warning: `grab_mapping_entry' defined but not used [-Wunused-function]
static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
^~~~~~~~~~~~~~~~~~
Now that the struct buffer_head based DAX fault paths and I/O path have
been removed we really depend on iomap support being present for DAX.
Make this explicit by selecting FS_IOMAP if we compile in DAX support.
This allows us to remove conditional selections of FS_IOMAP when FS_DAX
was present for ext2 and ext4, and to remove an #ifdef in fs/dax.c.
Link: http://lkml.kernel.org/r/1484087383-29478-1-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently dax_mapping_entry_mkclean() fails to clean and write protect
the pmd_t of a DAX PMD entry during an *sync operation. This can result
in data loss in the following sequence:
1) mmap write to DAX PMD, dirtying PMD radix tree entry and making the
pmd_t dirty and writeable
2) fsync, flushing out PMD data and cleaning the radix tree entry. We
currently fail to mark the pmd_t as clean and write protected.
3) more mmap writes to the PMD. These don't cause any page faults since
the pmd_t is dirty and writeable. The radix tree entry remains clean.
4) fsync, which fails to flush the dirty PMD data because the radix tree
entry was clean.
5) crash - dirty data that should have been fsync'd as part of 4) could
still have been in the processor cache, and is lost.
Fix this by marking the pmd_t clean and write protected in
dax_mapping_entry_mkclean(), which is called as part of the fsync
operation 2). This will cause the writes in step 3) above to generate
page faults where we'll re-dirty the PMD radix tree entry, resulting in
flushes in the fsync that happens in step 4).
Fixes: 4b4bb46d00 ("dax: clear dirty entry tags on cache flush")
Link: http://lkml.kernel.org/r/1482272586-21177-3-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently ->iomap_begin() handler is called with entry lock held. If the
filesystem held any locks between ->iomap_begin() and ->iomap_end()
(such as ext4 which will want to hold transaction open), this would cause
lock inversion with the iomap_apply() from standard IO path which first
calls ->iomap_begin() and only then calls ->actor() callback which grabs
entry locks for DAX (if it faults when copying from/to user provided
buffers).
Fix the problem by nesting grabbing of entry lock inside ->iomap_begin()
- ->iomap_end() pair.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The only case when we do not finish the page fault completely is when we
are loading hole pages into a radix tree. Avoid this special case and
finish the fault in that case as well inside the DAX fault handler. It
will allow us for easier iomap handling.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently dax_iomap_rw() takes care of invalidating page tables and
evicting hole pages from the radix tree when write(2) to the file
happens. This invalidation is only necessary when there is some block
allocation resulting from write(2). Furthermore in current place the
invalidation is racy wrt page fault instantiating a hole page just after
we have invalidated it.
So perform the page invalidation inside dax_iomap_actor() where we can
do it only when really necessary and after blocks have been allocated so
nobody will be instantiating new hole pages anymore.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently invalidate_inode_pages2_range() and invalidate_mapping_pages()
just delete all exceptional radix tree entries they find. For DAX this
is not desirable as we track cache dirtiness in these entries and when
they are evicted, we may not flush caches although it is necessary. This
can for example manifest when we write to the same block both via mmap
and via write(2) (to different offsets) and fsync(2) then does not
properly flush CPU caches when modification via write(2) was the last
one.
Create appropriate DAX functions to handle invalidation of DAX entries
for invalidate_inode_pages2_range() and invalidate_mapping_pages() and
wire them up into the corresponding mm functions.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently we never clear dirty tags in DAX mappings and thus address
ranges to flush accumulate. Now that we have locking of radix tree
entries, we have all the locking necessary to reliably clear the radix
tree dirty tag when flushing caches for corresponding address range.
Similarly to page_mkclean() we also have to write-protect pages to get a
page fault when the page is next written to so that we can mark the
entry dirty again.
Link: http://lkml.kernel.org/r/1479460644-25076-21-git-send-email-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently PTE gets updated in wp_pfn_shared() after dax_pfn_mkwrite()
has released corresponding radix tree entry lock. When we want to
writeprotect PTE on cache flush, we need PTE modification to happen
under radix tree entry lock to ensure consistent updates of PTE and
radix tree (standard faults use page lock to ensure this consistency).
So move update of PTE bit into dax_pfn_mkwrite().
Link: http://lkml.kernel.org/r/1479460644-25076-20-git-send-email-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, flushing of caches for DAX mappings was ignoring entry lock.
So far this was ok (modulo a bug that a difference in entry lock could
cause cache flushing to be mistakenly skipped) but in the following
patches we will write-protect PTEs on cache flushing and clear dirty
tags. For that we will need more exclusion. So do cache flushing under
an entry lock. This allows us to remove one lock-unlock pair of
mapping->tree_lock as a bonus.
Link: http://lkml.kernel.org/r/1479460644-25076-19-git-send-email-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move final handling of COW faults from generic code into DAX fault
handler. That way generic code doesn't have to be aware of
peculiarities of DAX locking so remove that knowledge and make locking
functions private to fs/dax.c.
Link: http://lkml.kernel.org/r/1479460644-25076-11-git-send-email-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every single user of vmf->virtual_address typed that entry to unsigned
long before doing anything with it so the type of virtual_address does
not really provide us any additional safety. Just use masked
vmf->address which already has the appropriate type.
Link: http://lkml.kernel.org/r/1479460644-25076-3-git-send-email-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
needed for both ext4 and xfs dax changes to use iomap for DAX. It
also includes the fscrypt branch which is needed for ubifs encryption
work as well as ext4 encryption and fscrypt cleanups.
Lots of cleanups and bug fixes, especially making sure ext4 is robust
against maliciously corrupted file systems --- especially maliciously
corrupted xattr blocks and a maliciously corrupted superblock. Also
fix ext4 support for 64k block sizes so it works well on ppcle. Fixed
mbcache so we don't miss some common xattr blocks that can be merged.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlhQQVEACgkQ8vlZVpUN
gaN9TQgAoCD+V4kJjMCFhiV8u6QR3hqD6bOZbggo5wJf4CHglWkmrbAmc3jANOgH
CKsXDRRjxuDjPXf1ukB1i4M7ArLYjkbbzKdsu7lismoJLS+w8uwUKSNdep+LYMjD
alxUcf5DCzLlUmdOdW4yE22L+CwRfqfs8IpBvKmJb7DrAKiwJVA340ys6daBGuu1
63xYx0QIyPzq0xjqLb6TVf88HUI4NiGVXmlm2wcrnYd5966hEZd/SztOZTVCVWOf
Z0Z0fGQ1WJzmaBB9+YV3aBi+BObOx4m2PUprIa531+iEW02E+ot5Xd4vVQFoV/r4
NX3XtoBrT1XlKagy2sJLMBoCavqrKw==
=j4KP
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"This merge request includes the dax-4.0-iomap-pmd branch which is
needed for both ext4 and xfs dax changes to use iomap for DAX. It also
includes the fscrypt branch which is needed for ubifs encryption work
as well as ext4 encryption and fscrypt cleanups.
Lots of cleanups and bug fixes, especially making sure ext4 is robust
against maliciously corrupted file systems --- especially maliciously
corrupted xattr blocks and a maliciously corrupted superblock. Also
fix ext4 support for 64k block sizes so it works well on ppcle. Fixed
mbcache so we don't miss some common xattr blocks that can be merged"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (86 commits)
dax: Fix sleep in atomic contex in grab_mapping_entry()
fscrypt: Rename FS_WRITE_PATH_FL to FS_CTX_HAS_BOUNCE_BUFFER_FL
fscrypt: Delay bounce page pool allocation until needed
fscrypt: Cleanup page locking requirements for fscrypt_{decrypt,encrypt}_page()
fscrypt: Cleanup fscrypt_{decrypt,encrypt}_page()
fscrypt: Never allocate fscrypt_ctx on in-place encryption
fscrypt: Use correct index in decrypt path.
fscrypt: move the policy flags and encryption mode definitions to uapi header
fscrypt: move non-public structures and constants to fscrypt_private.h
fscrypt: unexport fscrypt_initialize()
fscrypt: rename get_crypt_info() to fscrypt_get_crypt_info()
fscrypto: move ioctl processing more fully into common code
fscrypto: remove unneeded Kconfig dependencies
MAINTAINERS: fscrypto: recommend linux-fsdevel for fscrypto patches
ext4: do not perform data journaling when data is encrypted
ext4: return -ENOMEM instead of success
ext4: reject inodes with negative size
ext4: remove another test in ext4_alloc_file_blocks()
Documentation: fix description of ext4's block_validity mount option
ext4: fix checks for data=ordered and journal_async_commit options
...
Support handing __radix_tree_replace() a callback that gets invoked for
all leaf nodes that change or get freed as a result of the slot
replacement, to assist users tracking nodes with node->private_list.
This prepares for putting page cache shadow entries into the radix tree
root again and drastically simplifying the shadow tracking.
Link: http://lkml.kernel.org/r/20161117193134.GD23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bug in khugepaged fixed earlier in this series shows that radix tree
slot replacement is fragile; and it will become more so when not only
NULL<->!NULL transitions need to be caught but transitions from and to
exceptional entries as well. We need checks.
Re-implement radix_tree_replace_slot() on top of the sanity-checked
__radix_tree_replace(). This requires existing callers to also pass the
radix tree root, but it'll warn us when somebody replaces slots with
contents that need proper accounting (transitions between NULL entries,
real entries, exceptional entries) and where a replacement through the
slot pointer would corrupt the radix tree node counts.
Link: http://lkml.kernel.org/r/20161117193021.GB23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The way the page cache is sneaking shadow entries of evicted pages into
the radix tree past the node entry accounting and tracking them manually
in the upper bits of node->count is fraught with problems.
