Refactor xfs_read_agf and xfs_alloc_read_agf to return EAGAIN if the
caller passed TRYLOCK and we weren't able to get the lock; and change
the callers to recognize this.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Remove the xfs_btree_get_bufs and xfs_btree_get_bufl functions, since
they're pretty trivial oneliners.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_trans_get_buf() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_trans_get_buf_map() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_read() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get_uncached() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_read_map() to return numeric error codes like most
everywhere else in xfs. This involves moving the open-coded logic that
reports metadata IO read / corruption errors and stales the buffer into
xfs_buf_read_map so that the logic is all in one place.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Increase XFS_BLF_DATAMAP_SIZE by 1 to fill in the implied padding at the
end of struct xfs_buf_log_format. This makes the size consistent so
that we can check it in xfs_ondisk.h, and will be needed once we start
logging attribute values.
On amd64 we get the following pahole:
struct xfs_buf_log_format {
short unsigned int blf_type; /* 0 2 */
short unsigned int blf_size; /* 2 2 */
short unsigned int blf_flags; /* 4 2 */
short unsigned int blf_len; /* 6 2 */
long long int blf_blkno; /* 8 8 */
unsigned int blf_map_size; /* 16 4 */
unsigned int blf_data_map[16]; /* 20 64 */
/* --- cacheline 1 boundary (64 bytes) was 20 bytes ago --- */
/* size: 88, cachelines: 2, members: 7 */
/* padding: 4 */
/* last cacheline: 24 bytes */
};
But on i386 we get the following:
struct xfs_buf_log_format {
short unsigned int blf_type; /* 0 2 */
short unsigned int blf_size; /* 2 2 */
short unsigned int blf_flags; /* 4 2 */
short unsigned int blf_len; /* 6 2 */
long long int blf_blkno; /* 8 8 */
unsigned int blf_map_size; /* 16 4 */
unsigned int blf_data_map[16]; /* 20 64 */
/* --- cacheline 1 boundary (64 bytes) was 20 bytes ago --- */
/* size: 84, cachelines: 2, members: 7 */
/* last cacheline: 20 bytes */
};
Notice how the amd64 compiler inserts 4 bytes of padding to the end of
the structure to ensure 8-byte alignment. Prior to "xfs: fix memory
corruption during remote attr value buffer invalidation" we would try to
write to blf_data_map[17], which is harmless on amd64 but really bad on
i386.
This shouldn't cause any changes in the ondisk logging formats because
the log code writes out the log vectors with the appropriate size for
the log item's map_size, and log recovery treats the data_map array as a
VLA.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we know we don't have to take a transaction to stale the incore
buffers for a remote value, get rid of the unnecessary memory allocation
in the leaf walker and call the rmt_stale function directly. Flatten
the loop while we're at it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
While running generic/103, I observed what looks like memory corruption
and (with slub debugging turned on) a slub redzone warning on i386 when
inactivating an inode with a 64k remote attr value.
On a v5 filesystem, maximally sized remote attr values require one block
more than 64k worth of space to hold both the remote attribute value
header (64 bytes). On a 4k block filesystem this results in a 68k
buffer; on a 64k block filesystem, this would be a 128k buffer. Note
that even though we'll never use more than 65,600 bytes of this buffer,
XFS_MAX_BLOCKSIZE is 64k.
This is a problem because the definition of struct xfs_buf_log_format
allows for XFS_MAX_BLOCKSIZE worth of dirty bitmap (64k). On i386 when we
invalidate a remote attribute, xfs_trans_binval zeroes all 68k worth of
the dirty map, writing right off the end of the log item and corrupting
memory. We've gotten away with this on x86_64 for years because the
compiler inserts a u32 padding on the end of struct xfs_buf_log_format.
Fortunately for us, remote attribute values are written to disk with
xfs_bwrite(), which is to say that they are not logged. Fix the problem
by removing all places where we could end up creating a buffer log item
for a remote attribute value and leave a note explaining why. Next,
replace the open-coded buffer invalidation with a call to the helper we
created in the previous patch that does better checking for bad metadata
before marking the buffer stale.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hoist the code that invalidates remote extended attribute value buffers
into a separate helper function. This prepares us for a memory
corruption fix in the next patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
xfs_check_ondisk_structs() verifies that the sizes of the data types
used by xfs are correct via the XFS_CHECK_STRUCT_SIZE() macro.
Since the structures padding can vary depending on the ABI (e.g. on
ARM OABI structures are padded to multiple of 32 bits), it may happen
that xfs_dir2_sf_entry_t size check breaks the compilation with the
assertion below:
In file included from linux/include/linux/string.h:6,
from linux/include/linux/uuid.h:12,
from linux/fs/xfs/xfs_linux.h:10,
from linux/fs/xfs/xfs.h:22,
from linux/fs/xfs/xfs_super.c:7:
In function ‘xfs_check_ondisk_structs’,
inlined from ‘init_xfs_fs’ at linux/fs/xfs/xfs_super.c:2025:2:
linux/include/linux/compiler.h:350:38:
error: call to ‘__compiletime_assert_107’ declared with attribute
error: XFS: sizeof(xfs_dir2_sf_entry_t) is wrong, expected 3
_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
Restore the correct behavior adding __packed to the structure definition.
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Introduce a new #define for the maximum supported file block offset.
We'll use this in the next patch to make it more obvious that we're
doing some operation for all possible inode fork mappings after a given
offset. We can't use ULLONG_MAX here because bunmapi uses that to
detect when it's done.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This helps to pre-simplify the extra handling of the null terminator in
delayed operations which use memcpy rather than strlen. Later
when we introduce parent pointers, attribute names will become binary,
so strlen will not work at all. Removing uses of strlen now will
help reduce complexities later
Signed-off-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS_ATTR_INCOMPLETE is a flag in the on-disk attribute format, and thus
in a different namespace as the ATTR_* flags in xfs_da_args.flags.
Switch to using a XFS_DA_OP_INCOMPLETE flag in op_flags instead. Without
this users might be able to inject this flag into operations using the
attr by handle ioctl.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Don't allow passing arbitrary flags as they change behavior including
memory allocation that the call stack is not prepared for.
Fixes: ddbca70cc4 ("xfs: allocate xattr buffer on demand")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Sparse warns about a shadow variable in this function after the
Fixed: commit added another int i; with larger scope. It's safe
to remove the one with the smaller scope to fix this shadow,
although the shadow itself is harmless.
Fixes: 2c813ad66a ("xfs: support btrees with overlapping intervals for keys")
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix the following sparse warning:
fs/xfs/libxfs/xfs_trans_resv.c:206:1: warning: symbol 'xfs_rtalloc_log_count' was not declared. Should it be static?
Fixes: b1de6fc752 ("xfs: fix log reservation overflows when allocating large rt extents")
Signed-off-by: Chen Wandun <chenwandun@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Alex Lyakas reported[1] that mounting an xfs filesystem with new sunit
and swidth values could cause xfs_repair to fail loudly. The problem
here is that repair calculates the where mkfs should have allocated the
root inode, based on the superblock geometry. The allocation decisions
depend on sunit, which means that we really can't go updating sunit if
it would lead to a subsequent repair failure on an otherwise correct
filesystem.
Port from xfs_repair some code that computes the location of the root
inode and teach mount to skip the ondisk update if it would cause
problems for repair. Along the way we'll update the documentation,
provide a function for computing the minimum AGFL size instead of
open-coding it, and cut down some indenting in the mount code.
Note that we allow the mount to proceed (and new allocations will
reflect this new geometry) because we've never screened this kind of
thing before. We'll have to wait for a new future incompat feature to
enforce correct behavior, alas.
Note that the geometry reporting always uses the superblock values, not
the incore ones, so that is what xfs_info and xfs_growfs will report.
[1] https://lore.kernel.org/linux-xfs/20191125130744.GA44777@bfoster/T/#m00f9594b511e076e2fcdd489d78bc30216d72a7d
Reported-by: Alex Lyakas <alex@zadara.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Refactor xfs_alloc_min_freelist to accept a NULL @pag argument, in which
case it returns the largest possible minimum length. This will be used
in an upcoming patch to compute the length of the AGFL at mkfs time.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Prepare to resync the userspace libxfs with the kernel libxfs. There
were a few things I missed -- a couple of static inline directory
functions that have to be exported for xfs_repair; a couple of directory
naming functions that make porting much easier if they're /not/ static
inline; and a u16 usage that should have been uint16_t.
None of these things are bugs in their own right; this just makes
porting xfsprogs easier.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Omar Sandoval reported that a 4G fallocate on the realtime device causes
filesystem shutdowns due to a log reservation overflow that happens when
we log the rtbitmap updates. Factor rtbitmap/rtsummary updates into the
the tr_write and tr_itruncate log reservation calculation.
"The following reproducer results in a transaction log overrun warning
for me:
mkfs.xfs -f -r rtdev=/dev/vdc -d rtinherit=1 -m reflink=0 /dev/vdb
mount -o rtdev=/dev/vdc /dev/vdb /mnt
fallocate -l 4G /mnt/foo
Reported-by: Omar Sandoval <osandov@osandov.com>
Tested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
generic/522 (fsx) occasionally fails with a file corruption due to
an insert range operation. The primary characteristic of the
corruption is a misplaced insert range operation that differs from
the requested target offset. The reason for this behavior is a race
between the extent shift sequence of an insert range and a COW
writeback completion that causes a front merge with the first extent
in the shift.
