On a Haswell machine, the perf_fuzzer managed to trigger this message:
[117248.075892] unchecked MSR access error: WRMSR to 0x3f1 (tried to
write 0x0400000000000000) at rIP: 0xffffffff8106e4f4
(native_write_msr+0x4/0x20)
[117248.089957] Call Trace:
[117248.092685] intel_pmu_pebs_enable_all+0x31/0x40
[117248.097737] intel_pmu_enable_all+0xa/0x10
[117248.102210] __perf_event_task_sched_in+0x2df/0x2f0
[117248.107511] finish_task_switch.isra.0+0x15f/0x280
[117248.112765] schedule_tail+0xc/0x40
[117248.116562] ret_from_fork+0x8/0x30
A fake event called VLBR_EVENT may use the bit 58 of the PEBS_ENABLE, if
the precise_ip is set. The bit 58 is reserved by the HW. Accessing the
bit causes the unchecked MSR access error.
The fake event doesn't support PEBS. The case should be rejected.
Fixes: 097e4311cd ("perf/x86: Add constraint to create guest LBR event without hw counter")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1615555298-140216-2-git-send-email-kan.liang@linux.intel.com
A repeatable crash can be triggered by the perf_fuzzer on some Haswell
system.
https://lore.kernel.org/lkml/7170d3b-c17f-1ded-52aa-cc6d9ae999f4@maine.edu/
For some old CPUs (HSW and earlier), the PEBS status in a PEBS record
may be mistakenly set to 0. To minimize the impact of the defect, the
commit was introduced to try to avoid dropping the PEBS record for some
cases. It adds a check in the intel_pmu_drain_pebs_nhm(), and updates
the local pebs_status accordingly. However, it doesn't correct the PEBS
status in the PEBS record, which may trigger the crash, especially for
the large PEBS.
It's possible that all the PEBS records in a large PEBS have the PEBS
status 0. If so, the first get_next_pebs_record_by_bit() in the
__intel_pmu_pebs_event() returns NULL. The at = NULL. Since it's a large
PEBS, the 'count' parameter must > 1. The second
get_next_pebs_record_by_bit() will crash.
Besides the local pebs_status, correct the PEBS status in the PEBS
record as well.
Fixes: 01330d7288 ("perf/x86: Allow zero PEBS status with only single active event")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1615555298-140216-1-git-send-email-kan.liang@linux.intel.com
intel_pmu_pebs_fixup_ip() needs only the insn length so use the
appropriate helper instead of a full decode. A full decode differs only
in running insn_complete() on the decoded insn but that is not needed
here.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210304174237.31945-8-bp@alien8.de
Initialize x86_pmu.guest_get_msrs to return 0/NULL to handle the "nop"
case. Patching in perf_guest_get_msrs_nop() during setup does not work
if there is no PMU, as setup bails before updating the static calls,
leaving x86_pmu.guest_get_msrs NULL and thus a complete nop. Ultimately,
this causes VMX abort on VM-Exit due to KVM putting random garbage from
the stack into the MSR load list.
Add a comment in KVM to note that nr_msrs is valid if and only if the
return value is non-NULL.
Fixes: abd562df94 ("x86/perf: Use static_call for x86_pmu.guest_get_msrs")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: syzbot+cce9ef2dd25246f815ee@syzkaller.appspotmail.com
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210309171019.1125243-1-seanjc@google.com
To supply a PID/TID for large PEBS, it requires flushing the PEBS buffer
in a context switch.
For normal LBRs, a context switch can flip the address space and LBR
entries are not tagged with an identifier, we need to wipe the LBR, even
for per-cpu events.
For LBR callstack, save/restore the stack is required during a context
switch.
Set PERF_ATTACH_SCHED_CB for the event with large PEBS & LBR.
Fixes: 9c964efa43 ("perf/x86/intel: Drain the PEBS buffer during context switches")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201130193842.10569-2-kan.liang@linux.intel.com
There are several things special for the RAPL Psys energy counter, on
Intel Sapphire Rapids platform.
1. it contains one Psys master package, and only CPUs on the master
package can read valid value of the Psys energy counter, reading the
MSR on CPUs in the slave package returns 0.
2. The master package does not have to be Physical package 0. And when
all the CPUs on the Psys master package are offlined, we lose the Psys
energy counter, at runtime.
3. The Psys energy counter can be disabled by BIOS, while all the other
energy counters are not affected.
It is not easy to handle all of these in the current RAPL PMU design
because
a) perf_msr_probe() validates the MSR on some random CPU, which may either
be in the Psys master package or in the Psys slave package.
b) all the RAPL events share the same PMU, and there is not API to remove
the psys-energy event cleanly, without affecting the other events in
the same PMU.
This patch addresses the problems in a simple way.
First, by setting .no_check bit for RAPL Psys MSR, the psys-energy event
is always added, so we don't have to check the Psys ENERGY_STATUS MSR on
master package.
Then, by removing rapl_not_visible(), the psys-energy event is always
available in sysfs. This does not affect the previous code because, for
the RAPL MSRs with .no_check cleared, the .is_visible() callback is always
overriden in the perf_msr_probe() function.
Note, although RAPL PMU is die-based, and the Psys energy counter MSR on
Intel SPR is package scope, this is not a problem because there is only
one die in each package on SPR.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210204161816.12649-3-rui.zhang@intel.com
In the RAPL ENERGY_COUNTER MSR, only the lower 32bits represent the energy
counter.
On previous platforms, the higher 32bits are reverved and always return
Zero. But on Intel SapphireRapids platform, the higher 32bits are reused
for other purpose and return non-zero value.
Thus check the lower 32bits only for these ENERGY_COUTNER MSRs, to make
sure the RAPL PMU events are not added erroneously when higher 32bits
contain non-zero value.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210204161816.12649-2-rui.zhang@intel.com
In some cases, when probing a perf MSR, we're probing certain bits of the
MSR instead of the whole register, thus only these bits should be checked.
For example, for RAPL ENERGY_STATUS MSR, only the lower 32 bits represents
the energy counter, and the higher 32bits are reserved.
Introduce a new mask field in struct perf_msr to allow probing certain
bits of a MSR.
This change is transparent to the current perf_msr_probe() users.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210204161816.12649-1-rui.zhang@intel.com
Cascade Lake Xeon parts have the same model number as Skylake Xeon
parts, so they are tagged with the intel_pebs_isolation
quirk. However, as with Skylake Xeon H0 stepping parts, the PEBS
isolation issue is fixed in all microcode versions.
Add the Cascade Lake Xeon steppings (5, 6, and 7) to the
isolation_ucodes[] table so that these parts benefit from Andi's
optimization in commit 9b545c04ab ("perf/x86/kvm: Avoid unnecessary
work in guest filtering").
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210205191324.2889006-1-jmattson@google.com
With Architectural Performance Monitoring Version 5, CPUID 10.ECX cpu
leaf indicates the fixed counter enumeration. This extends the previous
count to a bitmap which allows disabling even lower fixed counters.
It could be used by a Hypervisor.
The existing intel_ctrl variable is used to remember the bitmask of the
counters. All code that reads all counters is fixed to check this extra
bitmask.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-6-git-send-email-kan.liang@linux.intel.com
Add perf core PMU support for the Intel Sapphire Rapids server, which is
the successor of the Intel Ice Lake server. The enabling code is based
on Ice Lake, but there are several new features introduced.
The event encoding is changed and simplified, e.g., the event codes
which are below 0x90 are restricted to counters 0-3. The event codes
which above 0x90 are likely to have no restrictions. The event
constraints, extra_regs(), and hardware cache events table are changed
accordingly.
A new Precise Distribution (PDist) facility is introduced, which
further minimizes the skid when a precise event is programmed on the GP
counter 0. Enable the Precise Distribution (PDist) facility with :ppp
event. For this facility to work, the period must be initialized with a
value larger than 127. Add spr_limit_period() to apply the limit for
:ppp event.
Two new data source fields, data block & address block, are added in the
PEBS Memory Info Record for the load latency event. To enable the
feature,
- An auxiliary event has to be enabled together with the load latency
event on Sapphire Rapids. A new flag PMU_FL_MEM_LOADS_AUX is
introduced to indicate the case. A new event, mem-loads-aux, is
exposed to sysfs for the user tool.
Add a check in hw_config(). If the auxiliary event is not detected,
return an unique error -ENODATA.
- The union perf_mem_data_src is extended to support the new fields.
- Ice Lake and earlier models do not support block information, but the
fields may be set by HW on some machines. Add pebs_no_block to
explicitly indicate the previous platforms which don't support the new
block fields. Accessing the new block fields are ignored on those
platforms.
A new store Latency facility is introduced, which leverages the PEBS
facility where it can provide additional information about sampled
stores. The additional information includes the data address, memory
auxiliary info (e.g. Data Source, STLB miss) and the latency of the
store access. To enable the facility, the new event (0x02cd) has to be
programed on the GP counter 0. A new flag PERF_X86_EVENT_PEBS_STLAT is
introduced to indicate the event. The store_latency_data() is introduced
to parse the memory auxiliary info.
The layout of access latency field of PEBS Memory Info Record has been
changed. Two latency, instruction latency (bit 15:0) and cache access
latency (bit 47:32) are recorded.
- The cache access latency is similar to previous memory access latency.
For loads, the latency starts by the actual cache access until the
data is returned by the memory subsystem.
For stores, the latency starts when the demand write accesses the L1
data cache and lasts until the cacheline write is completed in the
memory subsystem.
The cache access latency is stored in low 32bits of the sample type
PERF_SAMPLE_WEIGHT_STRUCT.
- The instruction latency starts by the dispatch of the load operation
for execution and lasts until completion of the instruction it belongs
to.
Add a new flag PMU_FL_INSTR_LATENCY to indicate the instruction
latency support. The instruction latency is stored in the bit 47:32
of the sample type PERF_SAMPLE_WEIGHT_STRUCT.