These shadow entries are marked in the tree as exceptional entries,
which are a native concept to the radix tree. Maintain an explicit
counter of exceptional entries in the radix tree node. Subsequent
patches will switch shadow entry tracking over to that counter.
DAX and shmem are the other users of exceptional entries. Since slot
replacements that change the entry type from regular to exceptional must
now be accounted, introduce a __radix_tree_replace() function that does
replacement and accounting, and switch DAX and shmem over.
The increase in radix tree node size is temporary. A followup patch
switches the shadow tracking to this new scheme and we'll no longer need
the upper bits in node->count and shrink that back to one byte.
Link: http://lkml.kernel.org/r/20161117192945.GA23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 642261ac995e: "dax: add struct iomap based DAX PMD support" has
introduced unmapping of page tables if huge page needs to be split in
grab_mapping_entry(). However the unmapping happens after
radix_tree_preload() call which disables preemption and thus
unmap_mapping_range() tries to acquire i_mmap_lock in atomic context
which is a bug. Fix the problem by moving unmapping before
radix_tree_preload() call.
Fixes: 642261ac99
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
No one uses functions using the get_block callback anymore. Rip them
out and update documentation.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Introduce a flag telling iomap operations whether they are handling a
fault or other IO. That may influence behavior wrt inode size and
similar things.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
DAX PMDs have been disabled since Jan Kara introduced DAX radix tree based
locking. This patch allows DAX PMDs to participate in the DAX radix tree
based locking scheme so that they can be re-enabled using the new struct
iomap based fault handlers.
There are currently three types of DAX 4k entries: 4k zero pages, 4k DAX
mappings that have an associated block allocation, and 4k DAX empty
entries. The empty entries exist to provide locking for the duration of a
given page fault.
This patch adds three equivalent 2MiB DAX entries: Huge Zero Page (HZP)
entries, PMD DAX entries that have associated block allocations, and 2 MiB
DAX empty entries.
Unlike the 4k case where we insert a struct page* into the radix tree for
4k zero pages, for HZP we insert a DAX exceptional entry with the new
RADIX_DAX_HZP flag set. This is because we use a single 2 MiB zero page in
every 2MiB hole mapping, and it doesn't make sense to have that same struct
page* with multiple entries in multiple trees. This would cause contention
on the single page lock for the one Huge Zero Page, and it would break the
page->index and page->mapping associations that are assumed to be valid in
many other places in the kernel.
One difficult use case is when one thread is trying to use 4k entries in
radix tree for a given offset, and another thread is using 2 MiB entries
for that same offset. The current code handles this by making the 2 MiB
user fall back to 4k entries for most cases. This was done because it is
the simplest solution, and because the use of 2MiB pages is already
opportunistic.
If we were to try to upgrade from 4k pages to 2MiB pages for a given range,
we run into the problem of how we lock out 4k page faults for the entire
2MiB range while we clean out the radix tree so we can insert the 2MiB
entry. We can solve this problem if we need to, but I think that the cases
where both 2MiB entries and 4K entries are being used for the same range
will be rare enough and the gain small enough that it probably won't be
worth the complexity.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
No functional change.
The static functions put_locked_mapping_entry() and
put_unlocked_mapping_entry() will soon be used in error cases in
grab_mapping_entry(), so move their definitions above this function.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The RADIX_DAX_* defines currently mostly live in fs/dax.c, with just
RADIX_DAX_ENTRY_LOCK being in include/linux/dax.h so it can be used in
mm/filemap.c. When we add PMD support, though, mm/filemap.c will also need
access to the RADIX_DAX_PTE type so it can properly construct a 4k sized
empty entry.
Instead of shifting the defines between dax.c and dax.h as they are
individually used in other code, just move them wholesale to dax.h so
they'll be available when we need them.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently iomap_end() doesn't do anything for DAX page faults for both ext2
and XFS. ext2_iomap_end() just checks for a write underrun, and
xfs_file_iomap_end() checks to see if it needs to finish a delayed
allocation. However, in the future iomap_end() calls might be needed to
make sure we have balanced allocations, locks, etc. So, add calls to
iomap_end() with appropriate error handling to dax_iomap_fault().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
To be able to correctly calculate the sector from a file position and a
struct iomap there is a complex little bit of logic that currently happens
in both dax_iomap_actor() and dax_iomap_fault(). This will need to be
repeated yet again in the DAX PMD fault handler when it is added, so break
it out into a helper function.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The recently added DAX functions that use the new struct iomap data
structure were named iomap_dax_rw(), iomap_dax_fault() and
iomap_dax_actor(). These are actually defined in fs/dax.c, though, so
should be part of the "dax" namespace and not the "iomap" namespace.
Rename them to dax_iomap_rw(), dax_iomap_fault() and dax_iomap_actor()
respectively.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
dax_pmd_fault() is the old struct buffer_head + get_block_t based 2 MiB DAX
fault handler. This fault handler has been disabled for several kernel
releases, and support for PMDs will be reintroduced using the struct iomap
interface instead.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
DAX radix tree locking currently locks entries based on the unique
combination of the 'mapping' pointer and the pgoff_t 'index' for the entry.
This works for PTEs, but as we move to PMDs we will need to have all the
offsets within the range covered by the PMD to map to the same bit lock.
To accomplish this, for ranges covered by a PMD entry we will instead lock
based on the page offset of the beginning of the PMD entry. The 'mapping'
pointer is still used in the same way.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
No functional change.
Consistently use the variable name 'entry' instead of 'ret' for DAX radix
tree entries. This was already happening in most of the code, so update
get_unlocked_mapping_entry(), grab_mapping_entry() and
dax_unlock_mapping_entry().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Don't take down the kernel if we get an invalid 'from' and 'length'
argument pair. Just warn once and return an error.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The global 'wait_table' variable is only used within fs/dax.c, and
generates the following sparse warning:
fs/dax.c:39:19: warning: symbol 'wait_table' was not declared. Should it be static?
Make it static so it has scope local to fs/dax.c, and to make sparse happy.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that ext4 properly sets bh.b_size when we call get_block() for a hole,
rely on that value and remove the buffer_size_valid() sanity check.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The global zero page is used to satisfy an anonymous read fault. If
THP(Transparent HugePage) is enabled then the global huge zero page is
used. The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.
CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults. This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.
To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch
the global counter in two cases:
1 The first time it uses the global huge zero page;
2 The time when mm_user of its mm_struct reaches zero.
Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away. With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.
And with the use of mm_user, the kthread is not eligible to use huge
zero page either. Since no kthread is using huge zero page today, there
is no difference after applying this patch. But if that is not desired,
I can change it to when mm_count reaches zero.
Case used for test on Haswell EP:
usemem -n 72 --readonly -j 0x200000 100G
Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.
CPU cycles from perf report for base commit:
54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page
CPU cycles from perf report for this commit:
0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page
Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.
Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.
Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Very similar to the existing dax_fault function, but instead of using
the get_block callback we rely on the iomap_ops vector from iomap.c.
That also avoids having to do two calls into the file system for write
faults.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This is a much simpler implementation of the DAX read/write path
that makes use of the iomap infrastructure. It does not try to
mirror the direct I/O calling conventions and thus doesn't have to
deal with i_dio_count or the end_io handler, but instead leaves
locking and filesystem-specific I/O completion to the caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This way we can use this helper for the iomap based DAX implementation
as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This way we can use this helper for the iomap based DAX implementation
as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
1/ Replace pcommit with ADR / directed-flushing:
The pcommit instruction, which has not shipped on any product, is
deprecated. Instead, the requirement is that platforms implement either
ADR, or provide one or more flush addresses per nvdimm. ADR
(Asynchronous DRAM Refresh) flushes data in posted write buffers to the
memory controller on a power-fail event. Flush addresses are defined in
ACPI 6.x as an NVDIMM Firmware Interface Table (NFIT) sub-structure:
"Flush Hint Address Structure". A flush hint is an mmio address that
when written and fenced assures that all previous posted writes
targeting a given dimm have been flushed to media.
2/ On-demand ARS (address range scrub):
Linux uses the results of the ACPI ARS commands to track bad blocks
in pmem devices. When latent errors are detected we re-scrub the media
to refresh the bad block list, userspace can also request a re-scrub at
any time.
3/ Support for the Microsoft DSM (device specific method) command format.
4/ Support for EDK2/OVMF virtual disk device memory ranges.
5/ Various fixes and cleanups across the subsystem.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmXBsAAoJEB7SkWpmfYgCEwwP/1IOt9ocP+iHLMDH9KE7VaTZ
NmUDR+Zy6g5cRQM7SgcuU5BXUcx+OsSrSrUTVF1cW994o9Gbz1mFotkv0ZAsPcYY
ZVRQxo2oqHrssyOcg+PsgKWiXn68rJOCgmpEyzaJywl5qTMst7pzsT1s1f7rSh6h
trCf4VaJJwxZR8fARGtlHUnnhPe2Orp99EZRKEWprAsIv2kPuWpPHSjRjuEgN1JG
KW8AYwWqFTtiLRUk86I4KBB0wcDrfctsjgN9Ogd6+aHyQBRnVSr2U+vDCFkC8KLu
qiDCpYp+yyxBjclnljz7tRRT3GtzfCUWd4v2KVWqgg2IaobUc0Lbukp/rmikUXQP
WLikT2OCQ994eFK5OX3Q3cIU/4j459TQnof8q14yVSpjAKrNUXVSR5puN7Hxa+V7
41wKrAsnsyY1oq+Yd/rMR8VfH7PHx3bFkrmRCGZCufLX1UQm4aYj+sWagDKiV3yA
DiudghbOnhfurfGsnXUVw7y7GKs+gNWNBmB6ndAD6ZEHmKoGUhAEbJDLCc3DnANl
b/2mv1MIdIcC1DlCmnbbcn6fv6bICe/r8poK3VrCK3UgOq/EOvKIWl7giP+k1JuC
6DdVYhlNYIVFXUNSLFAwz8OkLu8byx7WDm36iEqrKHtPw+8qa/2bWVgOU6OBgpjV
cN3edFVIdxvZeMgM5Ubq
=xCBG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
- Replace pcommit with ADR / directed-flushing.