The shift preparation function flushes and unmaps from the target
offset of the operation to the end of the file to ensure no
modifications can be made and page cache is invalidated before file
data is shifted. An insert range operation then splits the extent at
the target offset, if necessary, and begins to shift the start
offset of each extent starting from the end of the file to the start
offset. The shift sequence operates at extent level and so depends
on the preparation sequence to guarantee no changes can be made to
the target range during the shift. If the block immediately prior to
the target offset was dirty and shared, however, it can undergo
writeback and move from the COW fork to the data fork at any point
during the shift. If the block is contiguous with the block at the
start offset of the insert range, it can front merge and alter the
start offset of the extent. Once the shift sequence reaches the
target offset, it shifts based on the latest start offset and
silently changes the target offset of the operation and corrupts the
file.
To address this problem, update the shift preparation code to
stabilize the start boundary along with the full range of the
insert. Also update the existing corruption check to fail if any
extent is shifted with a start offset behind the target offset of
the insert range. This prevents insert from racing with COW
writeback completion and fails loudly in the event of an unexpected
extent shift.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
- Fix a crash in the log setup code when log mounting fails
- Fix a hang when allocating space on the realtime device
- Fix a block leak when freeing space on the realtime device
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl3n5OkACgkQ+H93GTRK
tOtUvw/+Lxnwx1AaYT7hSMS4p1buJnAV7aM6Ofm+F+GkRISWlxSEYLIjrj3NFxeI
Fv4jnPWMGHtBzW2c4OXv9zhW7vQeuU0Z72sgxA+Wqccf53sfR5Qum+Tya+Bo8X0X
LPeDEuA+k4UUUHvSLqscPFPZYbXgwp3dJ2i7JeuH0vx3BhFeTjV1nlOeo1z3QBzN
LLVjuBg7Zms+TPorrOgS67LAWfzqCAiQDauvyODB5EW+UElK6pvpOklFzc7TUPr2
PIvmjEE8UNN2y9QuEEKJ26t43ejAzG016yGMxyW74i5wU33R7PHkdgG1pWwWRZzr
yvNClg2CMtLu+Bcx8Lc9X23mW0DqPkUYDohWCe/Tytvz5kaKCEq3WlqwaG5EdMOg
gSJlivpoOTduQ26V4fPvD1/fjGpJLWyfHPs9p43wie+K/NuUcTIvr4BGGQszjS/n
5Zr630g6Tq5VrBMl0f1P2NuEbeQEvmbWNTW2TIvvHZTgMd8mZdvX28IXj0dAhBb/
2U5o1NF8F6VeRGYoZFJI70RIfiLYzOQEmsA5hAyJfUQQ18u8zDJuPV4isO4/XjQf
d32E36cvP3CKVQYn7hAiMD5O8jOFckYL287qd4uDYutmleHEcfzc0H4pTW+66IHp
IuzkPCgvOkd4h4qnhtHSDoSlKd7kc1Ai3hBhCdA9zd6IUAVsZ6Y=
=Ps4B
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.5-merge-17' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs fixes from Darrick Wong:
"Fix a couple of resource management errors and a hang:
- fix a crash in the log setup code when log mounting fails
- fix a hang when allocating space on the realtime device
- fix a block leak when freeing space on the realtime device"
* tag 'xfs-5.5-merge-17' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: fix mount failure crash on invalid iclog memory access
xfs: don't check for AG deadlock for realtime files in bunmapi
xfs: fix realtime file data space leak
Commit 5b094d6dac ("xfs: fix multi-AG deadlock in xfs_bunmapi") added
a check in __xfs_bunmapi() to stop early if we would touch multiple AGs
in the wrong order. However, this check isn't applicable for realtime
files. In most cases, it just makes us do unnecessary commits. However,
without the fix from the previous commit ("xfs: fix realtime file data
space leak"), if the last and second-to-last extents also happen to have
different "AG numbers", then the break actually causes __xfs_bunmapi()
to return without making any progress, which sends
xfs_itruncate_extents_flags() into an infinite loop.
Fixes: 5b094d6dac ("xfs: fix multi-AG deadlock in xfs_bunmapi")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Realtime files in XFS allocate extents in rextsize units. However, the
written/unwritten state of those extents is still tracked in blocksize
units. Therefore, a realtime file can be split up into written and
unwritten extents that are not necessarily aligned to the realtime
extent size. __xfs_bunmapi() has some logic to handle these various
corner cases. Consider how it handles the following case:
1. The last extent is unwritten.
2. The last extent is smaller than the realtime extent size.
3. startblock of the last extent is not aligned to the realtime extent
size, but startblock + blockcount is.
In this case, __xfs_bunmapi() calls xfs_bmap_add_extent_unwritten_real()
to set the second-to-last extent to unwritten. This should merge the
last and second-to-last extents, so __xfs_bunmapi() moves on to the
second-to-last extent.
However, if the size of the last and second-to-last extents combined is
greater than MAXEXTLEN, xfs_bmap_add_extent_unwritten_real() does not
merge the two extents. When that happens, __xfs_bunmapi() skips past the
last extent without unmapping it, thus leaking the space.
Fix it by only unwriting the minimum amount needed to align the last
extent to the realtime extent size, which is guaranteed to merge with
the last extent.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
- Fill out the build string
- Prevent inode fork extent count overflows
- Refactor the allocator to reduce long tail latency
- Rework incore log locking a little to reduce spinning
- Break up the xfs_iomap_begin functions into smaller more cohesive
parts
- Fix allocation alignment being dropped too early when the allocation
request is for more blocks than an AG is large
- Other small cleanups
- Clean up file buftarg retrieval helpers
- Hoist the resvsp and unresvsp ioctls to the vfs
- Remove the undocumented biosize mount option, since it has never been
mentioned as existing or supported on linux
- Clean up some of the mount option printing and parsing
- Enhance attr leaf verifier to check block structure
- Check dirent and attr names for invalid characters before passing them
to the vfs
- Refactor open-coded bmbt walking
- Fix a few places where we return EIO instead of EFSCORRUPTED after
failing metadata sanity checks
- Fix a synchronization problem between fallocate and aio dio corrupting
the file length
- Clean up various loose ends in the iomap and bmap code
- Convert to the new mount api
- Make sure we always log something when returning EFSCORRUPTED
- Fix some problems where long running scrub loops could trigger soft
lockup warnings and/or fail to exit due to fatal signals pending
- Fix various Coverity complaints
- Remove most of the function pointers from the directory code to reduce
indirection penalties
- Ensure that dquots are attached to the inode when performing unwritten
extent conversion after io
- Deuglify incore projid and crtime types
- Fix another AGI/AGF locking order deadlock when renaming
- Clean up some quota typedefs
- Remove the FSSETDM ioctls which haven't done anything in 20 years
- Fix some memory leaks when mounting the log fails
- Fix an underflow when updating an xattr leaf freemap
- Remove some trivial wrappers
- Report metadata corruption as an error, not a (potentially) fatal
assertion
- Clean up the dir/attr buffer mapping code
- Allow fatal signals to kill scrub during parent pointer checks
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl3fNjcACgkQ+H93GTRK
tOv/8w//Y0Oa9Paiy8+iPTChs3/PqeKp307Fj5KONG52haMCakEJFT5+/wpkIAJw
uUmKiPolwN1ivviIUmIS14ThTJ7NV1jq0G0h/0tC25i/3hoJrGWdzqYJMlvhlqgE
taHrjCwPTDkhRJ0D5QCrkkHPU7lSdquO5TWxltaqYLhyLIt8SkklD6dN1dHWEPnk
k0j3TL+VqVJDYyEj1bLwJ0QUb2C3J8ygWnlviF/WxsSeJtJpGoeLEaYXhhsUK0Dt
aHg70OM6zzFzrJJAtJeBXpgaFsG/Pqbcw4wUWSxEMWjVSJwCSKLuZ5F+p6NcqoEj
HeLQkaGePoO61YCInk2JKLHIyx7ohqMOt7+Dm0mdbe1pvcKwV9ZcdkqKa8L/Fm6v
bUP6a2hEpsGy7vLnkYxwYACTLPbGX3uLw8MUr6ZpJ+SpfVLktU4ycpr8dCkJkp6a
0qOpEeHsBDy74NkMOUa7Qrju7lJ2GiL70qqBwaPe+ubcUa3U/3WAsSekSzXgUwn8
Fap4r8wn7cUbxymAvO06RlU8YymuulAlyjwdo9gOL/Su/5POldss6dy1YuUtyq19
CD6NtkHqEUMsTc2cI+H65H44aEeckB1j0D2Grm2uMchAh0GcTSFVNF6jony++B8k
s2sL2dEw9/9vr0uc1TSVF5ezxaONuyaCXdYXUkkdyq3iNvfpRCg=
=aACq
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.5-merge-16' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull XFS updates from Darrick Wong:
"For this release, we changed quite a few things.
Highlights:
- Fixed some long tail latency problems in the block allocator
- Removed some long deprecated (and for the past several years no-op)
mount options and ioctls
- Strengthened the extended attribute and directory verifiers
- Audited and fixed all the places where we could return EFSCORRUPTED
without logging anything
- Refactored the old SGI space allocation ioctls to make the
equivalent fallocate calls
- Fixed a race between fallocate and directio
- Fixed an integer overflow when files have more than a few
billion(!) extents
- Fixed a longstanding bug where quota accounting could be incorrect
when performing unwritten extent conversion on a freshly mounted fs
- Fixed various complaints in scrub about soft lockups and
unresponsiveness to signals
- De-vtable'd the directory handling code, which should make it
faster
- Converted to the new mount api, for better or for worse
- Cleaned up some memory leaks
and quite a lot of other smaller fixes and cleanups.