Extends the PERF_METRICS MSR to feature TMA method level 2 metrics. The
lower half of the register is the TMA level 1 metrics (legacy). The
upper half is also divided into four 8-bit fields for the new level 2
metrics. Expose all eight Topdown metrics events to user space.
The full description for the SPR features can be found at Intel
Architecture Instruction Set Extensions and Future Features
Programming Reference, 319433-041.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-5-git-send-email-kan.liang@linux.intel.com
Intel Sapphire Rapids server will introduce 8 metrics events. Intel
Ice Lake only supports 4 metrics events. A perf tool user may mistakenly
use the unsupported events via RAW format on Ice Lake. The user can
still get a value from the unsupported Topdown metrics event once the
following Sapphire Rapids enabling patch is applied.
To enable the 8 metrics events on Intel Sapphire Rapids, the
INTEL_TD_METRIC_MAX has to be updated, which impacts the
is_metric_event(). The is_metric_event() is a generic function.
On Ice Lake, the newly added SPR metrics events will be mistakenly
accepted as metric events on creation. At runtime, the unsupported
Topdown metrics events will be updated.
Add a variable num_topdown_events in x86_pmu to indicate the available
number of the Topdown metrics event on the platform. Apply the number
into is_metric_event(). Only the supported Topdown metrics events
should be created as metrics events.
Apply the num_topdown_events in icl_update_topdown_event() as well. The
function can be reused by the following patch.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-4-git-send-email-kan.liang@linux.intel.com
Similar to Ice Lake, Intel Sapphire Rapids server also supports the
topdown performance metrics feature. The difference is that Intel
Sapphire Rapids server extends the PERF_METRICS MSR to feature TMA
method level two metrics, which will introduce 8 metrics events. Current
icl_update_topdown_event() only check 4 level one metrics events.
Factor out intel_update_topdown_event() to facilitate the code sharing
between Ice Lake and Sapphire Rapids.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-3-git-send-email-kan.liang@linux.intel.com
Current PERF_SAMPLE_WEIGHT sample type is very useful to expresses the
cost of an action represented by the sample. This allows the profiler
to scale the samples to be more informative to the programmer. It could
also help to locate a hotspot, e.g., when profiling by memory latencies,
the expensive load appear higher up in the histograms. But current
PERF_SAMPLE_WEIGHT sample type is solely determined by one factor. This
could be a problem, if users want two or more factors to contribute to
the weight. For example, Golden Cove core PMU can provide both the
instruction latency and the cache Latency information as factors for the
memory profiling.
For current X86 platforms, although meminfo::latency is defined as a
u64, only the lower 32 bits include the valid data in practice (No
memory access could last than 4G cycles). The higher 32 bits can be used
to store new factors.
Add a new sample type, PERF_SAMPLE_WEIGHT_STRUCT, to indicate the new
sample weight structure. It shares the same space as the
PERF_SAMPLE_WEIGHT sample type.
Users can apply either the PERF_SAMPLE_WEIGHT sample type or the
PERF_SAMPLE_WEIGHT_STRUCT sample type to retrieve the sample weight, but
they cannot apply both sample types simultaneously.
Currently, only X86 and PowerPC use the PERF_SAMPLE_WEIGHT sample type.
- For PowerPC, there is nothing changed for the PERF_SAMPLE_WEIGHT
sample type. There is no effect for the new PERF_SAMPLE_WEIGHT_STRUCT
sample type. PowerPC can re-struct the weight field similarly later.
- For X86, the same value will be dumped for the PERF_SAMPLE_WEIGHT
sample type or the PERF_SAMPLE_WEIGHT_STRUCT sample type for now.
The following patches will apply the new factors for the
PERF_SAMPLE_WEIGHT_STRUCT sample type.
The field in the union perf_sample_weight should be shared among
different architectures. A generic name is required, but it's hard to
abstract a name that applies to all architectures. For example, on X86,
the fields are to store all kinds of latency. While on PowerPC, it
stores MMCRA[TECX/TECM], which should not be latency. So a general name
prefix 'var$NUM' is used here.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-2-git-send-email-kan.liang@linux.intel.com
Perfmon-v4 counter freezing is fundamentally broken; remove this default
disabled code to make sure nobody uses it.
The feature is called Freeze-on-PMI in the SDM, and if it would do that,
there wouldn't actually be a problem, *however* it does something subtly
different. It globally disables the whole PMU when it raises the PMI,
not when the PMI hits.
This means there's a window between the PMI getting raised and the PMI
actually getting served where we loose events and this violates the
perf counter independence. That is, a counting event should not result
in a different event count when there is a sampling event co-scheduled.
This is known to break existing software (RR).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Clean up that CONFIG_RETPOLINE crud and replace the
indirect call x86_pmu.guest_get_msrs with static_call().
Reported-by: kernel test robot <lkp@intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210125121458.181635-1-like.xu@linux.intel.com
The registers used to determine which die a pci bus belongs to don't
contain enough information to uniquely specify more than 8 dies, so
when more than 8 dies are present, use NUMA information instead.
Continue to use the previous method for 8 or fewer because it
works there, and covers cases of NUMA being disabled.
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210108153549.108989-3-steve.wahl@hpe.com
The phys_id isn't really used other than to map to a logical die id.
Calculate the logical die id earlier, and store that instead of the
phys_id.
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210108153549.108989-2-steve.wahl@hpe.com
Core:
- Better handling of page table leaves on archictectures which have
architectures have non-pagetable aligned huge/large pages. For such
architectures a leaf can actually be part of a larger entry.
- Prevent a deadlock vs. exec_update_mutex
Architectures:
- The related updates for page size calculation of leaf entries
- The usual churn to support new CPUs
- Small fixes and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XvgATHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUrdEACatdr93wv75vnm5tCZM4EsFvB2PzVJ
ck4K4+hHiMVV4802qf+kW5plF+rckAU4TAai/L7wkTntKHvjD/0/o1epoIStb+dS
SCpVkQMCLT/8xT242iHPOfgsQpVpJnIiBwVRjn8HXu82nXdgMJhKnBjTe634UfxW
o2OCFiyJzpRi5l86gVp67ueqgvl34NPI2JaSLc0g80QfZ8akzdePPpED35CzYjZh
41k+7ssvt6qch3vMUySHAhkX4gQl0nc80YAaF/XZbCfvdyY7D03PtfBjfvphTSK0
l54z9aWh0ciK9P1aPfvkHDXBJUR2VtUAx2GiURK+XU3jNk3KMrz9CcBl1D/exIAg
07IsiYVoB38YAUOZoR9K8p+p+5EuwYRRUMAgfQfBALCuaLQV477Cne82b2KmNCus
1izUQvcDDf0s74OyYTHWFXRGla95COJvNLzkrZ1oU3mX4HgdKdOAUbf/2XTLWeKO
3HOIS+jsg5cp82tRe4X5r51h73pONYlo9lLo/CjQXz25vMcXKtE/MZGq2gkRff4p
N4k88eQ5LOsRqUaU46GcHozXRCfcpW7SPI9AaN5I/fKGIZvHP7uMdMb+g5DV8yHI
dNZ8u5uLPHwdg80C3fJ3Pnp7VsVNHliPXMwv0vib7BCp7aUVZWeFnOntw3PdYFRk
XKEbfl36IuAadg==
=rZ99
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Thomas Gleixner:
"Core:
- Better handling of page table leaves on archictectures which have
architectures have non-pagetable aligned huge/large pages. For such
architectures a leaf can actually be part of a larger entry.
- Prevent a deadlock vs exec_update_mutex
Architectures:
- The related updates for page size calculation of leaf entries
- The usual churn to support new CPUs
- Small fixes and improvements all over the place"
* tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
perf/x86/intel: Add Tremont Topdown support
uprobes/x86: Fix fall-through warnings for Clang
perf/x86: Fix fall-through warnings for Clang
kprobes/x86: Fix fall-through warnings for Clang
perf/x86/intel/lbr: Fix the return type of get_lbr_cycles()
perf/x86/intel: Fix rtm_abort_event encoding on Ice Lake
x86/kprobes: Restore BTF if the single-stepping is cancelled
perf: Break deadlock involving exec_update_mutex
sparc64/mm: Implement pXX_leaf_size() support
powerpc/8xx: Implement pXX_leaf_size() support
arm64/mm: Implement pXX_leaf_size() support
perf/core: Fix arch_perf_get_page_size()
mm: Introduce pXX_leaf_size()
mm/gup: Provide gup_get_pte() more generic
perf/x86/intel: Add event constraint for CYCLE_ACTIVITY.STALLS_MEM_ANY
perf/x86/intel/uncore: Add Rocket Lake support
perf/x86/msr: Add Rocket Lake CPU support
perf/x86/cstate: Add Rocket Lake CPU support
perf/x86/intel: Add Rocket Lake CPU support
perf,mm: Handle non-page-table-aligned hugetlbfs
...
