We'd like to get to the stage where the OPAL API is defined in a header
that is identical between Linux and Skiboot.
As step one, split the bits that actually define the API into
opal-api.h. The Linux specific parts stay in opal.h.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Stewart Smith <stewart@linux.vnet.ibm.com>
As our various loops (copy, string, crypto etc) get more complicated,
we want to share implementations between userspace (eg glibc) and
the kernel. We also want to write userspace test harnesses to put
in tools/testing/selftest.
One gratuitous difference between userspace and the kernel is the
VSX register definitions - the kernel uses vsrX whereas gcc uses
vsX.
Change the kernel to match userspace.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As our various loops (copy, string, crypto etc) get more complicated,
we want to share implementations between userspace (eg glibc) and
the kernel. We also want to write userspace test harnesses to put
in tools/testing/selftest.
One gratuitous difference between userspace and the kernel is the
VMX register definitions - the kernel uses vrX whereas both gcc and
glibc use vX.
Change the kernel to match userspace.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
After d905c5df9a ("PPC: POWERNV: move iommu_add_device earlier"), the
refcnt on the kobject backing the IOMMU group for a PCI device is
elevated by each call to pci_dma_dev_setup_pSeriesLP() (via
set_iommu_table_base_and_group). When we go to dlpar a multi-function
PCI device out:
iommu_reconfig_notifier ->
iommu_free_table ->
iommu_group_put
BUG_ON(tbl->it_group)
We trip this BUG_ON, because there are still references on the table, so
it is not freed. Fix this by moving the powernv bus notifier to common
code and calling it for both powernv and pseries.
Fixes: d905c5df9a ("PPC: POWERNV: move iommu_add_device earlier")
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Tested-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Implement arch_irq_work_has_interrupt() for powerpc
Commit 9b01f5bf3 introduced a dependency on "IRQ work self-IPIs" for
full dynamic ticks to be enabled, by expecting architectures to
implement a suitable arch_irq_work_has_interrupt() routine.
Several arches have implemented this routine, including x86 (3010279f)
and arm (09f6edd4), but powerpc was omitted.
This patch implements this routine for powerpc.
The symptom, at boot (on powerpc systems) with "nohz_full=<CPU list>"
is displayed:
NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs
after this patch:
NO_HZ: Full dynticks CPUs: <CPU list>.
Tested against 3.19.
powerpc implements "IRQ work self-IPIs" by setting the decrementer to 1 in
arch_irq_work_raise(), which causes a decrementer exception on the next
timebase tick. We then handle the work in __timer_interrupt().
CC: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul A. Clarke <pc@us.ibm.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[mpe: Flesh out change log, fix ws & include guards, remove include of processor.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Here's the big char/misc driver update for 3.20-rc1.
Lots of little things in here, all described in the changelog. Nothing
major or unusual, except maybe the binder selinux stuff, which was all
acked by the proper selinux people and they thought it best to come
through this tree.
All of this has been in linux-next with no reported issues for a while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlTgs80ACgkQMUfUDdst+yn86gCeMLbxANGExVLd+PR46GNsAUQb
SJ4AmgIqrkIz+5LCwZWM02ldbYhPeBVf
=lfmM
-----END PGP SIGNATURE-----
Merge tag 'char-misc-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char / misc patches from Greg KH:
"Here's the big char/misc driver update for 3.20-rc1.
Lots of little things in here, all described in the changelog.
Nothing major or unusual, except maybe the binder selinux stuff, which
was all acked by the proper selinux people and they thought it best to
come through this tree.
All of this has been in linux-next with no reported issues for a while"
* tag 'char-misc-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (90 commits)
coresight: fix function etm_writel_cp14() parameter order
coresight-etm: remove check for unknown Kconfig macro
coresight: fixing CPU hwid lookup in device tree
coresight: remove the unnecessary function coresight_is_bit_set()
coresight: fix the debug AMBA bus name
coresight: remove the extra spaces
coresight: fix the link between orphan connection and newly added device
coresight: remove the unnecessary replicator property
coresight: fix the replicator subtype value
pdfdocs: Fix 'make pdfdocs' failure for 'uio-howto.tmpl'
mcb: Fix error path of mcb_pci_probe
virtio/console: verify device has config space
ti-st: clean up data types (fix harmless memory corruption)
mei: me: release hw from reset only during the reset flow
mei: mask interrupt set bit on clean reset bit
extcon: max77693: Constify struct regmap_config
extcon: adc-jack: Release IIO channel on driver remove
extcon: Remove duplicated include from extcon-class.c
Drivers: hv: vmbus: hv_process_timer_expiration() can be static
Drivers: hv: vmbus: serialize Offer and Rescind offer
...
Common: Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other architectures).