A more detailed summary:
- Fill out the build string
- Prevent inode fork extent count overflows
- Refactor the allocator to reduce long tail latency
- Rework incore log locking a little to reduce spinning
- Break up the xfs_iomap_begin functions into smaller more cohesive
parts
- Fix allocation alignment being dropped too early when the
allocation request is for more blocks than an AG is large
- Other small cleanups
- Clean up file buftarg retrieval helpers
- Hoist the resvsp and unresvsp ioctls to the vfs
- Remove the undocumented biosize mount option, since it has never
been mentioned as existing or supported on linux
- Clean up some of the mount option printing and parsing
- Enhance attr leaf verifier to check block structure
- Check dirent and attr names for invalid characters before passing
them to the vfs
- Refactor open-coded bmbt walking
- Fix a few places where we return EIO instead of EFSCORRUPTED after
failing metadata sanity checks
- Fix a synchronization problem between fallocate and aio dio
corrupting the file length
- Clean up various loose ends in the iomap and bmap code
- Convert to the new mount api
- Make sure we always log something when returning EFSCORRUPTED
- Fix some problems where long running scrub loops could trigger soft
lockup warnings and/or fail to exit due to fatal signals pending
- Fix various Coverity complaints
- Remove most of the function pointers from the directory code to
reduce indirection penalties
- Ensure that dquots are attached to the inode when performing
unwritten extent conversion after io
- Deuglify incore projid and crtime types
- Fix another AGI/AGF locking order deadlock when renaming
- Clean up some quota typedefs
- Remove the FSSETDM ioctls which haven't done anything in 20 years
- Fix some memory leaks when mounting the log fails
- Fix an underflow when updating an xattr leaf freemap
- Remove some trivial wrappers
- Report metadata corruption as an error, not a (potentially) fatal
assertion
- Clean up the dir/attr buffer mapping code
- Allow fatal signals to kill scrub during parent pointer checks"
* tag 'xfs-5.5-merge-16' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (198 commits)
xfs: allow parent directory scans to be interrupted with fatal signals
xfs: remove the mappedbno argument to xfs_da_get_buf
xfs: remove the mappedbno argument to xfs_da_read_buf
xfs: split xfs_da3_node_read
xfs: remove the mappedbno argument to xfs_dir3_leafn_read
xfs: remove the mappedbno argument to xfs_dir3_leaf_read
xfs: remove the mappedbno argument to xfs_attr3_leaf_read
xfs: remove the mappedbno argument to xfs_da_reada_buf
xfs: improve the xfs_dabuf_map calling conventions
xfs: refactor xfs_dabuf_map
xfs: simplify mappedbno handling in xfs_da_{get,read}_buf
xfs: report corruption only as a regular error
xfs: Remove kmem_zone_free() wrapper
xfs: Remove kmem_zone_destroy() wrapper
xfs: Remove slab init wrappers
xfs: fix attr leaf header freemap.size underflow
xfs: fix some memory leaks in log recovery
xfs: fix another missing include
xfs: remove XFS_IOC_FSSETDM and XFS_IOC_FSSETDM_BY_HANDLE
xfs: remove duplicated include from xfs_dir2_data.c
...
- Make iomap_dio_rw callers explicitly tell us if they want us to wait
- Port the xfs writeback code to iomap to complete the buffered io
library functions
- Refactor the unshare code to share common pieces
- Add support for performing copy on write with buffered writes
- Other minor fixes
- Fix unchecked return in iomap_bmap
- Fix a type casting bug in a ternary statement in iomap_dio_bio_actor
- Improve tracepoints for easier diagnostic ability
- Fix pipe page leakage in directio reads
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl3YDqQACgkQ+H93GTRK
tOsbPg/+KrPkhe60RnUO4PQbSLTRLsz5R7OK5ubfxsKlHdyy/8vu12yPdY03LcHn
QoyQz+5gPjM58UvysIonlyRO0O30apl8UZ9PAINDMi7os6NP87illw4HtHL1cZjB
JfIQKVJrLNtocZnAgVL74d6pUs7MH32SPw0r+/qbfz/JFcHdf/Sz8fSpb0sdS/oK
QwT73TcaCcNa2C4twvhtO6+kMkzlTkJknqSZMqrthScqRRVeOnyGTjLdKqUamSqp
uj0iAKm+bBpCcuMdcHd7EOgQyVGwCQKUndaLKojK/V1iqiK+3KsLnIoJj6HwlU27
Q+pDoThv2V8m/Y940Gq0wzTNtkwdCirNaeKXwXX2ytlyPX5W45ZxgzGUQy4YYXGM
ObHRmeJXdka6kH7yzWlPiZGdZixpagFLzFUHWjMXAD8Fb4YxNKM4FsJDY3K3uQi6
y7EKV5O4q3qBW3ieL6l+wl9NkdcppSywRjRxhBZIhH4T2n7RMDLdBkNCiKZrWqIW
1QcrIC1NvwbXPzSNaZ40dgjB6mJGTv+P9AJLSQpmlR1Y6txLsJ1AeVzucZOnXcCo
TEiBfDFOZ9jvXUsaqGSdM99HxsePKn+VgEeTA6TFxTWJ9QcEgio1Pym+RkN6KrIU
zsbJbgk9bp3YT940xKt90fAHWm/iKUWrrRyidVCK3kJd72e41UE=
=FRl4
-----END PGP SIGNATURE-----
Merge tag 'iomap-5.5-merge-11' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull iomap updates from Darrick Wong:
"In this release, we hoisted as much of XFS' writeback code into iomap
as was practicable, refactored the unshare file data function, added
the ability to perform buffered io copy on write, and tweaked various
parts of the directio implementation as needed to port ext4's directio
code (that will be a separate pull).
Summary:
- Make iomap_dio_rw callers explicitly tell us if they want us to
wait
- Port the xfs writeback code to iomap to complete the buffered io
library functions
- Refactor the unshare code to share common pieces
- Add support for performing copy on write with buffered writes
- Other minor fixes
- Fix unchecked return in iomap_bmap
- Fix a type casting bug in a ternary statement in
iomap_dio_bio_actor
- Improve tracepoints for easier diagnostic ability
- Fix pipe page leakage in directio reads"
* tag 'iomap-5.5-merge-11' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (31 commits)
iomap: Fix pipe page leakage during splicing
iomap: trace iomap_appply results
iomap: fix return value of iomap_dio_bio_actor on 32bit systems
iomap: iomap_bmap should check iomap_apply return value
iomap: Fix overflow in iomap_page_mkwrite
fs/iomap: remove redundant check in iomap_dio_rw()
iomap: use a srcmap for a read-modify-write I/O
iomap: renumber IOMAP_HOLE to 0
iomap: use write_begin to read pages to unshare
iomap: move the zeroing case out of iomap_read_page_sync
iomap: ignore non-shared or non-data blocks in xfs_file_dirty
iomap: always use AOP_FLAG_NOFS in iomap_write_begin
iomap: remove the unused iomap argument to __iomap_write_end
iomap: better document the IOMAP_F_* flags
iomap: enhance writeback error message
iomap: pass a struct page to iomap_finish_page_writeback
iomap: cleanup iomap_ioend_compare
iomap: move struct iomap_page out of iomap.h
iomap: warn on inline maps in iomap_writepage_map
iomap: lift the xfs writeback code to iomap
...
Use the xfs_da_get_buf_daddr function directly for the two callers
that pass a mapped disk address, and then remove the mappedbno argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the code for reading an already mapped block into
xfs_da3_node_read_mapped, which is the only caller ever passing a block
number in the mappedbno argument and replace the mappedbno argument with
the simple xfs_dabuf_get flags.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Split xfs_da3_node_read into one variant that always looks up the daddr
and doesn't accept holes, and one that already has a daddr at hand.
This is in preparation of splitting up xfs_da_read_buf in a similar way.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This argument is always hard coded to -1, so remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This argument is always hard coded to -1, so remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This argument is always hard coded to -1, so remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the mappedbno argument with the simple flags for xfs_da_reada_buf
and xfs_dir3_data_readahead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use a flags argument with the XFS_DABUF_MAP_HOLE_OK flag to signal that
a hole is okay and not corruption, and return 0 with *nmap set to 0 to
signal that case in the return value instead of a nameless -1 return
code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Merge xfs_buf_map_from_irec and xfs_da_map_covers_blocks into a single
loop in the caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Shortcut the creation of xfs_bmbt_irec and xfs_buf_map for the case
where the callers passed an already mapped xfs_daddr_t. This is in
preparation for splitting these cases out entirely later. Also reject
the mappedbno case for xfs_da_reada_buf as no callers currently uses
it and it will be removed soon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can remove it now, without needing to rework the KM_ flags.
Use kmem_cache_free() directly.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The leaf format xattr addition helper xfs_attr3_leaf_add_work()
adjusts the block freemap in a couple places. The first update drops
the size of the freemap that the caller had already selected to
place the xattr name/value data. Before the function returns, it
also checks whether the entries array has encroached on a freemap
range by virtue of the new entry addition. This is necessary because
the entries array grows from the start of the block (but end of the
block header) towards the end of the block while the name/value data
grows from the end of the block in the opposite direction. If the
associated freemap is already empty, however, size is zero and the
subtraction underflows the field and causes corruption.
