When multiple threads to check btree nodes in parallel, the main
thread wait for all threads to stop or CACHE_SET_IO_DISABLE flag:
wait_event_interruptible(check_state->wait,
atomic_read(&check_state->started) == 0 ||
test_bit(CACHE_SET_IO_DISABLE, &c->flags));
However, the bch_btree_node_read and bch_btree_node_read_done
maybe call bch_cache_set_error, then the CACHE_SET_IO_DISABLE
will be set. If the flag already set, the main thread return
error. At the same time, maybe some threads still running and
read NULL pointer, the kernel will crash.
This patch change the event wait condition, the main thread must
wait for all threads to stop.
Fixes: 8e7102273f ("bcache: make bch_btree_check() to be multithreaded")
Signed-off-by: Mingzhe Zou <mingzhe.zou@easystack.cn>
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Coly Li <colyli@suse.de>
When attaching a cached device (a.k.a backing device) to a cache
device, bch_sectors_dirty_init() is called to count dirty sectors
and stripes (see what bcache_dev_sectors_dirty_add() does) on the
cache device.
When bcache_dev_sectors_dirty_add() is called, set_bit(stripe,
d->full_dirty_stripes) or clear_bit(stripe, d->full_dirty_stripes)
operation will always be performed. In full_dirty_stripes, each 1bit
represents stripe_size (8192) sectors (512B), so 1bit=4MB (8192*512),
and each CPU cache line=64B=512bit=2048MB. When 20 threads process
a cached disk with 100G dirty data, a single thread processes about
23M at a time, and 20 threads total 460M. These full_dirty_stripes
bits corresponding to the 460M data is likely to fall in the same CPU
cache line. When one of these threads performs a set_bit or clear_bit
operation, the same CPU cache line of other threads will become invalid
and must read the full_dirty_stripes from the main memory again. Compared
with single thread, the time of a bcache_dev_sectors_dirty_add()
call is increased by about 50 times in our test (100G dirty data,
20 threads, bcache_dev_sectors_dirty_add() is called more than
20 million times).
This patch tries to test_bit before set_bit or clear_bit operation.
Therefore, a lot of force set and clear operations will be avoided,
and most of bcache_dev_sectors_dirty_add() calls will only read CPU
cache line.
Signed-off-by: Mingzhe Zou <mingzhe.zou@easystack.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Pass the block_device that we plan to use this bio for and the
operation to bio_init to optimize the assignment. A NULL block_device
can be passed, both for the passthrough case on a raw request_queue and
to temporarily avoid refactoring some nasty code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220124091107.642561-19-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cast multiple variables to (int64_t) in order to give the compiler
complete information about the proper arithmetic to use. Notice that
these variables are being used in contexts that expect expressions of
type int64_t (64 bit, signed). And currently, such expressions are
being evaluated using 32-bit arithmetic.
Fixes: d0cf9503e9 ("octeontx2-pf: ethtool fec mode support")
Addresses-Coverity-ID: 1501724 ("Unintentional integer overflow")
Addresses-Coverity-ID: 1501725 ("Unintentional integer overflow")
Addresses-Coverity-ID: 1501726 ("Unintentional integer overflow")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Coly Li <colyli@suse.de>
Link: https://lore.kernel.org/r/20210411134316.80274-7-colyli@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove the PTR_CACHE inline and replace it with a direct dereference
of c->cache.
(Coly Li: fix the typo from PTR_BUCKET to PTR_CACHE in commit log)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Link: https://lore.kernel.org/r/20210411134316.80274-3-colyli@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Current way to calculate the writeback rate only considered the
dirty sectors, this usually works fine when the fragmentation
is not high, but it will give us unreasonable small rate when
we are under a situation that very few dirty sectors consumed
a lot dirty buckets. In some case, the dirty bucekts can reached
to CUTOFF_WRITEBACK_SYNC while the dirty data(sectors) not even
reached the writeback_percent, the writeback rate will still
be the minimum value (4k), thus it will cause all the writes to be
stucked in a non-writeback mode because of the slow writeback.
We accelerate the rate in 3 stages with different aggressiveness,
the first stage starts when dirty buckets percent reach above
BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW (50), the second is
BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID (57), the third is
BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH (64). By default
the first stage tries to writeback the amount of dirty data
in one bucket (on average) in (1 / (dirty_buckets_percent - 50)) second,
the second stage tries to writeback the amount of dirty data in one bucket
in (1 / (dirty_buckets_percent - 57)) * 100 millisecond, the third
stage tries to writeback the amount of dirty data in one bucket in
(1 / (dirty_buckets_percent - 64)) millisecond.
the initial rate at each stage can be controlled by 3 configurable
parameters writeback_rate_fp_term_{low|mid|high}, they are by default
1, 10, 1000, the hint of IO throughput that these values are trying
to achieve is described by above paragraph, the reason that
I choose those value as default is based on the testing and the
production data, below is some details:
A. When it comes to the low stage, there is still a bit far from the 70
threshold, so we only want to give it a little bit push by setting the
term to 1, it means the initial rate will be 170 if the fragment is 6,
it is calculated by bucket_size/fragment, this rate is very small,
but still much reasonable than the minimum 8.
For a production bcache with unheavy workload, if the cache device
is bigger than 1 TB, it may take hours to consume 1% buckets,
so it is very possible to reclaim enough dirty buckets in this stage,
thus to avoid entering the next stage.
B. If the dirty buckets ratio didn't turn around during the first stage,
it comes to the mid stage, then it is necessary for mid stage
to be more aggressive than low stage, so i choose the initial rate
to be 10 times more than low stage, that means 1700 as the initial
rate if the fragment is 6. This is some normal rate
we usually see for a normal workload when writeback happens
because of writeback_percent.
C. If the dirty buckets ratio didn't turn around during the low and mid
stages, it comes to the third stage, and it is the last chance that
we can turn around to avoid the horrible cutoff writeback sync issue,
then we choose 100 times more aggressive than the mid stage, that
means 170000 as the initial rate if the fragment is 6. This is also
inferred from a production bcache, I've got one week's writeback rate
data from a production bcache which has quite heavy workloads,
again, the writeback is triggered by the writeback percent,
the highest rate area is around 100000 to 240000, so I believe this
kind aggressiveness at this stage is reasonable for production.