The pcommit instruction, which has not shipped on any product, is
deprecated. Instead, the requirement is that platforms implement
either ADR, or provide one or more flush addresses per nvdimm.
ADR (Asynchronous DRAM Refresh) flushes data in posted write buffers
to the memory controller on a power-fail event.
Flush addresses are defined in ACPI 6.x as an NVDIMM Firmware
Interface Table (NFIT) sub-structure: "Flush Hint Address Structure".
A flush hint is an mmio address that when written and fenced assures
that all previous posted writes targeting a given dimm have been
flushed to media.
- On-demand ARS (address range scrub).
Linux uses the results of the ACPI ARS commands to track bad blocks
in pmem devices. When latent errors are detected we re-scrub the
media to refresh the bad block list, userspace can also request a
re-scrub at any time.
- Support for the Microsoft DSM (device specific method) command
format.
- Support for EDK2/OVMF virtual disk device memory ranges.
- Various fixes and cleanups across the subsystem.
* tag 'libnvdimm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (41 commits)
libnvdimm-btt: Delete an unnecessary check before the function call "__nd_device_register"
nfit: do an ARS scrub on hitting a latent media error
nfit: move to nfit/ sub-directory
nfit, libnvdimm: allow an ARS scrub to be triggered on demand
libnvdimm: register nvdimm_bus devices with an nd_bus driver
pmem: clarify a debug print in pmem_clear_poison
x86/insn: remove pcommit
Revert "KVM: x86: add pcommit support"
nfit, tools/testing/nvdimm/: unify shutdown paths
libnvdimm: move ->module to struct nvdimm_bus_descriptor
nfit: cleanup acpi_nfit_init calling convention
nfit: fix _FIT evaluation memory leak + use after free
tools/testing/nvdimm: add manufacturing_{date|location} dimm properties
tools/testing/nvdimm: add virtual ramdisk range
acpi, nfit: treat virtual ramdisk SPA as pmem region
pmem: kill __pmem address space
pmem: kill wmb_pmem()
libnvdimm, pmem: use nvdimm_flush() for namespace I/O writes
fs/dax: remove wmb_pmem()
libnvdimm, pmem: flush posted-write queues on shutdown
...
Remove the unused wrappers dax_fault() and dax_pmd_fault(). After this
removal, rename __dax_fault() and __dax_pmd_fault() to dax_fault() and
dax_pmd_fault() respectively, and update all callers.
The dax_fault() and dax_pmd_fault() wrappers were initially intended to
capture some filesystem independent functionality around page faults
(calling sb_start_pagefault() & sb_end_pagefault(), updating file mtime
and ctime).
However, the following commits:
5726b27b09 ("ext2: Add locking for DAX faults")
ea3d7209ca ("ext4: fix races between page faults and hole punching")
added locking to the ext2 and ext4 filesystems after these common
operations but before __dax_fault() and __dax_pmd_fault() were called.
This means that these wrappers are no longer used, and are unlikely to
be used in the future.
XFS has had locking analogous to what was recently added to ext2 and
ext4 since DAX support was initially introduced by:
6b698edeee ("xfs: add DAX file operations support")
Link: http://lkml.kernel.org/r/20160714214049.20075-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __pmem address space was meant to annotate codepaths that touch
persistent memory and need to coordinate a call to wmb_pmem(). Now that
wmb_pmem() is gone, there is little need to keep this annotation.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Flushing posted-write queues is now deferred to REQ_FLUSH context, or
otherwise handled by an ADR event at the platform level.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This isn't functionally apparent for some reason, but
when we test io at extreme offsets at the end of the loff_t
rang, such as in fstests xfs/071, the calculation of
"max" in dax_io() can be wrong due to pos + size overflowing.
For example,
# xfs_io -c "pwrite 9223372036854771712 512" /mnt/test/file
enters dax_io with:
start 0x7ffffffffffff000
end 0x7ffffffffffff200
and the rounded up "size" variable is 0x1000. This yields:
pos + size 0x8000000000000000 (overflows loff_t)
end 0x7ffffffffffff200
Due to the overflow, the min() function picks the wrong
value for the "max" variable, and when we send (max - pos)
into i.e. copy_from_iter_pmem() it is also the wrong value.
This somehow(tm) gets magically absorbed without incident,
probably because iter->count is correct. But it seems best
to fix it up properly by comparing the two values as
unsigned.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
- We use a bit in an exceptional radix tree entry as a lock bit and use it
similarly to how page lock is used for normal faults. This fixes races
between hole instantiation and read faults of the same index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when PMD
locking is implemented.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXRKwLAAoJEJ/BjXdf9fLB+BkP/3HBm05KlAKDklvnBIPFDMUK
hA7g2K6vuvaEDZXZQ1ioc1Ajf1sCpVip7shXJsojZqwWmRz0/4nneF7ytluW9AjS
dBX+0qCgKGH1fnwyGFF+MN7fuj7kGrSDz34lG0OObRN6/oKiVNb2svXiYKkT6J6C
AgsWlWRUpMy9jrn1u/FduMjDhk92Z3ojarexuicr0i8NUlBClCIrdCEmUMi4orSB
DuiIjestLOc7+mERBUwrXkzoh9v8Z0FpIgnDLWwpeEkAvJwWkGe5eXrBJwF+hEbi
RYfTrOYc7bBQLo22LRb8pdighjrx3OW9EpNCfEmLDOjM3cYBbMK/d2i/ww52H6IK
Mw6iS5rXdGgJtQIGL8N96HLFk+cDyZ8J8xNUCwbYYBJqgpMzxzVkL3vTm72tyFnl
InWhih+miCMbBPytQSRd6+1wZG2piJTv6SsFTd5K1OaiRmJhBJZG47t2QTBRBu7Y
5A4FGPtlraV+iDJvD6VLO1Tp8twxdLluOJ2BwdGeiKXiGh6LP+FGGFF3aFa5N4Ro
xSslCTX7Q1G66zXQwD4+IMWLwS1FDNymPkUSsF6RQo6qfAnl9SrmYTc4xJ4QXy92
sUdrWEz2OBTfxKNqbGyc/KrXKZT3RnEkJNft8snB2h6WTCdOPaNYs/yETUwiwkSc
CXpuQFrxm69QYwNsqVu1
=Pkd0
-----END PGP SIGNATURE-----
Merge tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull DAX locking updates from Ross Zwisler:
"Filesystem DAX locking for 4.7
- We use a bit in an exceptional radix tree entry as a lock bit and
use it similarly to how page lock is used for normal faults. This
fixes races between hole instantiation and read faults of the same
index.
- Filesystem DAX PMD faults are disabled, and will be re-enabled when
PMD locking is implemented"
* tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: Remove i_mmap_lock protection
dax: Use radix tree entry lock to protect cow faults
dax: New fault locking
dax: Allow DAX code to replace exceptional entries
dax: Define DAX lock bit for radix tree exceptional entry
dax: Make huge page handling depend of CONFIG_BROKEN
dax: Fix condition for filling of PMD holes
- Until now, dax has been disabled if media errors were found on
any device. This enables the use of DAX in the presence of these
errors by making all sector-aligned zeroing go through the driver.
- The driver (already) has the ability to clear errors on writes that
are sent through the block layer using 'DSMs' defined in ACPI 6.1.
Other misc changes:
- When mounting DAX filesystems, check to make sure the partition
is page aligned. This is a requirement for DAX, and previously, we
allowed such unaligned mounts to succeed, but subsequent reads/writes
would fail.
- Misc/cleanup fixes from Jan that remove unused code from DAX related to
zeroing, writeback, and some size checks.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXQ4GKAAoJEHr6Yb6juE3/zowP/iclIhgXXXMQJRUHJlePMXC8
15sGZ32JS1ak9g7vrsmNVEDNynfNtiMYdBxtUyRuj6xqgwdZvFk3F55KOCPtaeA1
+yADkgeRkTAcwzmHw9WQVEzBCqyzSisdrwtEfH817qdq9FJdH66x2Kos6i+HeAVr
5Q/e4gs7lKrjf384/QBl+wxNZOndJaQAPd2VRHQqx2A9F33v0ljdwRaUG1r4fjK2
dtmhcZCqdQyuAGXW3piTnZc5ZFc3DPqO4FkEfqkEK3lFOflK0fd8wMsAZRp/Jd0j
GJsgnVSWSqG0Dz476djlG0w8t2p5Jv1g9cKChV+ZZEdFLKWHCOUFqXNj8uI8I4k5
cOEKCHyJ3IwfSHhNQqktEWrQN4T8ZXhWtuc9GuV4UZYuqJqHci6EdR/YsWsJjV+L
lm/qvK4ipDS1pivxOy8KX/iN0z7Io8J9GXpStDx3g8iWjLlh4YYlbJLWeeRepo/z
aPlV/QAKcHiGY6jzLExrZIyCWkzwo6O+0p1Kxerv9/7K/32HWbOodZ+tC8eD+N25
pV69nCGf+u50T2TtIx1+iann4NC1r7zg5yqnT9AgpyZpiwR5joCDzI5sXW+D0rcS
vPtfM84Ccdeq/e6mvfIpZgR0/npQapKnrmUest0J7P2BFPHiFPji1KzZ7M+1aFOo
9R6JdrAj0Sc+FBa+cGzH
=v6Of
-----END PGP SIGNATURE-----
Merge tag 'dax-misc-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull misc DAX updates from Vishal Verma:
"DAX error handling for 4.7
- Until now, dax has been disabled if media errors were found on any
device. This enables the use of DAX in the presence of these
errors by making all sector-aligned zeroing go through the driver.