This is reproduced rarely by generic/070. The observed behavior is
that a smaller sized freemap is aligned to the end of the entries
list, several subsequent xattr additions land in larger freemaps and
the entries list expands into the smaller freemap until it is fully
consumed and then underflows. Note that it is not otherwise a
corruption for the entries array to consume an empty freemap because
the nameval list (i.e. the firstused pointer in the xattr header)
starts beyond the end of the corrupted freemap.
Update the freemap size modification to account for the fact that
the freemap entry can be empty and thus stale.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove duplicated include.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove some unused typedef'd simple types, and some unused
structure members.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove some typdefs for type_t's that are no longer referred to
by their typedef'd types.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix a comment]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix some of the comments]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The ioctl definitions for XFS_IOC_SWAPEXT, XFS_IOC_FSBULKSTAT and
XFS_IOC_FSBULKSTAT_SINGLE are part of libxfs and based on time_t.
The definition for time_t differs between current kernels and coming
32-bit libc variants that define it as 64-bit. For most ioctls, that
means the kernel has to be able to handle two different command codes
based on the different structure sizes.
The same solution could be applied for XFS_IOC_SWAPEXT, but it would
not work for XFS_IOC_FSBULKSTAT and XFS_IOC_FSBULKSTAT_SINGLE because
the structure with the time_t is passed through an indirect pointer,
and the command number itself is based on struct xfs_fsop_bulkreq,
which does not differ based on time_t.
This means any solution that can be applied requires a change of the
ABI definition in the xfs_fs.h header file, as well as doing the same
change in any user application that contains a copy of this header.
The usual solution would be to define a replacement structure and
use conditional compilation for the ioctl command codes to use
one or the other, such as
#define XFS_IOC_FSBULKSTAT_OLD _IOWR('X', 101, struct xfs_fsop_bulkreq)
#define XFS_IOC_FSBULKSTAT_NEW _IOWR('X', 129, struct xfs_fsop_bulkreq)
#define XFS_IOC_FSBULKSTAT ((sizeof(time_t) == sizeof(__kernel_long_t)) ? \
XFS_IOC_FSBULKSTAT_OLD : XFS_IOC_FSBULKSTAT_NEW)
After this, the kernel would be able to implement both
XFS_IOC_FSBULKSTAT_OLD and XFS_IOC_FSBULKSTAT_NEW handlers on
32-bit architectures with the correct ABI for either definition
of time_t.
However, as long as two observations are true, a much simpler solution
can be used:
1. xfsprogs is the only user space project that has a copy of this header
2. xfsprogs already has a replacement for all three affected ioctl commands,
based on the xfs_bulkstat structure to pass 64-bit timestamps
regardless of the architecture
Based on those assumptions, changing xfs_bstime to use __kernel_long_t
instead of time_t in both the kernel and in xfsprogs preserves the current
ABI for any libc definition of time_t and solves the problem of passing
64-bit timestamps to 32-bit user space.
If either of the two assumptions is invalid, more discussion is needed
for coming up with a way to fix as much of the affected user space
code as possible.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When target_ip exists in xfs_rename(), the xfs_dir_replace() call may
need to hold the AGF lock to allocate more blocks, and then invoking
the xfs_droplink() call to hold AGI lock to drop target_ip onto the
unlinked list, so we get the lock order AGF->AGI. This would break the
ordering constraint on AGI and AGF locking - inode allocation locks
the AGI, then can allocate a new extent for new inodes, locking the
AGF after the AGI.
In this patch we check whether the replace operation need more
blocks firstly. If so, acquire the agi lock firstly to preserve
locking order(AGI/AGF). Actually, the locking order problem only
occurs when we are locking the AGI/AGF of the same AG. For multiple
AGs the AGI lock will be released after the transaction committed.
Signed-off-by: kaixuxia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: reword the comment]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We have the exact same memset in xfs_inode_alloc, which is always called
just before xfs_iread.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is no point in splitting the fields like this in an purely
in-memory structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
struct xfs_icdinode is purely an in-memory data structure, so don't use
a log on-disk structure for it. This simplifies the code a bit, and
also reduces our include hell slightly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix a minor indenting problem in xfs_trans_ichgtime]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of causing a relatively expensive indirect call for each
hashing and comparism of a file name in a directory just use an
inline function and a simple branch on the ASCII CI bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix unused variable warning]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Convert the last of the open coded corruption check and report idioms to
use the XFS_IS_CORRUPT macro.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Coverity points out that xfs_btree_islastblock doesn't check the return
value of xfs_btree_check_block. Since the question "Does the cursor
point to the last block in this level?" only makes sense if the caller
previously performed a lookup or seek operation, the block should
already have been checked.
Therefore, check the return value in an ASSERT and turn the whole thing
into a static inline predicate.
Coverity-id: 114069
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code for extracting the incore header to the only caller that
didn't already do that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is no real need for xfs_dir2_data_freescan wrapper, so rename
xfs_dir2_data_freescan_int to xfs_dir2_data_freescan and let the
callers dereference the mount pointer from the inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->data_get_ftype and ->data_put_ftype dir ops methods with
directly called xfs_dir2_data_get_ftype and xfs_dir2_data_put_ftype
helpers that takes care of the differences between the directory format
with and without the file type field.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->data_bestfree_p dir ops method with a directly called
xfs_dir2_data_bestfree_p helper that takes care of the differences
between the v4 and v5 on-disk format.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the XFS_DIR2_DATA_ENTSIZE and XFS_DIR3_DATA_ENTSIZE and open
code them in their only caller, which now becomes so simple that
we can turn it into an inline function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the data block fixed offsets towards our structure for dir/attr
geometry parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->data_entry_tag_p dir ops method with a directly called
xfs_dir2_data_entry_tag_p helper that takes care of the differences
between the directory format with and without the file type field.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->data_entsize dir ops method with a directly called
xfs_dir2_data_entsize helper that takes care of the differences between
the directory format with and without the file type field.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All the callers really want an offset into the buffer, so adopt
the helper to return that instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that all users use the data_entry_offset field this method is
unused and can be removed.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use an offset as the main means for iteration, and only do pointer
arithmetics to find the data/unused entries.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use an offset as the main means for iteration, and only do pointer
arithmetics to find the data/unused entries.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use an offset as the main means for iteration, and only do pointer
arithmetics to find the data/unused entries.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the two users of the ->data_unused_p dir ops method with a
direct calculation using ->data_entry_offset, and clean them up a bit.
xfs_dir2_sf_to_block already had an offset variable containing the
value of ->data_entry_offset, which we are now reusing to make it
clear that the initial freespace entry is at the same place that
we later fill in the 1 entry, and in xfs_dir3_data_init the function
is cleaned up a bit to keep the initialization of fields of a given
structure close to each other, and to avoid a local variable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The only user of the ->data_dot_entry_p and ->data_dotdot_entry_p
methods is the xfs_dir2_sf_to_block function that builds block format
directorys from a short form directory. It already uses pointer
arithmetics with a offset variable to do so for the real entries in
the directory, so switch the generation of the . and .. entries to
the same scheme, and clean up some of the later pointer arithmetics
to use bp->b_addr directly as well and avoid some casts.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The data_dotdot_offset value is always equal to data_entry_offset plus
the fixed size of the "." entry. Right now calculating that fixed size
requires an indirect call, but by the end of this series it will be
an inline function that can be constant folded.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The data_dot_offset value is always equal to data_entry_offset given
that "." is always the first entry in the directory.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->sf_get_ftype and ->sf_put_ftype dir ops methods with
directly called xfs_dir2_sf_get_ftype and xfs_dir2_sf_put_ftype helpers
that takes care of the differences between the directory format with and
without the file type field.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->sf_get_ino and ->sf_put_ino dir ops methods with directly
called xfs_dir2_sf_get_ino and xfs_dir2_sf_put_ino helpers that take care
of the difference between the directory format with and without the file
type field. Also move xfs_dir2_sf_get_parent_ino and
xfs_dir2_sf_put_parent_ino to xfs_dir2_sf.c with the rest of the
low-level short form entry handling and use XFS_MAXINUMBER istead of
opencoded constants.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Just check for file-type enabled directories directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The parent inode handling is the same for all directory format variants,
just use direct calls instead of going through a pointless indirect
call.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that the max bests value is in struct xfs_da_geometry both instances
of ->db_to_fdb and ->db_to_fdindex are identical. Replace them with
local xfs_dir2_db_to_fdb and xfs_dir2_db_to_fdindex functions in
xfs_dir2_node.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the max free bests count towards our structure for dir/attr
geometry parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the free header size towards our structure for dir/attr geometry
parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All but two callers of the ->free_bests_p dir operation already have a
struct xfs_dir3_icfree_hdr from a previous call to
xfs_dir2_free_hdr_from_disk at hand. Add a pointer to the bests to
struct xfs_dir3_icfree_hdr to clean up this pattern. To optimize this
pattern, pass the struct xfs_dir3_icfree_hdr to xfs_dir2_free_log_bests
instead of recalculating the pointer there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Return the xfs_dir3_icfree_hdr used by the helpers called from
xfs_dir2_node_addname_int to the main function to prepare for the
next round of changes where we'll use the ichdr in xfs_dir3_icfree_hdr
to avoid extra operations to find the bests pointers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->free_hdr_to_disk dir ops method with a directly called
xfs_dir2_free_hdr_to_disk helper that takes care of the differences
between the v4 and v5 on-disk format.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->free_hdr_from_disk dir ops method with a directly called
xfs_dir_free_hdr_from_disk helper that takes care of the differences
between the v4 and v5 on-disk format.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the max leaf entries count towards our structure for dir/attr
geometry parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the leaf header size towards our structure for dir/attr geometry
parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All callers of the ->node_tree_p dir operation already have a struct
xfs_dir3_icleaf_hdr from a previous call to xfs_da_leaf_hdr_from_disk at
hand, or just need slight changes to the calling conventions to do so.