And it should be mostly enough because the hint is trying to reclaim
1000 bucket per second, and from that heavy production env,
it is consuming 50 bucket per second on average in one week's data.
Option writeback_consider_fragment is to control whether we want
this feature to be on or off, it's on by default.
Lastly, below is the performance data for all the testing result,
including the data from production env:
https://docs.google.com/document/d/1AmbIEa_2MhB9bqhC3rfga9tp7n9YX9PLn0jSUxscVW0/edit?usp=sharing
Signed-off-by: dongdong tao <dongdong.tao@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is a race condition in detaching as below:
A. detaching B. Write request
(1) writing back
(2) write back done, set bdev
state to clean.
(3) cached_dev_put() and
schedule_work(&dc->detach);
(4) write data [0 - 4K] directly
into backing and ack to user.
(5) power-failure...
When we restart this bcache device, this bdev is clean but not detached,
and read [0 - 4K], we will get unexpected old data from cache device.
To fix this problem, set the bdev state to none when we writeback done
in detaching, and then if power-failure happened as above, the data in
cache will not be used in next bcache device starting, it's detached, we
will read the correct data from backing derectly.
Signed-off-by: Dongsheng Yang <dongsheng.yang@easystack.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since bcache code was merged into mainline kerrnel, each cache set only
as one single cache in it. The multiple caches framework is here but the
code is far from completed. Considering the multiple copies of cached
data can also be stored on e.g. md raid1 devices, it is unnecessary to
support multiple caches in one cache set indeed.
The previous preparation patches fix the dependencies of explicitly
making a cache set only have single cache. Now we don't have to maintain
an embedded partial super block in struct cache_set, the in-memory super
block can be directly referenced from struct cache.
This patch removes the embedded struct cache_sb from struct cache_set,
and fixes all locations where the superb lock was referenced from this
removed super block by referencing the in-memory super block of struct
cache.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
offset_to_stripe() returns the stripe number (in type unsigned int) from
an offset (in type uint64_t) by the following calculation,
do_div(offset, d->stripe_size);
For large capacity backing device (e.g. 18TB) with small stripe size
(e.g. 4KB), the result is 4831838208 and exceeds UINT_MAX. The actual
returned value which caller receives is 536870912, due to the overflow.
Indeed in bcache_device_init(), bcache_device->nr_stripes is limited in
range [1, INT_MAX]. Therefore all valid stripe numbers in bcache are
in range [0, bcache_dev->nr_stripes - 1].
This patch adds a upper limition check in offset_to_stripe(): the max
valid stripe number should be less than bcache_device->nr_stripes. If
the calculated stripe number from do_div() is equal to or larger than
bcache_device->nr_stripe, -EINVAL will be returned. (Normally nr_stripes
is less than INT_MAX, exceeding upper limitation doesn't mean overflow,
therefore -EOVERFLOW is not used as error code.)
This patch also changes nr_stripes' type of struct bcache_device from
'unsigned int' to 'int', and return value type of offset_to_stripe()
from 'unsigned int' to 'int', to match their exact data ranges.
All locations where bcache_device->nr_stripes and offset_to_stripe() are
referenced also get updated for the above type change.
Reported-and-tested-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Link: https://bugzilla.redhat.com/show_bug.cgi?id=1783075
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Make use of the struct_size() helper instead of an open-coded version
in order to avoid any potential type mistakes.
This code was detected with the help of Coccinelle and, audited and
fixed manually.
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove unneeded variable i in bch_dirty_init_thread().
Signed-off-by: Xu Wang <vulab@iscas.ac.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove the trailing newline from the define of pr_fmt and add newlines
to the uses.
Miscellanea:
o Convert bch_bkey_dump from multiple uses of pr_err to pr_cont
as the earlier conversion was inappropriate done causing multiple
lines to be emitted where only a single output line was desired
o Use vsprintf extension %pV in bch_cache_set_error to avoid multiple
line output where only a single line output was desired
o Coalesce formats
Fixes: 6ae63e3501 ("bcache: replace printk() by pr_*() routines")
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The idea of this patch is from Davidlohr Bueso, he posts a patch
for bcache to optimize barrier usage for read-modify-write atomic
bitops. Indeed such optimization can also apply on other locations
where smp_mb() is used before or after an atomic operation.
This patch replaces smp_mb() with smp_mb__before_atomic() or
smp_mb__after_atomic() in btree.c and writeback.c, where it is used
to synchronize memory cache just earlier on other cores. Although
the locations are not on hot code path, it is always not bad to mkae
things a little better.
Signed-off-by: Coly Li <colyli@suse.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We can avoid the unnecessary barrier on non LL/SC architectures,
such as x86. Instead, use the smp_mb__after_atomic().
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When attaching a cached device (a.k.a backing device) to a cache
device, bch_sectors_dirty_init() is called to count dirty sectors
and stripes (see what bcache_dev_sectors_dirty_add() does) on the
cache device.
The counting is done by a single thread recursive function
bch_btree_map_keys() to iterate all the bcache btree nodes.
If the btree has huge number of nodes, bch_sectors_dirty_init() will
take quite long time. In my testing, if the registering cache set has
a existed UUID which matches a already registered cached device, the
automatical attachment during the registration may take more than
55 minutes. This is too long for waiting the bcache to work in real
deployment.
Fortunately when bch_sectors_dirty_init() is called, no other thread
will access the btree yet, it is safe to do a read-only parallelized
dirty sectors counting by multiple threads.
This patch tries to create multiple threads, and each thread tries to
one-by-one count dirty sectors from the sub-tree indexed by a root
node key which the thread fetched. After the sub-tree is counted, the
counting thread will continue to fetch another root node key, until
the fetched key is NULL. How many threads in parallel depends on
the number of keys from the btree root node, and the number of online
CPU core. The thread number will be the less number but no more than
BCH_DIRTY_INIT_THRD_MAX. If there are only 2 keys in root node, it
can only be 2x times faster by this patch. But if there are 10 keys
in the root node, with this patch it can be 10x times faster.
Signed-off-by: Coly Li <colyli@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For writeback mode, if there is no regular I/O request for a while,
the writeback rate will be set to the maximum value (1TB/s for now).
This is good for most of the storage workload, but there are still
people don't what the maximum writeback rate in I/O idle time.