- The driver (already) has the ability to clear errors on writes that
are sent through the block layer using 'DSMs' defined in ACPI 6.1.
Other misc changes:
- When mounting DAX filesystems, check to make sure the partition is
page aligned. This is a requirement for DAX, and previously, we
allowed such unaligned mounts to succeed, but subsequent
reads/writes would fail.
- Misc/cleanup fixes from Jan that remove unused code from DAX
related to zeroing, writeback, and some size checks"
* tag 'dax-misc-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: fix a comment in dax_zero_page_range and dax_truncate_page
dax: for truncate/hole-punch, do zeroing through the driver if possible
dax: export a low-level __dax_zero_page_range helper
dax: use sb_issue_zerout instead of calling dax_clear_sectors
dax: enable dax in the presence of known media errors (badblocks)
dax: fallback from pmd to pte on error
block: Update blkdev_dax_capable() for consistency
xfs: Add alignment check for DAX mount
ext2: Add alignment check for DAX mount
ext4: Add alignment check for DAX mount
block: Add bdev_dax_supported() for dax mount checks
block: Add vfs_msg() interface
dax: Remove redundant inode size checks
dax: Remove pointless writeback from dax_do_io()
dax: Remove zeroing from dax_io()
dax: Remove dead zeroing code from fault handlers
ext2: Avoid DAX zeroing to corrupt data
ext2: Fix block zeroing in ext2_get_blocks() for DAX
dax: Remove complete_unwritten argument
DAX: move RADIX_DAX_ definitions to dax.c
after a crash and a potential BUG_ON crash if a file has the data
journalling flag enabled while it has dirty delayed allocation blocks
that haven't been written yet. Also fix a potential crash in the new
project quota code and a maliciously corrupted file system.
In addition, fix some DAX-specific bugs, including when there is a
transient ENOSPC situation and races between writes via direct I/O and
an mmap'ed segment that could lead to lost I/O.
Finally the usual set of miscellaneous cleanups.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJXQ40fAAoJEPL5WVaVDYGjnwMH+wXHASgPfzZgtRInsTG8W/2L
jsmAcMlyMAYIATWMppNtPIq0td49z1dYO0YkKhtPVMwfzu230IFWhGWp93WqP9ve
XYHMmaBorFlMAzWgMKn1K0ExWZlV+ammmcTKgU0kU4qyZp0G/NnMtlXIkSNv2amI
9Mn6R+v97c20gn8e9HWP/IVWkgPr+WBtEXaSGjC7dL6yI8hL+rJMqN82D76oU5ea
vtwzrna/ISijy+etYmQzqHNYNaBKf40+B5HxQZw/Ta3FSHofBwXAyLaeEAr260Mf
V3Eg2NDcKQxiZ3adBzIUvrRnrJV381OmHoguo8Frs8YHTTRiZ0T/s7FGr2Q0NYE=
=7yIM
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"Fix a number of bugs, most notably a potential stale data exposure
after a crash and a potential BUG_ON crash if a file has the data
journalling flag enabled while it has dirty delayed allocation blocks
that haven't been written yet. Also fix a potential crash in the new
project quota code and a maliciously corrupted file system.
In addition, fix some DAX-specific bugs, including when there is a
transient ENOSPC situation and races between writes via direct I/O and
an mmap'ed segment that could lead to lost I/O.
Finally the usual set of miscellaneous cleanups"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (23 commits)
ext4: pre-zero allocated blocks for DAX IO
ext4: refactor direct IO code
ext4: fix race in transient ENOSPC detection
ext4: handle transient ENOSPC properly for DAX
dax: call get_blocks() with create == 1 for write faults to unwritten extents
ext4: remove unmeetable inconsisteny check from ext4_find_extent()
jbd2: remove excess descriptions for handle_s
ext4: remove unnecessary bio get/put
ext4: silence UBSAN in ext4_mb_init()
ext4: address UBSAN warning in mb_find_order_for_block()
ext4: fix oops on corrupted filesystem
ext4: fix check of dqget() return value in ext4_ioctl_setproject()
ext4: clean up error handling when orphan list is corrupted
ext4: fix hang when processing corrupted orphaned inode list
ext4: remove trailing \n from ext4_warning/ext4_error calls
ext4: fix races between changing inode journal mode and ext4_writepages
ext4: handle unwritten or delalloc buffers before enabling data journaling
ext4: fix jbd2 handle extension in ext4_ext_truncate_extend_restart()
ext4: do not ask jbd2 to write data for delalloc buffers
jbd2: add support for avoiding data writes during transaction commits
...
These don't belong in radix-tree.h any more than PAGECACHE_TAG_* do.
Let's try to maintain the idea that radix-tree simply implements an
abstract data type.
Signed-off-by: NeilBrown <neilb@suse.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently faults are protected against truncate by filesystem specific
i_mmap_sem and page lock in case of hole page. Cow faults are protected
DAX radix tree entry locking. So there's no need for i_mmap_lock in DAX
code. Remove it.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
When doing cow faults, we cannot directly fill in PTE as we do for other
faults as we rely on generic code to do proper accounting of the cowed page.
We also have no page to lock to protect against races with truncate as
other faults have and we need the protection to extend until the moment
generic code inserts cowed page into PTE thus at that point we have no
protection of fs-specific i_mmap_sem. So far we relied on using
i_mmap_lock for the protection however that is completely special to cow
faults. To make fault locking more uniform use DAX entry lock instead.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Currently DAX page fault locking is racy.
CPU0 (write fault) CPU1 (read fault)
__dax_fault() __dax_fault()
get_block(inode, block, &bh, 0) -> not mapped
get_block(inode, block, &bh, 0)
-> not mapped
if (!buffer_mapped(&bh))
if (vmf->flags & FAULT_FLAG_WRITE)
get_block(inode, block, &bh, 1) -> allocates blocks
if (page) -> no
if (!buffer_mapped(&bh))
if (vmf->flags & FAULT_FLAG_WRITE) {
} else {
dax_load_hole();
}
dax_insert_mapping()
And we are in a situation where we fail in dax_radix_entry() with -EIO.
Another problem with the current DAX page fault locking is that there is
no race-free way to clear dirty tag in the radix tree. We can always
end up with clean radix tree and dirty data in CPU cache.
We fix the first problem by introducing locking of exceptional radix
tree entries in DAX mappings acting very similarly to page lock and thus
synchronizing properly faults against the same mapping index. The same
lock can later be used to avoid races when clearing radix tree dirty
tag.
Reviewed-by: NeilBrown <neilb@suse.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
We will use lowest available bit in the radix tree exceptional entry for
locking of the entry. Define it. Also clean up definitions of DAX entry
type bits in DAX exceptional entries to use defined constants instead of
hardcoding numbers and cleanup checking of these bits to not rely on how
other bits in the entry are set.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Currently the handling of huge pages for DAX is racy. For example the
following can happen:
CPU0 (THP write fault) CPU1 (normal read fault)
__dax_pmd_fault() __dax_fault()
get_block(inode, block, &bh, 0) -> not mapped
get_block(inode, block, &bh, 0)
-> not mapped
if (!buffer_mapped(&bh) && write)
get_block(inode, block, &bh, 1) -> allocates blocks
truncate_pagecache_range(inode, lstart, lend);
dax_load_hole();
This results in data corruption since process on CPU1 won't see changes
into the file done by CPU0.
The race can happen even if two normal faults race however with THP the
situation is even worse because the two faults don't operate on the same
entries in the radix tree and we want to use these entries for
serialization. So make THP support in DAX code depend on CONFIG_BROKEN
for now.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Currently dax_pmd_fault() decides to fill a PMD-sized hole only if
returned buffer has BH_Uptodate set. However that doesn't get set for
any mapping buffer so that branch is actually a dead code. The
BH_Uptodate check doesn't make any sense so just remove it.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
The distinction between PAGE_SIZE and PAGE_CACHE_SIZE was removed in
09cbfea mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release}
macros
The comments for the above functions described a distinction between
those, that is now redundant, so remove those paragraphs
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
In the truncate or hole-punch path in dax, we clear out sub-page ranges.
If these sub-page ranges are sector aligned and sized, we can do the
zeroing through the driver instead so that error-clearing is handled
automatically.
For sub-sector ranges, we still have to rely on clear_pmem and have the
possibility of tripping over errors.
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
This allows XFS to perform zeroing using the iomap infrastructure and
avoid buffer heads.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[vishal: fix conflicts with dax-error-handling]
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
dax_clear_sectors() cannot handle poisoned blocks. These must be
zeroed using the BIO interface instead. Convert ext2 and XFS to use
only sb_issue_zerout().
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
[vishal: Also remove the dax_clear_sectors function entirely]
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
In preparation for consulting a badblocks list in pmem_direct_access(),
teach dax_pmd_fault() to fallback rather than fail immediately upon
encountering an error. The thought being that reducing the span of the
dax request may avoid the error region.
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Callers of dax fault handlers must make sure these calls cannot race
with truncate. Thus it is enough to check inode size when entering the
function and we don't have to recheck it again later in the handler.