(Gabriel Krisman Bertazi)
- All kinds of minor cleanups all over the tree.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XgtoACgkQEsHwGGHe
VUqGuA/9GqN2zNQdhgRvAQ+FLZiOYK9MfXcoayfMq8T61VRPDBWaQRfVYKmfmEjS
0l5OnYgZQ9n6vzqFy6pmgc/ix8Jr553dZp5NCamcOqjCTcuO/LwRRh+ZBeFSBTPi
r2qFYKKRYvM7nbyUMm4WqvAakxJ18xsjNbIslr9Aqe8WtHBKKX3MOu8SOpFtGyXz
aEc4rhsS45iZa5gTXhvOn73tr3yHGWU1rzyyAAAmDGTgAxRwsTna8v16C4+v+Bua
Zg18Wiutj8ZjtFpzKJtGWGZoSBap3Jw2Ys64g42MBQUE56KY/99tQVo/SvbYvvlf
PHWLH0f3rPNJ6J2qeKwhtNzPlEAH/6e416A1/6TVwsK+8pdfGmkfaQh2iDHLhJ5i
CSwF61H44ZaE3pc1tHHbC5ALvydPlup7D4MKgztfq0mZ3OoV2Vg7dtyyr+Ybz72b
G+Kl/tmyacQTXo0FiYbZKETo3/VfTdBXGyVax1rHkx3pt8zvhFg3kxb1TT/l/CoM
eSTx53PtTdVtbGOq1CjnUm0FKlbh4+kLoNuo9DYKeXUQBs8PWOCZmL3wXmm4cqlZ
mDZVWvll7CjToY8izzcE/AG279cWkgcL5Tcg7W7CR66+egfDdpuqOZ4tv4TyzoWq
0J7WeNj+TAo98b7RA0Ux8LOlszRxS2ykuI6uB2MgwCaRMbbaQao=
=lLiH
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Borislav Petkov:
"Another branch with a nicely negative diffstat, just the way I
like 'em:
- Remove all uses of TIF_IA32 and TIF_X32 and reclaim the two bits in
the end (Gabriel Krisman Bertazi)
- All kinds of minor cleanups all over the tree"
* tag 'x86_cleanups_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/ia32_signal: Propagate __user annotation properly
x86/alternative: Update text_poke_bp() kernel-doc comment
x86/PCI: Make a kernel-doc comment a normal one
x86/asm: Drop unused RDPID macro
x86/boot/compressed/64: Use TEST %reg,%reg instead of CMP $0,%reg
x86/head64: Remove duplicate include
x86/mm: Declare 'start' variable where it is used
x86/head/64: Remove unused GET_CR2_INTO() macro
x86/boot: Remove unused finalize_identity_maps()
x86/uaccess: Document copy_from_user_nmi()
x86/dumpstack: Make show_trace_log_lvl() static
x86/mtrr: Fix a kernel-doc markup
x86/setup: Remove unused MCA variables
x86, libnvdimm/test: Remove COPY_MC_TEST
x86: Reclaim TIF_IA32 and TIF_X32
x86/mm: Convert mmu context ia32_compat into a proper flags field
x86/elf: Use e_machine to check for x32/ia32 in setup_additional_pages()
elf: Expose ELF header on arch_setup_additional_pages()
x86/elf: Use e_machine to select start_thread for x32
elf: Expose ELF header in compat_start_thread()
...
code to use it (Yazen Ghannam)
- Remove a dead and unused TSEG region remapping workaround on AMD (Arvind Sankar)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XVlYACgkQEsHwGGHe
VUpxTA/9F0KsgSyTh66uX+aX5qkQ3WTBVgxbXGFrn5qPvwcALXabU8qObDWTSdwS
1YbiWDjKNBJX+dggWe/fcQgUZxu5DFkM4IKEW1V7MLJEcdfylcqCyc1YNpEI4ySn
ebw2Sy4/5iXGAvhz802/WoUU/o3A2uZwe0RFyodHGxof5027HkZhRHeYB27Htw+l
z0IsmiYOoPl/4mNuVgr/qieIFSw1SUE9kwjU8RvM6xVWmXWXpM68JHa9s+/51pFt
6BaOz485OyzWUCtSx3/++GEkU2d53bWYOuQ1zTLEiuaBfYC5n5T/kAcT4WJNK6Tf
tX7yrzmWm9ecykIxfkgMrhG57G38y2GMJcEg+dFQHeXC062fdHDg+oY6Ql2EkAm5
t5RIQ/cyOmQCLns31rHI/kwQ3RMKc/lfnL/z8lrlfWsC5o755yFJKttbfLJugbTo
3BO1fbs4xgQcgi0KoqXOUETrQtsOLtr9FJwvcArB94XXqcIPClE8Ir7n8T7FCuLr
9litSXIdn46EHwD6hD5QIk7y+Rxwk/jxZFys3eh90jcWDDZTaG2lz3if33RbZ1go
XBrS5X3HsMODGZlaMeUjrbFIz3e0Zyoo+RO/TX48w8nzivC6xSNxSNFgIZ1XTF5E
SLMGa6lEQ9mLiqRfgFjynNwSYOSlGv3euMkZaVPS3hnNmn+vZbI=
=RsCs
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
"Only AMD-specific changes this time:
- Save the AMD physical die ID into cpuinfo_x86.cpu_die_id and
convert all code to use it (Yazen Ghannam)
- Remove a dead and unused TSEG region remapping workaround on AMD
(Arvind Sankar)"
* tag 'x86_cpu_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Remove dead code for TSEG region remapping
x86/topology: Set cpu_die_id only if DIE_TYPE found
EDAC/mce_amd: Use struct cpuinfo_x86.cpu_die_id for AMD NodeId
x86/CPU/AMD: Remove amd_get_nb_id()
x86/CPU/AMD: Save AMD NodeId as cpu_die_id
Tremont has four L1 Topdown events, TOPDOWN_FE_BOUND.ALL,
TOPDOWN_BAD_SPECULATION.ALL, TOPDOWN_BE_BOUND.ALL and
TOPDOWN_RETIRING.ALL. They are available on GP counters.
Export them to sysfs and facilitate the perf stat tool.
$perf stat --topdown -- sleep 1
Performance counter stats for 'sleep 1':
retiring bad speculation frontend bound
backend bound
24.9% 16.8% 31.7%
26.6%
1.001224610 seconds time elapsed
0.001150000 seconds user
0.000000000 seconds sys
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1607457952-3519-1-git-send-email-kan.liang@linux.intel.com
In preparation to enable -Wimplicit-fallthrough for Clang, fix a warning
by explicitly adding a fallthrough pseudo-keyword as a replacement for
a /* fall through */ comment, instead of letting the code fall through
to the next case.
Notice that Clang doesn't recognize /* fall through */ comments as
implicit fall-through markings.
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://github.com/KSPP/linux/issues/115
The cycle count of a timed LBR is always 1 in perf record -D.
The cycle count is stored in the first 16 bits of the IA32_LBR_x_INFO
register, but the get_lbr_cycles() return Boolean type.
Use u16 to replace the Boolean type.
Fixes: 47125db27e ("perf/x86/intel/lbr: Support Architectural LBR")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201125213720.15692-2-kan.liang@linux.intel.com
According to the event list from icelake_core_v1.09.json, the encoding
of the RTM_RETIRED.ABORTED event on Ice Lake should be,
"EventCode": "0xc9",
"UMask": "0x04",
"EventName": "RTM_RETIRED.ABORTED",
Correct the wrong encoding.
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201125213720.15692-1-kan.liang@linux.intel.com
The kernel cannot disambiguate when 2+ PEBS counters overflow at the
same time. This is what the comment for this code suggests. However,
I see the comparison is done with the unfiltered p->status which is a
copy of IA32_PERF_GLOBAL_STATUS at the time of the sample. This
register contains more than the PEBS counter overflow bits. It also
includes many other bits which could also be set.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201126110922.317681-2-namhyung@kernel.org
The commit 3966c3feca ("x86/perf/amd: Remove need to check "running"
bit in NMI handler") introduced this. It seems x86_pmu_stop can be
called recursively (like when it losts some samples) like below:
x86_pmu_stop
intel_pmu_disable_event (x86_pmu_disable)
intel_pmu_pebs_disable
intel_pmu_drain_pebs_nhm (x86_pmu_drain_pebs_buffer)
x86_pmu_stop
While commit 35d1ce6bec ("perf/x86/intel/ds: Fix x86_pmu_stop
warning for large PEBS") fixed it for the normal cases, there's
another path to call x86_pmu_stop() recursively when a PEBS error was
detected (like two or more counters overflowed at the same time).
Like in the Kan's previous fix, we can skip the interrupt accounting
for large PEBS, so check the iregs which is set for PMI only.
Fixes: 3966c3feca ("x86/perf/amd: Remove need to check "running" bit in NMI handler")
Reported-by: John Sperbeck <jsperbeck@google.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201126110922.317681-1-namhyung@kernel.org
The Last Level Cache ID is returned by amd_get_nb_id(). In practice,
this value is the same as the AMD NodeId for callers of this function.
The NodeId is saved in struct cpuinfo_x86.cpu_die_id.
Replace calls to amd_get_nb_id() with the logical CPU's cpu_die_id and
remove the function.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201109210659.754018-3-Yazen.Ghannam@amd.com
This change switches rapl to use PMU_FORMAT_ATTR, and fixes two other
macros to use device_attribute instead of kobj_attribute to avoid
callback type mismatches that trip indirect call checking with Clang's
Control-Flow Integrity (CFI).
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20201113183126.1239404-1-samitolvanen@google.com
gcc -Wextra points out a duplicate initialization of one array
member:
arch/x86/events/intel/uncore_snb.c:478:37: warning: initialized field overwritten [-Woverride-init]
478 | [SNB_PCI_UNCORE_IMC_DATA_READS] = { SNB_UNCORE_PCI_IMC_DATA_WRITES_BASE,
The only sensible explanation is that a duplicate 'READS' was used
instead of the correct 'WRITES', so change it back.
Fixes: 24633d901e ("perf/x86/intel/uncore: Add BW counters for GT, IA and IO breakdown")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201026215203.3893972-1-arnd@kernel.org
Starting with Arch Perfmon v5, the anythread filter on generic counters may be
deprecated. The current kernel was exporting the any filter without checking.
On Icelake, it means you could do cpu/event=0x3c,any/ even though the filter
does not exist. This patch corrects the problem by relying on the CPUID 0xa leaf
function to determine if anythread is supported or not as described in the
Intel SDM Vol3b 18.2.5.1 AnyThread Deprecation section.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201028194247.3160610-1-eranian@google.com
Having pt_regs on-stack is unfortunate, it's 168 bytes. Since it isn't
actually used, make it a static variable. This both gets if off the
stack and ensures it gets 0 initialized, just in case someone does
look at it.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151955.324273677@infradead.org
intel_pmu_drain_pebs_*() is typically called from handle_pmi_common(),
both have an on-stack struct perf_sample_data, which is *big*. Rewire
things so that drain_pebs() can use the one handle_pmi_common() has.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151955.054099690@infradead.org
__perf_output_begin() has an on-stack struct perf_sample_data in the
unlikely case it needs to generate a LOST record. However, every call
to perf_output_begin() must already have a perf_sample_data on-stack.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151954.985416146@infradead.org
The event CYCLE_ACTIVITY.STALLS_MEM_ANY (0x14a3) should be available on
all 8 GP counters on ICL, but it's only scheduled on the first four
counters due to the current ICL constraint table.