This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes
or TCP_RR netperf tests). This also has to be enabled manually for now,
but the plan is to auto-tune this in the future.
ARM/ARM64: the highlights are support for GICv3 emulation and dirty page
tracking
s390: several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS: Bugfixes.
x86: Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested virtualization
improvements (nested APICv---a nice optimization), usual round of emulation
fixes. There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
ARM has other conflicts where functions are added in the same place
by 3.19-rc and 3.20 patches. These are not large though, and entirely
within KVM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJU28rkAAoJEL/70l94x66DXqQH/1TDOfJIjW7P2kb0Sw7Fy1wi
cEX1KO/VFxAqc8R0E/0Wb55CXyPjQJM6xBXuFr5cUDaIjQ8ULSktL4pEwXyyv/s5
DBDkN65mriry2w5VuEaRLVcuX9Wy+tqLQXWNkEySfyb4uhZChWWHvKEcgw5SqCyg
NlpeHurYESIoNyov3jWqvBjr4OmaQENyv7t2c6q5ErIgG02V+iCux5QGbphM2IC9
LFtPKxoqhfeB2xFxTOIt8HJiXrZNwflsTejIlCl/NSEiDVLLxxHCxK2tWK/tUXMn
JfLD9ytXBWtNMwInvtFm4fPmDouv2VDyR0xnK2db+/axsJZnbxqjGu1um4Dqbak=
=7gdx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"Fairly small update, but there are some interesting new features.
Common:
Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other
architectures). This can improve latency up to 50% on some
scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This
also has to be enabled manually for now, but the plan is to
auto-tune this in the future.
ARM/ARM64:
The highlights are support for GICv3 emulation and dirty page
tracking
s390:
Several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS:
Bugfixes.
x86:
Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested
virtualization improvements (nested APICv---a nice optimization),
usual round of emulation fixes.
There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
Powerpc:
Nothing yet.
The KVM/PPC changes will come in through the PPC maintainers,
because I haven't received them yet and I might end up being
offline for some part of next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: ia64: drop kvm.h from installed user headers
KVM: x86: fix build with !CONFIG_SMP
KVM: x86: emulate: correct page fault error code for NoWrite instructions
KVM: Disable compat ioctl for s390
KVM: s390: add cpu model support
KVM: s390: use facilities and cpu_id per KVM
KVM: s390/CPACF: Choose crypto control block format
s390/kernel: Update /proc/sysinfo file with Extended Name and UUID
KVM: s390: reenable LPP facility
KVM: s390: floating irqs: fix user triggerable endless loop
kvm: add halt_poll_ns module parameter
kvm: remove KVM_MMIO_SIZE
KVM: MIPS: Don't leak FPU/DSP to guest
KVM: MIPS: Disable HTW while in guest
KVM: nVMX: Enable nested posted interrupt processing
KVM: nVMX: Enable nested virtual interrupt delivery
KVM: nVMX: Enable nested apic register virtualization
KVM: nVMX: Make nested control MSRs per-cpu
KVM: nVMX: Enable nested virtualize x2apic mode
KVM: nVMX: Prepare for using hardware MSR bitmap
...
If an attacker can cause a controlled kernel stack overflow, overwriting
the restart block is a very juicy exploit target. This is because the
restart_block is held in the same memory allocation as the kernel stack.
Moving the restart block to struct task_struct prevents this exploit by
making the restart_block harder to locate.
Note that there are other fields in thread_info that are also easy
targets, at least on some architectures.
It's also a decent simplification, since the restart code is more or less
identical on all architectures.
[james.hogan@imgtec.com: metag: align thread_info::supervisor_stack]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: David Miller <davem@davemloft.net>
Acked-by: Richard Weinberger <richard@nod.at>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes the NUMA PTE bits and associated helpers. As a
side-effect it increases the maximum possible swap space on x86-64.
One potential source of problems is races between the marking of PTEs
PROT_NONE, NUMA hinting faults and migration. It must be guaranteed that
a PTE being protected is not faulted in parallel, seen as a pte_none and
corrupting memory. The base case is safe but transhuge has problems in
the past due to an different migration mechanism and a dependance on page
lock to serialise migrations and warrants a closer look.