Note that inode size itself can be decreased while the fault handler
runs but filesystem locking prevents against any radix tree or block
mapping information changes resulting from the truncate and that is what
we really care about.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
dax_do_io() is calling filemap_write_and_wait() if DIO_LOCKING flags is
set. Presumably this was copied over from direct IO code. However DAX
inodes have no pagecache pages to write so the call is pointless. Remove
it.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
All the filesystems are now zeroing blocks themselves for DAX IO to avoid
races between dax_io() and dax_fault(). Remove the zeroing code from
dax_io() and add warning to catch the case when somebody unexpectedly
returns new or unwritten buffer.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Now that all filesystems zero out blocks allocated for a fault handler,
we can just remove the zeroing from the handler itself. Also add checks
that no filesystem returns to us unwritten or new buffer.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Fault handlers currently take complete_unwritten argument to convert
unwritten extents after PTEs are updated. However no filesystem uses
this anymore as the code is racy. Remove the unused argument.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
These don't belong in radix-tree.c any more than PAGECACHE_TAG_* do.
Let's try to maintain the idea that radix-tree simply implements an
abstract data type.
Acked-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Currently, __dax_fault() does not call get_blocks() callback with create
argument set, when we got back unwritten extent from the initial
get_blocks() call during a write fault. This is because originally
filesystems were supposed to convert unwritten extents to written ones
using complete_unwritten() callback. Later this was abandoned in favor of
using pre-zeroed blocks however the condition whether get_blocks() needs
to be called with create == 1 remained.
Fix the condition so that filesystems are not forced to zero-out and
convert unwritten extents when get_blocks() is called with create == 0
(which introduces unnecessary overhead for read faults and can be
problematic as the filesystem may possibly be read-only).
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Including blkdev_direct_IO and dax_do_io. It has to be ki_pos to actually
work, so eliminate the superflous argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Mostly direct substitution with occasional adjustment or removing
outdated comments.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change summary:
o error propagation for direct IO failures fixes for both XFS and ext4
o new quota interfaces and XFS implementation for iterating all the quota IDs
in the filesystem
o locking fixes for real-time device extent allocation
o reduction of duplicate information in the xfs and vfs inode, saving roughly
100 bytes of memory per cached inode.
o buffer flag cleanup
o rework of the writepage code to use the generic write clustering mechanisms
o several fixes for inode flag based DAX enablement
o rework of remount option parsing
o compile time verification of on-disk format structure sizes
o delayed allocation reservation overrun fixes
o lots of little error handling fixes
o small memory leak fixes
o enable xfsaild freezing again
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW71DQAAoJEK3oKUf0dfodyiwP/0Tou9f1huzLC0kd7kmEoKKC
BWQmtJGEdo0iSpJNZhg/EJmjvRtbBiOB9CRcEyG8d71kqZ+MKW7t/4JjNvNG34aE
vHjhwMBVVqkw/q6azi2LiEDsVcOe5bXxUrXNZi18/09OAl4pHm+X8VERLnnC5y+i
QIHAOdB5R+36cXcceJm1HR6jTZedbNdQkT/ndhm5S60FGhvVI29cs9NwYwoi5aif
O55r6krSWBj6U/X6MsLvr+lNb6+1Sd1hyE8dGTE7lOUX/crFIysaDPEuQmWvDjsO
M1ulVfzKoBJHcyvpbdHwdBEyiBjzvETcrgndMRoWOjZiOLqNtWYsgIEiC+Nlidwd
+T4XhkJJJg5UUQ4r6Hs85SQn/THanzR5KoN5nbTsFtFkCKw1DRkUSNuh2mXP2xVG
JcNDCjDvvHG76EfQ1otlYf7ru79Ck+hjVs+szaEVPpOzAwz8yOtD+L7I8f73gQ6a
ayP8W2oZQpYvQRv+smgvt+HwQA4fNJk9ZseY3QD5+z5snJz7JEhZogqW+ngFYkNQ
dtA5Y7gpTkKfo3mKO0XmE5+3fcSXhGHGYQzmUgJFlgWTK7+E8fuDhn6D66wFcZSq
QhyRk9J7Xb7ZWuP5PlOkxb9DLd4hnuyie2bYw/0hVtOatjE/Em4gRJ3Oq3ZANwZx
OeMGj4Uyb3/MKAJwy3Gq
=ZoiX
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There's quite a lot in this request, and there's some cross-over with
ext4, dax and quota code due to the nature of the changes being made.
As for the rest of the XFS changes, there are lots of little things
all over the place, which add up to a lot of changes in the end.
The major changes are that we've reduced the size of the struct
xfs_inode by ~100 bytes (gives an inode cache footprint reduction of
>10%), the writepage code now only does a single set of mapping tree
lockups so uses less CPU, delayed allocation reservations won't
overrun under random write loads anymore, and we added compile time
verification for on-disk structure sizes so we find out when a commit
or platform/compiler change breaks the on disk structure as early as
possible.
Change summary:
- error propagation for direct IO failures fixes for both XFS and
ext4
- new quota interfaces and XFS implementation for iterating all the
quota IDs in the filesystem
- locking fixes for real-time device extent allocation
- reduction of duplicate information in the xfs and vfs inode, saving
roughly 100 bytes of memory per cached inode.
- buffer flag cleanup
- rework of the writepage code to use the generic write clustering
mechanisms
- several fixes for inode flag based DAX enablement
- rework of remount option parsing
- compile time verification of on-disk format structure sizes
- delayed allocation reservation overrun fixes
- lots of little error handling fixes
- small memory leak fixes
- enable xfsaild freezing again"
* tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (66 commits)
xfs: always set rvalp in xfs_dir2_node_trim_free
xfs: ensure committed is initialized in xfs_trans_roll
xfs: borrow indirect blocks from freed extent when available
xfs: refactor delalloc indlen reservation split into helper
xfs: update freeblocks counter after extent deletion
xfs: debug mode forced buffered write failure
xfs: remove impossible condition
xfs: check sizes of XFS on-disk structures at compile time
xfs: ioends require logically contiguous file offsets
xfs: use named array initializers for log item dumping
xfs: fix computation of inode btree maxlevels
xfs: reinitialise per-AG structures if geometry changes during recovery
xfs: remove xfs_trans_get_block_res
xfs: fix up inode32/64 (re)mount handling
xfs: fix format specifier , should be %llx and not %llu
xfs: sanitize remount options
xfs: convert mount option parsing to tokens
xfs: fix two memory leaks in xfs_attr_list.c error paths
xfs: XFS_DIFLAG2_DAX limited by PAGE_SIZE
xfs: dynamically switch modes when XFS_DIFLAG2_DAX is set/cleared
...
dax_pfn_mkwrite() previously wasn't checking the return value of the
call to dax_radix_entry(), which was a mistake.
Instead, capture this return value and return the appropriate VM_FAULT_
value.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously calls to dax_writeback_mapping_range() for all DAX filesystems
(ext2, ext4 & xfs) were centralized in filemap_write_and_wait_range().
dax_writeback_mapping_range() needs a struct block_device, and it used
to get that from inode->i_sb->s_bdev. This is correct for normal inodes
mounted on ext2, ext4 and XFS filesystems, but is incorrect for DAX raw
block devices and for XFS real-time files.
Instead, call dax_writeback_mapping_range() directly from the filesystem
->writepages function so that it can supply us with a valid block
device. This also fixes DAX code to properly flush caches in response
to sync(2).
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dax_clear_blocks() needs a valid struct block_device and previously it
was using inode->i_sb->s_bdev in all cases. This is correct for normal
inodes on mounted ext2, ext4 and XFS filesystems, but is incorrect for
DAX raw block devices and for XFS real-time devices.
Instead, rename dax_clear_blocks() to dax_clear_sectors(), and change
its arguments to take a bdev and a sector instead of an inode and a
block. This better reflects what the function does, and it allows the
filesystem and raw block device code to pass in an appropriate struct
block_device.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This way we can pass back errors to the file system, and allow for
cleanup required for all direct I/O invocations.
Also allow the ->end_io handlers to return errors on their own, so that
I/O completion errors can be passed on to the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Avoid populating pagecache when the block device is in DAX mode.
Otherwise these page cache entries collide with the fsync/msync
implementation and break data durability guarantees.
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull final vfs updates from Al Viro:
- The ->i_mutex wrappers (with small prereq in lustre)
- a fix for too early freeing of symlink bodies on shmem (they need to
be RCU-delayed) (-stable fodder)
- followup to dedupe stuff merged this cycle
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: abort dedupe loop if fatal signals are pending
make sure that freeing shmem fast symlinks is RCU-delayed
wrappers for ->i_mutex access
lustre: remove unused declaration
Previously in DAX we assumed that calls to get_block() would set
bh.b_bdev, and we would then use that value even in error cases for
debugging. This caused a NULL pointer dereference in __dax_dbg() which
was fixed by a previous commit, but that commit only changed the one
place where we were hitting an error.
Instead, update dax.c so that we always initialize bh.b_bdev as best we
can based on the information that DAX has. get_block() may or may not
update to a new value, but this at least lets us get something helpful
from bh.b_bdev for error messages and not have to worry about whether it
was set by get_block() or not.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To properly handle fsync/msync in an efficient way DAX needs to track
dirty pages so it is able to flush them durably to media on demand.
The tracking of dirty pages is done via the radix tree in struct
address_space. This radix tree is already used by the page writeback
infrastructure for tracking dirty pages associated with an open file,
and it already has support for exceptional (non struct page*) entries.
We build upon these features to add exceptional entries to the radix
tree for DAX dirty PMD or PTE pages at fault time.
[dan.j.williams@intel.com: fix dax_pmd_dbg build warning]
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we get a DAX PMD fault for a write it is possible that there could
be some number of 4k zero pages already present for the same range that
were inserted to service reads from a hole. These 4k zero pages need to
be unmapped from the VMAs and removed from the struct address_space
radix tree before the real DAX PMD entry can be inserted.