Add a pointer to the entries to struct xfs_dir3_icleaf_hdr to clean up
this pattern. To make this possible the xfs_dir3_leaf_log_ents function
grow a new argument to pass the xfs_dir3_icleaf_hdr that call callers
already have, and xfs_dir2_leaf_lookup_int returns the
xfs_dir3_icleaf_hdr to the callers so that they can later use it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->leaf_hdr_to_disk dir ops method with a directly called
xfs_dir_leaf_hdr_to_disk helper that takes care of the differences
between the v4 and v5 on-disk format.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->leaf_hdr_from_disk dir ops method with a directly called
xfs_dir2_leaf_hdr_from_disk helper that takes care of the differences
between the v4 and v5 on-disk format.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the node header size field to struct xfs_da_geometry, and remove
the now unused non-directory dir ops infrastructure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All but two callers of the ->node_tree_p dir operation already have a
xfs_da3_icnode_hdr from a previous call to xfs_da3_node_hdr_from_disk at
hand. Add a pointer to the btree entries to struct xfs_da3_icnode_hdr
to clean up this pattern. The two remaining callers now expand the
whole header as well, but that isn't very expensive and not in a super
hot path anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->node_hdr_to_disk dir ops method with a directly called
xfs_da_node_hdr_to_disk helper that takes care of the v4 vs v5
difference.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the ->node_hdr_from_disk dir ops method with a directly called
xfs_da_node_hdr_from_disk helper that takes care of the v4 vs v5
difference.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
None of these can ever be negative, so use unsigned types.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the abstract in-memory version of various btree block headers
out of xfs_da_format.h as they aren't on-disk formats.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the open-coded checks for whether or not an inode fork maps
blocks with a macro that will implant the code for us. This helps us
declutter the bmap code a bit.
Note that I had to use a macro instead of a static inline function
because of C header dependency problems between xfs_inode.h and
xfs_inode_fork.h.
Conversion was performed with the following Coccinelle script:
@@
expression ip, w;
@@
- XFS_IFORK_FORMAT(ip, w) == XFS_DINODE_FMT_EXTENTS || XFS_IFORK_FORMAT(ip, w) == XFS_DINODE_FMT_BTREE
+ xfs_ifork_has_extents(ip, w)
@@
expression ip, w;
@@
- XFS_IFORK_FORMAT(ip, w) != XFS_DINODE_FMT_EXTENTS && XFS_IFORK_FORMAT(ip, w) != XFS_DINODE_FMT_BTREE
+ !xfs_ifork_has_extents(ip, w)
@@
expression ip, w;
@@
- XFS_IFORK_FORMAT(ip, w) == XFS_DINODE_FMT_BTREE || XFS_IFORK_FORMAT(ip, w) == XFS_DINODE_FMT_EXTENTS
+ xfs_ifork_has_extents(ip, w)
@@
expression ip, w;
@@
- XFS_IFORK_FORMAT(ip, w) != XFS_DINODE_FMT_BTREE && XFS_IFORK_FORMAT(ip, w) != XFS_DINODE_FMT_EXTENTS
+ !xfs_ifork_has_extents(ip, w)
@@
expression ip, w;
@@
- (xfs_ifork_has_extents(ip, w))
+ xfs_ifork_has_extents(ip, w)
@@
expression ip, w;
@@
- (!xfs_ifork_has_extents(ip, w))
+ !xfs_ifork_has_extents(ip, w)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Just fix the typos checkpatch notices...
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Coverity complains that we don't check the return value of
xfs_iext_peek_prev_extent like we do nearly all of the time. If there
is no previous extent then just null out bma->prev like we do elsewhere
in the bmap code.
Coverity-id: 1424057
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Some of the xfs source files are missing header includes, so add them
back. Sparse complains about non-static functions that don't have a
forward declaration anywhere.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Refactor the code that complains when a dir/attr mapping doesn't exist
but the caller requires a mapping. This small restructuring helps us to
reduce the indenting level.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Make sure we log something to dmesg whenever we return -EFSCORRUPTED up
the call stack.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Each of the four functions that operate on shortform directories checks
that the directory's di_size is at least as large as the shortform
directory header. This is now checked by the inode fork verifiers
(di_size is used to allocate if_bytes, and if_bytes is checked against
the header structure size) so we can turn these checks into ASSERTions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Always set XFS_ALLOC_USERDATA for data fork allocations, and check it
in xfs_alloc_is_userdata instead of the current obsfucated check.
Also remove the xfs_alloc_is_userdata and xfs_alloc_allow_busy_reuse
helpers to make the code a little easier to understand.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the extent zeroing case there for the XFS_BMAPI_ZERO flag outside
the low-level allocator and into xfs_bmapi_allocate, where is still
is in transaction context, but outside the very lowlevel code where
it doesn't belong.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Avoid duplicate userdata and data fork checks by restructuring the code
so we only have a helper for userdata allocations that combines these
checks in a straight foward way. That also helps to obsoletes the
comments explaining what the code does as it is now clearly obvious.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_iread_extents open-codes everything in xfs_btree_visit_blocks, so
refactor the btree helper to be able to iterate only the records on
level 0, then port iread_extents to use it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There are a few places where we return -EIO instead of -EFSCORRUPTED
when we find corrupt metadata. Fix those places.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Actually call namecheck on attribute names before we hand them over to
userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add missing structure checks in the attribute leaf verifier.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
xfs_bmapi_write() takes a total block requirement parameter that is
passed down to the block allocation code and is used to specify the
total block requirement of the associated transaction. This is used
to try and select an AG that can not only satisfy the requested
extent allocation, but can also accommodate subsequent allocations
that might be required to complete the transaction. For example,
additional bmbt block allocations may be required on insertion of
the resulting extent to an inode data fork.
While it's important for callers to calculate and reserve such extra
blocks in the transaction, it is not necessary to pass the total
value to xfs_bmapi_write() in all cases. The latter automatically
sets minleft to ensure that sufficient free blocks remain after the
allocation attempt to expand the format of the associated inode
(i.e., such as extent to btree conversion, btree splits, etc).
Therefore, any callers that pass a total block requirement of the
bmap mapping length plus worst case bmbt expansion essentially
specify the additional reservation requirement twice. These callers
can pass a total of zero to rely on the bmapi minleft policy.
Beyond being superfluous, the primary motivation for this change is
that the total reservation logic in the bmbt code is dubious in
scenarios where minlen < maxlen and a maxlen extent cannot be
allocated (which is more common for data extent allocations where
contiguity is not required). The total value is based on maxlen in
the xfs_bmapi_write() caller. If the bmbt code falls back to an
allocation between minlen and maxlen, that allocation will not
succeed until total is reset to minlen, which essentially throws
away any additional reservation included in total by the caller. In
addition, the total value is not reset until after alignment is
dropped, which means that such callers drop alignment far too
aggressively than necessary.
Update all callers of xfs_bmapi_write() that pass a total block
value of the mapping length plus bmbt reservation to instead pass
zero and rely on xfs_bmapi_minleft() to enforce the bmbt reservation
requirement. This trades off slightly less conservative AG selection
for the ability to preserve alignment in more scenarios.
xfs_bmapi_write() callers that incorporate unrelated or additional
reservations in total beyond what is already included in minleft
must continue to use the former.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Cap longest extent to the largest we can allocate based on limits
calculated at mount time. Dynamic state (such as finobt blocks)
can result in the longest free extent exceeding the size we can
allocate, and that results in failure to align full AG allocations
when the AG is empty.
Result:
xfs_io-4413 [003] 426.412459: xfs_alloc_vextent_loopfailed: dev 8:96 agno 0 agbno 32 minlen 243968 maxlen 244000 mod 0 prod 1 minleft 1 total 262148 alignment 32 minalignslop 0 len 0 type NEAR_BNO otype START_BNO wasdel 0 wasfromfl 0 resv 0 datatype 0x5 firstblock 0xffffffffffffffff
minlen and maxlen are now separated by the alignment size, and
allocation fails because args.total > free space in the AG.
[bfoster: Added xfs_bmap_btalloc() changes.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[commit message is verbose for discussion purposes - will trim it
down later. Some questions about implementation details at the end.]
Zorro Lang recently ran a new test to stress single inode extent
counts now that they are no longer limited by memory allocation.
The test was simply:
# xfs_io -f -c "falloc 0 40t" /mnt/scratch/big-file
# ~/src/xfstests-dev/punch-alternating /mnt/scratch/big-file
This test uncovered a problem where the hole punching operation
appeared to finish with no error, but apparently only created 268M
extents instead of the 10 billion it was supposed to.
Further, trying to punch out extents that should have been present
resulted in success, but no change in the extent count. It looked
like a silent failure.
While running the test and observing the behaviour in real time,
I observed the extent coutn growing at ~2M extents/minute, and saw
this after about an hour:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next ; \
> sleep 60 ; \
> xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 127657993
fsxattr.nextents = 129683339
#
And a few minutes later this:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4177861124
#
Ah, what? Where did that 4 billion extra extents suddenly come from?
