Commit Graph

137 Commits

Author SHA1 Message Date
Rafael J. Wysocki 34e2c555f3 cpufreq: Add mechanism for registering utilization update callbacks
Introduce a mechanism by which parts of the cpufreq subsystem
("setpolicy" drivers or the core) can register callbacks to be
executed from cpufreq_update_util() which is invoked by the
scheduler's update_load_avg() on CPU utilization changes.

This allows the "setpolicy" drivers to dispense with their timers
and do all of the computations they need and frequency/voltage
adjustments in the update_load_avg() code path, among other things.

The update_load_avg() changes were suggested by Peter Zijlstra.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
2016-03-09 14:39:19 +01:00
Frederic Weisbecker 01d36d0ac3 sched: Account rr tasks
In order to evaluate the scheduler tick dependency without probing
context switches, we need to know how much SCHED_RR and SCHED_FIFO tasks
are enqueued as those policies don't have the same preemption
requirements.

To prepare for that, let's account SCHED_RR tasks, we'll be able to
deduce SCHED_FIFO tasks as well from it and the total RT tasks in the
runqueue.

Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2016-03-02 16:43:04 +01:00
Steven Rostedt c3a990dc9f sched/rt: Kick RT bandwidth timer immediately on start up
I've been debugging why deadline tasks can cause the RT scheduler to
throttle, even when the deadline tasks are only taking up 50% of the
CPU and RT tasks are not even using 1% of the CPU. Here's what I found.

In order to keep a CPU from being hogged by RT tasks, the deadline
scheduler adds its run time (delta_exec) to the rt_time of the RT
bandwidth. That way, if the two use more than 95% of the CPU within one
second (default settings), the RT tasks are throttled to allow non RT
tasks to run.

Although the deadline tasks add their run time to the RT bandwidth, it
lets the RT tasks do the accounting. This is where the problem lies. If
a deadline task runs for a bit, and no RT tasks are running, then it
will continually add to the RT rt_time that is used to calculate how
much CPU the RT tasks use. But no RT period is in play, and this
accumulation of the runtime never gets reset.

When an RT task finally gets to run, and the watchdog goes off, it can
see that the RT task has used more than it should of, because the
deadline task added all this runtime to its rt_time. Then the RT task
that just woke up gets throttled for no good reason.

I also noticed that when an RT task is queued, it starts the timer to
account for overload and such. But that timer goes off one period
later, which may be too late and the extra rt_time will trigger a
throttle.

This is a quick work around to the problem. When a new RT task is
queued, the bandwidth timer is set to go off immediately. Then the
timer can clear out the extra time added to the rt_time while there was
no RT task running. This stops my tests from triggering the throttle,
and it will still throttle if an RT task runs too much, even while a
deadline task is running.

A better solution may be to subtract the bandwidth that the deadline
task uses from the rt_runtime, and add it back when its finished. Then
there wont be a need for runtime tracking of the time used by deadline
tasks.

I may play with that solution tomorrow.

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <juri.lelli@gmail.com>
Cc: <williams@redhat.com>
Cc: Clark Williams
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160216183746.349ec98b@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:53:07 +01:00
Peter Zijlstra ff77e46853 sched/rt: Fix PI handling vs. sched_setscheduler()
Andrea Parri reported:

> I found that the following scenario (with CONFIG_RT_GROUP_SCHED=y) is not
> handled correctly:
>
>     T1 (prio = 20)
>        lock(rtmutex);
>
>     T2 (prio = 20)
>        blocks on rtmutex  (rt_nr_boosted = 0 on T1's rq)
>
>     T1 (prio = 20)
>        sys_set_scheduler(prio = 0)
>           [new_effective_prio == oldprio]
>           T1 prio = 20    (rt_nr_boosted = 0 on T1's rq)
>
> The last step is incorrect as T1 is now boosted (c.f., rt_se_boosted());
> in particular, if we continue with
>
>    T1 (prio = 20)
>       unlock(rtmutex)
>          wakeup(T2)
>          adjust_prio(T1)
>             [prio != rt_mutex_getprio(T1)]
>	    dequeue(T1)
>	       rt_nr_boosted = (unsigned long)(-1)
>	       ...
>             T1 prio = 0
>
> then we end up leaving rt_nr_boosted in an "inconsistent" state.
>
> The simple program attached could reproduce the previous scenario; note
> that, as a consequence of the presence of this state, the "assertion"
>
>     WARN_ON(!rt_nr_running && rt_nr_boosted)
>
> from dec_rt_group() may trigger.

So normally we dequeue/enqueue tasks in sched_setscheduler(), which
would ensure the accounting stays correct. However in the early PI path
we fail to do so.

So this was introduced at around v3.14, by:

  c365c292d0 ("sched: Consider pi boosting in setscheduler()")

which fixed another problem exactly because that dequeue/enqueue, joy.

Fix this by teaching rt about DEQUEUE_SAVE/ENQUEUE_RESTORE and have it
preserve runqueue location with that option. This requires decoupling
the on_rt_rq() state from being on the list.

In order to allow for explicit movement during the SAVE/RESTORE,
introduce {DE,EN}QUEUE_MOVE. We still must use SAVE/RESTORE in these
cases to preserve other invariants.

Respecting the SAVE/RESTORE flags also has the (nice) side-effect that
things like sys_nice()/sys_sched_setaffinity() also do not reorder
FIFO tasks (whereas they used to before this patch).

Reported-by: Andrea Parri <parri.andrea@gmail.com>
Tested-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:53:05 +01:00
Arnd Bergmann 89b411081d sched/rt: Hide the push_irq_work_func() declaration
The push_irq_work_func() function is conditionally defined only
when both CONFIG_SMP and HAVE_RT_PUSH_IPI are defined, but the
forward declaration remains visibile without HAVE_RT_PUSH_IPI,
causing a gcc warning in ARM64 allnoconfig:

  kernel/sched/rt.c:68:13: warning: 'push_irq_work_func' declared 'static' but never defined [-Wunused-function]

This changes the code to use the same condition for both the
declaration and the function definition, which gets rid of the
warning.

As Peter Zijlstra, we can possibly get rid of the whole HAVE_RT_PUSH_IPI
thing after:

  8053871d0f ("smp: Fix smp_call_function_single_async() locking")

Until that is done, this patch can be used to avoid the warning.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: b6366f048e ("sched/rt: Use IPI to trigger RT task push migration instead of pulling")
Link: http://lkml.kernel.org/r/3828565.oKfGk7yNIT@wuerfel
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-23 09:25:08 +01:00
Juri Lelli 269b26a5ef sched/rt: Make (do_)balance_runtime() return void
The return value of (do_)balance_runtime() is not consumed by anybody.
Make them return void.

Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1441188096-23021-5-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-23 09:51:26 +02:00
Peter Zijlstra 6c37067e27 sched: Change the sched_class::set_cpus_allowed() calling context
Change the calling context of sched_class::set_cpus_allowed() such
that we can assume the task is inactive.

This allows us to easily make changes that affect accounting done by
enqueue/dequeue. This does in fact completely remove
set_cpus_allowed_rt() and greatly reduces set_cpus_allowed_dl().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.667516139@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-12 12:06:10 +02:00
Peter Zijlstra c5b2803840 sched: Make sched_class::set_cpus_allowed() unconditional
Give every class a set_cpus_allowed() method, this enables some small
optimization in the RT,DL implementation by avoiding a double
cpumask_weight() call.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-12 12:06:09 +02:00
Xunlei Pang 8fd373548e sched/rt: Remove a redundant condition from task_woken_rt()
'p' has been already queued at this point, so "!task_running(rq, p)"
and "p->nr_cpus_allowed > 1" imply that "has_pushable_tasks(rq)" is
true, so it can be removed.

Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435995563-3723-1-git-send-email-xlpang@126.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 12:21:19 +02:00
Peter Zijlstra cbce1a6867 sched,lockdep: Employ lock pinning
Employ the new lockdep lock pinning annotation to ensure no
'accidental' lock-breaks happen with rq->lock.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124744.003233193@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19 00:25:27 +02:00
Peter Zijlstra fd7a4bed18 sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
Remove the direct {push,pull} balancing operations from
switched_{from,to}_rt() / prio_changed_rt() and use the balance
callback queue.