For PTE faults this same use case also exists and is handled by a
combination of unmap_mapping_range() to unmap the VMAs and
delete_from_page_cache() to remove the page from the address_space radix
tree.
For PMD faults we do have a call to unmap_mapping_range() (protected by
a buffer_new() check), but nothing clears out the radix tree entry. The
buffer_new() check is also incorrect as the current ext4 and XFS
filesystem code will never return a buffer_head with BH_New set, even
when allocating new blocks over a hole. Instead the filesystem will
zero the blocks manually and return a buffer_head with only BH_Mapped
set.
Fix this situation by removing the buffer_new() check and adding a call
to truncate_inode_pages_range() to clear out the radix tree entries
before we insert the DAX PMD.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __dax_pmd_fault() we currently assume that get_block() will always
set bh.b_bdev and we unconditionally dereference it in __dax_dbg().
This assumption isn't always true - when called for reads of holes
ext4_dax_mmap_get_block() returns a buffer head where bh->b_bdev is
never set. I hit this BUG while testing the DAX PMD fault path.
Instead, initialize bh.b_bdev before passing bh into get_block(). It is
possible that the filesystem's get_block() will update bh.b_bdev, and
this is fine - we just want to initialize bh.b_bdev to something
reasonable so that the calls to __dax_dbg() work and print something
useful.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that the get_user_pages() path knows how to handle dax-pmd mappings,
remove the protections that disabled dax-pmd support.
Tests available from github.com/pmem/ndctl:
make TESTS="lib/test-dax.sh lib/test-mmap.sh" check
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a wide gamut of conditions that can trigger the dax pmd path to
fallback to pte mappings. Ideally we'd have a syscall interface to
determine mapping characteristics after the fact. In the meantime
provide debug messages.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Suggested-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the conversion of vm_insert_mixed() use pfn_t in the
vmf_insert_pfn_pmd() to tag the resulting pte with _PAGE_DEVICE when the
pfn is backed by a devm_memremap_pages() mapping.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert the raw unsigned long 'pfn' argument to pfn_t for the purpose of
evaluating the PFN_MAP and PFN_DEV flags. When both are set it triggers
_PAGE_DEVMAP to be set in the resulting pte.
There are no functional changes to the gpu drivers as a result of this
conversion.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the purpose of communicating the optional presence of a 'struct
page' for the pfn returned from ->direct_access(), introduce a type that
encapsulates a page-frame-number plus flags. These flags contain the
historical "page_link" encoding for a scatterlist entry, but can also
denote "device memory". Where "device memory" is a set of pfns that are
not part of the kernel's linear mapping by default, but are accessed via
the same memory controller as ram.
The motivation for this new type is large capacity persistent memory
that needs struct page entries in the 'memmap' to support 3rd party DMA
(i.e. O_DIRECT I/O with a persistent memory source/target). However,
we also need it in support of maintaining a list of mapped inodes which
need to be unmapped at driver teardown or freeze_bdev() time.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave@sr71.net>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An infinite loop of PMD faults was observed when attempted to mlock() a
private read-only PMD mmap'd range of a DAX file.
__dax_pmd_fault() simply returns with VM_FAULT_FALLBACK when falling
back to PTE on COW. However, __handle_mm_fault() returns without
falling back to handle_pte_fault() because a PMD map is present in this
case.
Change __dax_pmd_fault() to split the PMD map, if present, before
returning with VM_FAULT_FALLBACK.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The DAX implementation needs to protect new calls to ->direct_access()
and usage of its return value against the driver for the underlying
block device being disabled. Use blk_queue_enter()/blk_queue_exit() to
hold off blk_cleanup_queue() from proceeding, or otherwise fail new
mapping requests if the request_queue is being torn down.
This also introduces blk_dax_ctl to simplify the interface from fs/dax.c
through dax_map_atomic() to bdev_direct_access().
[willy@linux.intel.com: fix read() of a hole]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a ->direct_access() implementation ever returns a map count less than
PAGE_SIZE, catch the error in bdev_direct_access(). This simplifies
error checking in upper layers.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dax_clear_blocks is currently performing a cond_resched() after every
PAGE_SIZE memset. We need not check so frequently, for example md-raid
only calls cond_resched() at stripe granularity. Also, in preparation
for introducing a dax_map_atomic() operation that temporarily pins a dax
mapping move the call to cond_resched() to the outer loop.
The worst case latency between calls to cond_resched() after this change
is 500us the average latency is 133us. This is up from a 10us max and
4us average.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To date, we have implemented two I/O usage models for persistent memory,
PMEM (a persistent "ram disk") and DAX (mmap persistent memory into
userspace). This series adds a third, DAX-GUP, that allows DAX mappings
to be the target of direct-i/o. It allows userspace to coordinate
DMA/RDMA from/to persistent memory.
The implementation leverages the ZONE_DEVICE mm-zone that went into
4.3-rc1 (also discussed at kernel summit) to flag pages that are owned
and dynamically mapped by a device driver. The pmem driver, after
mapping a persistent memory range into the system memmap via
devm_memremap_pages(), arranges for DAX to distinguish pfn-only versus
page-backed pmem-pfns via flags in the new pfn_t type.
The DAX code, upon seeing a PFN_DEV+PFN_MAP flagged pfn, flags the
resulting pte(s) inserted into the process page tables with a new
_PAGE_DEVMAP flag. Later, when get_user_pages() is walking ptes it keys
off _PAGE_DEVMAP to pin the device hosting the page range active.
Finally, get_page() and put_page() are modified to take references
against the device driver established page mapping.
Finally, this need for "struct page" for persistent memory requires
memory capacity to store the memmap array. Given the memmap array for a
large pool of persistent may exhaust available DRAM introduce a
mechanism to allocate the memmap from persistent memory. The new
"struct vmem_altmap *" parameter to devm_memremap_pages() enables
arch_add_memory() to use reserved pmem capacity rather than the page
allocator.
This patch (of 25):
Both __dax_pmd_fault, and clear_pmem() were taking special steps to
clear memory a page at a time to take advantage of non-temporal
clear_page() implementations. However, x86_64 does not use non-temporal
instructions for clear_page(), and arch_clear_pmem() was always
incurring the cost of __arch_wb_cache_pmem().
Clean up the assumption that doing clear_pmem() a page at a time is more
performant.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While dax pmd mappings are functional in the nominal path they trigger
kernel crashes in the following paths:
BUG: unable to handle kernel paging request at ffffea0004098000
IP: [<ffffffff812362f7>] follow_trans_huge_pmd+0x117/0x3b0
[..]
Call Trace:
[<ffffffff811f6573>] follow_page_mask+0x2d3/0x380
[<ffffffff811f6708>] __get_user_pages+0xe8/0x6f0
[<ffffffff811f7045>] get_user_pages_unlocked+0x165/0x1e0
[<ffffffff8106f5b1>] get_user_pages_fast+0xa1/0x1b0
kernel BUG at arch/x86/mm/gup.c:131!
[..]
Call Trace:
[<ffffffff8106f34c>] gup_pud_range+0x1bc/0x220
[<ffffffff8106f634>] get_user_pages_fast+0x124/0x1b0
BUG: unable to handle kernel paging request at ffffea0004088000
IP: [<ffffffff81235f49>] copy_huge_pmd+0x159/0x350
[..]
Call Trace:
[<ffffffff811fad3c>] copy_page_range+0x34c/0x9f0
[<ffffffff810a0daf>] copy_process+0x1b7f/0x1e10
[<ffffffff810a11c1>] _do_fork+0x91/0x590
All of these paths are interpreting a dax pmd mapping as a transparent
huge page and making the assumption that the pfn is covered by the
memmap, i.e. that the pfn has an associated struct page. PTE mappings
do not suffer the same fate since they have the _PAGE_SPECIAL flag to
cause the gup path to fault. We can do something similar for the PMD
path, or otherwise defer pmd support for cases where a struct page is
available. For now, 4.4-rc and -stable need to disable dax pmd support
by default.
For development the "depends on BROKEN" line can be removed from
CONFIG_FS_DAX_PMD.
Cc: <stable@vger.kernel.org>
Cc: Jan Kara <jack@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull libnvdimm fixes from Dan Williams:
- three fixes tagged for -stable including a crash fix, simple
performance tweak, and an invalid i/o error.
- build regression fix for the nvdimm unit tests
- nvdimm documentation update
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: fix __dax_pmd_fault crash
libnvdimm: documentation clarifications
libnvdimm, pmem: fix size trim in pmem_direct_access()
libnvdimm, e820: fix numa node for e820-type-12 pmem ranges
tools/testing/nvdimm, acpica: fix flag rename build breakage
Since 4.3 introduced devm_memremap_pages() the pfns handled by DAX may
optionally have a struct page backing. When a mapped pfn reaches
vmf_insert_pfn_pmd() it fails with a crash signature like the following:
kernel BUG at mm/huge_memory.c:905!
[..]
Call Trace:
[<ffffffff812a73ba>] __dax_pmd_fault+0x2ea/0x5b0
[<ffffffffa01a4182>] xfs_filemap_pmd_fault+0x92/0x150 [xfs]
[<ffffffff811fbe02>] handle_mm_fault+0x312/0x1b50
Fix this by falling back to 4K mappings in the pfn_valid() case. Longer
term, vmf_insert_pfn_pmd() needs to grow support for architectures that
can provide a 'pmd_special' capability.
Cc: <stable@vger.kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull misc block fixes from Jens Axboe:
"Stuff that got collected after the merge window opened. This
contains:
- NVMe:
- Fix for non-striped transfer size setting for NVMe from
Sathyavathi.