Add a line for the CYCLE_ACTIVITY.STALLS_MEM_ANY event in the ICL
constraint table.
Correct the comments for the CYCLE_ACTIVITY.CYCLES_MEM_ANY event.
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201019164529.32154-1-kan.liang@linux.intel.com
For Rocket Lake, the MSR uncore, e.g., CBOX, ARB and CLOCKBOX, are the
same as Tiger Lake. Share the perf code with it.
For Rocket Lake and Tiger Lake, the 8th CBOX is not mapped into a
different MSR space anymore. Add rkl_uncore_msr_init_box() to replace
skl_uncore_msr_init_box().
The IMC uncore is the similar to Ice Lake. Add new PCIIDs of IMC for
Rocket Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-4-kan.liang@linux.intel.com
From the perspective of Intel cstate residency counters, Rocket Lake is
the same as Ice Lake and Tiger Lake. Share the code with them. Update
the comments for Rocket Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-2-kan.liang@linux.intel.com
From the perspective of Intel PMU, Rocket Lake is the same as Ice Lake
and Tiger Lake. Share the perf code with them.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-1-kan.liang@linux.intel.com
When studying code layout, it is useful to capture the page size of the
sampled code address.
Add a new sample type for code page size.
The new sample type requires collecting the ip. The code page size can
be calculated from the NMI-safe perf_get_page_size().
For large PEBS, it's very unlikely that the mapping is gone for the
earlier PEBS records. Enable the feature for the large PEBS. The worst
case is that page-size '0' is returned.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-5-kan.liang@linux.intel.com
The new sample type, PERF_SAMPLE_DATA_PAGE_SIZE, requires the virtual
address. Update the data->addr if the sample type is set.
The large PEBS is disabled with the sample type, because perf doesn't
support munmap tracking yet. The PEBS buffer for large PEBS cannot be
flushed for each munmap. Wrong page size may be calculated. The large
PEBS can be enabled later separately when munmap tracking is supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-3-kan.liang@linux.intel.com
In preparation to remove TIF_IA32, stop using it in perf events code.
Tested by running perf on 32-bit, 64-bit and x32 applications.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-2-krisman@collabora.com
x86 Intel updates:
- Add Jasper Lake support
- Add support for TopDown metrics on Ice Lake
- Fix Ice Lake & Tiger Lake uncore support, add Snow Ridge support
- Add a PCI sub driver to support uncore PMUs where the PCI resources
have been claimed already - extending the range of supported systems.
x86 AMD updates:
- Restore 'perf stat -a' behaviour to program the uncore PMU
to count all CPU threads.
- Fix setting the proper count when sampling Large Increment
per Cycle events / 'paired' events.
- Fix IBS Fetch sampling on F17h and some other IBS fine tuning,
greatly reducing the number of interrupts when large sample
periods are specified.
- Extends Family 17h RAPL support to also work on compatible
F19h machines.
Core code updates:
- Fix race in perf_mmap_close()
- Add PERF_EV_CAP_SIBLING, to denote that sibling events should be
closed if the leader is removed.
- Smaller fixes and updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+Ef40RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1h7NQ//ZdQ26Yg79ZaxBX1QSINJ9AgXDi6rXs75
qU9qNwr/6EF+633RZoPQGAE0Iy5v6h7iLFokcJzM9+kK/rE3ax44tSnPlcMa0+6N
SHXKCa5iL+hH7o2Spo2MZwCYseH79rloX3TSH7ajnN3X8PvwgWshF0lUE3WEWtCs
eHSojdCk43IuL9TpusuNOBM2FvgnheFYWiMbFHd0MTBUMxul30sLVCG8IIWCPA+q
TwG4RJS3X42VbL3SuAGFmOv4OmqNsfkvHvjpDs4NF07tRB9zjXzGrxmGhgSw0NAN
2KK25qbmrpKATIb4Eqsgk/yikX/SCrDEXrjhg3r8FnyPvRfctq1crZjjf672PI2E
bDda76dH6Lq9jv5fsyJjas5OsYdMKBCnA+tGQxXPGbmTXeEcYMRbDnwhYnevI/Q/
8pP+xstF0pmBA3tvpDPrQnYH72Qt7CLJSdcTB15NqZftU2tJxaAyJGx4gJy33jxQ
wu6BIEGHQ7onQYiIyTwsBHyz6xNsF/CRHwAPcGdYrRRbXB5K5nxHiXNb4awciTMx
2HF31/S4OqURNpfcpxOQo+1fb/cLqj3loGqE4jCTwkbS3lrHcAcfxyv9QNn77l1f
hdQ0jworbUNVLUYEUQz1bkZ06GD3LSSas2ZlY1NNdHo62mjyXMQmgirNcZmrFgWl
tl2gNFAU9x4=
=2fuY
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull performance events updates from Ingo Molnar:
"x86 Intel updates:
- Add Jasper Lake support
- Add support for TopDown metrics on Ice Lake
- Fix Ice Lake & Tiger Lake uncore support, add Snow Ridge support
- Add a PCI sub driver to support uncore PMUs where the PCI resources
have been claimed already - extending the range of supported
systems.
x86 AMD updates:
- Restore 'perf stat -a' behaviour to program the uncore PMU to count
all CPU threads.
- Fix setting the proper count when sampling Large Increment per
Cycle events / 'paired' events.
- Fix IBS Fetch sampling on F17h and some other IBS fine tuning,
greatly reducing the number of interrupts when large sample periods
are specified.
- Extends Family 17h RAPL support to also work on compatible F19h
machines.
Core code updates:
- Fix race in perf_mmap_close()
- Add PERF_EV_CAP_SIBLING, to denote that sibling events should be
closed if the leader is removed.
- Smaller fixes and updates"
* tag 'perf-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
perf/core: Fix race in the perf_mmap_close() function
perf/x86: Fix n_metric for cancelled txn
perf/x86: Fix n_pair for cancelled txn
x86/events/amd/iommu: Fix sizeof mismatch
perf/x86/intel: Check perf metrics feature for each CPU
perf/x86/intel: Fix Ice Lake event constraint table
perf/x86/intel/uncore: Fix the scale of the IMC free-running events
perf/x86/intel/uncore: Fix for iio mapping on Skylake Server
perf/x86/msr: Add Jasper Lake support
perf/x86/intel: Add Jasper Lake support
perf/x86/intel/uncore: Reduce the number of CBOX counters
perf/x86/intel/uncore: Update Ice Lake uncore units
perf/x86/intel/uncore: Split the Ice Lake and Tiger Lake MSR uncore support
perf/x86/intel/uncore: Support PCIe3 unit on Snow Ridge
perf/x86/intel/uncore: Generic support for the PCI sub driver
perf/x86/intel/uncore: Factor out uncore_pci_pmu_unregister()
perf/x86/intel/uncore: Factor out uncore_pci_pmu_register()
perf/x86/intel/uncore: Factor out uncore_pci_find_dev_pmu()
perf/x86/intel/uncore: Factor out uncore_pci_get_dev_die_info()
perf/amd/uncore: Inform the user how many counters each uncore PMU has
...
When a group that has TopDown members is failed to be scheduled, any
later TopDown groups will not return valid values.
Here is an example.
A background perf that occupies all the GP counters and the fixed
counter 1.
$perf stat -e "{cycles,cycles,cycles,cycles,cycles,cycles,cycles,
cycles,cycles}:D" -a
A user monitors a TopDown group. It works well, because the fixed
counter 3 and the PERF_METRICS are available.
$perf stat -x, --topdown -- ./workload
retiring,bad speculation,frontend bound,backend bound,
18.0,16.1,40.4,25.5,
Then the user tries to monitor a group that has TopDown members.
Because of the cycles event, the group is failed to be scheduled.
$perf stat -x, -e '{slots,topdown-retiring,topdown-be-bound,
topdown-fe-bound,topdown-bad-spec,cycles}'
-- ./workload
<not counted>,,slots,0,0.00,,
<not counted>,,topdown-retiring,0,0.00,,
<not counted>,,topdown-be-bound,0,0.00,,
<not counted>,,topdown-fe-bound,0,0.00,,
<not counted>,,topdown-bad-spec,0,0.00,,
<not counted>,,cycles,0,0.00,,
The user tries to monitor a TopDown group again. It doesn't work anymore.
$perf stat -x, --topdown -- ./workload
,,,,,
In a txn, cancel_txn() is to truncate the event_list for a canceled
group and update the number of events added in this transaction.
However, the number of TopDown events added in this transaction is not
updated. The kernel will probably fail to add new Topdown events.
Fixes: 7b2c05a15d ("perf/x86/intel: Generic support for hardware TopDown metrics")
Reported-by: Andi Kleen <ak@linux.intel.com>
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20201005082611.GH2628@hirez.programming.kicks-ass.net
Kan reported that n_metric gets corrupted for cancelled transactions;
a similar issue exists for n_pair for AMD's Large Increment thing.
The problem was confirmed and confirmed fixed by Kim using:
sudo perf stat -e "{cycles,cycles,cycles,cycles}:D" -a sleep 10 &
# should succeed:
sudo perf stat -e "{fp_ret_sse_avx_ops.all}:D" -a workload
# should fail:
sudo perf stat -e "{fp_ret_sse_avx_ops.all,fp_ret_sse_avx_ops.all,cycles}:D" -a workload
# previously failed, now succeeds with this patch:
sudo perf stat -e "{fp_ret_sse_avx_ops.all}:D" -a workload
Fixes: 5738891229 ("perf/x86/amd: Add support for Large Increment per Cycle Events")
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kim Phillips <kim.phillips@amd.com>
Link: https://lkml.kernel.org/r/20201005082516.GG2628@hirez.programming.kicks-ass.net
An incorrect sizeof is being used, struct attribute ** is not correct,
it should be struct attribute *. Note that since ** is the same size as
* this is not causing any issues. Improve this fix by using sizeof(*attrs)
as this allows us to not even reference the type of the pointer.