Again, err on the side of too many reschedules; since too few is a
hard bug while too many is just annoying.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124742.766832367@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19 00:25:26 +02:00
Peter Zijlstra 8046d68062 sched,rt: Remove return value from pull_rt_task()
In order to be able to use pull_rt_task() from a callback, we need to
do away with the return value.

Since the return value indicates if we should reschedule, do this
inside the function. Since not all callers currently do this, this can
increase the number of reschedules due rt balancing.

Too many reschedules is not a correctness issues, too few are.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124742.679002000@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19 00:25:26 +02:00
Peter Zijlstra e3fca9e7cb sched: Replace post_schedule with a balance callback list
Generalize the post_schedule() stuff into a balance callback list.
This allows us to more easily use it outside of schedule() and cross
sched_class.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124742.424032725@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19 00:25:26 +02:00
Thomas Gleixner 624bbdfac9 Merge branch 'timers/core' into sched/hrtimers
Merge sched/core and timers/core so we can apply the sched balancing
patch queue, which depends on both.
2015-06-19 00:17:47 +02:00
Peter Zijlstra 4cfafd3082 sched,perf: Fix periodic timers
In the below two commits (see Fixes) we have periodic timers that can
stop themselves when they're no longer required, but need to be
(re)-started when their idle condition changes.

Further complications is that we want the timer handler to always do
the forward such that it will always correctly deal with the overruns,
and we do not want to race such that the handler has already decided
to stop, but the (external) restart sees the timer still active and we
end up with a 'lost' timer.

The problem with the current code is that the re-start can come before
the callback does the forward, at which point the forward from the
callback will WARN about forwarding an enqueued timer.

Now, conceptually its easy to detect if you're before or after the fwd
by comparing the expiration time against the current time. Of course,
that's expensive (and racy) because we don't have the current time.

Alternatively one could cache this state inside the timer, but then
everybody pays the overhead of maintaining this extra state, and that
is undesired.

The only other option that I could see is the external timer_active
variable, which I tried to kill before. I would love a nicer interface
for this seemingly simple 'problem' but alas.

Fixes: 272325c482 ("perf: Fix mux_interval hrtimer wreckage")
Fixes: 77a4d1a1b9 ("sched: Cleanup bandwidth timers")
Cc: pjt@google.com
Cc: tglx@linutronix.de
Cc: klamm@yandex-team.ru
Cc: mingo@kernel.org
Cc: bsegall@google.com
Cc: hpa@zytor.com
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150514102311.GX21418@twins.programming.kicks-ass.net
2015-05-18 17:17:42 +02:00
Jason Low 316c1608d1 sched, timer: Convert usages of ACCESS_ONCE() in the scheduler to READ_ONCE()/WRITE_ONCE()
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.

Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-08 12:11:32 +02:00
Peter Zijlstra 77a4d1a1b9 sched: Cleanup bandwidth timers
Roman reported a 3 cpu lockup scenario involving __start_cfs_bandwidth().

The more I look at that code the more I'm convinced its crack, that
entire __start_cfs_bandwidth() thing is brain melting, we don't need to
cancel a timer before starting it, *hrtimer_start*() will happily remove
the timer for you if its still enqueued.

Removing that, removes a big part of the problem, no more ugly cancel
loop to get stuck in.

So now, if I understand things right, the entire reason you have this
cfs_b->lock guarded ->timer_active nonsense is to make sure we don't
accidentally lose the timer.

It appears to me that it should be possible to guarantee that same by
unconditionally (re)starting the timer when !queued. Because regardless
what hrtimer::function will return, if we beat it to (re)enqueue the
timer, it doesn't matter.

Now, because hrtimers don't come with any serialization guarantees we
must ensure both handler and (re)start loop serialize their access to
the hrtimer to avoid both trying to forward the timer at the same
time.

Update the rt bandwidth timer to match.

This effectively reverts: 09dc4ab039 ("sched/fair: Fix
tg_set_cfs_bandwidth() deadlock on rq->lock").

Reported-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415095011.804589208@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22 17:06:53 +02:00
Abel Vesa 07c54f7a7f sched/core: Remove unused argument from init_[rt|dl]_rq()
Obviously, 'rq' is not used in these two functions, therefore,
there is no reason for it to be passed as an argument.

Signed-off-by: Abel Vesa <abelvesa@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1425383427-26244-1-git-send-email-abelvesa@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:42:55 +02:00
Steven Rostedt b6366f048e sched/rt: Use IPI to trigger RT task push migration instead of pulling
When debugging the latencies on a 40 core box, where we hit 300 to
500 microsecond latencies, I found there was a huge contention on the
runqueue locks.

Investigating it further, running ftrace, I found that it was due to
the pulling of RT tasks.

The test that was run was the following:

 cyclictest --numa -p95 -m -d0 -i100

This created a thread on each CPU, that would set its wakeup in iterations
of 100 microseconds. The -d0 means that all the threads had the same
interval (100us). Each thread sleeps for 100us and wakes up and measures
its latencies.

cyclictest is maintained at:
 git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git

What happened was another RT task would be scheduled on one of the CPUs
that was running our test, when the other CPU tests went to sleep and
scheduled idle. This caused the "pull" operation to execute on all
these CPUs. Each one of these saw the RT task that was overloaded on
the CPU of the test that was still running, and each one tried
to grab that task in a thundering herd way.

To grab the task, each thread would do a double rq lock grab, grabbing
its own lock as well as the rq of the overloaded CPU. As the sched
domains on this box was rather flat for its size, I saw up to 12 CPUs
block on this lock at once. This caused a ripple affect with the
rq locks especially since the taking was done via a double rq lock, which
means that several of the CPUs had their own rq locks held while trying
to take this rq lock. As these locks were blocked, any wakeups or load
balanceing on these CPUs would also block on these locks, and the wait
time escalated.

I've tried various methods to lessen the load, but things like an
atomic counter to only let one CPU grab the task wont work, because
the task may have a limited affinity, and we may pick the wrong
CPU to take that lock and do the pull, to only find out that the
CPU we picked isn't in the task's affinity.

Instead of doing the PULL, I now have the CPUs that want the pull to
send over an IPI to the overloaded CPU, and let that CPU pick what
CPU to push the task to. No more need to grab the rq lock, and the
push/pull algorithm still works fine.

With this patch, the latency dropped to just 150us over a 20 hour run.
Without the patch, the huge latencies would trigger in seconds.

I've created a new sched feature called RT_PUSH_IPI, which is enabled
by default.

When RT_PUSH_IPI is not enabled, the old method of grabbing the rq locks
and having the pulling CPU do the work is implemented. When RT_PUSH_IPI
is enabled, the IPI is sent to the overloaded CPU to do a push.

To enabled or disable this at run time:

 # mount -t debugfs nodev /sys/kernel/debug
 # echo RT_PUSH_IPI > /sys/kernel/debug/sched_features
or
 # echo NO_RT_PUSH_IPI > /sys/kernel/debug/sched_features

Update: This original patch would send an IPI to all CPUs in the RT overload
list. But that could theoretically cause the reverse issue. That is, there
could be lots of overloaded RT queues and one CPU lowers its priority. It would
then send an IPI to all the overloaded RT queues and they could then all try
to grab the rq lock of the CPU lowering its priority, and then we have the
same problem.

The latest design sends out only one IPI to the first overloaded CPU. It tries to
push any tasks that it can, and then looks for the next overloaded CPU that can
push to the source CPU. The IPIs stop when all overloaded CPUs that have pushable
tasks that have priorities greater than the source CPU are covered. In case the
source CPU lowers its priority again, a flag is set to tell the IPI traversal to
restart with the first RT overloaded CPU after the source CPU.

Parts-suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joern Engel <joern@purestorage.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150318144946.2f3cc982@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-23 10:55:22 +01:00
Tim Chen 80e3d87b2c sched/rt: Reduce rq lock contention by eliminating locking of non-feasible target
This patch adds checks that prevens futile attempts to move rt tasks
to a CPU with active tasks of equal or higher priority.