- (Some) support for the weird Apple nvme controller in the
macbooks. From Stephan Günther.
- The error value leak for dax from Al.
- A few minor blk-mq tweaks from me.
- Add the new linux-block@vger.kernel.org mailing list to the
MAINTAINERS file.
- Discard fix for brd, from Jan.
- A kerneldoc warning for block core from Randy.
- An older fix from Vivek, converting a WARN_ON() to a rate limited
printk when a device is hot removed with dirty inodes"
* 'for-linus' of git://git.kernel.dk/linux-block:
block: don't hardcode blk_qc_t -> tag mask
dax_io(): don't let non-error value escape via retval instead of EFAULT
block: fix blk-core.c kernel-doc warning
fs/block_dev.c: Remove WARN_ON() when inode writeback fails
NVMe: add support for Apple NVMe controller
NVMe: use split lo_hi_{read,write}q
blk-mq: mark __blk_mq_complete_request() static
MAINTAINERS: add reference to new linux-block list
NVMe: Increase the max transfer size when mdts is 0
brd: Refuse improperly aligned discard requests
This update contains:
o per-mount operational statistics in sysfs
o fixes for concurrent aio append write submission
o various logging fixes
o detection of zeroed logs and invalid log sequence numbers on v5 filesystems
o memory allocation failure message improvements
o a bunch of xattr/ACL fixes
o fdatasync optimisation
o miscellaneous other fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJWQ7GzAAoJEK3oKUf0dfodJakP/3s3N5ngqRWa+PQwBQPdTO0r
MBQppSKXWdT7YLhiFt1ZRlvXiMQOIZPNx0yBS9mzQghL9sTGvcPdxjbQnNh6LUnE
fGC2Yzi/J8lM2M80ezk3JoFqdqAQ/U78ARA/VpZct4imrps/h+s2Klkx87xPJsiK
/wY56FXFtoUS1ADYhL8qCeiAGOFpyIttiDNOVW3O2ZXn4iJUsa2nLCoiFwF/yFvU
S85iUJWAsvVSW5WgfUufmodC4u+WOT+9isNRxEmBjpxYYAFrFb5+8DYY3Coh6z0V
HqYPhpzBOG9gXbAue5v+ccsp2w60atXIFUQkR2HFBblvxsDMkvsgycJWJgDNmJiw
RYDMBJ26epxUdTScUxijKiGfnnbZW5b+uzp6FvVsE4KPdP62ol7YNqxj8/FFIjQN
JBl2ooiczOgvhCdvdWmWNEGWHccBcJ8UJ2RzJ0owVIIJZZYwjkZNzeSieWzYc7tr
b9wBC4wnaYAK/V7aEGLJxMXVjkanrqAnaXf5ymICSFv8me/qAfZ2sLcY2P6SHuhO
Fmkj6R5Thh1SYxk3thgGFZg7LGuxJW9cmypvFGpKhIvEaNGIM6ScdIwO7kCHYWv7
3EkP42mmJLIYxKz/q2nHqt7R246YFraIRowLWptJUl32uyzO7SrdKbc8+o5WD4Wl
2byjE9TjXOa1jGuPa3kN
=zu+5
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There is nothing really major here - the only significant addition is
the per-mount operation statistics infrastructure. Otherwises there's
various ACL, xattr, DAX, AIO and logging fixes, and a smattering of
small cleanups and fixes elsewhere.
Summary:
- per-mount operational statistics in sysfs
- fixes for concurrent aio append write submission
- various logging fixes
- detection of zeroed logs and invalid log sequence numbers on v5 filesystems
- memory allocation failure message improvements
- a bunch of xattr/ACL fixes
- fdatasync optimisation
- miscellaneous other fixes and cleanups"
* tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
xfs: give all workqueues rescuer threads
xfs: fix log recovery op header validation assert
xfs: Fix error path in xfs_get_acl
xfs: optimise away log forces on timestamp updates for fdatasync
xfs: don't leak uuid table on rmmod
xfs: invalidate cached acl if set via ioctl
xfs: Plug memory leak in xfs_attrmulti_attr_set
xfs: Validate the length of on-disk ACLs
xfs: invalidate cached acl if set directly via xattr
xfs: xfs_filemap_pmd_fault treats read faults as write faults
xfs: add ->pfn_mkwrite support for DAX
xfs: DAX does not use IO completion callbacks
xfs: Don't use unwritten extents for DAX
xfs: introduce BMAPI_ZERO for allocating zeroed extents
xfs: fix inode size update overflow in xfs_map_direct()
xfs: clear PF_NOFREEZE for xfsaild kthread
xfs: fix an error code in xfs_fs_fill_super()
xfs: stats are no longer dependent on CONFIG_PROC_FS
xfs: simplify /proc teardown & error handling
xfs: per-filesystem stats counter implementation
...
DAX has a page fault serialisation problem with block allocation.
Because it allows concurrent page faults and does not have a page
lock to serialise faults to the same page, it can get two concurrent
faults to the page that race.
When two read faults race, this isn't a huge problem as the data
underlying the page is not changing and so "detect and drop" works
just fine. The issues are to do with write faults.
When two write faults occur, we serialise block allocation in
get_blocks() so only one faul will allocate the extent. It will,
however, be marked as an unwritten extent, and that is where the
problem lies - the DAX fault code cannot differentiate between a
block that was just allocated and a block that was preallocated and
needs zeroing. The result is that both write faults end up zeroing
the block and attempting to convert it back to written.
The problem is that the first fault can zero and convert before the
second fault starts zeroing, resulting in the zeroing for the second
fault overwriting the data that the first fault wrote with zeros.
The second fault then attempts to convert the unwritten extent,
which is then a no-op because it's already written. Data loss occurs
as a result of this race.
Because there is no sane locking construct in the page fault code
that we can use for serialisation across the page faults, we need to
ensure block allocation and zeroing occurs atomically in the
filesystem. This means we can still take concurrent page faults and
the only time they will serialise is in the filesystem
mapping/allocation callback. The page fault code will always see
written, initialised extents, so we will be able to remove the
unwritten extent handling from the DAX code when all filesystems are
converted.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The following two locking commits in the DAX code:
commit 843172978b ("dax: fix race between simultaneous faults")
commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for DAX")
introduced a number of deadlocks and other issues which need to be fixed
for the v4.3 kernel. The list of issues in DAX after these commits
(some newly introduced by the commits, some preexisting) can be found
here:
https://lkml.org/lkml/2015/9/25/602 (Subject: "Re: [PATCH] dax: fix deadlock in __dax_fault").
This undoes most of the changes introduced by those two commits,
essentially returning us to the DAX locking scheme that was used in
v4.2.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for
DAX") moved some code in __dax_pmd_fault() that was responsible for
zeroing newly allocated PMD pages. The new location didn't properly set
up 'kaddr', so when run this code resulted in a NULL pointer BUG.
Fix this by getting the correct 'kaddr' via bdev_direct_access().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit bbab37ddc2 (block: Add support for DAX reads/writes to
block devices) caused a regression in mkfs.xfs. That utility
sets the block size of the device to the logical block size
using the BLKBSZSET ioctl, and then issues a single sector read
from the last sector of the device. This results in the dax_io
code trying to do a page-sized read from 512 bytes from the end
of the device. The result is -ERANGE being returned to userspace.
The fix is to align the block to the page size before calling
get_block.
Thanks to willy for simplifying my original patch.
Cc: <stable@vger.kernel.org>
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Tested-by: Linda Knippers <linda.knippers@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
As part of the v4.3 merge window the DAX code was updated by Matthew and
Kirill to handle PMD pages. Also as part of the v4.3 merge window we
updated the DAX code to do proper PMEM flushing (commit 2765cfbb342c:
"dax: update I/O path to do proper PMEM flushing").
The additional code added by the DAX PMD patches also needs to be
updated to properly use the PMEM API. This ensures that after a PMD
fault is handled the zeros written to the newly allocated pages are
durable on the DIMMs.
linux/dax.h is included to get rid of a bunch of sparse warnings.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>,
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge second patch-bomb from Andrew Morton:
"Almost all of the rest of MM. There was an unusually large amount of
MM material this time"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (141 commits)
zpool: remove no-op module init/exit
mm: zbud: constify the zbud_ops
mm: zpool: constify the zpool_ops
mm: swap: zswap: maybe_preload & refactoring
zram: unify error reporting
zsmalloc: remove null check from destroy_handle_cache()
zsmalloc: do not take class lock in zs_shrinker_count()
zsmalloc: use class->pages_per_zspage
zsmalloc: consider ZS_ALMOST_FULL as migrate source
zsmalloc: partial page ordering within a fullness_list
zsmalloc: use shrinker to trigger auto-compaction
zsmalloc: account the number of compacted pages
zsmalloc/zram: introduce zs_pool_stats api
zsmalloc: cosmetic compaction code adjustments
zsmalloc: introduce zs_can_compact() function
zsmalloc: always keep per-class stats
zsmalloc: drop unused variable `nr_to_migrate'
mm/memblock.c: fix comment in __next_mem_range()
mm/page_alloc.c: fix type information of memoryless node
memory-hotplug: fix comments in zone_spanned_pages_in_node() and zone_spanned_pages_in_node()
...
DAX is not so special: we need i_mmap_lock to protect mapping->i_mmap.
__dax_pmd_fault() uses unmap_mapping_range() shoot out zero page from
all mappings. We need to drop i_mmap_lock there to avoid lock deadlock.
Re-aquiring the lock should be fine since we check i_size after the
point.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I was basically open-coding it (thanks to copying code from do_fault()
which probably also needs to be fixed).