Addresses-Coverity: ("Sizeof not portable (SIZEOF_MISMATCH)")
Fixes: 5168654630 ("x86/events/amd/iommu: Fix sysfs perf attribute groups")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001113900.58889-1-colin.king@canonical.com
It might be possible that different CPUs have different CPU metrics on a
platform. In this case, writing the GLOBAL_CTRL_EN_PERF_METRICS bit to
the GLOBAL_CTRL register of a CPU, which doesn't support the TopDown
perf metrics feature, causes MSR access error.
Current TopDown perf metrics feature is enumerated using the boot CPU's
PERF_CAPABILITIES MSR. The MSR only indicates the boot CPU supports this
feature.
Check the PERF_CAPABILITIES MSR for each CPU. If any CPU doesn't support
the perf metrics feature, disable the feature globally.
Fixes: 59a854e2f3 ("perf/x86/intel: Support TopDown metrics on Ice Lake")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001211711.25708-1-kan.liang@linux.intel.com
An error occues when sampling non-PEBS INST_RETIRED.PREC_DIST(0x01c0)
event.
perf record -e cpu/event=0xc0,umask=0x01/ -- sleep 1
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument)
for event (cpu/event=0xc0,umask=0x01/).
/bin/dmesg | grep -i perf may provide additional information.
The idxmsk64 of the event is set to 0. The event never be successfully
scheduled.
The event should be limit to the fixed counter 0.
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Reported-by: Yi, Ammy <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200928134726.13090-1-kan.liang@linux.intel.com
The "MiB" result of the IMC free-running bandwidth events,
uncore_imc_free_running/read/ and uncore_imc_free_running/write/ are 16
times too small.
The "MiB" value equals the raw IMC free-running bandwidth counter value
times a "scale" which is inaccurate.
The IMC free-running bandwidth events should be incremented per 64B
cache line, not DWs (4 bytes). The "scale" should be 6.103515625e-5.
Fix the "scale" for both Snow Ridge and Ice Lake.
Fixes: 2b3b76b5ec ("perf/x86/intel/uncore: Add Ice Lake server uncore support")
Fixes: ee49532b38 ("perf/x86/intel/uncore: Add IMC uncore support for Snow Ridge")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200928133240.12977-1-kan.liang@linux.intel.com
Introduced early attributes /sys/devices/uncore_iio_<pmu_idx>/die* are
initialized by skx_iio_set_mapping(), however, for example, for multiple
segment platforms skx_iio_get_topology() returns -EPERM before a list of
attributes in skx_iio_mapping_group will have been initialized.
As a result the list is being NULL. Thus the warning
"sysfs: (bin_)attrs not set by subsystem for group: uncore_iio_*/" appears
and uncore_iio pmus are not available in sysfs. Clear IIO attr_update
to properly handle the cases when topology information cannot be
retrieved.
Fixes: bb42b3d397 ("perf/x86/intel/uncore: Expose an Uncore unit to IIO PMON mapping")
Reported-by: Kyle Meyer <kyle.meyer@hpe.com>
Suggested-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexei Budankov <alexey.budankov@linux.intel.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20200928102133.61041-1-alexander.antonov@linux.intel.com
The Jasper Lake processor is also a Tremont microarchitecture. From the
perspective of perf MSR, there is nothing changed compared with
Elkhart Lake.
Share the code path with Elkhart Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1601296242-32763-2-git-send-email-kan.liang@linux.intel.com
The Jasper Lake processor is also a Tremont microarchitecture. From the
perspective of Intel PMU, there is nothing changed compared with
Elkhart Lake.
Share the perf code with Elkhart Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1601296242-32763-1-git-send-email-kan.liang@linux.intel.com
An oops is triggered by the fuzzy test.
[ 327.853081] unchecked MSR access error: RDMSR from 0x70c at rIP:
0xffffffffc082c820 (uncore_msr_read_counter+0x10/0x50 [intel_uncore])
[ 327.853083] Call Trace:
[ 327.853085] <IRQ>
[ 327.853089] uncore_pmu_event_start+0x85/0x170 [intel_uncore]
[ 327.853093] uncore_pmu_event_add+0x1a4/0x410 [intel_uncore]
[ 327.853097] ? event_sched_in.isra.118+0xca/0x240
There are 2 GP counters for each CBOX, but the current code claims 4
counters. Accessing the invalid registers triggers the oops.
Fixes: 6e394376ee ("perf/x86/intel/uncore: Add Intel Icelake uncore support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200925134905.8839-3-kan.liang@linux.intel.com
There are some updates for the Icelake model specific uncore performance
monitors. (The update can be found at 10th generation intel core
processors families specification update Revision 004, ICL068)
1) Counter 0 of ARB uncore unit is not available for software use
2) The global 'enable bit' (bit 29) and 'freeze bit' (bit 31) of
MSR_UNC_PERF_GLOBAL_CTRL cannot be used to control counter behavior.
Needs to use local enable in event select MSR.
Accessing the modified bit/registers will be ignored by HW. Users may
observe inaccurate results with the current code.
The changes of the MSR_UNC_PERF_GLOBAL_CTRL imply that groups cannot be
read atomically anymore. Although the error of the result for a group
becomes a bit bigger, it still far lower than not using a group. The
group support is still kept. Only Remove the *_box() related
implementation.
Since the counter 0 of ARB uncore unit is not available, update the MSR
address for the ARB uncore unit.
There is no change for IMC uncore unit, which only include free-running
counters.
Fixes: 6e394376ee ("perf/x86/intel/uncore: Add Intel Icelake uncore support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200925134905.8839-2-kan.liang@linux.intel.com
Previously, the MSR uncore for the Ice Lake and Tiger Lake are
identical. The code path is shared. However, with recent update, the
global MSR_UNC_PERF_GLOBAL_CTRL register and ARB uncore unit are changed
for the Ice Lake. Split the Ice Lake and Tiger Lake MSR uncore support.
The changes only impact the MSR ops() and the ARB uncore unit. Other
codes can still be shared between the Ice Lake and the Tiger Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200925134905.8839-1-kan.liang@linux.intel.com
The Snow Ridge integrated PCIe3 uncore unit can be used to collect
performance data, e.g. utilization, between PCIe devices, plugged into
the PCIe port, and the components (in M2IOSF) responsible for
translating and managing requests to/from the device. The performance
data is very useful for analyzing the performance of PCIe devices.
The device with the PCIe3 uncore PMON units is owned by the portdrv_pci
driver. Create a PCI sub driver for the PCIe3 uncore PMON units.
Here are some difference between PCIe3 uncore unit and other uncore
pci units.
- There may be several Root Ports on a system. But the uncore counters
only exist in the Root Port A. A user can configure the channel mask
to collect the data from other Root Ports.
- The event format of the PCIe3 uncore unit is the same as IIO unit of
SKX.
- The Control Register of PCIe3 uncore unit is 64 bits.
- The offset of each counters is 8, which is the same as M2M unit of
SNR.
- New MSR addresses for unit control, counter and counter config.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-7-git-send-email-kan.liang@linux.intel.com
Some uncore counters may be located in the configuration space of a PCI
device, which already has a bonded driver. Currently, the uncore driver
cannot register a PCI uncore PMU for these counters, because, to
register a PCI uncore PMU, the uncore driver must be bond to the device.
However, one device can only have one bonded driver.
Add an uncore PCI sub driver to support such kind of devices.
The sub driver doesn't own the device. In initialization, the sub
driver searches the device via pci_get_device(), and register the
corresponding PMU for the device. In the meantime, the sub driver
registers a PCI bus notifier, which is used to notify the sub driver
once the device is removed. The sub driver can unregister the PMU
accordingly.
The sub driver only searches the devices defined in its id table. The
id table varies on different platforms, which will be implemented in the
following platform-specific patch.
Suggested-by: Bjorn Helgaas <helgaas@kernel.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-6-git-send-email-kan.liang@linux.intel.com
The PMU unregistration in the uncore PCI sub driver is similar as the
normal PMU unregistration for a PCI device. The codes to unregister a
PCI PMU can be shared.
Factor out uncore_pci_pmu_unregister(), which will be used later.
Use uncore_pci_get_dev_die_info() to replace the codes which retrieve
the socket and die informaion.
The pci_set_drvdata() is not included in uncore_pci_pmu_unregister() as
well, because the uncore PCI sub driver will not touch the private
driver data pointer of the device.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-5-git-send-email-kan.liang@linux.intel.com
The PMU registration in the uncore PCI sub driver is similar as the
normal PMU registration for a PCI device. The codes to register a PCI
PMU can be shared.
Factor out uncore_pci_pmu_register(), which will be used later.
The pci_set_drvdata() is not included in uncore_pci_pmu_register(). The
uncore PCI sub driver doesn't own the PCI device. It will not touch the
private driver data pointer for the device.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-4-git-send-email-kan.liang@linux.intel.com
When an uncore PCI sub driver gets a remove notification, the
corresponding PMU has to be retrieved and unregistered. The codes, which
find the corresponding PMU by comparing the pci_device_id table, can be
shared.
Factor out uncore_pci_find_dev_pmu(), which will be used later.
There is no functional change.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-3-git-send-email-kan.liang@linux.intel.com
The socket and die information is required to register/unregister a PMU
in the uncore PCI sub driver. The codes, which get the socket and die
information from a BUS number, can be shared.
Factor out uncore_pci_get_dev_die_info(), which will be used later.
There is no functional change.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-2-git-send-email-kan.liang@linux.intel.com
Previously, the uncore driver would say "NB counters detected" on F17h
machines, which don't have NorthBridge (NB) counters. They have Data
Fabric (DF) counters. Just use the pmu.name to inform users which pmu
to use and its associated counter count.
