The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to have a synchronize_rcu before free'ing the sockhash because any
outstanding psock references will have a pointer to the map and when they
use it, this could trigger a use after free.
This is a sister fix for sockhash, following commit 2bb90e5cc9 ("bpf:
sockmap, synchronize_rcu before free'ing map") which addressed sockmap,
which comes from a manual audit.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200206111652.694507-3-jakub@cloudflare.com
It's currently possible to insert sockets in unexpected states into
a sockmap, due to a TOCTTOU when updating the map from a syscall.
sock_map_update_elem checks that sk->sk_state == TCP_ESTABLISHED,
locks the socket and then calls sock_map_update_common. At this
point, the socket may have transitioned into another state, and
the earlier assumptions don't hold anymore. Crucially, it's
conceivable (though very unlikely) that a socket has become unhashed.
This breaks the sockmap's assumption that it will get a callback
via sk->sk_prot->unhash.
Fix this by checking the (fixed) sk_type and sk_protocol without the
lock, followed by a locked check of sk_state.
Unfortunately it's not possible to push the check down into
sock_(map|hash)_update_common, since BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
run before the socket has transitioned from TCP_SYN_RECV into
TCP_ESTABLISHED.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/20200207103713.28175-1-lmb@cloudflare.com
The sock_map_free() and sock_hash_free() paths used to delete sockmap
and sockhash maps walk the maps and destroy psock and bpf state associated
with the socks in the map. When done the socks no longer have BPF programs
attached and will function normally. This can happen while the socks in
the map are still "live" meaning data may be sent/received during the walk.
Currently, though we don't take the sock_lock when the psock and bpf state
is removed through this path. Specifically, this means we can be writing
into the ops structure pointers such as sendmsg, sendpage, recvmsg, etc.
while they are also being called from the networking side. This is not
safe, we never used proper READ_ONCE/WRITE_ONCE semantics here if we
believed it was safe. Further its not clear to me its even a good idea
to try and do this on "live" sockets while networking side might also
be using the socket. Instead of trying to reason about using the socks
from both sides lets realize that every use case I'm aware of rarely
deletes maps, in fact kubernetes/Cilium case builds map at init and
never tears it down except on errors. So lets do the simple fix and
grab sock lock.
This patch wraps sock deletes from maps in sock lock and adds some
annotations so we catch any other cases easier.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/bpf/20200111061206.8028-3-john.fastabend@gmail.com
sock_map and ULP only work together when ULP is loaded after the sock
map is loaded. In the sock_map case we added a check for this to fail
the load if ULP is already set. However, we missed the check on the
sock_hash side.
Add a ULP check to the sock_hash update path.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Reported-by: syzbot+7a6ee4d0078eac6bf782@syzkaller.appspotmail.com
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to make sure context does not get freed while diag
code is interrogating it. Free struct tls_context with
kfree_rcu().
We add the __rcu annotation directly in icsk, and cast it
away in the datapath accessor. Presumably all ULPs will
do a similar thing.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Sockmap does not currently support adding sockets after TLS has been
enabled. There never was a real use case for this so it was never
added. But, we lost the test for ULP at some point so add it here
and fail the socket insert if TLS is enabled. Future work could
make sockmap support this use case but fixup the bug here.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We need to have a synchronize_rcu before free'ing the sockmap because
any outstanding psock references will have a pointer to the map and
when they use this could trigger a use after free.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
__sock_map_delete() may be called from a tcp event such as unhash or
close from the following trace,
tcp_bpf_close()
tcp_bpf_remove()
sk_psock_unlink()
sock_map_delete_from_link()
__sock_map_delete()
In this case the sock lock is held but this only protects against
duplicate removals on the TCP side. If the map is free'd then we have
this trace,
sock_map_free
xchg() <- replaces map entry
sock_map_unref()
sk_psock_put()
sock_map_del_link()
The __sock_map_delete() call however uses a read, test, null over the
map entry which can result in both paths trying to free the map
entry.
To fix use xchg in TCP paths as well so we avoid having two references
to the same map entry.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Most bpf map types doing similar checks and bytes to pages
conversion during memory allocation and charging.
Let's unify these checks by moving them into bpf_map_charge_init().
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In order to unify the existing memlock charging code with the
memcg-based memory accounting, which will be added later, let's
rework the current scheme.