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the first access to a huge page was a store, there would be no existing
zero pmd in this process's page tables. There could be a zero pmd in
another process's page tables, if it had done a load. We can detect this
case by noticing that the buffer_head returned from the filesystem is New,
and ensure that other processes mapping this huge page have their page
tables flushed.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is another place where DAX assumed that pgtable_t was a pointer.
Open code the important parts of set_huge_zero_page() in DAX and make
set_huge_zero_page() static again.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If two threads write-fault on the same hole at the same time, the winner
of the race will return to userspace and complete their store, only to
have the loser overwrite their store with zeroes. Fix this for now by
taking the i_mmap_sem for write instead of read, and do so outside the
call to get_block(). Now the loser of the race will see the block has
already been zeroed, and will not zero it again.
This severely limits our scalability. I have ideas for improving it, but
those can wait for a later patch.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Kara pointed out I should be more explicit here about the perils of
racing against truncate. The comment is mostly the same as for the PTE
case.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the support code for DAX-enabled filesystems to allow them to
provide huge pages in response to faults.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map. This facility is used by the pmem driver to
enable pfn_to_page() operations on the page frames returned by DAX
('direct_access' in 'struct block_device_operations'). For now, the
'memmap' allocation for these "device" pages comes from "System
RAM". Support for allocating the memmap from device memory will
arrive in a later kernel.
2/ Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3. Completion of
the conversion is targeted for v4.4.
3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
5/ Miscellaneous updates and fixes to libnvdimm including support
for issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
slsw6DkrWT60CRE42nbK
=o57/
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
Update the annotation for the kaddr pointer returned by direct_access()
so that it is a __pmem pointer. This is consistent with the PMEM driver
and with how this direct_access() pointer is used in the DAX code.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Update the DAX I/O path so that all operations that store data (I/O
writes, zeroing blocks, punching holes, etc.) properly synchronize the
stores to media using the PMEM API. This ensures that the data DAX is
writing is durable on media before the operation completes.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When modifying the patch series to handle the XFS MMAP_LOCK nesting
of page faults, I botched the conversion of the read page fault
path, and so it is only every calling through the page cache. Re-add
the necessary __dax_fault() call for such files.
Because the get_blocks callback on read faults may not set up the
mapping buffer correctly to allow unwritten extent completion to be
run, we need to allow callers of __dax_fault() to pass a null
complete_unwritten() callback. The DAX code always zeros the
unwritten page when it is read faulted so there are no stale data
exposure issues with not doing the conversion. The only downside
will be the potential for increased CPU overhead on repeated read
faults of the same page. If this proves to be a problem, then the
filesystem needs to fix it's get_block callback and provide a
convert_unwritten() callback to the read fault path.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
If a block device supports the ->direct_access methods, bypass the normal
DIO path and use DAX to go straight to memcpy() instead of allocating
a DIO and a BIO.
Includes support for the DIO_SKIP_DIO_COUNT flag in DAX, as is done in
do_blockdev_direct_IO().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When userspace does a write, there's no need for the written data to
pollute the CPU cache. This matches the original XIP code.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Some filesystems cannot call dax_fault() directly because they have
different locking and/or allocation constraints in the page fault IO
path. To handle this, we need to follow the same model as the
generic block_page_mkwrite code, where the internals are exposed via
__block_page_mkwrite() so that filesystems can wrap the correct
locking and operations around the outside.
This is loosely based on a patch originally from Matthew Willcox.
Unlike the original patch, it does not change ext4 code, error
returns or unwritten extent conversion handling. It also adds a
__dax_mkwrite() wrapper for .page_mkwrite implementations to do the
right thing, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
dax_fault() currently relies on the get_block callback to attach an
io completion callback to the mapping buffer head so that it can
run unwritten extent conversion after zeroing allocated blocks.
Instead of this hack, pass the conversion callback directly into
dax_fault() similar to the get_block callback. When the filesystem
allocates unwritten extents, it will set the buffer_unwritten()
flag, and hence the dax_fault code can call the completion function
in the contexts where it is necessary without overloading the
mapping buffer head.
Note: The changes to ext4 to use this interface are suspect at best.
In fact, the way ext4 did this end_io assignment in the first place
looks suspect because it only set a completion callback when there
wasn't already some other write() call taking place on the same
inode. The ext4 end_io code looks rather intricate and fragile with
all it's reference counting and passing to different contexts for
modification via inode private pointers that aren't protected by
locks...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
do_blockdev_direct_IO() increments and decrements the inode
->i_dio_count for each IO operation. It does this to protect against
truncate of a file. Block devices don't need this sort of protection.
For a capable multiqueue setup, this atomic int is the only shared
state between applications accessing the device for O_DIRECT, and it
presents a scaling wall for that. In my testing, as much as 30% of
system time is spent incrementing and decrementing this value. A mixed
read/write workload improved from ~2.5M IOPS to ~9.6M IOPS, with
better latencies too. Before:
clat percentiles (usec):
| 1.00th=[ 33], 5.00th=[ 34], 10.00th=[ 34], 20.00th=[ 34],
| 30.00th=[ 34], 40.00th=[ 34], 50.00th=[ 35], 60.00th=[ 35],
| 70.00th=[ 35], 80.00th=[ 35], 90.00th=[ 37], 95.00th=[ 80],
| 99.00th=[ 98], 99.50th=[ 151], 99.90th=[ 155], 99.95th=[ 155],
| 99.99th=[ 165]
After:
clat percentiles (usec):
| 1.00th=[ 95], 5.00th=[ 108], 10.00th=[ 129], 20.00th=[ 149],
| 30.00th=[ 155], 40.00th=[ 161], 50.00th=[ 167], 60.00th=[ 171],
| 70.00th=[ 177], 80.00th=[ 185], 90.00th=[ 201], 95.00th=[ 270],
| 99.00th=[ 390], 99.50th=[ 398], 99.90th=[ 418], 99.95th=[ 422],
| 99.99th=[ 438]
In other setups, Robert Elliott reported seeing good performance
improvements:
https://lkml.org/lkml/2015/4/3/557
The more applications accessing the device, the worse it gets.
Add a new direct-io flags, DIO_SKIP_DIO_COUNT, which tells
do_blockdev_direct_IO() that it need not worry about incrementing
or decrementing the inode i_dio_count for this caller.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Elliott, Robert (Server Storage) <elliott@hp.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull third hunk of vfs changes from Al Viro:
"This contains the ->direct_IO() changes from Omar + saner
generic_write_checks() + dealing with fcntl()/{read,write}() races
(mirroring O_APPEND/O_DIRECT into iocb->ki_flags and instead of
repeatedly looking at ->f_flags, which can be changed by fcntl(2),
check ->ki_flags - which cannot) + infrastructure bits for dhowells'
d_inode annotations + Christophs switch of /dev/loop to
vfs_iter_write()"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (30 commits)
block: loop: switch to VFS ITER_BVEC
configfs: Fix inconsistent use of file_inode() vs file->f_path.dentry->d_inode
VFS: Make pathwalk use d_is_reg() rather than S_ISREG()
VFS: Fix up debugfs to use d_is_dir() in place of S_ISDIR()
VFS: Combine inode checks with d_is_negative() and d_is_positive() in pathwalk
NFS: Don't use d_inode as a variable name
VFS: Impose ordering on accesses of d_inode and d_flags
VFS: Add owner-filesystem positive/negative dentry checks
nfs: generic_write_checks() shouldn't be done on swapout...
ocfs2: use __generic_file_write_iter()
mirror O_APPEND and O_DIRECT into iocb->ki_flags
switch generic_write_checks() to iocb and iter
ocfs2: move generic_write_checks() before the alignment checks
ocfs2_file_write_iter: stop messing with ppos
udf_file_write_iter: reorder and simplify
fuse: ->direct_IO() doesn't need generic_write_checks()
ext4_file_write_iter: move generic_write_checks() up
xfs_file_aio_write_checks: switch to iocb/iov_iter
generic_write_checks(): drop isblk argument
blkdev_write_iter: expand generic_file_checks() call in there
...
From: Yigal Korman <yigal@plexistor.com>
[v1]
Without this patch, c/mtime is not updated correctly when mmap'ed page is
first read from and then written to.
A new xfstest is submitted for testing this (generic/080)
[v2]
Jan Kara has pointed out that if we add the
sb_start/end_pagefault pair in the new pfn_mkwrite we
are then fixing another bug where: A user could start
writing to the page while filesystem is frozen.
Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Boaz Harrosh <boaz@plexistor.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This new function allows us to support hole-punch for DAX files by zeroing
a partial page, as opposed to the dax_truncate_page() function which can
only truncate to the end of the page. Reimplement dax_truncate_page() to
call dax_zero_page_range().
[ross.zwisler@linux.intel.com: ported to 3.13-rc2]
[akpm@linux-foundation.org: fix typos in comments]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It takes a get_block parameter just like nobh_truncate_page() and
block_truncate_page()
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of calling aops->get_xip_mem from the fault handler, the
filesystem passes a get_block_t that is used to find the appropriate
blocks.
This requires that all architectures implement copy_user_page(). At the
time of writing, mips and arm do not. Patches exist and are in progress.
[akpm@linux-foundation.org: remap_file_pages went away]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is practically generic code; other filesystems will want to call it
from other places, but there's nothing ext2-specific about it.
Make it a little more generic by allowing it to take a count of the number
of bytes to zero rather than fixing it to a single page. Thanks to Dave
Hansen for suggesting that I need to call cond_resched() if zeroing more
than one page.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the generic AIO infrastructure instead of custom read and write
methods. In addition to giving us support for AIO, this adds the missing
locking between read() and truncate().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>