This patch adds a sysfs interface file idle_max_writeback_rate to
permit people to disable maximum writeback rate. Then the minimum
writeback rate can be advised by writeback_rate_minimum in the
bcache device's sysfs interface.
Reported-by: Christian Balzer <chibi@gol.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When enable lockdep and reboot system with a writeback mode bcache
device, the following potential deadlock warning is reported by lockdep
engine.
[ 101.536569][ T401] kworker/2:2/401 is trying to acquire lock:
[ 101.538575][ T401] 00000000bbf6e6c7 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 101.542054][ T401]
[ 101.542054][ T401] but task is already holding lock:
[ 101.544587][ T401] 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.548386][ T401]
[ 101.548386][ T401] which lock already depends on the new lock.
[ 101.548386][ T401]
[ 101.551874][ T401]
[ 101.551874][ T401] the existing dependency chain (in reverse order) is:
[ 101.555000][ T401]
[ 101.555000][ T401] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 101.557860][ T401] process_one_work+0x277/0x640
[ 101.559661][ T401] worker_thread+0x39/0x3f0
[ 101.561340][ T401] kthread+0x125/0x140
[ 101.562963][ T401] ret_from_fork+0x3a/0x50
[ 101.564718][ T401]
[ 101.564718][ T401] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 101.567701][ T401] lock_acquire+0xb4/0x1c0
[ 101.569651][ T401] flush_workqueue+0xae/0x4c0
[ 101.571494][ T401] drain_workqueue+0xa9/0x180
[ 101.573234][ T401] destroy_workqueue+0x17/0x250
[ 101.575109][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.577304][ T401] process_one_work+0x2a4/0x640
[ 101.579357][ T401] worker_thread+0x39/0x3f0
[ 101.581055][ T401] kthread+0x125/0x140
[ 101.582709][ T401] ret_from_fork+0x3a/0x50
[ 101.584592][ T401]
[ 101.584592][ T401] other info that might help us debug this:
[ 101.584592][ T401]
[ 101.588355][ T401] Possible unsafe locking scenario:
[ 101.588355][ T401]
[ 101.590974][ T401] CPU0 CPU1
[ 101.592889][ T401] ---- ----
[ 101.594743][ T401] lock((work_completion)(&cl->work)#2);
[ 101.596785][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.600072][ T401] lock((work_completion)(&cl->work)#2);
[ 101.602971][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.605255][ T401]
[ 101.605255][ T401] *** DEADLOCK ***
[ 101.605255][ T401]
[ 101.608310][ T401] 2 locks held by kworker/2:2/401:
[ 101.610208][ T401] #0: 00000000cf2c7d17 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 101.613709][ T401] #1: 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.617480][ T401]
[ 101.617480][ T401] stack backtrace:
[ 101.619539][ T401] CPU: 2 PID: 401 Comm: kworker/2:2 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1
[ 101.623225][ T401] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 101.627210][ T401] Workqueue: events cached_dev_free [bcache]
[ 101.629239][ T401] Call Trace:
[ 101.630360][ T401] dump_stack+0x85/0xcb
[ 101.631777][ T401] print_circular_bug+0x19a/0x1f0
[ 101.633485][ T401] __lock_acquire+0x16cd/0x1850
[ 101.635184][ T401] ? __lock_acquire+0x6a8/0x1850
[ 101.636863][ T401] ? lock_acquire+0xb4/0x1c0
[ 101.638421][ T401] ? find_held_lock+0x34/0xa0
[ 101.640015][ T401] lock_acquire+0xb4/0x1c0
[ 101.641513][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.643248][ T401] flush_workqueue+0xae/0x4c0
[ 101.644832][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.646476][ T401] ? drain_workqueue+0xa9/0x180
[ 101.648303][ T401] drain_workqueue+0xa9/0x180
[ 101.649867][ T401] destroy_workqueue+0x17/0x250
[ 101.651503][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.653328][ T401] process_one_work+0x2a4/0x640
[ 101.655029][ T401] worker_thread+0x39/0x3f0
[ 101.656693][ T401] ? process_one_work+0x640/0x640
[ 101.658501][ T401] kthread+0x125/0x140
[ 101.660012][ T401] ? kthread_create_worker_on_cpu+0x70/0x70
[ 101.661985][ T401] ret_from_fork+0x3a/0x50
[ 101.691318][ T401] bcache: bcache_device_free() bcache0 stopped
Here is how the above potential deadlock may happen in reboot/shutdown
code path,
1) bcache_reboot() is called firstly in the reboot/shutdown code path,
then in bcache_reboot(), bcache_device_stop() is called.
2) bcache_device_stop() sets BCACHE_DEV_CLOSING on d->falgs, then call
closure_queue(&d->cl) to invoke cached_dev_flush(). And in turn
cached_dev_flush() calls cached_dev_free() via closure_at()
3) In cached_dev_free(), after stopped writebach kthread
dc->writeback_thread, the kwork dc->writeback_write_wq is stopping by
destroy_workqueue().
4) Inside destroy_workqueue(), drain_workqueue() is called. Inside
drain_workqueue(), flush_workqueue() is called. Then wq->lockdep_map
is acquired by lock_map_acquire() in flush_workqueue(). After the
lock acquired the rest part of flush_workqueue() just wait for the
workqueue to complete.
5) Now we look back at writeback thread routine bch_writeback_thread(),
in the main while-loop, write_dirty() is called via continue_at() in
read_dirty_submit(), which is called via continue_at() in while-loop
level called function read_dirty(). Inside write_dirty() it may be
re-called on workqueeu dc->writeback_write_wq via continue_at().
It means when the writeback kthread is stopped in cached_dev_free()
there might be still one kworker queued on dc->writeback_write_wq
to execute write_dirty() again.
6) Now this kworker is scheduled on dc->writeback_write_wq to run by
process_one_work() (which is called by worker_thread()). Before
calling the kwork routine, wq->lockdep_map is acquired.
7) But wq->lockdep_map is acquired already in step 4), so a A-A lock
(lockdep terminology) scenario happens.
Indeed on multiple cores syatem, the above deadlock is very rare to
happen, just as the code comments in process_one_work() says,
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for
single-threaded
2265 * workqueues), so hiding them isn't a problem.
But it is still good to fix such lockdep warning, even no one running
bcache on single core system.
The fix is simple. This patch solves the above potential deadlock by,
- Do not destroy workqueue dc->writeback_write_wq in cached_dev_free().