F17h dmesg BEFORE:
amd_uncore: AMD NB counters detected
amd_uncore: AMD LLC counters detected
F17h dmesg AFTER:
amd_uncore: 4 amd_df counters detected
amd_uncore: 6 amd_l3 counters detected
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-5-kim.phillips@amd.com
On Family 19h, the driver checks for a populated 2-bit threadmask in
order to establish that the user wants to measure individual slices,
individual cores (only one can be measured at a time), and lets
the user also directly specify enallcores and/or enallslices if
desired.
Example F19h invocation to measure L3 accesses (event 4, umask 0xff)
by the first thread (id 0 -> mask 0x1) of the first core (id 0) on the
first slice (id 0):
perf stat -a -e instructions,amd_l3/umask=0xff,event=0x4,coreid=0,threadmask=1,sliceid=0,enallcores=0,enallslices=0/ <workload>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-4-kim.phillips@amd.com
Continue to fully populate either one of threadmask or slicemask if the
user doesn't.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-3-kim.phillips@amd.com
Replace AMD_FORMAT_ATTR with the more apropos DEFINE_UNCORE_FORMAT_ATTR
stolen from arch/x86/events/intel/uncore.h. This way we can clearly
see the bit-variants of each of the attributes that want to have
the same name across families.
Also unroll AMD_ATTRIBUTE because we are going to separately add
new attributes that differ between DF and L3.
Also clean up the if-Family 17h-else logic in amd_uncore_init.
This is basically a rewrite of commit da6adaea2b
("perf/x86/amd/uncore: Update sysfs attributes for Family17h processors").
No functional changes.
Tested F17h+ /sys/bus/event_source/devices/amd_{l3,df}/format/*
content remains unchanged:
/sys/bus/event_source/devices/amd_l3/format/event:config:0-7
/sys/bus/event_source/devices/amd_l3/format/umask:config:8-15
/sys/bus/event_source/devices/amd_df/format/event:config:0-7,32-35,59-60
/sys/bus/event_source/devices/amd_df/format/umask:config:8-15
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-2-kim.phillips@amd.com
Stephane Eranian found a bug in that IBS' current Fetch counter was not
being reset when the driver would write the new value to clear it along
with the enable bit set, and found that adding an MSR write that would
first disable IBS Fetch would make IBS Fetch reset its current count.
Indeed, the PPR for AMD Family 17h Model 31h B0 55803 Rev 0.54 - Sep 12,
2019 states "The periodic fetch counter is set to IbsFetchCnt [...] when
IbsFetchEn is changed from 0 to 1."
Explicitly set IbsFetchEn to 0 and then to 1 when re-enabling IBS Fetch,
so the driver properly resets the internal counter to 0 and IBS
Fetch starts counting again.
A family 15h machine tested does not have this problem, and the extra
wrmsr is also not needed on Family 19h, so only do the extra wrmsr on
families 16h through 18h.
Reported-by: Stephane Eranian <stephane.eranian@google.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
[peterz: optimized]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Family 19h RAPL support did not change from Family 17h; extend
the existing Fam17h support to work on Family 19h too.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200908214740.18097-8-kim.phillips@amd.com
IBS hardware with the OpCntExt feature gets a 7-bit wider internal
counter. Both the maximum and current count bitfields in the
IBS_OP_CTL register are extended to support reading and writing it.
No changes are necessary to the driver for handling the extra
contiguous current count bits (IbsOpCurCnt), as the driver already
passes through 32 bits of that field. However, the driver has to do
some extra bit manipulation when converting from a period to the
non-contiguous (although conveniently aligned) extra bits in the
IbsOpMaxCnt bitfield.
This decreases IBS Op interrupt overhead when the period is over
1,048,560 (0xffff0), which would previously activate the driver's
software counter. That threshold is now 134,217,712 (0x7fffff0).
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200908214740.18097-7-kim.phillips@amd.com
Neither IbsBrTarget nor OPDATA4 are populated in IBS Fetch mode.
Don't accumulate them into raw sample user data in that case.
Also, in Fetch mode, add saving the IBS Fetch Control Extended MSR.
Technically, there is an ABI change here with respect to the IBS raw
sample data format, but I don't see any perf driver version information
being included in perf.data file headers, but, existing users can detect
whether the size of the sample record has reduced by 8 bytes to
determine whether the IBS driver has this fix.
Fixes: 904cb3677f ("perf/x86/amd/ibs: Update IBS MSRs and feature definitions")
Reported-by: Stephane Eranian <stephane.eranian@google.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200908214740.18097-6-kim.phillips@amd.com
get_ibs_op_count() adds hardware's current count (IbsOpCurCnt) bits
to its count regardless of hardware's valid status.
According to the PPR for AMD Family 17h Model 31h B0 55803 Rev 0.54,
if the counter rolls over, valid status is set, and the lower 7 bits
of IbsOpCurCnt are randomized by hardware.
Don't include those bits in the driver's event count.
Fixes: 8b1e13638d ("perf/x86-ibs: Fix usage of IBS op current count")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Commit 5738891229 ("perf/x86/amd: Add support for Large Increment
per Cycle Events") mistakenly zeroes the upper 16 bits of the count
in set_period(). That's fine for counting with perf stat, but not
sampling with perf record when only Large Increment events are being
sampled. To enable sampling, we sign extend the upper 16 bits of the
merged counter pair as described in the Family 17h PPRs:
"Software wanting to preload a value to a merged counter pair writes the
high-order 16-bit value to the low-order 16 bits of the odd counter and
then writes the low-order 48-bit value to the even counter. Reading the
even counter of the merged counter pair returns the full 64-bit value."
Fixes: 5738891229 ("perf/x86/amd: Add support for Large Increment per Cycle Events")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Commit 2f217d58a8 ("perf/x86/amd/uncore: Set the thread mask for
F17h L3 PMCs") inadvertently changed the uncore driver's behaviour
wrt perf tool invocations with or without a CPU list, specified with
-C / --cpu=.
Change the behaviour of the driver to assume the former all-cpu (-a)
case, which is the more commonly desired default. This fixes
'-a -A' invocations without explicit cpu lists (-C) to not count
L3 events only on behalf of the first thread of the first core
in the L3 domain.
BEFORE:
Activity performed by the first thread of the last core (CPU#43) in
CPU#40's L3 domain is not reported by CPU#40:
sudo perf stat -a -A -e l3_request_g1.caching_l3_cache_accesses taskset -c 43 perf bench mem memcpy -s 32mb -l 100 -f default
...
CPU36 21,835 l3_request_g1.caching_l3_cache_accesses
CPU40 87,066 l3_request_g1.caching_l3_cache_accesses
CPU44 17,360 l3_request_g1.caching_l3_cache_accesses
...
AFTER:
The L3 domain activity is now reported by CPU#40:
sudo perf stat -a -A -e l3_request_g1.caching_l3_cache_accesses taskset -c 43 perf bench mem memcpy -s 32mb -l 100 -f default
...
CPU36 354,891 l3_request_g1.caching_l3_cache_accesses
CPU40 1,780,870 l3_request_g1.caching_l3_cache_accesses
CPU44 315,062 l3_request_g1.caching_l3_cache_accesses
...
Fixes: 2f217d58a8 ("perf/x86/amd/uncore: Set the thread mask for F17h L3 PMCs")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200908214740.18097-2-kim.phillips@amd.com
A warning as below may be triggered when sampling with large PEBS.
[ 410.411250] perf: interrupt took too long (72145 > 71975), lowering
kernel.perf_event_max_sample_rate to 2000
[ 410.724923] ------------[ cut here ]------------
[ 410.729822] WARNING: CPU: 0 PID: 16397 at arch/x86/events/core.c:1422
x86_pmu_stop+0x95/0xa0
[ 410.933811] x86_pmu_del+0x50/0x150
[ 410.937304] event_sched_out.isra.0+0xbc/0x210
[ 410.941751] group_sched_out.part.0+0x53/0xd0
[ 410.946111] ctx_sched_out+0x193/0x270
[ 410.949862] __perf_event_task_sched_out+0x32c/0x890
[ 410.954827] ? set_next_entity+0x98/0x2d0
[ 410.958841] __schedule+0x592/0x9c0
[ 410.962332] schedule+0x5f/0xd0
[ 410.965477] exit_to_usermode_loop+0x73/0x120
[ 410.969837] prepare_exit_to_usermode+0xcd/0xf0
[ 410.974369] ret_from_intr+0x2a/0x3a
[ 410.977946] RIP: 0033:0x40123c
[ 411.079661] ---[ end trace bc83adaea7bb664a ]---
In the non-overflow context, e.g., context switch, with large PEBS, perf
may stop an event twice. An example is below.
//max_samples_per_tick is adjusted to 2
//NMI is triggered
intel_pmu_handle_irq()
handle_pmi_common()
drain_pebs()
__intel_pmu_pebs_event()
perf_event_overflow()
__perf_event_account_interrupt()
hwc->interrupts = 1
return 0
//A context switch happens right after the NMI.
//In the same tick, the perf_throttled_seq is not changed.
perf_event_task_sched_out()
perf_pmu_sched_task()
intel_pmu_drain_pebs_buffer()
__intel_pmu_pebs_event()
perf_event_overflow()
__perf_event_account_interrupt()
++hwc->interrupts >= max_samples_per_tick
return 1
x86_pmu_stop(); # First stop
perf_event_context_sched_out()
task_ctx_sched_out()
ctx_sched_out()
event_sched_out()
x86_pmu_del()
x86_pmu_stop(); # Second stop and trigger the warning
Perf should only invoke the perf_event_overflow() in the overflow
context.
Current drain_pebs() is called from:
- handle_pmi_common() -- overflow context
- intel_pmu_pebs_sched_task() -- non-overflow context
- intel_pmu_pebs_disable() -- non-overflow context
- intel_pmu_auto_reload_read() -- possible overflow context
With PERF_SAMPLE_READ + PERF_FORMAT_GROUP, the function may be
invoked in the NMI handler. But, before calling the function, the
PEBS buffer has already been drained. The __intel_pmu_pebs_event()
will not be called in the possible overflow context.