This reduces run queue lock contention and improves the performance of
a well known OLTP benchmark by 0.7%.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shawn Bohrer <sbohrer@rgmadvisors.com>
Cc: Suruchi Kadu <suruchi.a.kadu@intel.com>
Cc: Doug Nelson<doug.nelson@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1421430374.2399.27.camel@schen9-desk2.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-30 19:38:49 +01:00
Peter Zijlstra 9edfbfed3f sched/core: Rework rq->clock update skips
The original purpose of rq::skip_clock_update was to avoid 'costly' clock
updates for back to back wakeup-preempt pairs. The big problem with it
has always been that the rq variable is unaware of the context and
causes indiscrimiate clock skips.

Rework the entire thing and create a sense of context by only allowing
schedule() to skip clock updates. (XXX can we measure the cost of the
added store?)

By ensuring only schedule can ever skip an update, we guarantee we're
never more than 1 tick behind on the update.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150105103554.432381549@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:20 +01:00
Wanpeng Li 6c1d9410f0 sched: Move p->nr_cpus_allowed check to select_task_rq()
Move the p->nr_cpus_allowed check into kernel/sched/core.c: select_task_rq().
This change will make fair.c, rt.c, and deadline.c all start with the
same logic.

Suggested-and-Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "pang.xunlei" <pang.xunlei@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415150077-59053-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:58:55 +01:00
Ingo Molnar e9ac5f0fa8 Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying more changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:50:25 +01:00
Stanislaw Gruszka 6e998916df sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.

Reproducer/tester can be found further below, it can be compiled and ran by:

	gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
	while ./tst-cpuclock2 ; do : ; done

This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".

Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.

KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .

This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.

Full reproducer (tst-cpuclock2.c):

	#define _GNU_SOURCE
	#include <unistd.h>
	#include <sys/syscall.h>
	#include <stdio.h>
	#include <time.h>
	#include <pthread.h>
	#include <stdint.h>
	#include <inttypes.h>

	/* Parameters for the Linux kernel ABI for CPU clocks.  */
	#define CPUCLOCK_SCHED          2
	#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
		((~(clockid_t) (pid) << 3) | (clockid_t) (clock))

	static pthread_barrier_t barrier;

	/* Help advance the clock.  */
	static void *chew_cpu(void *arg)
	{
		pthread_barrier_wait(&barrier);
		while (1) ;

		return NULL;
	}

	/* Don't use the glibc wrapper.  */
	static int do_nanosleep(int flags, const struct timespec *req)
	{
		clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);

		return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
	}

	static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
	{
		int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
		int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;

		return after_i - before_i;
	}

	int main(void)
	{
		int result = 0;
		pthread_t th;

		pthread_barrier_init(&barrier, NULL, 2);

		if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
			perror("pthread_create");
			return 1;
		}

		pthread_barrier_wait(&barrier);

		/* The test.  */
		struct timespec before, after, sleeptimeabs;
		int64_t sleepdiff, diffabs;
		const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };

		/* The relative nanosleep.  Not sure why this is needed, but its presence
		   seems to make it easier to reproduce the problem.  */
		if (do_nanosleep(0, &sleeptime) != 0) {
			perror("clock_nanosleep");
			return 1;
		}

		/* Get the current time.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
			perror("clock_gettime[2]");
			return 1;
		}

		/* Compute the absolute sleep time based on the current time.  */
		uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
		sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
		sleeptimeabs.tv_nsec = nsec % 1000000000;

		/* Sleep for the computed time.  */
		if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
			perror("absolute clock_nanosleep");
			return 1;
		}

		/* Get the time after the sleep.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
			perror("clock_gettime[3]");
			return 1;
		}

		/* The time after sleep should always be equal to or after the absolute sleep
		   time passed to clock_nanosleep.  */
		sleepdiff = tsdiff(&sleeptimeabs, &after);
		if (sleepdiff < 0) {
			printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
			result = 1;

			printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
			printf("After  %llu.%09llu\n", after.tv_sec, after.tv_nsec);
			printf("Sleep  %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
		}

		/* The difference between the timestamps taken before and after the
		   clock_nanosleep call should be equal to or more than the duration of the
		   sleep.  */
		diffabs = tsdiff(&before, &after);
		if (diffabs < sleeptime.tv_nsec) {
			printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
			result = 1;
		}

		pthread_cancel(th);

		return result;
	}

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:04:20 +01:00
Wanpeng Li 308a623a40 sched/rt: Clean up check_preempt_equal_prio()
This patch checks if current can be pushed/pulled somewhere else
in advance to make logic clear, the same behavior as dl class.

- If current can't be migrated, useless to reschedule, let's hope
  task can move out.
- If task is migratable, so let's not schedule it and see if it
  can be pushed or pulled somewhere else.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414708776-124078-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:52 +01:00
Linus Torvalds 0429fbc0bd Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu consistent-ops changes from Tejun Heo:
 "Way back, before the current percpu allocator was implemented, static
  and dynamic percpu memory areas were allocated and handled separately
  and had their own accessors.  The distinction has been gone for many
  years now; however, the now duplicate two sets of accessors remained
  with the pointer based ones - this_cpu_*() - evolving various other
  operations over time.  During the process, we also accumulated other
  inconsistent operations.

  This pull request contains Christoph's patches to clean up the
  duplicate accessor situation.  __get_cpu_var() uses are replaced with
  with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().

  Unfortunately, the former sometimes is tricky thanks to C being a bit
  messy with the distinction between lvalues and pointers, which led to
  a rather ugly solution for cpumask_var_t involving the introduction of
  this_cpu_cpumask_var_ptr().

  This converts most of the uses but not all.  Christoph will follow up
  with the remaining conversions in this merge window and hopefully
  remove the obsolete accessors"

* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
  irqchip: Properly fetch the per cpu offset
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
  ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
  Revert "powerpc: Replace __get_cpu_var uses"
  percpu: Remove __this_cpu_ptr
  clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
  sparc: Replace __get_cpu_var uses
  avr32: Replace __get_cpu_var with __this_cpu_write
  blackfin: Replace __get_cpu_var uses
  tile: Use this_cpu_ptr() for hardware counters
  tile: Replace __get_cpu_var uses
  powerpc: Replace __get_cpu_var uses
  alpha: Replace __get_cpu_var
  ia64: Replace __get_cpu_var uses
  s390: cio driver &__get_cpu_var replacements
  s390: Replace __get_cpu_var uses
  mips: Replace __get_cpu_var uses
  MIPS: Replace __get_cpu_var uses in FPU emulator.
  arm: Replace __this_cpu_ptr with raw_cpu_ptr
  ...
2014-10-15 07:48:18 +02:00
Kirill Tkhai 8aa6f0ebf4 sched/rt: Use resched_curr() in task_tick_rt()
Some time ago PREEMPT_NEED_RESCHED was implemented,
so reschedule technics is a little more difficult now.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140922183642.11015.66039.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:47:12 +02:00
Kirill Tkhai f3f1768f89 sched/rt: Remove useless if from cleanup pick_next_task_rt()
_pick_next_task_rt() never returns NULL.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1410529321.3569.26.camel@tkhai
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:20 +02:00
Christoph Lameter 4ba2968420 percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
__get_cpu_var can paper over differences in the definitions of
cpumask_var_t and either use the address of the cpumask variable
directly or perform a fetch of the address of the struct cpumask
allocated elsewhere. This is important particularly when using per cpu
cpumask_var_t declarations because in one case we have an offset into
a per cpu area to handle and in the other case we need to fetch a
pointer from the offset.

This patch introduces a new macro

this_cpu_cpumask_var_ptr()

that is defined where cpumask_var_t is defined and performs the proper
actions. All use cases where __get_cpu_var is used with cpumask_var_t
are converted to the use of this_cpu_cpumask_var_ptr().

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-28 08:58:57 -04:00
Kirill Tkhai da0c1e65b5 sched: Add wrapper for checking task_struct::on_rq
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.

The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:52:59 +02:00
Kirill Tkhai 8875125efe sched: Transform resched_task() into resched_curr()
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.

The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:

  (before)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155274	  16445	   7042	 178761	  2ba49	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411490	1178376	 991232	9581098	 92322a	vmlinux

  (after)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155130	  16445	   7042	 178617	  2b9b9	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411362	1178376	 991232	9580970	 9231aa	vmlinux

	I was choosing between resched_curr() and resched_rq(),
	and the first name looks better for me.