- Flush and destroy dc->writeback_write_wq in writebach kthread routine
bch_writeback_thread(), where after quit the thread main while-loop
and before cached_dev_put() is called.
By this fix, dc->writeback_write_wq will be stopped and destroy before
the writeback kthread stopped, so the chance for a A-A locking on
wq->lockdep_map is disappeared, such A-A deadlock won't happen
any more.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 9baf30972b ("bcache: fix for gc and write-back race") added a
new work queue dc->writeback_write_wq, but forgot to destroy it in the
error condition when creating dc->writeback_thread failed.
This patch destroys dc->writeback_write_wq if kthread_create() returns
error pointer to dc->writeback_thread, then a memory leak is avoided.
Fixes: 9baf30972b ("bcache: fix for gc and write-back race")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When gc is running, user space I/O processes may wait inside
bcache code, so no new I/O coming. Indeed this is not a real idle
time, maximum writeback rate should not be set in such situation.
Otherwise a faster writeback thread may compete locks with gc thread
and makes garbage collection slower, which results a longer I/O
freeze period.
This patch checks c->gc_mark_valid in set_at_max_writeback_rate(). If
c->gc_mark_valid is 0 (gc running), set_at_max_writeback_rate() returns
false, then update_writeback_rate() will not set writeback rate to
maximum value even c->idle_counter reaches an idle threshold.
Now writeback thread won't interfere gc thread performance.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The option gc_after_writeback is disabled by default, because garbage
collection will discard SSD data which drops cached data.
Echo 1 into /sys/fs/bcache/<UUID>/internal/gc_after_writeback will
enable this option, which wakes up gc thread when writeback accomplished
and all cached data is clean.
This option is helpful for people who cares writing performance more. In
heavy writing workload, all cached data can be clean only happens when
writeback thread cleans all cached data in I/O idle time. In such
situation a following gc running may help to shrink bcache B+ tree and
discard more clean data, which may be helpful for future writing
requests.
If you are not sure whether this is helpful for your own workload,
please leave it as disabled by default.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A fresh backing device is not attached to any cache_set, and
has no writeback kthread created until first attached to some
cache_set.
But bch_cached_dev_writeback_init run
"
dc->writeback_running = true;
WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING,
&dc->disk.flags));
"
for any newly formatted backing devices.
For a fresh standalone backing device, we can get something like
following even if no writeback kthread created:
------------------------
/sys/block/bcache0/bcache# cat writeback_running
1
/sys/block/bcache0/bcache# cat writeback_rate_debug
rate: 512.0k/sec
dirty: 0.0k
target: 0.0k
proportional: 0.0k
integral: 0.0k
change: 0.0k/sec
next io: -15427384ms
The none ZERO fields are misleading as no alive writeback kthread yet.
Set dc->writeback_running false as no writeback thread created in
bch_cached_dev_writeback_init().
We have writeback thread created and woken up in bch_cached_dev_writeback
_start(). Set dc->writeback_running true before bch_writeback_queue()
called, as a writeback thread will check if dc->writeback_running is true
before writing back dirty data, and hung if false detected.
After the change, we can get the following output for a fresh standalone
backing device:
-----------------------
/sys/block/bcache0/bcache$ cat writeback_running
0
/sys/block/bcache0/bcache# cat writeback_rate_debug
rate: 0.0k/sec
dirty: 0.0k
target: 0.0k
proportional: 0.0k
integral: 0.0k
change: 0.0k/sec
next io: 0ms
v1 -> v2:
Set dc->writeback_running before bch_writeback_queue() called,
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The writeback thread would exit with a lock held when the cache device
is detached via sysfs interface, fix it by releasing the held lock
before exiting the while-loop.
Fixes: fadd94e05c (bcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is set)
Signed-off-by: Shan Hai <shan.hai@oracle.com>
Signed-off-by: Coly Li <colyli@suse.de>
Tested-by: Shenghui Wang <shhuiw@foxmail.com>
Cc: stable@vger.kernel.org #4.17+
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes 3 style issues warned by checkpatch.pl,
- Comment lines are not aligned
- Comments use "/*" on subsequent lines
- Comment lines use a trailing "*/"
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes the lines over 80 characters into more lines, to minimize
warnings by checkpatch.pl. There are still some lines exceed 80 characters,
but it is better to be a single line and I don't change them.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned'
with 'unsigned int'.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit b1092c9af9 ("bcache: allow quick writeback when backing idle")
allows the writeback rate to be faster if there is no I/O request on a
bcache device. It works well if there is only one bcache device attached
to the cache set. If there are many bcache devices attached to a cache
set, it may introduce performance regression because multiple faster
writeback threads of the idle bcache devices will compete the btree level
locks with the bcache device who have I/O requests coming.
This patch fixes the above issue by only permitting fast writebac when
all bcache devices attached on the cache set are idle. And if one of the
bcache devices has new I/O request coming, minimized all writeback
throughput immediately and let PI controller __update_writeback_rate()
to decide the upcoming writeback rate for each bcache device.
Also when all bcache devices are idle, limited wrieback rate to a small
number is wast of thoughput, especially when backing devices are slower
non-rotation devices (e.g. SATA SSD). This patch sets a max writeback
rate for each backing device if the whole cache set is idle. A faster
writeback rate in idle time means new I/Os may have more available space
for dirty data, and people may observe a better write performance then.
Please note bcache may change its cache mode in run time, and this patch
still works if the cache mode is switched from writeback mode and there
is still dirty data on cache.
Fixes: Commit b1092c9af9 ("bcache: allow quick writeback when backing idle")
Cc: stable@vger.kernel.org #4.16+
Signed-off-by: Coly Li <colyli@suse.de>
Tested-by: Kai Krakow <kai@kaishome.de>
Tested-by: Stefan Priebe <s.priebe@profihost.ag>
Cc: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
I attached several backend devices in the same cache set, and produced lots
of dirty data by running small rand I/O writes in a long time, then I
continue run I/O in the others cached devices, and stopped a cached device,
after a mean while, I register the stopped device again, I see the running
I/O in the others cached devices dropped significantly, sometimes even
jumps to zero.
In currently code, bcache would traverse each keys and btree node to count
the dirty data under read locker, and the writes threads can not get the
btree write locker, and when there is a lot of keys and btree node in the
registering device, it would last several seconds, so the write I/Os in
others cached device are blocked and declined significantly.
