This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The Montgomery Multiply, Montgomery Square, and Multiple-Precision
Multiply instructions work by loading a combination of the floating
point and multiple register windows worth of integer registers
with the inputs.
These values are 64-bit. But for 32-bit userland processes we only
save the low 32-bits of each integer register during a register spill.
This is because the register window save area is in the user stack and
has a fixed layout.
Therefore, the only way to use these instruction in 32-bit mode is to
perform the following sequence:
1) Load the top-32bits of a choosen integer register with a sentinel,
say "-1". This will be in the outer-most register window.
The idea is that we're trying to see if the outer-most register
window gets spilled, and thus the 64-bit values were truncated.
2) Load all the inputs for the montmul/montsqr/mpmul instruction,
down to the inner-most register window.
3) Execute the opcode.
4) Traverse back up to the outer-most register window.
5) Check the sentinel, if it's still "-1" store the results.
Otherwise retry the entire sequence.
This retry is extremely troublesome. If you're just unlucky and an
interrupt or other trap happens, it'll push that outer-most window to
the stack and clear the sentinel when we restore it.
We could retry forever and never make forward progress if interrupts
arrive at a fast enough rate (consider perf events as one example).
So we have do limited retries and fallback to software which is
extremely non-deterministic.
Luckily it's very straightforward to provide a mechanism to let
32-bit applications use a 64-bit stack. Stacks in 64-bit mode are
biased by 2047 bytes, which means that the lowest bit is set in the
actual %sp register value.
So if we see bit zero set in a 32-bit application's stack we treat
it like a 64-bit stack.
Runtime detection of such a facility is tricky, and cumbersome at
best. For example, just trying to use a biased stack and seeing if it
works is hard to recover from (the signal handler will need to use an
alt stack, plus something along the lines of longjmp). Therefore, we
add a system call to report a bitmask of arch specific features like
this in a cheap and less hairy way.
With help from Andy Polyakov.
Signed-off-by: David S. Miller <davem@davemloft.net>
UltraSPARC-T2 and later do not use the fp_exception_other trap and do
not set the floating point trap type field in the %fsr at all when you
try to execute an unimplemented FPU operation.
Instead, it uses the illegal_instruction trap and it leaves the
floating point trap type field clear.
So we should not validate the %fsr trap type field when do_mathemu()
is invoked from the illegal instruction handler.
Also, the floating point trap type field is 3 bits, not 4 bits.
Signed-off-by: David S. Miller <davem@davemloft.net>
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.
For the various event classes:
- hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
the PMI-tail (ARM etc.)
- tracepoint: nmi=0; since tracepoint could be from NMI context.
- software: nmi=[0,1]; some, like the schedule thing cannot
perform wakeups, and hence need 0.
As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).
The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This mirrors commit 196f02bf90
(powerpc: perf_event: Add alignment-faults and emulation-faults software events)
Signed-off-by: David S. Miller <davem@davemloft.net>
Move relavent files to sparc/math-emu and
adjust path/include accordingly.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>