A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:19 +02:00
Kirill Tkhai 99b625670f sched/rt: Enqueue just unthrottled rt_rq back on the stack in __disable_runtime()
Make rt_rq available for pick_next_task(). Otherwise, their tasks
stay prisoned long time till dead cpu becomes alive again.

Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
CC: Konstantin Khorenko <khorenko@parallels.com>
CC: Ben Segall <bsegall@google.com>
CC: Paul Turner <pjt@google.com>
CC: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684388.3462.43.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:44 +02:00
Linus Torvalds b2e09f633a Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more scheduler updates from Ingo Molnar:
 "Second round of scheduler changes:
   - try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
   - continued power scheduling cleanups and refactorings, from Nicolas
     Pitre
   - misc fixes and enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/deadline: Delete extraneous extern for to_ratio()
  sched/idle: Optimize try-to-wake-up IPI
  sched/idle: Simplify wake_up_idle_cpu()
  sched/idle: Clear polling before descheduling the idle thread
  sched, trace: Add a tracepoint for IPI-less remote wakeups
  cpuidle: Set polling in poll_idle
  sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
  sched: Rename capacity related flags
  sched: Final power vs. capacity cleanups
  sched: Remove remaining dubious usage of "power"
  sched: Let 'struct sched_group_power' care about CPU capacity
  sched/fair: Disambiguate existing/remaining "capacity" usage
  sched/fair: Change "has_capacity" to "has_free_capacity"
  sched/fair: Remove "power" from 'struct numa_stats'
  sched: Fix signedness bug in yield_to()
  sched/fair: Use time_after() in record_wakee()
  sched/balancing: Reduce the rate of needless idle load balancing
  sched/fair: Fix unlocked reads of some cfs_b->quota/period
2014-06-12 19:42:15 -07:00
Giedrius Rekasius 0b07939cbf sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
Variable "rt_rq" is used only in block "for_each_sched_rt_entity" so the
value assigned to it at the beginning of the update_curr_rt(...) gets
overwritten without ever being read. Remove redundant assignment and
move variable declaration to the block in which it is being used.

Signed-off-by: Giedrius Rekasius <giedrius.rekasius@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-janitors@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1401027811-30066-1-git-send-email-giedrius.rekasius@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:34 +02:00
John Stultz c224815dac printk: Add printk_deferred_once
Two of the three prink_deferred uses are really printk_once style
uses, so add a printk_deferred_once macro to simplify those call
sites.

Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:17 -07:00
John Stultz aac74dc495 printk: rename printk_sched to printk_deferred
After learning we'll need some sort of deferred printk functionality in
the timekeeping core, Peter suggested we rename the printk_sched function
so it can be reused by needed subsystems.

This only changes the function name. No logic changes.

Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:17 -07:00
Kirill Tkhai 7246544786 sched, nohz: Change rq->nr_running to always use wrappers
Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.

Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:33 +02:00
Kirill Tkhai 46383648b3 sched: Revert commit 4c6c4e38c4 ("sched/core: Fix endless loop in pick_next_task()")
This reverts commit 4c6c4e38c4 ("sched/core: Fix endless loop in
pick_next_task()"), which is not necessary after ("sched/rt: Substract number
of tasks of throttled queues from rq->nr_running").

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
[conflict resolution with stop task checking patch]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835307.18748.34.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:29 +02:00
Kirill Tkhai f4ebcbc0d7 sched/rt: Substract number of tasks of throttled queues from rq->nr_running
Now rq->rt becomes to be able to be in dequeued or enqueued state.
We add new member rt_rq->rt_queued, which is used to indicate this.
The member is used only for top queue rq->rt_rq.

The goal is to fit generic scheme which is used in deadline and
fair classes, i.e. throttled rt_rq's rt_nr_running is beeing
substracted from rq->nr_running.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835300.18748.33.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:28 +02:00
Kirill Tkhai 653d07a698 sched/rt: Add accessors rq_of_rt_se()
Two accessors for RT_GROUP_SCHED and !RT_GROUP_SCHED cases.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835295.18748.32.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:27 +02:00
Kirill Tkhai 22abdef37c sched/rt: Sum number of all children tasks in hierarhy at ->rt_nr_running
{inc,dec}_rt_tasks() used to count entities which are directly queued
on the rt_rq. If an entity was not a task (i.e., it is some queue), its
children were not counted.

There is no problem here, but now we want to count number of all tasks
which are actually queued under the rt_rq in all the hierarchy (except
throttled rt queues).

Empty queues are not able to be queued and all of the places, which
use ->rt_nr_running, just compare it with zero, so we do not break
anything here.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835289.18748.31.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
[ Twiddled the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:25 +02:00
Kirill V Tkhai 1044791755 sched/rt: Do not try to push tasks if pinned task switches to RT
Just switched pinned task is not able to be pushed. If the rq had had
several RT tasks before they have already been considered as candidates
to be pushed (or pulled).

Signed-off-by: Kirill V Tkhai <tkhai@yandex.ru>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140312061833.3a43aa64@gandalf.local.home
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:23 +02:00
Kirill Tkhai a1d9a3231e sched: Check for stop task appearance when balancing happens
We need to do it like we do for the other higher priority classes..

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/336561397137116@web27h.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-17 13:39:51 +02:00
Kirill Tkhai 4c6c4e38c4 sched/core: Fix endless loop in pick_next_task()
1) Single cpu machine case.

When rq has only RT tasks, but no one of them can be picked
because of throttling, we enter in endless loop.

pick_next_task_{dl,rt} return NULL.

In pick_next_task_fair() we permanently go to retry

	if (rq->nr_running != rq->cfs.h_nr_running)
		return RETRY_TASK;

(rq->nr_running is not being decremented when rt_rq becomes
throttled).

No chances to unthrottle any rt_rq or to wake fair here,
because of rq is locked permanently and interrupts are
disabled.

2) In case of SMP this can cause a hang too. Although we unlock
   rq in idle_balance(), interrupts are still disabled.

The solution is to check for available tasks in DL and RT
classes instead of checking for sum.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394098321.19290.11.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 12:05:39 +01:00
Kirill Tkhai 734ff2a71f sched/rt: Fix picking RT and DL tasks from empty queue
The problems:

1) We check for rt_nr_running before call of put_prev_task().
   If previous task is RT, its rt_rq may become throttled
   and dequeued after this call.

In case of p is from rt->rq this just causes picking a task
from throttled queue, but in case of its rt_rq is child
we are guaranteed catch BUG_ON.

2) The same with deadline class. The only difference we operate
   on only dl_rq.

This patch fixes all the above problems and it adds a small skip in the
DL update like we've already done for RT class:

	if (unlikely((s64)delta_exec <= 0))
		return;

This will optimize sequential update_curr_dl() calls a little.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/r/1393946746.3643.3.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 12:05:35 +01:00
Ingo Molnar a02ed5e3e0 Merge branch 'sched/urgent' into sched/core
Pick up fixes before queueing up new changes.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 11:34:27 +01:00
Peter Zijlstra 37e117c07b sched: Guarantee task priority in pick_next_task()
Michael spotted that the idle_balance() push down created a task
priority problem.

Previously, when we called idle_balance() before pick_next_task() it
wasn't a problem when -- because of the rq->lock droppage -- an rt/dl
task slipped in.

Similarly for pre_schedule(), rt pre-schedule could have a dl task
slip in.

But by pulling it into the pick_next_task() loop, we'll not try a
higher task priority again.

Cure this by creating a re-start condition in pick_next_task(); and
triggering this from pick_next_task_{rt,fair}().

It also fixes a live-lock where we get stuck in pick_next_task_fair()
due to idle_balance() seeing !0 nr_running but there not actually
being any fair tasks about.

Reported-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140224121218.GR15586@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:41:02 +01:00
Juri Lelli faa5993736 sched/deadline: Prevent rt_time growth to infinity
Kirill Tkhai noted:

  Since deadline tasks share rt bandwidth, we must care about
  bandwidth timer set. Otherwise rt_time may grow up to infinity
  in update_curr_dl(), if there are no other available RT tasks
  on top level bandwidth.

RT task were in fact throttled right after they got enqueued,
and never executed again (rt_time never again went below rt_runtime).

Peter then proposed to accrue DL execution on rt_time only when
rt timer is active, and proposed a patch (this patch is a slight
modification of that) to implement that behavior. While this
solves Kirill problem, it has a drawback.