In this patch, when a device registering to a ache set, which exist others
cached devices with running I/Os, we get the amount of dirty data of the
device in an incremental way, and do not block other cached devices all the
time.
Patch v2: Rename some variables and macros name as Coly suggested.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently we calculate the total amount of flash only devices dirty data
by adding the dirty data of each flash only device under registering
locker. It is very inefficient.
In this patch, we add a member flash_dev_dirty_sectors in struct cache_set
to record the total amount of flash only devices dirty data in real time,
so we didn't need to calculate the total amount of dirty data any more.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit c7b7bd0740 ("bcache: add io_disable to struct cached_dev")
counts backing device I/O requets and set dc->io_disable to true if error
counters exceeds dc->io_error_limit. But it only counts I/O errors for
regular I/O request, neglects errors of write back I/Os when backing device
is offline.
This patch counts the errors of writeback I/Os, in dirty_endio() if
bio->bi_status is not 0, it means error happens when writing dirty keys
to backing device, then bch_count_backing_io_errors() is called.
By this fix, even there is no reqular I/O request coming, if writeback I/O
errors exceed dc->io_error_limit, the bcache device may still be stopped
for the broken backing device.
Fixes: c7b7bd0740 ("bcache: add io_disable to struct cached_dev")
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In order to catch I/O error of backing device, a separate bi_end_io
call back is required. Then a per backing device counter can record I/O
errors number and retire the backing device if the counter reaches a
per backing device I/O error limit.
This patch adds backing_request_endio() to bcache backing device I/O code
path, this is a preparation for further complicated backing device failure
handling. So far there is no real code logic change, I make this change a
separate patch to make sure it is stable and reliable for further work.
Changelog:
v2: Fix code comments typo, remove a redundant bch_writeback_add() line
added in v4 patch set.
v1: indeed this is new added in this patch set.
[mlyle: truncated commit subject]
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When too many I/Os failed on cache device, bch_cache_set_error() is called
in the error handling code path to retire whole problematic cache set. If
new I/O requests continue to come and take refcount dc->count, the cache
set won't be retired immediately, this is a problem.
Further more, there are several kernel thread and self-armed kernel work
may still running after bch_cache_set_error() is called. It needs to wait
quite a while for them to stop, or they won't stop at all. They also
prevent the cache set from being retired.
The solution in this patch is, to add per cache set flag to disable I/O
request on this cache and all attached backing devices. Then new coming I/O
requests can be rejected in *_make_request() before taking refcount, kernel
threads and self-armed kernel worker can stop very fast when flags bit
CACHE_SET_IO_DISABLE is set.
Because bcache also do internal I/Os for writeback, garbage collection,
bucket allocation, journaling, this kind of I/O should be disabled after
bch_cache_set_error() is called. So closure_bio_submit() is modified to
check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set,
closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and
return, generic_make_request() won't be called.
A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit
from cache_set->flags, to disable or enable cache set I/O for debugging. It
is helpful to trigger more corner case issues for failed cache device.
Changelog
v4, add wait_for_kthread_stop(), and call it before exits writeback and gc
kernel threads.
v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index.
remove "bcache: " prefix when printing out kernel message.
v2, more changes by previous review,
- Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui.
- Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this
is reported and inspired from origal patch of Pavel Vazharov.
v1, initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Pavel Vazharov <freakpv@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
struct delayed_work writeback_rate_update in struct cache_dev is a delayed
worker to call function update_writeback_rate() in period (the interval is
defined by dc->writeback_rate_update_seconds).
When a metadate I/O error happens on cache device, bcache error handling
routine bch_cache_set_error() will call bch_cache_set_unregister() to
retire whole cache set. On the unregister code path, this delayed work is
stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update).
dc->writeback_rate_update is a special delayed work from others in bcache.
In its routine update_writeback_rate(), this delayed work is re-armed
itself. That means when cancel_delayed_work_sync() returns, this delayed
work can still be executed after several seconds defined by
dc->writeback_rate_update_seconds.
The problem is, after cancel_delayed_work_sync() returns, the cache set
unregister code path will continue and release memory of struct cache set.
Then the delayed work is scheduled to run, __update_writeback_rate()
will reference the already released cache_set memory, and trigger a NULL
pointer deference fault.
This patch introduces two more bcache device flags,
- BCACHE_DEV_WB_RUNNING
bit set: bcache device is in writeback mode and running, it is OK for
dc->writeback_rate_update to re-arm itself.
bit clear:bcache device is trying to stop dc->writeback_rate_update,
this delayed work should not re-arm itself and quit.
- BCACHE_DEV_RATE_DW_RUNNING
bit set: routine update_writeback_rate() is executing.
bit clear: routine update_writeback_rate() quits.
This patch also adds a function cancel_writeback_rate_update_dwork() to
wait for dc->writeback_rate_update quits before cancel it by calling
cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected
quit dc->writeback_rate_update, after time_out seconds this function will
give up and continue to call cancel_delayed_work_sync().
And here I explain how this patch stops self re-armed delayed work properly
with the above stuffs.
update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning
and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling
cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING.
Before calling cancel_delayed_work_sync() wait utill flag
BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling
cancel_delayed_work_sync(), dc->writeback_rate_update must be already re-
armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases
delayed work routine update_writeback_rate() won't be executed after
cancel_delayed_work_sync() returns.
Inside update_writeback_rate() before calling schedule_delayed_work(), flag
BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means
someone is about to stop the delayed work. Because flag
BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync()
has to wait for this flag to be cleared, we don't need to worry about race
condition here.
If update_writeback_rate() is scheduled to run after checking
BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync()
in cancel_writeback_rate_update_dwork(), it is also safe. Because at this
moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned
previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear
and quit immediately.
Because there are more dependences inside update_writeback_rate() to struct
cache_set memory, dc->writeback_rate_update is not a simple self re-arm
delayed work. After trying many different methods (e.g. hold dc->count, or
use locks), this is the only way I can find which works to properly stop
dc->writeback_rate_update delayed work.