Stop the workload, unmount, mount:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 166044375
#
And it's back at the expected number. i.e. the extent count is
correct on disk, but it's screwed up in memory. I loaded up the
extent list, and immediately:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4192576215
#
It's bad again. So, where does that number come from?
xfs_fill_fsxattr():
if (ip->i_df.if_flags & XFS_IFEXTENTS)
fa->fsx_nextents = xfs_iext_count(&ip->i_df);
else
fa->fsx_nextents = ip->i_d.di_nextents;
And that's the behaviour I just saw in a nutshell. The on disk count
is correct, but once the tree is loaded into memory, it goes whacky.
Clearly there's something wrong with xfs_iext_count():
inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
{
return ifp->if_bytes / sizeof(struct xfs_iext_rec);
}
Simple enough, but 134M extents is 2**27, and that's right about
where things went wrong. A struct xfs_iext_rec is 16 bytes in size,
which means 2**27 * 2**4 = 2**31 and we're right on target for an
integer overflow. And, sure enough:
struct xfs_ifork {
int if_bytes; /* bytes in if_u1 */
....
Once we get 2**27 extents in a file, we overflow if_bytes and the
in-core extent count goes wrong. And when we reach 2**28 extents,
if_bytes wraps back to zero and things really start to go wrong
there. This is where the silent failure comes from - only the first
2**28 extents can be looked up directly due to the overflow, all the
extents above this index wrap back to somewhere in the first 2**28
extents. Hence with a regular pattern, trying to punch a hole in the
range that didn't have holes mapped to a hole in the first 2**28
extents and so "succeeded" without changing anything. Hence "silent
failure"...
Fix this by converting if_bytes to a int64_t and converting all the
index variables and size calculations to use int64_t types to avoid
overflows in future. Signed integers are still used to enable easy
detection of extent count underflows. This enables scalability of
extent counts to the limits of the on-disk format - MAXEXTNUM
(2**31) extents.
Current testing is at over 500M extents and still going:
fsxattr.nextents = 517310478
Reported-by: Zorro Lang <zlang@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The near mode fallback algorithm consists of a left/right scan of
the bnobt. This algorithm has very poor breakdown characteristics
under worst case free space fragmentation conditions. If a suitable
extent is far enough from the locality hint, each allocation may
scan most or all of the bnobt before it completes. This causes
pathological behavior and extremely high allocation latencies.
While locality is important to near mode allocations, it is not so
important as to incur pathological allocation latency to provide the
asolute best available locality for every allocation. If the
allocation is large enough or far enough away, there is a point of
diminishing returns. As such, we can bound the overall operation by
including an iterative cntbt lookup in the broader search. The cntbt
lookup is optimized to immediately find the extent with best
locality for the given size on each iteration. Since the cntbt is
indexed by extent size, the lookup repeats with a variably
aggressive increasing search key size until it runs off the edge of
the tree.
This approach provides a natural balance between the two algorithms
for various situations. For example, the bnobt scan is able to
satisfy smaller allocations such as for inode chunks or btree blocks
more quickly where the cntbt search may have to search through a
large set of extent sizes when the search key starts off small
relative to the largest extent in the tree. On the other hand, the
cntbt search more deterministically covers the set of suitable
extents for larger data extent allocation requests that the bnobt
scan may have to search the entire tree to locate.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Lift the btree fixup path into a helper function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In preparation to enhance the near mode allocation bnobt scan algorithm, lift
it into a separate function. No functional changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The bnobt "find best" helper implements a simple btree walker
function. This general pattern, or a subset thereof, is reused in
various parts of a near mode allocation operation. For example, the
bnobt left/right scans are each iterative btree walks along with the
cntbt lastblock scan.
Rework this function into a generic btree walker, add a couple
parameters to control termination behavior from various contexts and
reuse it where applicable.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Both algorithms duplicate the same btree allocation code. Eliminate
the duplication and reuse the fallback algorithm codepath.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The near mode bnobt scan searches left and right in the bnobt
looking for the closest free extent to the allocation hint that
satisfies minlen. Once such an extent is found, the left/right
search terminates, we search one more time in the opposite direction
and finish the allocation with the best overall extent.
The left/right and find best searches are currently controlled via a
combination of cursor state and local variables. Clean up this code
and prepare for further improvements to the near mode fallback
algorithm by reusing the allocation cursor best extent tracking
mechanism. Update the tracking logic to deactivate bnobt cursors
when out of allocation range and replace open-coded extent checks to
calls to the common helper. In doing so, rename some misnamed local
variables in the top-level near mode allocation function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The cntbt lastblock scan checks the size, alignment, locality, etc.
of each free extent in the block and compares it with the current
best candidate. This logic will be reused by the upcoming optimized
cntbt algorithm, so refactor it into a separate helper. Note that
acur->diff is now initialized to -1 (unsigned) instead of 0 to
support the more granular comparison logic in the new helper.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If the size lookup lands in the last block of the by-size btree, the
near mode algorithm scans the entire block for the extent with best
available locality. In preparation for similar best available
extent tracking across both btrees, extend the allocation cursor
with best extent data and lift the associated state from the cntbt
last block scan code. No functional changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Extend the allocation cursor to track extent busy state for an
allocation attempt. No functional changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Introduce a new allocation cursor data structure to encapsulate the
various states and structures used to perform an extent allocation.
This structure will eventually be used to track overall allocation
state across different search algorithms on both free space btrees.
To start, include the three btree cursors (one for the cntbt and two
for the bnobt left/right search) used by the near mode allocation
algorithm and refactor the cursor setup and teardown code into
helpers. This slightly changes cursor memory allocation patterns,
but otherwise makes no functional changes to the allocation
algorithm.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix sparse complaints]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The upcoming allocation algorithm update searches multiple
allocation btree cursors concurrently. As such, it requires an
active state to track when a particular cursor should continue
searching. While active state will be modified based on higher level
logic, we can define base functionality based on the result of
allocation btree lookups.
Define an active flag in the private area of the btree cursor.
Update it based on the result of lookups in the existing allocation
btree helpers. Finally, provide a new helper to query the current
state.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In preparation for moving the XFS writeback code to fs/iomap.c, switch
it to use struct iomap instead of the XFS-specific struct xfs_bmbt_irec.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
64-bit time is a signed quantity in the kernel, so the bulkstat
structure should reflect that. Note that the structure size stays
the same and that we have not yet published userspace headers for this
new ioctl so there are no users to break.
Fixes: 7035f9724f ("xfs: introduce new v5 bulkstat structure")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The callers of xfs_bmap_local_to_extents_empty() log the inode
external to the function, yet this function is where the on-disk
format value is updated. Push the inode logging down into the
function itself to help prevent future mistakes.
Note that internal bmap callers track the inode logging flags
independently and thus may log the inode core twice due to this
change. This is harmless, so leave this code around for consistency
with the other attr fork conversion functions.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_attr_shortform_to_leaf() attempts to put the shortform fork back
together after a failed attempt to convert from shortform to leaf
format. While this code reallocates and copies back the shortform
attr fork data, it never resets the inode format field back to local
format. Further, now that the inode is properly logged after the
initial switch from local format, any error that triggers the
recovery code will eventually abort the transaction and shutdown the
fs. Therefore, remove the broken and unnecessary error handling
code.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When a directory changes from shortform (sf) to block format, the sf
format is copied to a temporary buffer, the inode format is modified
and the updated format filled with the dentries from the temporary
buffer. If the inode format is modified and attempt to grow the
inode fails (due to I/O error, for example), it is possible to
return an error while leaving the directory in an inconsistent state
and with an otherwise clean transaction. This results in corruption
of the associated directory and leads to xfs_dabuf_map() errors as
subsequent lookups cannot accurately determine the format of the
directory. This problem is reproduced occasionally by generic/475.
The fundamental problem is that xfs_dir2_sf_to_block() changes the
on-disk inode format without logging the inode. The inode is
eventually logged by the bmapi layer in the common case, but error
checking introduces the possibility of failing the high level
request before this happens.
Update both of the dir2 and attr callers of
xfs_bmap_local_to_extents_empty() to log the inode core as
consistent with the bmap local to extent format change codepath.
This ensures that any subsequent errors after the format has changed
cause the transaction to abort.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The flags arg is always passed as zero, so remove it.
(xfs_buf_get_uncached takes flags to support XBF_NO_IOACCT for
the sb, but that should never be relevant for xfs_get_aghdr_buf)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_trans_log_buf takes first byte, last byte as args. In this
case, it should be from 0 to sizeof() - 1.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The collapse range operation can merge extents if two newly adjacent
extents are physically contiguous. If the extent count is reduced on
a btree format inode, a change to extent format might be necessary.
This format change currently occurs as a side effect of the file
size update after extents have been shifted for the collapse. This
codepath ultimately calls xfs_bunmapi(), which happens to check for
and execute the format conversion even if there were no blocks
removed from the mapping.
While this ultimately puts the inode into the correct state, the
fact the format conversion occurs in a separate transaction from the
change that called for it is a problem. If an extent shift
transaction commits and the filesystem happens to crash before the
format conversion, the inode fork is left in a corrupted state after
log recovery. The inode fork verifier fails and xfs_repair
ultimately nukes the inode. This problem was originally reproduced
by generic/388.
Similar to how the insert range extent split code handles extent to
btree conversion, update the collapse range extent merge code to
handle btree to extent format conversion in the same transaction
that merges the extents. This ensures that the inode fork format
remains consistent if the filesystem happens to crash in the middle
of a collapse range operation that changes the inode fork format.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Define a flags field for the AG geometry ioctl structure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Add a helper that validates the startblock is valid. This checks for a
non-zero block on the main device, but skips that check for blocks on
the realtime device.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When doing file lookups and checking for permissions, we end up in
xfs_get_acl() to see if there are any ACLs on the inode. This
requires and xattr lookup, and to do that we have to supply a buffer
large enough to hold an maximum sized xattr.