Indeed, Kirill noted again:

  It looks we may get into a situation, when all CPU time is shared
  between RT and DL tasks:

  rt_runtime = n
  rt_period  = 2n

  | RT working, DL sleeping  | DL working, RT sleeping      |
  -----------------------------------------------------------
  | (1)     duration = n     | (2)     duration = n         | (repeat)
  |--------------------------|------------------------------|
  | (rt_bw timer is running) | (rt_bw timer is not running) |

  No time for fair tasks at all.

While this can happen during the first period, if rq is always backlogged,
RT tasks won't have the opportunity to execute anymore: rt_time reached
rt_runtime during (1), suppose after (2) RT is enqueued back, it gets
throttled since rt timer didn't fire, replenishment is from now on eaten up
by DL tasks that accrue their execution on rt_time (while rt timer is
active - we have an RT task waiting for replenishment). FAIR tasks are
not touched after this first period. Ok, this is not ideal, and the situation
is even worse!

What above (the nice case), practically never happens in reality, where
your rt timer is not aligned to tasks periods, tasks are in general not
periodic, etc.. Long story short, you always risk to overload your system.

This patch is based on Peter's idea, but exploits an additional fact:
if you don't have RT tasks enqueued, it makes little sense to continue
incrementing rt_time once you reached the upper limit (DL tasks have their
own mechanism for throttling).

This cures both problems:

 - no matter how many DL instances in the past, you'll have an rt_time
   slightly above rt_runtime when an RT task is enqueued, and from that
   point on (after the first replenishment), the task will normally execute;

 - you can still eat up all bandwidth during the first period, but not
   anymore after that, remember that DL execution will increment rt_time
   till the upper limit is reached.

The situation is still not perfect! But, we have a simple solution for now,
that limits how much you can jeopardize your system, as we keep working
towards the right answer: RT groups scheduled using deadline servers.

Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140225151515.617714e2f2cd6c558531ba61@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:29:41 +01:00
Li Zefan 11c785b79e sched/rt: Make init_sched_rt_calss() __init
It's a bootstrap function.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/52F5CC09.1080502@huawei.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-22 18:11:10 +01:00
Peter Zijlstra dc87734106 sched: Remove some #ifdeffery
Remove a few gratuitous #ifdefs in pick_next_task*().

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-nnzddp5c4fijyzzxxrwlxghf@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:18 +01:00
Peter Zijlstra 3f1d2a3181 sched: Fix hotplug task migration
Dan Carpenter reported:

> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)

Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.

Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.

A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.

We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().

Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:18 +01:00
Peter Zijlstra 38033c37fa sched: Push down pre_schedule() and idle_balance()
This patch both merged idle_balance() and pre_schedule() and pushes
both of them into pick_next_task().

Conceptually pre_schedule() and idle_balance() are rather similar,
both are used to pull more work onto the current CPU.

We cannot however first move idle_balance() into pre_schedule_fair()
since there is no guarantee the last runnable task is a fair task, and
thus we would miss newidle balances.

Similarly, the dl and rt pre_schedule calls must be ran before
idle_balance() since their respective tasks have higher priority and
it would not do to delay their execution searching for less important
tasks first.

However, by noticing that pick_next_tasks() already traverses the
sched_class hierarchy in the right order, we can get the right
behaviour and do away with both calls.

We must however change the special case optimization to also require
that prev is of sched_class_fair, otherwise we can miss doing a dl or
rt pull where we needed one.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-11 09:58:10 +01:00
Peter Zijlstra 606dba2e28 sched: Push put_prev_task() into pick_next_task()
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:13 +01:00
Juri Lelli 1baca4ce16 sched/deadline: Add SCHED_DEADLINE SMP-related data structures & logic
Introduces data structures relevant for implementing dynamic
migration of -deadline tasks and the logic for checking if
runqueues are overloaded with -deadline tasks and for choosing
where a task should migrate, when it is the case.

Adds also dynamic migrations to SCHED_DEADLINE, so that tasks can
be moved among CPUs when necessary. It is also possible to bind a
task to a (set of) CPU(s), thus restricting its capability of
migrating, or forbidding migrations at all.

The very same approach used in sched_rt is utilised:
 - -deadline tasks are kept into CPU-specific runqueues,
 - -deadline tasks are migrated among runqueues to achieve the
   following:
    * on an M-CPU system the M earliest deadline ready tasks
      are always running;
    * affinity/cpusets settings of all the -deadline tasks is
      always respected.

Therefore, this very special form of "load balancing" is done with
an active method, i.e., the scheduler pushes or pulls tasks between
runqueues when they are woken up and/or (de)scheduled.
IOW, every time a preemption occurs, the descheduled task might be sent
to some other CPU (depending on its deadline) to continue executing
(push). On the other hand, every time a CPU becomes idle, it might pull
the second earliest deadline ready task from some other CPU.

To enforce this, a pull operation is always attempted before taking any
scheduling decision (pre_schedule()), as well as a push one after each
scheduling decision (post_schedule()). In addition, when a task arrives
or wakes up, the best CPU where to resume it is selected taking into
account its affinity mask, the system topology, but also its deadline.
E.g., from the scheduling point of view, the best CPU where to wake
up (and also where to push) a task is the one which is running the task
with the latest deadline among the M executing ones.

In order to facilitate these decisions, per-runqueue "caching" of the
deadlines of the currently running and of the first ready task is used.
Queued but not running tasks are also parked in another rb-tree to
speed-up pushes.

Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-5-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:07 +01:00
Kirill Tkhai 757dfcaa41 sched/rt: Fix rq's cpupri leak while enqueue/dequeue child RT entities
This patch touches the RT group scheduling case.

Functions inc_rt_prio_smp() and dec_rt_prio_smp() change (global) rq's
priority, while rt_rq passed to them may be not the top-level rt_rq.
This is wrong, because changing of priority on a child level does not
guarantee that the priority is the highest all over the rq. So, this
leak makes RT balancing unusable.

The short example: the task having the highest priority among all rq's
RT tasks (no one other task has the same priority) are waking on a
throttle rt_rq.  The rq's cpupri is set to the task's priority
equivalent, but real rq->rt.highest_prio.curr is less.

The patch below fixes the problem.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
CC: Steven Rostedt <rostedt@goodmis.org>
CC: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/49231385567953@web4m.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-12-17 15:08:44 +01:00
Li Bin e9aa39bb7c sched/rt: Fix task_tick_rt() comment
This issue was introduced by 454c79999f ("sched/rt: Fix SCHED_RR
across cgroups") that missed the word 'not'. Fix it.

Signed-off-by: Li Bin <huawei.libin@huawei.com>
Cc: <guohanjun@huawei.com>
Cc: <xiexiuqi@huawei.com>
Cc: <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1382357743-54136-1-git-send-email-huawei.libin@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-26 12:25:21 +02:00
Peter Zijlstra 7c3f2ab7b8 sched/rt: Add missing rmb()
While discussing the proposed SCHED_DEADLINE patches which in parts
mimic the existing FIFO code it was noticed that the wmb in
rt_set_overloaded() didn't have a matching barrier.

The only site using rt_overloaded() to test the rto_count is
pull_rt_task() and we should issue a matching rmb before then assuming
there's an rto_mask bit set.

Without that smp_rmb() in there we could actually miss seeing the
rto_mask bit.

Also, change to using smp_[wr]mb(), even though this is SMP only code;
memory barriers without smp_ always make me think they're against
hardware of some sort.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: vincent.guittot@linaro.org
Cc: luca.abeni@unitn.it
Cc: bruce.ashfield@windriver.com
Cc: dhaval.giani@gmail.com
Cc: rostedt@goodmis.org
Cc: hgu1972@gmail.com
Cc: oleg@redhat.com
Cc: fweisbec@gmail.com
Cc: darren@dvhart.com
Cc: johan.eker@ericsson.com
Cc: p.faure@akatech.ch
Cc: paulmck@linux.vnet.ibm.com
Cc: raistlin@linux.it
Cc: claudio@evidence.eu.com
Cc: insop.song@gmail.com
Cc: michael@amarulasolutions.com
Cc: liming.wang@windriver.com
Cc: fchecconi@gmail.com
Cc: jkacur@redhat.com
Cc: tommaso.cucinotta@sssup.it
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: harald.gustafsson@ericsson.com
Cc: nicola.manica@disi.unitn.it
Cc: tglx@linutronix.de
Link: http://lkml.kernel.org/r/20131015103507.GF10651@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-16 14:22:13 +02:00
Peter Zijlstra ac66f54772 sched/numa: Introduce migrate_swap()
Use the new stop_two_cpus() to implement migrate_swap(), a function that
flips two tasks between their respective cpus.