Changelog:
v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING
to bit index, for test_bit().
v2: Try to fix the race issue which is pointed out by Junhui.
v1: The initial version for review
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In patch "bcache: fix cached_dev->count usage for bch_cache_set_error()",
cached_dev_get() is called when creating dc->writeback_thread, and
cached_dev_put() is called when exiting dc->writeback_thread. This
modification works well unless people detach the bcache device manually by
'echo 1 > /sys/block/bcache<N>/bcache/detach'
Because this sysfs interface only calls bch_cached_dev_detach() which wakes
up dc->writeback_thread but does not stop it. The reason is, before patch
"bcache: fix cached_dev->count usage for bch_cache_set_error()", inside
bch_writeback_thread(), if cache is not dirty after writeback,
cached_dev_put() will be called here. And in cached_dev_make_request() when
a new write request makes cache from clean to dirty, cached_dev_get() will
be called there. Since we don't operate dc->count in these locations,
refcount d->count cannot be dropped after cache becomes clean, and
cached_dev_detach_finish() won't be called to detach bcache device.
This patch fixes the issue by checking whether BCACHE_DEV_DETACHING is
set inside bch_writeback_thread(). If this bit is set and cache is clean
(no existing writeback_keys), break the while-loop, call cached_dev_put()
and quit the writeback thread.
Please note if cache is still dirty, even BCACHE_DEV_DETACHING is set the
writeback thread should continue to perform writeback, this is the original
design of manually detach.
It is safe to do the following check without locking, let me explain why,
+ if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
+ (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
If the kenrel thread does not sleep and continue to run due to conditions
are not updated in time on the running CPU core, it just consumes more CPU
cycles and has no hurt. This should-sleep-but-run is safe here. We just
focus on the should-run-but-sleep condition, which means the writeback
thread goes to sleep in mistake while it should continue to run.
1, First of all, no matter the writeback thread is hung or not,
kthread_stop() from cached_dev_detach_finish() will wake up it and
terminate by making kthread_should_stop() return true. And in normal
run time, bit on index BCACHE_DEV_DETACHING is always cleared, the
condition
!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)
is always true and can be ignored as constant value.
2, If one of the following conditions is true, the writeback thread should
go to sleep,
"!atomic_read(&dc->has_dirty)" or "!dc->writeback_running)"
each of them independently controls the writeback thread should sleep or
not, let's analyse them one by one.
2.1 condition "!atomic_read(&dc->has_dirty)"
If dc->has_dirty is set from 0 to 1 on another CPU core, bcache will
call bch_writeback_queue() immediately or call bch_writeback_add() which
indirectly calls bch_writeback_queue() too. In bch_writeback_queue(),
wake_up_process(dc->writeback_thread) is called. It sets writeback
thread's task state to TASK_RUNNING and following an implicit memory
barrier, then tries to wake up the writeback thread.
In writeback thread, its task state is set to TASK_INTERRUPTIBLE before
doing the condition check. If other CPU core sets the TASK_RUNNING state
after writeback thread setting TASK_INTERRUPTIBLE, the writeback thread
will be scheduled to run very soon because its state is not
TASK_INTERRUPTIBLE. If other CPU core sets the TASK_RUNNING state before
writeback thread setting TASK_INTERRUPTIBLE, the implict memory barrier
of wake_up_process() will make sure modification of dc->has_dirty on
other CPU core is updated and observed on the CPU core of writeback
thread. Therefore the condition check will correctly be false, and
continue writeback code without sleeping.
2.2 condition "!dc->writeback_running)"
dc->writeback_running can be changed via sysfs file, every time it is
modified, a following bch_writeback_queue() is alwasy called. So the
change is always observed on the CPU core of writeback thread. If
dc->writeback_running is changed from 0 to 1 on other CPU core, this
condition check will observe the modification and allow writeback
thread to continue to run without sleeping.
Now we can see, even without a locking protection, multiple conditions
check is safe here, no deadlock or process hang up will happen.
I compose a separte patch because that patch "bcache: fix cached_dev->count
usage for bch_cache_set_error()" already gets a "Reviewed-by:" from Hannes
Reinecke. Also this fix is not trivial and good for a separate patch.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Hannes Reinecke <hare@suse.com>
Cc: Huijun Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When bcache metadata I/O fails, bcache will call bch_cache_set_error()
to retire the whole cache set. The expected behavior to retire a cache
set is to unregister the cache set, and unregister all backing device
attached to this cache set, then remove sysfs entries of the cache set
and all attached backing devices, finally release memory of structs
cache_set, cache, cached_dev and bcache_device.
In my testing when journal I/O failure triggered by disconnected cache
device, sometimes the cache set cannot be retired, and its sysfs
entry /sys/fs/bcache/<uuid> still exits and the backing device also
references it. This is not expected behavior.
When metadata I/O failes, the call senquence to retire whole cache set is,
bch_cache_set_error()
bch_cache_set_unregister()
bch_cache_set_stop()
__cache_set_unregister() <- called as callback by calling
clousre_queue(&c->caching)
cache_set_flush() <- called as a callback when refcount
of cache_set->caching is 0
cache_set_free() <- called as a callback when refcount
of catch_set->cl is 0
bch_cache_set_release() <- called as a callback when refcount
of catch_set->kobj is 0
I find if kernel thread bch_writeback_thread() quits while-loop when
kthread_should_stop() is true and searched_full_index is false, clousre
callback cache_set_flush() set by continue_at() will never be called. The
result is, bcache fails to retire whole cache set.
cache_set_flush() will be called when refcount of closure c->caching is 0,
and in function bcache_device_detach() refcount of closure c->caching is
released to 0 by clousre_put(). In metadata error code path, function
bcache_device_detach() is called by cached_dev_detach_finish(). This is a
callback routine being called when cached_dev->count is 0. This refcount
is decreased by cached_dev_put().
The above dependence indicates, cache_set_flush() will be called when
refcount of cache_set->cl is 0, and refcount of cache_set->cl to be 0
when refcount of cache_dev->count is 0.
The reason why sometimes cache_dev->count is not 0 (when metadata I/O fails
and bch_cache_set_error() called) is, in bch_writeback_thread(), refcount
of cache_dev is not decreased properly.
In bch_writeback_thread(), cached_dev_put() is called only when
searched_full_index is true and cached_dev->writeback_keys is empty, a.k.a
there is no dirty data on cache. In most of run time it is correct, but
when bch_writeback_thread() quits the while-loop while cache is still
dirty, current code forget to call cached_dev_put() before this kernel
thread exits. This is why sometimes cache_set_flush() is not executed and
cache set fails to be retired.