On workloads were we are accessing a wide range of cache cold files
under memory pressure (e.g. NFS fileservers) we end up spending a
lot of time allocating the buffer. The buffer is 64k in length, so
is a contiguous multi-page allocation, and if that then fails we
fall back to vmalloc(). Hence the allocation here is /expensive/
when we are looking up hundreds of thousands of files a second.
Initial numbers from a bpf trace show average time in xfs_get_acl()
is ~32us, with ~19us of that in the memory allocation. Note these
are average times, so there are going to be affected by the worst
case allocations more than the common fast case...
To avoid this, we could just do a "null" lookup to see if the ACL
xattr exists and then only do the allocation if it exists. This,
however, optimises the path for the "no ACL present" case at the
expense of the "acl present" case. i.e. we can halve the time in
xfs_get_acl() for the no acl case (i.e down to ~10-15us), but that
then increases the ACL case by 30% (i.e. up to 40-45us).
To solve this and speed up both cases, drive the xattr buffer
allocation into the attribute code once we know what the actual
xattr length is. For the no-xattr case, we avoid the allocation
completely, speeding up that case. For the common ACL case, we'll
end up with a fast heap allocation (because it'll be smaller than a
page), and only for the rarer "we have a remote xattr" will we have
a multi-page allocation occur. Hence the common ACL case will be
much faster, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The same code is used to copy do the attribute copying in three
different places. Consolidate them into a single function in
preparation from on-demand buffer allocation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Because we repeat exactly the same code to get the remote attribute
value after both calls to xfs_attr3_leaf_getvalue() if it's a remote
attr. Just do it in xfs_attr3_leaf_getvalue() so the callers don't
have to care about it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Shortform, leaf and remote value attr value retrieval return
different values for success. This makes it more complex to handle
actual errors xfs_attr_get() as some errors mean success and some
mean failure. Make the return values consistent for success and
failure consistent for all attribute formats.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When a directory is growing rapidly, new blocks tend to get added at
the end of the directory. These end up at the end of the freespace
index, and when the directory gets large finding these new
freespaces gets expensive. The code does a linear search across the
frespace index from the first block in the directory to the last,
hence meaning the newly added space is the last index searched.
Instead, do a reverse order index search, starting from the last
block and index in the freespace index. This makes most lookups for
free space on rapidly growing directories O(1) instead of O(N), but
should not have any impact on random insert workloads because the
average search length is the same regardless of which end of the
array we start at.
The result is a major improvement in large directory grow rates:
create time(sec) / rate (files/s)
File count vanilla Prev commit Patched
10k 0.41 / 24.3k 0.42 / 23.8k 0.41 / 24.3k
20k 0.74 / 27.0k 0.76 / 26.3k 0.75 / 26.7k
100k 3.81 / 26.4k 3.47 / 28.8k 3.27 / 30.6k
200k 8.58 / 23.3k 7.19 / 27.8k 6.71 / 29.8k
1M 85.69 / 11.7k 48.53 / 20.6k 37.67 / 26.5k
2M 280.31 / 7.1k 130.14 / 15.3k 79.55 / 25.2k
10M 3913.26 / 2.5k 552.89 / 18.1k
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When running a "create millions inodes in a directory" test
recently, I noticed we were spending a huge amount of time
converting freespace block headers from disk format to in-memory
format:
31.47% [kernel] [k] xfs_dir2_node_addname
17.86% [kernel] [k] xfs_dir3_free_hdr_from_disk
3.55% [kernel] [k] xfs_dir3_free_bests_p
We shouldn't be hitting the best free block scanning code so hard
when doing sequential directory creates, and it turns out there's
a highly suboptimal loop searching the the best free array in
the freespace block - it decodes the block header before checking
each entry inside a loop, instead of decoding the header once before
running the entry search loop.
This makes a massive difference to create rates. Profile now looks
like this:
13.15% [kernel] [k] xfs_dir2_node_addname
3.52% [kernel] [k] xfs_dir3_leaf_check_int
3.11% [kernel] [k] xfs_log_commit_cil
And the wall time/average file create rate differences are
just as stark:
create time(sec) / rate (files/s)
File count vanilla patched
10k 0.41 / 24.3k 0.42 / 23.8k
20k 0.74 / 27.0k 0.76 / 26.3k
100k 3.81 / 26.4k 3.47 / 28.8k
200k 8.58 / 23.3k 7.19 / 27.8k
1M 85.69 / 11.7k 48.53 / 20.6k
2M 280.31 / 7.1k 130.14 / 15.3k
The larger the directory, the bigger the performance improvement.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Simplify the logic in xfs_dir2_node_addname_int() by factoring out
the free block index lookup code that finds a block with enough free
space for the entry to be added. The code that is moved gets a major
cleanup at the same time, but there is no algorithm change here.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Factor out the code that adds a data block to a directory from
xfs_dir2_node_addname_int(). This makes the code flow cleaner and
more obvious and provides clear isolation of upcoming optimsations.
Signed-off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This gets rid of the need for a forward declaration of the static
function xfs_dir2_addname_int() and readies the code for factoring
of xfs_dir2_addname_int().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Iterator functions already use 0 to signal "continue iterating", so get
rid of the #defines and just do it directly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Use -ECANCELED to signal "stop iterating" instead of these magical
*_ITER_ABORT values, since it's duplicative.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In xfs_rmap_irec_offset_unpack, we should always clear the contents of
rm_flags before we begin unpacking the encoded (ondisk) offset into the
incore rm_offset and incore rm_flags fields. Remove the open-coded
field zeroing as this encourages api misuse.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Remove the return value from the functions that schedule deferred bmap
operations since they never fail and do not return status.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Remove the return value from the functions that schedule deferred
refcount operations since they never fail and do not return status.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Remove the return value from the functions that schedule deferred rmap
operations since they never fail and do not return status.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
This function doesn't use the @state parameter, so get rid of it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In xfs_bmbt_diff_two_keys, we perform a signed int64_t subtraction with
two unsigned 64-bit quantities. If the second quantity is actually the
"maximum" key (all ones) as used in _query_all, the subtraction
effectively becomes addition of two positive numbers and the function
returns incorrect results. Fix this with explicit comparisons of the
unsigned values. Nobody needs this now, but the online repair patches
will need this to work properly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The xfs_rmap_has_other_keys helper aborts the iteration as soon as it
has an answer. Don't let this abort leak out to callers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In xfs_ialloc_setup_geometry, it's possible for a malicious/corrupt fs
image to set an unreasonably large value for sb_inopblog which will
cause ialloc_blks to be zero. If sb_imax_pct is also set, this results
in a division by zero error in the second do_div call. Therefore, force
maxicount to zero if ialloc_blks is zero.
Note that the kernel metadata verifiers will catch the garbage inopblog
value and abort the fs mount long before it tries to set up the inode
geometry; this is needed to avoid a crash in xfs_db while setting up the
xfs_mount structure.
Found by fuzzing sb_inopblog to 122 in xfs/350.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Fixes gcc warning:
fs/xfs/libxfs/xfs_btree.c:4475: warning: Excess function parameter 'max_recs' description in 'xfs_btree_sblock_v5hdr_verify'
fs/xfs/libxfs/xfs_btree.c:4475: warning: Excess function parameter 'pag_max_level' description in 'xfs_btree_sblock_v5hdr_verify'
Fixes: c5ab131ba0 ("libxfs: refactor short btree block verification")
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When trying to correlate XFS kernel allocations to memory reclaim
behaviour, it is useful to know what allocations XFS is actually
attempting. This information is not directly available from
tracepoints in the generic memory allocation and reclaim
tracepoints, so these new trace points provide a high level
indication of what the XFS memory demand actually is.
There is no per-filesystem context in this code, so we just trace
the type of allocation, the size and the allocation constraints.
The kmem code also doesn't include much of the common XFS headers,
so there are a few definitions that need to be added to the trace
headers and a couple of types that need to be made common to avoid
needing to include the whole world in the kmem code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Zorro Lang reported a crash in generic/475 if we try to inactivate a
corrupt inode with a NULL attr fork (stack trace shortened somewhat):
RIP: 0010:xfs_bmapi_read+0x311/0xb00 [xfs]
RSP: 0018:ffff888047f9ed68 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: ffff888047f9f038 RCX: 1ffffffff5f99f51
RDX: 0000000000000002 RSI: 0000000000000008 RDI: 0000000000000012
RBP: ffff888002a41f00 R08: ffffed10005483f0 R09: ffffed10005483ef
R10: ffffed10005483ef R11: ffff888002a41f7f R12: 0000000000000004
R13: ffffe8fff53b5768 R14: 0000000000000005 R15: 0000000000000001
FS: 00007f11d44b5b80(0000) GS:ffff888114200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000ef6000 CR3: 000000002e176003 CR4: 00000000001606e0
Call Trace:
xfs_dabuf_map.constprop.18+0x696/0xe50 [xfs]
xfs_da_read_buf+0xf5/0x2c0 [xfs]
xfs_da3_node_read+0x1d/0x230 [xfs]
xfs_attr_inactive+0x3cc/0x5e0 [xfs]
xfs_inactive+0x4c8/0x5b0 [xfs]
xfs_fs_destroy_inode+0x31b/0x8e0 [xfs]
destroy_inode+0xbc/0x190
xfs_bulkstat_one_int+0xa8c/0x1200 [xfs]
xfs_bulkstat_one+0x16/0x20 [xfs]
xfs_bulkstat+0x6fa/0xf20 [xfs]
xfs_ioc_bulkstat+0x182/0x2b0 [xfs]
xfs_file_ioctl+0xee0/0x12a0 [xfs]
do_vfs_ioctl+0x193/0x1000
ksys_ioctl+0x60/0x90
__x64_sys_ioctl+0x6f/0xb0
do_syscall_64+0x9f/0x4d0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f11d39a3e5b
The "obvious" cause is that the attr ifork is null despite the inode
claiming an attr fork having at least one extent, but it's not so
obvious why we ended up with an inode in that state.