I'm fairly sure there's a less crude way than employing the stop_two_cpus()
method, but everything I tried either got horribly fragile and/or complex. So
keep it simple for now.

The notable detail is how we 'migrate' tasks that aren't runnable
anymore. We'll make it appear like we migrated them before they went to
sleep. The sole difference is the previous cpu in the wakeup path, so we
override this.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:46 +02:00
Shawn Bohrer 6bfa687c19 sched/rt: Remove redundant nr_cpus_allowed test
In 76854c7e8f ("sched: Use
rt.nr_cpus_allowed to recover select_task_rq() cycles") an
optimization was added to select_task_rq_rt() that immediately
returns when p->nr_cpus_allowed == 1 at the beginning of the
function.

This makes the latter p->nr_cpus_allowed > 1 check redundant,
which can now be removed.

Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: tomk@rgmadvisors.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1380914693-24634-1-git-send-email-shawn.bohrer@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-06 11:28:40 +02:00
Kirill Tkhai e23ee74777 sched/rt: Simplify pull_rt_task() logic and remove .leaf_rt_rq_list
[ Peter, this is based off of some of my work, I ran it though a few
  tests and it passed. I also reviewed it, and added my SOB as I am
  somewhat a co-author to it. ]

Based on the patch by Steven Rostedt from previous year:

https://lkml.org/lkml/2012/4/18/517

1)Simplify pull_rt_task() logic: search in pushable tasks of dest runqueue.
The only pullable tasks are the tasks which are pushable in their local rq,
and no others.

2)Remove .leaf_rt_rq_list member of struct rt_rq and functions connected
with it: nobody uses it since now.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/287571370557898@web7d.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19 12:58:40 +02:00
Frederic Weisbecker 78becc2709 sched: Use an accessor to read the rq clock
Read the runqueue clock through an accessor. This
prepares for adding a debugging infrastructure to
detect missing or redundant calls to update_rq_clock()
between a scheduler's entry and exit point.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28 09:40:27 +02:00
Neil Zhang c5405a495e sched: Remove redundant update_runtime notifier
migration_call() will do all the things that update_runtime() does.
So let's remove it.

Furthermore, there is potential risk that the current code will catch
BUG_ON at line 689 of rt.c when do cpu hotplug while there are realtime
threads running because of enabling runtime twice while the rt_runtime
may already changed.

Signed-off-by: Neil Zhang <zhangwm@marvell.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365685499-26515-1-git-send-email-zhangwm@marvell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28 09:40:22 +02:00
Nathan Zimmer 424c93fe4c sched: Use this_rq() helper
It is a few instructions more efficent to and slightly more
readable to use this_rq()-> instead of cpu_rq(smp_processor_id())-> .

Size comparison of kernel/sched/fair.o:

   text    data     bss     dec     hex filename
  27972     122      26   28120    6dd8 fair.o.before
  27956     122      26   28104    6dc8 fair.o.after

Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1368116643-87971-1-git-send-email-nzimmer@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-10 10:35:56 +02:00
Linus Torvalds d652e1eb8e Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes from Ingo Molnar:
 "Main changes:

   - scheduler side full-dynticks (user-space execution is undisturbed
     and receives no timer IRQs) preparation changes that convert the
     cputime accounting code to be full-dynticks ready, from Frederic
     Weisbecker.

   - Initial sched.h split-up changes, by Clark Williams

   - select_idle_sibling() performance improvement by Mike Galbraith:

        " 1 tbench pair (worst case) in a 10 core + SMT package:

          pre   15.22 MB/sec 1 procs
          post 252.01 MB/sec 1 procs "

  - sched_rr_get_interval() ABI fix/change.  We think this detail is not
    used by apps (so it's not an ABI in practice), but lets keep it
    under observation.

  - misc RT scheduling cleanups, optimizations"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
  sched/rt: Add <linux/sched/rt.h> header to <linux/init_task.h>
  cputime: Remove irqsave from seqlock readers
  sched, powerpc: Fix sched.h split-up build failure
  cputime: Restore CPU_ACCOUNTING config defaults for PPC64
  sched/rt: Move rt specific bits into new header file
  sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice
  sched: Move sched.h sysctl bits into separate header
  sched: Fix signedness bug in yield_to()
  sched: Fix select_idle_sibling() bouncing cow syndrome
  sched/rt: Further simplify pick_rt_task()
  sched/rt: Do not account zero delta_exec in update_curr_rt()
  cputime: Safely read cputime of full dynticks CPUs
  kvm: Prepare to add generic guest entry/exit callbacks
  cputime: Use accessors to read task cputime stats
  cputime: Allow dynamic switch between tick/virtual based cputime accounting
  cputime: Generic on-demand virtual cputime accounting
  cputime: Move default nsecs_to_cputime() to jiffies based cputime file
  cputime: Librarize per nsecs resolution cputime definitions
  cputime: Avoid multiplication overflow on utime scaling
  context_tracking: Export context state for generic vtime
  ...

Fix up conflict in kernel/context_tracking.c due to comment additions.
2013-02-19 18:19:48 -08:00
Clark Williams ce0dbbbb30 sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice
Add a /proc/sys/kernel scheduler knob named
sched_rr_timeslice_ms that allows global changing of the
SCHED_RR timeslice value. User visable value is in milliseconds
but is stored as jiffies.  Setting to 0 (zero) resets to the
default (currently 100ms).

Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094704.13751796@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-02-07 20:51:07 +01:00
Kirill Tkhai 60334caf37 sched/rt: Further simplify pick_rt_task()
Function next_prio() has been removed and pull_rt_task() is the
only user of pick_next_highest_task_rt() at the moment.

pull_rt_task is not interested in p->nr_cpus_allowed, its only
interest is the fact that cpu is allowed to execute p. If
nr_cpus_allowed == 1, cpu != task_cpu(p) and cpu is allowed then
it means that task p is in the middle of the migration
techniques; the task waits until it is moved by migration
thread. So, lets pull it earlier.

Signed-off-by: Kirill V Tkhai <tkhai@yandex.ru>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
CC: linux-rt-users <linux-rt-users@vger.kernel.org>
Link: http://lkml.kernel.org/r/70871359644177@web16d.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-02-03 19:54:58 +01:00
Kirill Tkhai fc79e240be sched/rt: Do not account zero delta_exec in update_curr_rt()
There are several places of consecutive calls of
dequeue_task_rt() and put_prev_task_rt() in the scheduler.
For example, function rt_mutex_setprio() does it.

The both calls lead to update_curr_rt(), the second of it
receives zeroed delta_exec. The only effective action in this
case is call of sched_rt_avg_update(), which can change
rq->age_stamp and rq->rt_avg. But it is possible in case of
""floating"" rq->clock. This fact is not reasonable to be
accounted. Another actions do nothing.

Signed-off-by: Kirill V Tkhai <tkhai@yandex.ru>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
CC: linux-rt-users <linux-rt-users@vger.kernel.org>
Link: http://lkml.kernel.org/r/931541359550236@web1g.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-01-31 10:31:13 +01:00
Ying Xue 57d2aa00dc sched/rt: Avoid updating RT entry timeout twice within one tick period
The issue below was found in 2.6.34-rt rather than mainline rt
kernel, but the issue still exists upstream as well.

So please let me describe how it was noticed on 2.6.34-rt:

On this version, each softirq has its own thread, it means there
is at least one RT FIFO task per cpu. The priority of these
tasks is set to 49 by default. If user launches an RT FIFO task
with priority lower than 49 of softirq RT tasks, it's possible
there are two RT FIFO tasks enqueued one cpu runqueue at one
moment. By current strategy of balancing RT tasks, when it comes
to RT tasks, we really need to put them off to a CPU that they
can run on as soon as possible. Even if it means a bit of cache
line flushing, we want RT tasks to be run with the least latency.