The reason to call cached_dev_put() in bch_writeback_rate() is, when the
cache device changes from clean to dirty, cached_dev_get() is called, to
make sure during writeback operatiions both backing and cache devices
won't be released.
Adding following code in bch_writeback_thread() does not work,
static int bch_writeback_thread(void *arg)
}
+ if (atomic_read(&dc->has_dirty))
+ cached_dev_put()
+
return 0;
}
because writeback kernel thread can be waken up and start via sysfs entry:
echo 1 > /sys/block/bcache<N>/bcache/writeback_running
It is difficult to check whether backing device is dirty without race and
extra lock. So the above modification will introduce potential refcount
underflow in some conditions.
The correct fix is, to take cached dev refcount when creating the kernel
thread, and put it before the kernel thread exits. Then bcache does not
need to take a cached dev refcount when cache turns from clean to dirty,
or to put a cached dev refcount when cache turns from ditry to clean. The
writeback kernel thread is alwasy safe to reference data structure from
cache set, cache and cached device (because a refcount of cache device is
taken for it already), and no matter the kernel thread is stopped by I/O
errors or system reboot, cached_dev->count can always be used correctly.
The patch is simple, but understanding how it works is quite complicated.
Changelog:
v2: set dc->writeback_thread to NULL in this patch, as suggested by Hannes.
v1: initial version for review.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
dc->writeback_rate_update_seconds can be set via sysfs and its value can
be set to [1, ULONG_MAX]. It does not make sense to set such a large
value, 60 seconds is long enough value considering the default 5 seconds
works well for long time.
Because dc->writeback_rate_update is a special delayed work, it re-arms
itself inside the delayed work routine update_writeback_rate(). When
stopping it by cancel_delayed_work_sync(), there should be a timeout to
wait and make sure the re-armed delayed work is stopped too. A small max
value of dc->writeback_rate_update_seconds is also helpful to decide a
reasonable small timeout.
This patch limits sysfs interface to set dc->writeback_rate_update_seconds
in range of [1, 60] seconds, and replaces the hand-coded number by macros.
Changelog:
v2: fix a rebase typo in v4, which is pointed out by Michael Lyle.
v1: initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Kernel thread routine bch_writeback_thread() has the following code block,
447 down_write(&dc->writeback_lock);
448~450 if (check conditions) {
451 up_write(&dc->writeback_lock);
452 set_current_state(TASK_INTERRUPTIBLE);
453
454 if (kthread_should_stop())
455 return 0;
456
457 schedule();
458 continue;
459 }
If condition check is true, its task state is set to TASK_INTERRUPTIBLE
and call schedule() to wait for others to wake up it.
There are 2 issues in current code,
1, Task state is set to TASK_INTERRUPTIBLE after the condition checks, if
another process changes the condition and call wake_up_process(dc->
writeback_thread), then at line 452 task state is set back to
TASK_INTERRUPTIBLE, the writeback kernel thread will lose a chance to be
waken up.
2, At line 454 if kthread_should_stop() is true, writeback kernel thread
will return to kernel/kthread.c:kthread() with TASK_INTERRUPTIBLE and
call do_exit(). It is not good to enter do_exit() with task state
TASK_INTERRUPTIBLE, in following code path might_sleep() is called and a
warning message is reported by __might_sleep(): "WARNING: do not call
blocking ops when !TASK_RUNNING; state=1 set at [xxxx]".
For the first issue, task state should be set before condition checks.
Ineed because dc->writeback_lock is required when modifying all the
conditions, calling set_current_state() inside code block where dc->
writeback_lock is hold is safe. But this is quite implicit, so I still move
set_current_state() before all the condition checks.
For the second issue, frankley speaking it does not hurt when kernel thread
exits with TASK_INTERRUPTIBLE state, but this warning message scares users,
makes them feel there might be something risky with bcache and hurt their
data. Setting task state to TASK_RUNNING before returning fixes this
problem.
In alloc.c:allocator_wait(), there is also a similar issue, and is also
fixed in this patch.
Changelog:
v3: merge two similar fixes into one patch
v2: fix the race issue in v1 patch.
v1: initial buggy fix.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Bcache needs to scale the dirty data in the cache over the multiple
backing disks in order to calculate writeback rates for each.
The previous code did this by multiplying the target number of dirty
sectors by the backing device size, and expected it to fit into a
uint64_t; this blows up on relatively small backing devices.
The new approach figures out the bdev's share in 16384ths of the overall
cached data. This is chosen to cope well when bdevs drastically vary in
size and to ensure that bcache can cross the petabyte boundary for each
backing device.
This has been improved based on Tang Junhui's feedback to ensure that
every device gets a share of dirty data, no matter how small it is
compared to the total backing pool.
The existing mechanism is very limited; this is purely a bug fix to
remove limits on volume size. However, there still needs to be change
to make this "fair" over many volumes where some are idle.
Reported-by: Jack Douglas <jack@douglastechnology.co.uk>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Bcache only does recoverable I/O for read operations by calling
cached_dev_read_error(). For write opertions there is no I/O recovery for
failed requests.
But in bch_count_io_errors() no matter read or write I/Os, before errors
counter reaches io error limit, pr_err() always prints "IO error on %,
recoverying". For write requests this information is misleading, because
there is no I/O recovery at all.
This patch adds a parameter 'is_read' to bch_count_io_errors(), and only
prints "recovering" by pr_err() when the bio direction is READ.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If the control system would wait for at least half a second, and there's
been no reqs hitting the backing disk for awhile: use an alternate mode
where we have at most one contiguous set of writebacks in flight at a
time. (But don't otherwise delay). If front-end IO appears, it will
still be quick, as it will only have to contend with one real operation
in flight. But otherwise, we'll be sending data to the backing disk as
quickly as it can accept it (with one op at a time).
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Acked-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Writeback keys are presently iterated and dispatched for writeback in
order of the logical block address on the backing device. Multiple may
be, in parallel, read from the cache device and then written back
(especially when there are contiguous I/O).
However-- there was no guarantee with the existing code that the writes
would be issued in LBA order, as the reads from the cache device are
often re-ordered. In turn, when writing back quickly, the backing disk
often has to seek backwards-- this slows writeback and increases
utilization.