To fix the issue, an indicator is required to distinguish between the
overflow context aka handle_pmi_common() and other cases.
The dummy regs pointer can be used as the indicator.
In the non-overflow context, perf should treat the last record the same
as other PEBS records, and doesn't invoke the generic overflow handler.
Fixes: 21509084f9 ("perf/x86/intel: Handle multiple records in the PEBS buffer")
Reported-by: Like Xu <like.xu@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Like Xu <like.xu@linux.intel.com>
Link: https://lkml.kernel.org/r/20200902210649.2743-1-kan.liang@linux.intel.com
Replace many of the indirect calls with static_call().
The average PMI time, as measured by perf_sample_event_took()*:
PRE: 3283.03 [ns]
POST: 3145.12 [ns]
Which is a ~138 [ns] win per PMI, or a ~4.2% decrease.
[*] on an IVB-EP, using: 'perf record -a -e cycles -- make O=defconfig-build/ -j80'
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20200818135805.338001015@infradead.org
Starts from Ice Lake, the TopDown metrics are directly available as
fixed counters and do not require generic counters. Also, the TopDown
metrics can be collected per thread. Extend the RDPMC usage to support
per-thread TopDown metrics.
The RDPMC index of the PERF_METRICS will be output if RDPMC users ask
for the RDPMC index of the metrics events.
To support per thread RDPMC TopDown, the metrics and slots counters have
to be saved/restored during the context switching.
The last_period and period_left are not used in the counting mode. Use
the fields for saved_metric and saved_slots.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-12-kan.liang@linux.intel.com
Ice Lake supports the hardware TopDown metrics feature, which can free
up the scarce GP counters.
Update the event constraints for the metrics events. The metric counters
do not exist, which are mapped to a dummy offset. The sharing between
multiple users of the same metric without multiplexing is not allowed.
Implement set_topdown_event_period for Ice Lake. The values in
PERF_METRICS MSR are derived from the fixed counter 3. Both registers
should start from zero.
Implement update_topdown_event for Ice Lake. The metric is reported by
multiplying the metric (fraction) with slots. To maintain accurate
measurements, both registers are cleared for each update. The fixed
counter 3 should always be cleared before the PERF_METRICS.
Implement td_attr for the new metrics events and the new slots fixed
counter. Make them visible to the perf user tools.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-11-kan.liang@linux.intel.com
The RDPMC base offset of fixed counters is hard-code. Use a meaningful
name to replace the magic number to improve the readability of the code.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-10-kan.liang@linux.intel.com
Intro
=====
The TopDown Microarchitecture Analysis (TMA) Method is a structured
analysis methodology to identify critical performance bottlenecks in
out-of-order processors. Current perf has supported the method.
The method works well, but there is one problem. To collect the TopDown
events, several GP counters have to be used. If a user wants to collect
other events at the same time, the multiplexing probably be triggered,
which impacts the accuracy.
To free up the scarce GP counters, the hardware TopDown metrics feature
is introduced from Ice Lake. The hardware implements an additional
"metrics" register and a new Fixed Counter 3 that measures pipeline
"slots". The TopDown events can be calculated from them instead.
Events
======
The level 1 TopDown has four metrics. There is no event-code assigned to
the TopDown metrics. Four metric events are exported as separate perf
events, which map to the internal "metrics" counter register. Those
events do not exist in hardware, but can be allocated by the scheduler.
For the event mapping, a special 0x00 event code is used, which is
reserved for fake events. The metric events start from umask 0x10.
When setting up the metric events, they point to the Fixed Counter 3.
They have to be specially handled.
- Add the update_topdown_event() callback to read the additional metrics
MSR and generate the metrics.
- Add the set_topdown_event_period() callback to initialize metrics MSR
and the fixed counter 3.
- Add a variable n_metric_event to track the number of the accepted
metrics events. The sharing between multiple users of the same metric
without multiplexing is not allowed.
- Only enable/disable the fixed counter 3 when there are no other active
TopDown events, which avoid the unnecessary writing of the fixed
control register.
- Disable the PMU when reading the metrics event. The metrics MSR and
the fixed counter 3 are read separately. The values may be modified by
an NMI.
All four metric events don't support sampling. Since they will be
handled specially for event update, a flag PERF_X86_EVENT_TOPDOWN is
introduced to indicate this case.
The slots event can support both sampling and counting.
For counting, the flag is also applied.
For sampling, it will be handled normally as other normal events.
Groups
======
The slots event is required in a Topdown group.
To avoid reading the METRICS register multiple times, the metrics and
slots value can only be updated by slots event in a group.
All active slots and metrics events will be updated one time.
Therefore, the slots event must be before any metric events in a Topdown
group.
NMI
======
The METRICS related register may be overflow. The bit 48 of the STATUS
register will be set. If so, PERF_METRICS and Fixed counter 3 are
required to be reset. The patch also update all active slots and
metrics events in the NMI handler.
The update_topdown_event() has to read two registers separately. The
values may be modified by an NMI. PMU has to be disabled before calling
the function.
RDPMC
======
RDPMC is temporarily disabled. A later patch will enable it.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-9-kan.liang@linux.intel.com
Currently, the if-else is used in the intel_pmu_disable/enable_event to
check the type of an event. It works well, but with more and more types
added later, e.g., perf metrics, compared to the switch statement, the
if-else may impair the readability of the code.
There is no harm to use the switch statement to replace the if-else
here. Also, some optimizing compilers may compile a switch statement
into a jump-table which is more efficient than if-else for a large
number of cases. The performance gain may not be observed for now,
because the number of cases is only 5, but the benefits may be observed
with more and more types added in the future.
Use switch to replace the if-else in the intel_pmu_disable/enable_event.
If the idx is invalid, print a warning.
For the case INTEL_PMC_IDX_FIXED_BTS in intel_pmu_disable_event, don't
need to check the event->attr.precise_ip. Use return for the case.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-7-kan.liang@linux.intel.com
Bit 15 of the PERF_CAPABILITIES MSR indicates that the perf METRICS
feature is supported. The perf METRICS is not a PEBS feature.
Rename pebs_metrics_available perf_metrics.
The bit is not used in the current code. It will be used in a later
patch.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-6-kan.liang@linux.intel.com
Magic numbers are used in the current NMI handler for the global status
bit. Use a meaningful name to replace the magic numbers to improve the
readability of the code.
Remove a Tab for all GLOBAL_STATUS_* and INTEL_PMC_IDX_FIXED_BTS macros
to reduce the length of the line.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-3-kan.liang@linux.intel.com
The RDPMC index is always re-calculated for the RDPMC userspace support,
which is unnecessary.
The RDPMC index value is stored in the variable event_base_rdpmc for
the kernel usage, which can be used for RDPMC userspace support as well.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-2-kan.liang@linux.intel.com
Linux only has support to read total DDR reads and writes. Here we
add support to enable bandwidth breakdown-GT, IA and IO. Breakdown
of BW is important to debug and optimize memory access. This can also
be used for telemetry and improving the system software.The offsets for
GT, IA and IO are added and these free running counters can be accessed
via MMIO space.
The BW breakdown can be measured using the following cmd:
perf stat -e uncore_imc/gt_requests/,uncore_imc/ia_requests/,uncore_imc/io_requests/
30.57 MiB uncore_imc/gt_requests/
1346.13 MiB uncore_imc/ia_requests/
190.97 MiB uncore_imc/io_requests/
5.984572733 seconds time elapsed
BW/s = <gt,ia,io>_requests/time elapsed
Signed-off-by: Vaibhav Shankar <vaibhav.shankar@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200814022234.23605-1-vaibhav.shankar@intel.com
Intel SPR platform uses fixed 16 bit energy unit for DRAM RAPL domain,
and fixed 0 bit energy unit for Psys RAPL domain.
After this, on SPR platform the energy counters appear in perf list.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Len Brown <len.brown@intel.com>
Link: https://lore.kernel.org/r/20200811153149.12242-4-rui.zhang@intel.com
There will be more platforms with different fixed energy units.
Enhance the code to support different RAPL unit quirks for different
platforms.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Link: https://lore.kernel.org/r/20200811153149.12242-3-rui.zhang@intel.com
This fixes a problem introduced by commit:
5fb5273a90 ("perf/x86/rapl: Use new MSR detection interface")
that perf event sysfs attributes for psys RAPL domain are missing.