Currently the following design is used:
1) .alloc() callback optionally checks if the allocation will likely
succeed using bpf_map_precharge_memlock()
2) .alloc() performs actual allocations
3) .alloc() callback calculates map cost and sets map.memory.pages
4) map_create() calls bpf_map_init_memlock() which sets map.memory.user
and performs actual charging; in case of failure the map is
destroyed
<map is in use>
1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which
performs uncharge and releases the user
2) .map_free() callback releases the memory
The scheme can be simplified and made more robust:
1) .alloc() calculates map cost and calls bpf_map_charge_init()
2) bpf_map_charge_init() sets map.memory.user and performs actual
charge
3) .alloc() performs actual allocations
<map is in use>
1) .map_free() callback releases the memory
2) bpf_map_charge_finish() performs uncharge and releases the user
The new scheme also allows to reuse bpf_map_charge_init()/finish()
functions for memcg-based accounting. Because charges are performed
before actual allocations and uncharges after freeing the memory,
no bogus memory pressure can be created.
In cases when the map structure is not available (e.g. it's not
created yet, or is already destroyed), on-stack bpf_map_memory
structure is used. The charge can be transferred with the
bpf_map_charge_move() function.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Group "user" and "pages" fields of bpf_map into the bpf_map_memory
structure. Later it can be extended with "memcg" and other related
information.
The main reason for a such change (beside cosmetics) is to pass
bpf_map_memory structure to charging functions before the actual
allocation of bpf_map.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Before using the psock returned by sk_psock_get() when adding it to a
sockmap we need to ensure it is actually a sockmap based psock.
Previously we were only checking this after incrementing the reference
counter which was an error. This resulted in a slab-out-of-bounds
error when the psock was not actually a sockmap type.
This moves the check up so the reference counter is only used
if it is a sockmap psock.
Eric reported the following KASAN BUG,
BUG: KASAN: slab-out-of-bounds in atomic_read include/asm-generic/atomic-instrumented.h:21 [inline]
BUG: KASAN: slab-out-of-bounds in refcount_inc_not_zero_checked+0x97/0x2f0 lib/refcount.c:120
Read of size 4 at addr ffff88019548be58 by task syz-executor4/22387
CPU: 1 PID: 22387 Comm: syz-executor4 Not tainted 4.19.0-rc7+ #264
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1c4/0x2b4 lib/dump_stack.c:113
print_address_description.cold.8+0x9/0x1ff mm/kasan/report.c:256
kasan_report_error mm/kasan/report.c:354 [inline]
kasan_report.cold.9+0x242/0x309 mm/kasan/report.c:412
check_memory_region_inline mm/kasan/kasan.c:260 [inline]
check_memory_region+0x13e/0x1b0 mm/kasan/kasan.c:267
kasan_check_read+0x11/0x20 mm/kasan/kasan.c:272
atomic_read include/asm-generic/atomic-instrumented.h:21 [inline]
refcount_inc_not_zero_checked+0x97/0x2f0 lib/refcount.c:120
sk_psock_get include/linux/skmsg.h:379 [inline]
sock_map_link.isra.6+0x41f/0xe30 net/core/sock_map.c:178
sock_hash_update_common+0x19b/0x11e0 net/core/sock_map.c:669
sock_hash_update_elem+0x306/0x470 net/core/sock_map.c:738
map_update_elem+0x819/0xdf0 kernel/bpf/syscall.c:818
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add a generic sk_msg layer, and convert current sockmap and later
kTLS over to make use of it. While sk_buff handles network packet
representation from netdevice up to socket, sk_msg handles data
representation from application to socket layer.
This means that sk_msg framework spans across ULP users in the
kernel, and enables features such as introspection or filtering
of data with the help of BPF programs that operate on this data
structure.
Latter becomes in particular useful for kTLS where data encryption
is deferred into the kernel, and as such enabling the kernel to
perform L7 introspection and policy based on BPF for TLS connections
where the record is being encrypted after BPF has run and came to
a verdict. In order to get there, first step is to transform open
coding of scatter-gather list handling into a common core framework
that subsystems can use.
The code itself has been split and refactored into three bigger
pieces: i) the generic sk_msg API which deals with managing the
scatter gather ring, providing helpers for walking and mangling,
transferring application data from user space into it, and preparing
it for BPF pre/post-processing, ii) the plain sock map itself
where sockets can be attached to or detached from; these bits
are independent of i) which can now be used also without sock
map, and iii) the integration with plain TCP as one protocol
to be used for processing L7 application data (later this could
e.g. also be extended to other protocols like UDP). The semantics
are the same with the old sock map code and therefore no change
of user facing behavior or APIs. While pursuing this work it
also helped finding a number of bugs in the old sockmap code
that we've fixed already in earlier commits. The test_sockmap
kselftest suite passes through fine as well.
Joint work with John.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>