This patch introduces an ordering mechanism that guarantees that the
original order of issue is maintained for the write portion of the I/O.
Performance for writeback is significantly improved when there are
multiple contiguous keys or high writeback rates.
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Tested-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
in bch_debug_init(), ret is always 0, and the return value is useless,
change it to return 0 if be success after calling debugfs_create_dir(),
else return a non-zero value.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bcache is the only user of bio_alloc_pages(), so move this function into
bcache, and avoid it being misused in the future.
Also rename it to bch_bio_allo_pages() since it is bcache only.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull core block layer updates from Jens Axboe:
"This is the main pull request for block storage for 4.15-rc1.
Nothing out of the ordinary in here, and no API changes or anything
like that. Just various new features for drivers, core changes, etc.
In particular, this pull request contains:
- A patch series from Bart, closing the whole on blk/scsi-mq queue
quescing.
- A series from Christoph, building towards hidden gendisks (for
multipath) and ability to move bio chains around.
- NVMe
- Support for native multipath for NVMe (Christoph).
- Userspace notifications for AENs (Keith).
- Command side-effects support (Keith).
- SGL support (Chaitanya Kulkarni)
- FC fixes and improvements (James Smart)
- Lots of fixes and tweaks (Various)
- bcache
- New maintainer (Michael Lyle)
- Writeback control improvements (Michael)
- Various fixes (Coly, Elena, Eric, Liang, et al)
- lightnvm updates, mostly centered around the pblk interface
(Javier, Hans, and Rakesh).
- Removal of unused bio/bvec kmap atomic interfaces (me, Christoph)
- Writeback series that fix the much discussed hundreds of millions
of sync-all units. This goes all the way, as discussed previously
(me).
- Fix for missing wakeup on writeback timer adjustments (Yafang
Shao).
- Fix laptop mode on blk-mq (me).
- {mq,name} tupple lookup for IO schedulers, allowing us to have
alias names. This means you can use 'deadline' on both !mq and on
mq (where it's called mq-deadline). (me).
- blktrace race fix, oopsing on sg load (me).
- blk-mq optimizations (me).
- Obscure waitqueue race fix for kyber (Omar).
- NBD fixes (Josef).
- Disable writeback throttling by default on bfq, like we do on cfq
(Luca Miccio).
- Series from Ming that enable us to treat flush requests on blk-mq
like any other request. This is a really nice cleanup.
- Series from Ming that improves merging on blk-mq with schedulers,
getting us closer to flipping the switch on scsi-mq again.
- BFQ updates (Paolo).
- blk-mq atomic flags memory ordering fixes (Peter Z).
- Loop cgroup support (Shaohua).
- Lots of minor fixes from lots of different folks, both for core and
driver code"
* 'for-4.15/block' of git://git.kernel.dk/linux-block: (294 commits)
nvme: fix visibility of "uuid" ns attribute
blk-mq: fixup some comment typos and lengths
ide: ide-atapi: fix compile error with defining macro DEBUG
blk-mq: improve tag waiting setup for non-shared tags
brd: remove unused brd_mutex
blk-mq: only run the hardware queue if IO is pending
block: avoid null pointer dereference on null disk
fs: guard_bio_eod() needs to consider partitions
xtensa/simdisk: fix compile error
nvme: expose subsys attribute to sysfs
nvme: create 'slaves' and 'holders' entries for hidden controllers
block: create 'slaves' and 'holders' entries for hidden gendisks
nvme: also expose the namespace identification sysfs files for mpath nodes
nvme: implement multipath access to nvme subsystems
nvme: track shared namespaces
nvme: introduce a nvme_ns_ids structure
nvme: track subsystems
block, nvme: Introduce blk_mq_req_flags_t
block, scsi: Make SCSI quiesce and resume work reliably
block: Add the QUEUE_FLAG_PREEMPT_ONLY request queue flag
...
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The time spent searching for things to write back "counts" for the
actual rate achieved, so don't flush the accumulated rate with each
chunk.
This will maintain better fidelity to user-commanded rates, but it
may slightly increase the burstiness of writeback. The writeback
lock needs improvement to help mitigate this.
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The previous code artificially limited writeback rate to 1000000
blocks/second (NSEC_PER_MSEC), which is a rate that can be met on fast
hardware. The rate limiting code works fine (though with decreased
precision) up to 3 orders of magnitude faster, so use NSEC_PER_SEC.
Additionally, ensure that uint32_t is used as a type for rate throughout
the rate management so that type checking/clamp_t can work properly.
bch_next_delay should be rewritten for increased precision and better
handling of high rates and long sleep periods, but this is adequate for
now.
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reported-by: Coly Li <colyli@suse.de>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This works in conjunction with the new PI controller. Currently, in
real-world workloads, the rate controller attempts to write back 1
sector per second. In practice, these minimum-rate writebacks are
between 4k and 60k in test scenarios, since bcache aggregates and
attempts to do contiguous writes and because filesystems on top of
bcachefs typically write 4k or more.
Previously, bcache used to guarantee to write at least once per second.
This means that the actual writeback rate would exceed the configured
amount by a factor of 8-120 or more.
This patch adjusts to be willing to sleep up to 2.5 seconds, and to
target writing 4k/second. On the smallest writes, it will sleep 1
second like before, but many times it will sleep longer and load the
backing device less. This keeps the loading on the cache and backing
device related to writeback more consistent when writing back at low
rates.
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bcache uses a control system to attempt to keep the amount of dirty data
in cache at a user-configured level, while not responding excessively to
transients and variations in write rate. Previously, the system was a
PD controller; but the output from it was integrated, turning the
Proportional term into an Integral term, and turning the Derivative term
into a crude Proportional term. Performance of the controller has been
uneven in production, and it has tended to respond slowly, oscillate,
and overshoot.
This patch set replaces the current control system with an explicit PI
controller and tuning that should be correct for most hardware. By
default, it attempts to write at a rate that would retire 1/40th of the
current excess blocks per second. An integral term in turn works to
remove steady state errors.
IMO, this yields benefits in simplicity (removing weighted average
filtering, etc) and system performance.
Another small change is a tunable parameter is introduced to allow the
user to specify a minimum rate at which dirty blocks are retired.
There is a slight difference from earlier versions of the patch in
integral handling to prevent excessive negative integral windup.
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>