Reported-by: Zorro Lang <zlang@redhat.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204031
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Continue our game of replacing ASSERTs for corrupt ondisk metadata with
EFSCORRUPTED returns.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Add an XFS_ICHGTIME_CREATE case to xfs_trans_ichgtime() to keep in
sync with userspace. (Currently no kernel caller sends this flag.)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Userspace now has an identical xfs_trans_inode.c which it has already
moved to libxfs/ so do the same move for kernelspace.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we're iterating all the attributes using the built-in xattr
iterator, we can use the seen_enough variable to pass error codes back
to the main scrub function instead of flattening them into 0/1. This
will be used in a more exciting fashion in upcoming patches.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a new bulk ireq flag that enables userspace to ask us for a
special inode number instead of interpreting @ino as a literal inode
number. This enables us to query the root inode easily.
The reason for adding the ability to query specifically the root
directory inode is that certain programs (xfsdump and xfsrestore) want
to confirm when they've been pointed to the root directory. The
userspace code assumes the root directory is always the first result
from calling bulkstat with lastino == 0, but this isn't true if the
(initial btree roots + initial AGFL + inode alignment padding) is itself
long enough to be allocated to new inodes if all of those blocks should
happen to be free at the same time. Rather than make userspace guess
at internal filesystem state, we provide a direct query.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add a new xfs_bulk_ireq flag to constrain the iteration to a single AG.
If the passed-in startino value is zero then we start with the first
inode in the AG that the user passes in; otherwise, we iterate only
within the same AG as the passed-in inode.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Introduce a new "v5" inode group structure that fixes the alignment
and padding problems of the existing structure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Introduce a new version of the in-core bulkstat structure that supports
our new v5 format features. This structure also fills the gaps in the
previous structure. We leave wiring up the ioctls for the next patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Remove xfs_bstat_t, xfs_fsop_bulkreq_t, xfs_inogrp_t, and similarly
named compat typedefs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a new iterator function to simplify walking inodes in an XFS
filesystem. This new iterator will replace the existing open-coded
walking that goes on in various places.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Currently, xfs doesn't have generic error codes defined for "stop
iterating"; we just reuse the XFS_BTREE_QUERY_* return values. This
looks a little weird if we're not actually iterating a btree index.
Before we start adding more iterators, we should create general
XFS_ITER_{CONTINUE,ABORT} return values and define the XFS_BTREE_QUERY_*
ones from that.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Instead of a magic flag for xfs_trans_alloc, just ensure all callers
that can't relclaim through the file system use memalloc_nofs_save to
set the per-task nofs flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.
nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this. I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we're writing out a fresh new AG, make sure that we don't list an
internal log as free and that we create the rmap for the region. growfs
never does this, but we will need it when we hook up mkfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Refactor the code that populates the free space btrees of a new AG so
that we can avoid code duplication once things start getting
complicated.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
xfs_alloc_ag_vextent_small() doesn't update the output parameters in
the event of an AGFL allocation. Instead, it updates the
xfs_alloc_arg structure directly to complete the allocation.
Update both args and the output params to provide consistent
behavior for future callers.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The small allocation helper is implemented in a way that is fairly
tightly integrated to the existing allocation algorithms. It expects
a cntbt cursor beyond the end of the tree, attempts to locate the
last record in the tree and only attempts an AGFL allocation if the
cntbt is empty.
The upcoming generic algorithm doesn't rely on the cntbt processing
of this function. It will only call this function when the cntbt
doesn't have a big enough extent or is empty and thus AGFL
allocation is the only remaining option. Tweak
xfs_alloc_ag_vextent_small() to handle a NULL cntbt cursor and skip
the cntbt logic. This facilitates use by the existing allocation
code and new code that only requires an AGFL allocation attempt.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the small allocation helper further up in the file to avoid the
need for a function declaration. The remaining declarations will be
removed by followup patches. No functional changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_alloc_ag_vextent_small() is kind of a mess. Clean it up in
preparation for future changes. No functional changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We need to derive the mount pointer from a buffer in a lot of place.
Add a direct pointer to short cut the pointer chasing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The inode geometry structure isn't related to ondisk format; it's
support for the mount structure. Move it to xfs_shared.h.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There are several functions which take a flag argument that is
only ever passed as "0," so remove these arguments.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The flags value is always passed as 0 so remove the argument.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Finish converting all the old inode_cluster_size >> inopblog users to
inodes_per_cluster.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
inode_cluster_size is supposed to represent the size (in bytes) of an
inode cluster buffer. We avoid having to handle multiple clusters per
filesystem block on filesystems with large blocks by openly rounding
this value up to 1 FSB when necessary. However, we never reset
inode_cluster_size to reflect this new rounded value, which adds to the
potential for mistakes in calculating geometries.
Fix this by setting inode_cluster_size to reflect the rounded-up size if
needed, and special-case the few places in the sparse inodes code where
we actually need the smaller value to validate on-disk metadata.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Migrate all of the inode geometry setup code from xfs_mount.c into a
single libxfs function that we can share with xfsprogs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Separate the inode geometry information into a distinct structure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
It turns out that the log can consume nearly all the space in an AG, and
when this happens this it's possible that there will be less free space
in the AG than the reservation would try to hide. On a debug kernel
this can trigger an ASSERT in xfs/250:
XFS: Assertion failed: xfs_perag_resv(pag, XFS_AG_RESV_METADATA)->ar_reserved + xfs_perag_resv(pag, XFS_AG_RESV_RMAPBT)->ar_reserved <= pag->pagf_freeblks + pag->pagf_flcount, file: fs/xfs/libxfs/xfs_ag_resv.c, line: 319
The log is permanently allocated, so we know we're never going to have
to expand the btrees to hold any records associated with the log space.
We therefore can treat the space as if it doesn't exist.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
There are several functions which have no opportunity to return
an error, and don't contain any ASSERTs which could be argued
to be better constructed as error cases. So, make them voids
to simplify the callers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Teach online scrub how to check the filesystem summary counters. We use
the incore delalloc block counter along with the incore AG headers to
compute expected values for fdblocks, icount, and ifree, and then check
that the percpu counter is within a certain threshold of the expected
value. This is done to avoid having to freeze or otherwise lock the
filesystem, which means that we're only checking that the counters are
fairly close, not that they're exactly correct.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
During testing of xfs/141 on a V4 filesystem, I observed some
inconsistent behavior with regards to resources that are held (i.e.
remain locked) across a defer roll. The transaction roll always gives
the defer roll function a new transaction, even if committing the old
transaction fails. However, the defer roll function only rejoins the
held resources if the transaction commit succeedied. This means that
callers of defer roll have to figure out whether the held resources are
attached to the transaction being passed back.
Worse yet, if the defer roll was part of a defer finish call, we have a
third possibility: the defer finish could pass back a dirty transaction
with dirty held resources and an error code.
The only sane way to handle all of these scenarios is to require that
the code that held the resource either cancel the transaction before
unlocking and releasing the resources, or use functions that detach
resources from a transaction properly (e.g. xfs_trans_brelse) if they
need to drop the reference before committing or cancelling the
transaction.
In order to make this so, change the defer roll code to join held
resources to the new transaction unconditionally and fix all the bhold
callers to release the held buffers correctly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add a percpu counter to track the number of blocks directly reserved for
delayed allocations on the data device. This counter (in contrast to
i_delayed_blks) does not track allocated CoW staging extents or anything
going on with the realtime device. It will be used in the upcoming
summary counter scrub function to check the free block counts without
having to freeze the filesystem or walk all the inodes to find the
delayed allocations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Block allocation requires a permanent transaction for deferred AGFL
frees. Add an assert in the block allocation path to make explicit and
obvious to future callers the requirement of a transaction with a
permanent reservation.
Reported-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: split this out from the previous patch per hch request]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The growdata transaction is used by growfs operations to increase
the data size of the filesystem. Part of this sequence involves
extending the size of the last preexisting AG in the fs, if
necessary. This is implemented by freeing the newly available
physical range to the AG.
tr_growdata is not a permanent transaction, however, and block
allocation transactions must be permanent to handle deferred frees
of AGFL blocks. If the grow operation extends an existing AG that
requires AGFL fixing, assert failures occur due to a populated dfops
list on a non-permanent transaction and the AGFL free does not
occur. This is reproduced (rarely) by xfs/104.
Change tr_growdata to a permanent transaction with a default log
count. This increases initial transaction reservation size, but
growfs is an infrequent and non-performance critical operation and
so should have minimal impact.
Reported-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: add a comment to the assert]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use space in the bulkstat ioctl structure to report any problems
observed with the inode.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Use the AG geometry info ioctl to report health status too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Use our newly expanded geometry structure to report the overall fs and
realtime health status.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>