When the user RT FIFO task which just launched before is
running, the sched timer tick of the current cpu happens. In this
tick period, the timeout value of the user RT task will be
updated once. Subsequently, we try to wake up one softirq RT
task on its local cpu. As the priority of current user RT task
is lower than the softirq RT task, the current task will be
preempted by the higher priority softirq RT task. Before
preemption, we check to see if current can readily move to a
different cpu. If so, we will reschedule to allow the RT push logic
to try to move current somewhere else. Whenever the woken
softirq RT task runs, it first tries to migrate the user FIFO RT
task over to a cpu that is running a task of lesser priority. If
migration is done, it will send a reschedule request to the found
cpu by IPI interrupt. Once the target cpu responds the IPI
interrupt, it will pick the migrated user RT task to preempt its
current task. When the user RT task is running on the new cpu,
the sched timer tick of the cpu fires. So it will tick the user
RT task again. This also means the RT task timeout value will be
updated again. As the migration may be done in one tick period,
it means the user RT task timeout value will be updated twice
within one tick.

If we set a limit on the amount of cpu time for the user RT task
by setrlimit(RLIMIT_RTTIME), the SIGXCPU signal should be posted
upon reaching the soft limit.

But exactly when the SIGXCPU signal should be sent depends on the
RT task timeout value. In fact the timeout mechanism of sending
the SIGXCPU signal assumes the RT task timeout is increased once
every tick.

However, currently the timeout value may be added twice per
tick. So it results in the SIGXCPU signal being sent earlier
than expected.

To solve this issue, we prevent the timeout value from increasing
twice within one tick time by remembering the jiffies value of
last updating the timeout. As long as the RT task's jiffies is
different with the global jiffies value, we allow its timeout to
be updated.

Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Fan Du <fan.du@windriver.com>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1342508623-2887-1-git-send-email-ying.xue@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-01-25 08:31:54 +01:00
Shawn Bohrer aa7f67304d sched/rt: Use root_domain of rt_rq not current processor
When the system has multiple domains do_sched_rt_period_timer()
can run on any CPU and may iterate over all rt_rq in
cpu_online_mask.  This means when balance_runtime() is run for a
given rt_rq that rt_rq may be in a different rd than the current
processor.  Thus if we use smp_processor_id() to get rd in
do_balance_runtime() we may borrow runtime from a rt_rq that is
not part of our rd.

This changes do_balance_runtime to get the rd from the passed in
rt_rq ensuring that we borrow runtime only from the correct rd
for the given rt_rq.

This fixes a BUG at kernel/sched/rt.c:687! in __disable_runtime
when we try reclaim runtime lent to other rt_rq but runtime has
been lent to a rt_rq in another rd.

Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Mike Galbraith <bitbucket@online.de>
Cc: peterz@infradead.org
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1358186131-29494-1-git-send-email-sbohrer@rgmadvisors.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-01-25 08:20:47 +01:00
Kirill Tkhai 1158ddb554 sched/rt: Add reschedule check to switched_from_rt()
Reschedule rq->curr if the first RT task has just been
pulled to the rq.

Signed-off-by: Kirill V Tkhai <tkhai@yandex.ru>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tkhai Kirill <tkhai@yandex.ru>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/118761353614535@web28f.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-01-24 17:14:30 +01:00
Peter Zijlstra f3e9478674 sched: Remove __ARCH_WANT_INTERRUPTS_ON_CTXSW
Now that the last architecture to use this has stopped doing so (ARM,
thanks Catalin!) we can remove this complexity from the scheduler
core.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 16:52:04 +02:00
Peter Boonstoppel a4c96ae319 sched: Unthrottle rt runqueues in __disable_runtime()
migrate_tasks() uses _pick_next_task_rt() to get tasks from the
real-time runqueues to be migrated. When rt_rq is throttled
_pick_next_task_rt() won't return anything, in which case
migrate_tasks() can't move all threads over and gets stuck in an
infinite loop.

Instead unthrottle rt runqueues before migrating tasks.

Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair()

Signed-off-by: Peter Boonstoppel <pboonstoppel@nvidia.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-04 14:30:30 +02:00
Mike Galbraith e221d028bb sched,rt: fix isolated CPUs leaving root_task_group indefinitely throttled
Root task group bandwidth replenishment must service all CPUs, regardless of
where the timer was last started, and regardless of the isolation mechanism,
lest 'Quoth the Raven, "Nevermore"' become rt scheduling policy.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1344326558.6968.25.camel@marge.simpson.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-08-13 18:41:55 +02:00
Peter Zijlstra 7f1b43936f sched/rt: Fix lockdep annotation within find_lock_lowest_rq()
Roland Dreier reported spurious, hard to trigger lockdep warnings
within the scheduler - without any real lockup.

This bit gives us the right clue:

> [89945.640512]  [<ffffffff8103fa1a>] double_lock_balance+0x5a/0x90
> [89945.640568]  [<ffffffff8104c546>] push_rt_task+0xc6/0x290

if you look at that code you'll find the double_lock_balance() in
question is the one in find_lock_lowest_rq() [yay for inlining].

Now find_lock_lowest_rq() has a bug.. it fails to use
double_unlock_balance() in one exit path, if this results in a retry in
push_rt_task() we'll call double_lock_balance() again, at which point
we'll run into said lockdep confusion.

Reported-by: Roland Dreier <roland@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1337282386.4281.77.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-06-06 16:52:26 +02:00
Colin Cross 454c79999f sched/rt: Fix SCHED_RR across cgroups
task_tick_rt() has an optimization to only reschedule SCHED_RR tasks
if they were the only element on their rq.  However, with cgroups
a SCHED_RR task could be the only element on its per-cgroup rq but
still be competing with other SCHED_RR tasks in its parent's
cgroup.  In this case, the SCHED_RR task in the child cgroup would
never yield at the end of its timeslice.  If the child cgroup
rt_runtime_us was the same as the parent cgroup rt_runtime_us,
the task in the parent cgroup would starve completely.

Modify task_tick_rt() to check that the task is the only task on its
rq, and that the each of the scheduling entities of its ancestors
is also the only entity on its rq.

Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1337229266-15798-1-git-send-email-ccross@android.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-05-30 14:02:25 +02:00
Peter Zijlstra 29baa7478b sched: Move nr_cpus_allowed out of 'struct sched_rt_entity'
Since nr_cpus_allowed is used outside of sched/rt.c and wants to be
used outside of there more, move it to a more natural site.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-kr61f02y9brwzkh6x53pdptm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-05-30 14:02:25 +02:00
Ingo Molnar 4cbb62148c Merge branch 'tip/sched/core' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace into sched/core
Pull a scheduler optimization commit from Steven Rostedt.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-04-14 15:12:04 +02:00
Kirill Tkhai 8d3d5ada56 sched_rt: Avoid unnecessary dequeue and enqueue of pushable tasks in set_cpus_allowed_rt()
Migration status depends on a difference of weight from 0 and 1.
If weight > 1 (<= 1) and old weight <= 1 (> 1) then task becomes
pushable (or not pushable). We are not insterested in its exact
values, is it 3 or 4, for example.
Now if we are changing affinity from a set of 3 cpus to a set of 4, the-
task will be dequeued and enqueued sequentially without important
difference in comparison with initial state. The only difference is in
internal representation of plist queue of pushable tasks and the fact
that the task may won't be the first in a sequence of the same priority
tasks. But it seems to me it gives nothing.

Link: http://lkml.kernel.org/r/273741334120764@web83.yandex.ru

Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Tkhai Kirill <tkhai@yandex.ru>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-04-12 16:59:37 -04:00
Michael J Wang 1b028abc77 sched/rt: Improve pick_next_highest_task_rt()
Avoid extra work by continuing on to the next rt_rq if the highest
prio task in current rt_rq is the same priority as our candidate
task.

More detailed explanation:  if next is not NULL, then we have found a
candidate task, and its priority is next->prio.  Now we are looking
for an even higher priority task in the other rt_rq's.  idx is the
highest priority in the current candidate rt_rq.  In the current 3.3
code, if idx is equal to next->prio, we would start scanning the tasks
in that rt_rq and replace the current candidate task with a task from
that rt_rq.  But the new task would only have a priority that is equal
to our previous candidate task, so we have not advanced our goal of
finding a higher prio task.  So we should avoid the extra work by
continuing on to the next rt_rq if idx is equal to next->prio.