Fixes: 5fb5273a90 ("perf/x86/rapl: Use new MSR detection interface")
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20200811153149.12242-2-rui.zhang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oRTgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1huHQ//T2hZk5zlpOtojxvdAzsPgtV4tHawseK8
+ZZEbrH5qo5/ZMF18qyEJCm9p1yg8uIu71InULRCSgjU3v82GVCcuLXuE36U904G
gHUqkYPnqxCqx+Li125aye9tKWahXe1DxX+uWbV0Ju7fiCO0rwYIzpWn1bnR6ilp
fmLGSbgPlTVJwZ9mBvyi3VUlH5tDYidFN74TREUOwx2g5uhg+8uEo44Eb/bx8ESF
dGt1Z/fnfDHkUZtmhzJk5Uz8nbw7rPHU/EZ4iZAxEzxTutY5PhsvbIfLO4t4HhGn
utZCk/pIdiLLQ1GaTvFxqi3iolDqpOuXpnDlfEAJD8UlMCnwyh1Certq5LaRbtHS
8SW3/CeJgzqzrrsYhkxVu2PMFWriSMxgKTLiN0KnzJN0Hu7A5lHbBY/6G7zpsF/A
2KJ4e8lZiPCcNF7LteSRroUe4hNOYxZ2FlYTXm3AgycSL189UMfWlHFb5c+b4m1a
cNJpz+jAom8foXN4KhRkl5PFKXVXDGTVln3NRJCh1Mqd1Ef4hsTo9H6FgHX/EfHg
slJDwwPac80v0dzlMTSsMkyseaKRAqIObWOiknPt1wv/qja7ibVZ5mUbZ+/mfJX/
YWybcPi1omgUSNt7TNx6jtma67rUjmJW0x9g7UJ/ttEkf6yG2lemrdusydBYuIni
0Z2+hWzI9MM=
=X7o0
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups all around the place"
* tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioperm: Initialize pointer bitmap with NULL rather than 0
x86: uv: uv_hub.h: Delete duplicated word
x86: cmpxchg_32.h: Delete duplicated word
x86: bootparam.h: Delete duplicated word
x86/mm: Remove the unused mk_kernel_pgd() #define
x86/tsc: Remove unused "US_SCALE" and "NS_SCALE" leftover macros
x86/ioapic: Remove unused "IOAPIC_AUTO" define
x86/mm: Drop unused MAX_PHYSADDR_BITS
x86/msr: Move the F15h MSRs where they belong
x86/idt: Make idt_descr static
initrd: Remove erroneous comment
x86/mm/32: Fix -Wmissing prototypes warnings for init.c
cpu/speculation: Add prototype for cpu_show_srbds()
x86/mm: Fix -Wmissing-prototypes warnings for arch/x86/mm/init.c
x86/asm: Unify __ASSEMBLY__ blocks
x86/cpufeatures: Mark two free bits in word 3
x86/msr: Lift AMD family 0x15 power-specific MSRs
Hygon Family 18h(Dhyana) support RAPL in bit 14 of CPUID 0x80000007 EDX,
and has MSRs RAPL_PWR_UNIT/CORE_ENERGY_STAT/PKG_ENERGY_STAT. So add Hygon
Dhyana Family 18h support for RAPL.
The output is available via the energy-pkg pseudo event:
$ perf stat -a -I 1000 --per-socket -e power/energy-pkg/
[ mingo: Tidied up the initializers. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200720082205.1307-1-puwen@hygon.cn
Reading LBR registers in a perf NMI handler for a non-PEBS event
causes a high overhead because the number of LBR registers is huge.
To reduce the overhead, the XSAVES instruction should be used to replace
the LBR registers' reading method.
The XSAVES buffer used for LBR read has to be per-CPU because the NMI
handler invoked the lbr_read(). The existing task_ctx_data buffer
cannot be used which is per-task and only be allocated for the LBR call
stack mode. A new lbr_xsave pointer is introduced in the cpu_hw_events
as an XSAVES buffer for LBR read.
The XSAVES buffer should be allocated only when LBR is used by a
non-PEBS event on the CPU because the total size of the lbr_xsave is
not small (~1.4KB).
The XSAVES buffer is allocated when a non-PEBS event is added, but it
is lazily released in x86_release_hardware() when perf releases the
entire PMU hardware resource, because perf may frequently schedule the
event, e.g. high context switch. The lazy release method reduces the
overhead of frequently allocate/free the buffer.
If the lbr_xsave fails to be allocated, roll back to normal Arch LBR
lbr_read().
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-24-git-send-email-kan.liang@linux.intel.com
In the LBR call stack mode, LBR information is used to reconstruct a
call stack. To get the complete call stack, perf has to save/restore
all LBR registers during a context switch. Due to a large number of the
LBR registers, this process causes a high CPU overhead. To reduce the
CPU overhead during a context switch, use the XSAVES/XRSTORS
instructions.
Every XSAVE area must follow a canonical format: the legacy region, an
XSAVE header and the extended region. Although the LBR information is
only kept in the extended region, a space for the legacy region and
XSAVE header is still required. Add a new dedicated structure for LBR
XSAVES support.
Before enabling XSAVES support, the size of the LBR state has to be
sanity checked, because:
- the size of the software structure is calculated from the max number
of the LBR depth, which is enumerated by the CPUID leaf for Arch LBR.
The size of the LBR state is enumerated by the CPUID leaf for XSAVE
support of Arch LBR. If the values from the two CPUID leaves are not
consistent, it may trigger a buffer overflow. For example, a hypervisor
may unconsciously set inconsistent values for the two emulated CPUID.
- unlike other state components, the size of an LBR state depends on the
max number of LBRs, which may vary from generation to generation.
Expose the function xfeature_size() for the sanity check.
The LBR XSAVES support will be disabled if the size of the LBR state
enumerated by CPUID doesn't match with the size of the software
structure.
The XSAVE instruction requires 64-byte alignment for state buffers. A
new macro is added to reflect the alignment requirement. A 64-byte
aligned kmem_cache is created for architecture LBR.
Currently, the structure for each state component is maintained in
fpu/types.h. The structure for the new LBR state component should be
maintained in the same place. Move structure lbr_entry to fpu/types.h as
well for broader sharing.
Add dedicated lbr_save/lbr_restore functions for LBR XSAVES support,
which invokes the corresponding xstate helpers to XSAVES/XRSTORS LBR
information at the context switch when the call stack mode is enabled.
Since the XSAVES/XRSTORS instructions will be eventually invoked, the
dedicated functions is named with '_xsaves'/'_xrstors' postfix.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-23-git-send-email-kan.liang@linux.intel.com
A new kmem_cache method is introduced to allocate the PMU specific data
task_ctx_data, which requires the PMU specific code to create a
kmem_cache.
Currently, the task_ctx_data is only used by the Intel LBR call stack
feature, which is introduced since Haswell. The kmem_cache should be
only created for Haswell and later platforms. There is no alignment
requirement for the existing platforms.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-18-git-send-email-kan.liang@linux.intel.com
Last Branch Records (LBR) enables recording of software path history by
logging taken branches and other control flows within architectural
registers now. Intel CPUs have had model-specific LBR for quite some
time, but this evolves them into an architectural feature now.
The main improvements of Architectural LBR implemented includes:
- Linux kernel can support the LBR features without knowing the model
number of the current CPU.
- Architectural LBR capabilities can be enumerated by CPUID. The
lbr_ctl_map is based on the CPUID Enumeration.
- The possible LBR depth can be retrieved from CPUID enumeration. The
max value is written to the new MSR_ARCH_LBR_DEPTH as the number of
LBR entries.
- A new IA32_LBR_CTL MSR is introduced to enable and configure LBRs,
which replaces the IA32_DEBUGCTL[bit 0] and the LBR_SELECT MSR.
- Each LBR record or entry is still comprised of three MSRs,
IA32_LBR_x_FROM_IP, IA32_LBR_x_TO_IP and IA32_LBR_x_TO_IP.
But they become the architectural MSRs.
- Architectural LBR is stack-like now. Entry 0 is always the youngest
branch, entry 1 the next youngest... The TOS MSR has been removed.
The way to enable/disable Architectural LBR is similar to the previous
model-specific LBR. __intel_pmu_lbr_enable/disable() can be reused, but
some modifications are required, which include:
- MSR_ARCH_LBR_CTL is used to enable and configure the Architectural
LBR.
- When checking the value of the IA32_DEBUGCTL MSR, ignoring the
DEBUGCTLMSR_LBR (bit 0) for Architectural LBR, which has no meaning
and always return 0.
- The FREEZE_LBRS_ON_PMI has to be explicitly set/clear, because
MSR_IA32_DEBUGCTLMSR is not touched in __intel_pmu_lbr_disable() for
Architectural LBR.
- Only MSR_ARCH_LBR_CTL is cleared in __intel_pmu_lbr_disable() for
Architectural LBR.
Some Architectural LBR dedicated functions are implemented to
reset/read/save/restore LBR.
- For reset, writing to the ARCH_LBR_DEPTH MSR clears all Arch LBR
entries, which is a lot faster and can improve the context switch
latency.
- For read, the branch type information can be retrieved from
the MSR_ARCH_LBR_INFO_*. But it's not fully compatible due to
OTHER_BRANCH type. The software decoding is still required for the
OTHER_BRANCH case.
LBR records are stored in the age order as well. Reuse
intel_pmu_store_lbr(). Check the CPUID enumeration before accessing
the corresponding bits in LBR_INFO.
- For save/restore, applying the fast reset (writing ARCH_LBR_DEPTH).
Reading 'lbr_from' of entry 0 instead of the TOS MSR to check if the
LBR registers are reset in the deep C-state. If 'the deep C-state
reset' bit is not set in CPUID enumeration, ignoring the check.
XSAVE support for Architectural LBR will be implemented later.
The number of LBR entries cannot be hardcoded anymore, which should be
retrieved from CPUID enumeration. A new structure
x86_perf_task_context_arch_lbr is introduced for Architectural LBR.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-15-git-send-email-kan.liang@linux.intel.com
The way to store the LBR information from a PEBS LBR record can be
reused in Architecture LBR, because
- The LBR information is stored like a stack. Entry 0 is always the
youngest branch.
- The layout of the LBR INFO MSR is similar.
The LBR information may be retrieved from either the LBR registers
(non-PEBS event) or a buffer (PEBS event). Extend rdlbr_*() to support
both methods.
Explicitly check the invalid entry (0s), which can avoid unnecessary MSR
access if using a non-PEBS event. For a PEBS event, the check should
slightly improve the performance as well. The invalid entries are cut.
The intel_pmu_lbr_filter() doesn't need to check and filter them out.
Cannot share the function with current model-specific LBR read, because
the direction of the LBR growth is opposite.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-14-git-send-email-kan.liang@linux.intel.com
The previous model-specific LBR and Architecture LBR (legacy way) use a
similar method to save/restore the LBR information, which directly
accesses the LBR registers. The codes which read/write a set of LBR
registers can be shared between them.
Factor out two functions which are used to read/write a set of LBR
registers.
Add lbr_info into structure x86_pmu, and use it to replace the hardcoded
LBR INFO MSR, because the LBR INFO MSR address of the previous
model-specific LBR is different from Architecture LBR. The MSR address
should be assigned at boot time. For now, only Sky Lake and later
platforms have the LBR INFO MSR.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-13-git-send-email-kan.liang@linux.intel.com