Signed-off-by: Michael J Wang <mjwang@broadcom.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/2EF88150C0EF2C43A218742ED384C1BC0FC83D6B@IRVEXCHMB08.corp.ad.broadcom.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-27 14:52:12 +02:00
Peter Zijlstra 3ccf3e8306 printk/sched: Introduce special printk_sched() for those awkward moments
There's a few awkward printk()s inside of scheduler guts that people
prefer to keep but really are rather deadlock prone. Fudge around it
by storing the text in a per-cpu buffer and poll it using the existing
printk_tick() handler.

This will drop output when its more frequent than once a tick, however
only the affinity thing could possible go that fast and for that just
one should suffice to notify the admin he's done something silly..

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-wua3lmkt3dg8nfts66o6brne@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-12 20:43:16 +01:00
Peter Zijlstra 7abc63b1bd sched/rt: Do not throttle when PI boosting
When a runqueue has rt_runtime_us = 0 then the only way it can
accumulate rt_time is via PI boosting. That causes the runqueue
to be throttled and replenishing does not change anything due to
rt_runtime_us = 0. So avoid that situation by clearing rt_time and
skip the throttling alltogether.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
[ Changelog ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-7x70cypsotjb4jvcor3edctk@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-01 10:28:02 +01:00
Peter Zijlstra 42c62a589f sched/rt: Keep period timer ticking when rt throttling is active
When a runqueue is throttled we cannot disable the period timer
because that timer is the only way to undo the throttling.

We got stale throttling entries when a rq was throttled and then the
global sysctl was disabled, which stopped the timer.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[ Added changelog ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-nuj34q52p6ro7szapuz84i0v@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-01 10:28:01 +01:00
Hiroshi Shimamoto de5bdff7a7 sched: Make initial SCHED_RR timeslace DEF_TIMESLICE
Current the initial SCHED_RR timeslice of init_task is HZ, which means
1s, and is not same as the default SCHED_RR timeslice DEF_TIMESLICE.

Change that initial timeslice to the DEF_TIMESLICE.

Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
[ s/DEF_TIMESLICE/RR_TIMESLICE/g ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4F3C9995.3010800@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-22 12:28:29 +01:00
Chanho Min cb297a3e43 sched/rt: Fix task stack corruption under __ARCH_WANT_INTERRUPTS_ON_CTXSW
This issue happens under the following conditions:

 1. preemption is off
 2. __ARCH_WANT_INTERRUPTS_ON_CTXSW is defined
 3. RT scheduling class
 4. SMP system

Sequence is as follows:

 1.suppose current task is A. start schedule()
 2.task A is enqueued pushable task at the entry of schedule()
   __schedule
    prev = rq->curr;
    ...
    put_prev_task
     put_prev_task_rt
      enqueue_pushable_task
 4.pick the task B as next task.
   next = pick_next_task(rq);
 3.rq->curr set to task B and context_switch is started.
   rq->curr = next;
 4.At the entry of context_swtich, release this cpu's rq->lock.
   context_switch
    prepare_task_switch
     prepare_lock_switch
      raw_spin_unlock_irq(&rq->lock);
 5.Shortly after rq->lock is released, interrupt is occurred and start IRQ context
 6.try_to_wake_up() which called by ISR acquires rq->lock
    try_to_wake_up
     ttwu_remote
      rq = __task_rq_lock(p)
      ttwu_do_wakeup(rq, p, wake_flags);
        task_woken_rt
 7.push_rt_task picks the task A which is enqueued before.
   task_woken_rt
    push_rt_tasks(rq)
     next_task = pick_next_pushable_task(rq)
 8.At find_lock_lowest_rq(), If double_lock_balance() returns 0,
   lowest_rq can be the remote rq.
  (But,If preemption is on, double_lock_balance always return 1 and it
   does't happen.)
   push_rt_task
    find_lock_lowest_rq
     if (double_lock_balance(rq, lowest_rq))..
 9.find_lock_lowest_rq return the available rq. task A is migrated to
   the remote cpu/rq.
   push_rt_task
    ...
    deactivate_task(rq, next_task, 0);
    set_task_cpu(next_task, lowest_rq->cpu);
    activate_task(lowest_rq, next_task, 0);
 10. But, task A is on irq context at this cpu.
     So, task A is scheduled by two cpus at the same time until restore from IRQ.
     Task A's stack is corrupted.

To fix it, don't migrate an RT task if it's still running.

Signed-off-by: Chanho Min <chanho.min@lge.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/CAOAMb1BHA=5fm7KTewYyke6u-8DP0iUuJMpgQw54vNeXFsGpoQ@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-01-27 12:49:41 +01:00
Shan Hai 5b680fd613 sched/rt: Code cleanup, remove a redundant function call
The second call to sched_rt_period() is redundant, because the value of the
rt_runtime was already read and it was protected by the ->rt_runtime_lock.

Signed-off-by: Shan Hai <haishan.bai@gmail.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322535836-13590-2-git-send-email-haishan.bai@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-06 09:06:28 +01:00
Mike Galbraith 76854c7e8f sched: Use rt.nr_cpus_allowed to recover select_task_rq() cycles
rt.nr_cpus_allowed is always available, use it to bail from select_task_rq()
when only one cpu can be used, and saves some cycles for pinned tasks.

See the line marked with '*' below:

  # taskset -c 3 pipe-test

   PerfTop:     997 irqs/sec  kernel:89.5%  exact:  0.0% [1000Hz cycles],  (all, CPU: 3)
------------------------------------------------------------------------------------------------

             Virgin                                    Patched
             samples  pcnt function                    samples  pcnt function
             _______ _____ ___________________________ _______ _____ ___________________________

             2880.00 10.2% __schedule                  3136.00 11.3% __schedule
             1634.00  5.8% pipe_read                   1615.00  5.8% pipe_read
             1458.00  5.2% system_call                 1534.00  5.5% system_call
             1382.00  4.9% _raw_spin_lock_irqsave      1412.00  5.1% _raw_spin_lock_irqsave
             1202.00  4.3% pipe_write                  1255.00  4.5% copy_user_generic_string
             1164.00  4.1% copy_user_generic_string    1241.00  4.5% __switch_to
             1097.00  3.9% __switch_to                  929.00  3.3% mutex_lock
              872.00  3.1% mutex_lock                   846.00  3.0% mutex_unlock
              687.00  2.4% mutex_unlock                 804.00  2.9% pipe_write
              682.00  2.4% native_sched_clock           713.00  2.6% native_sched_clock
              643.00  2.3% system_call_after_swapgs     653.00  2.3% _raw_spin_unlock_irqrestore
              617.00  2.2% sched_clock_local            633.00  2.3% fsnotify
              612.00  2.2% fsnotify                     605.00  2.2% sched_clock_local
              596.00  2.1% _raw_spin_unlock_irqrestore  593.00  2.1% system_call_after_swapgs
              542.00  1.9% sysret_check                 559.00  2.0% sysret_check
              467.00  1.7% fget_light                   472.00  1.7% fget_light
              462.00  1.6% finish_task_switch           461.00  1.7% finish_task_switch
              437.00  1.5% vfs_write                    442.00  1.6% vfs_write
              431.00  1.5% do_sync_write                428.00  1.5% do_sync_write
*             413.00  1.5% select_task_rq_fair          404.00  1.5% _raw_spin_lock_irq
              386.00  1.4% update_curr                  402.00  1.4% update_curr
              385.00  1.4% rw_verify_area               389.00  1.4% do_sync_read
              377.00  1.3% _raw_spin_lock_irq           378.00  1.4% vfs_read
              369.00  1.3% do_sync_read                 340.00  1.2% pipe_iov_copy_from_user
              360.00  1.3% vfs_read                     316.00  1.1% __wake_up_sync_key
              342.00  1.2% hrtick_start_fair            313.00  1.1% __wake_up_common

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1321971504.6855.15.camel@marge.simson.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-06 08:51:26 +01:00
Peter Zijlstra 391e43da79 sched: Move all scheduler bits into kernel/sched/
There's too many sched*.[ch] files in kernel/, give them their own
directory.

(No code changed, other than Makefile glue added.)

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-11-17 12:20:22 +01:00