task_work hinting update parallel fault
------------------------ --------------
change_pmd_range
change_huge_pmd
__pmd_trans_huge_lock
pmdp_get_and_clear
__handle_mm_fault
pmd_none
do_huge_pmd_anonymous_page
read? pmd_lock blocks until hinting complete, fail !pmd_none test
write? __do_huge_pmd_anonymous_page acquires pmd_lock, checks pmd_none
pmd_modify
set_pmd_at
task_work hinting update parallel migration
------------------------ ------------------
change_pmd_range
change_huge_pmd
__pmd_trans_huge_lock
pmdp_get_and_clear
__handle_mm_fault
do_huge_pmd_numa_page
migrate_misplaced_transhuge_page
pmd_lock waits for updates to complete, recheck pmd_same
pmd_modify
set_pmd_at
Both of those are safe and the case where a transhuge page is inserted
during a protection update is unchanged. The case where two processes try
migrating at the same time is unchanged by this series so should still be
ok. I could not find a case where we are accidentally depending on the
PTE not being cleared and flushed. If one is missed, it'll manifest as
corruption problems that start triggering shortly after this series is
merged and only happen when NUMA balancing is enabled.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This time with:
* Generic page-table framework for ARM IOMMUs using the LPAE page-table
format, ARM-SMMU and Renesas IPMMU make use of it already.
* Break out of the IO virtual address allocator from the Intel IOMMU so
that it can be used by other DMA-API implementations too. The first
user will be the ARM64 common DMA-API implementation for IOMMUs
* Device tree support for Renesas IPMMU
* Various fixes and cleanups all over the place
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJU3MJOAAoJECvwRC2XARrjopUP+wachFx8vb00M4hlnlwL6FCn
DyIFkA1n4wL0muPhjcBI+LViEXrSxjr2TYoJEaBg+fiByWWQ1Hefg+KPz331Lo1D
+uo7WiOa1AB3pfkQiUN9IN6xx+o6ivhb3UQPiL4FHjggB/qz+KVxMM9nx0j8o0fQ
D9q6HLFiOIsFkra3xZaSuDGvYUBpcwyfn8FP1HVfvLlg1uxIGDcUJX3qU5UBpj9q
al/lPZ4A7rp+JLApV6WyouPiyVOZKikb5x920KeRNBem7a9fNBdgf+x7QbKpNXa1
5MaT5MarwGe8lJE4wtjOqRtsllhia+A1rg/6JbROPrlGetRFiuIh2sCKLvwOCko/
IjBHSutpaRT1lFoAG0TAnXQlvHRG/58XxOlP3eF613X/p8/cezuUaTyTIwZam9X3
j2GWwbUcBiHTxlu7bQDPz6a7cTf4w6wEALzYl18QrAFv+2LqlCfOo/LSlpStmjrF
kRN8DYaohlTULvmFneSr8rfGsnp5yPgIPvdmqiSwTz/Ih7kYPgfLy6+v6IAHUqZj
0n9oGs8eMqVvSzM2qqmyA9WGuQZRyhNjj4iDwn/he5YMw2kqxUQYGMpLnSu0Oi48
n4PqodtVol64jKLwaHZwyU8u71iyjUC5K9TDot/I2wlSRcTELJhxGh6c1sfDLyrO
u/htIszgKCgFvVrQoEZB
=dwrA
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
"This time with:
- Generic page-table framework for ARM IOMMUs using the LPAE
page-table format, ARM-SMMU and Renesas IPMMU make use of it
already.
- Break out the IO virtual address allocator from the Intel IOMMU so
that it can be used by other DMA-API implementations too. The
first user will be the ARM64 common DMA-API implementation for
IOMMUs
- Device tree support for Renesas IPMMU
- Various fixes and cleanups all over the place"
* tag 'iommu-updates-v3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (36 commits)
iommu/amd: Convert non-returned local variable to boolean when relevant
iommu: Update my email address
iommu/amd: Use wait_event in put_pasid_state_wait
iommu/amd: Fix amd_iommu_free_device()
iommu/arm-smmu: Avoid build warning
iommu/fsl: Various cleanups
iommu/fsl: Use %pa to print phys_addr_t
iommu/omap: Print phys_addr_t using %pa
iommu: Make more drivers depend on COMPILE_TEST
iommu/ipmmu-vmsa: Fix IOMMU lookup when multiple IOMMUs are registered
iommu: Disable on !MMU builds
iommu/fsl: Remove unused fsl_of_pamu_ids[]
iommu/fsl: Fix section mismatch
iommu/ipmmu-vmsa: Use the ARM LPAE page table allocator
iommu: Fix trace_map() to report original iova and original size
iommu/arm-smmu: add support for iova_to_phys through ATS1PR
iopoll: Introduce memory-mapped IO polling macros
iommu/arm-smmu: don't touch the secure STLBIALL register
iommu/arm-smmu: make use of generic LPAE allocator
iommu: io-pgtable-arm: add non-secure quirk
...
Merge second set of updates from Andrew Morton:
"More of MM"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (83 commits)
mm/nommu.c: fix arithmetic overflow in __vm_enough_memory()
mm/mmap.c: fix arithmetic overflow in __vm_enough_memory()
vmstat: Reduce time interval to stat update on idle cpu
mm/page_owner.c: remove unnecessary stack_trace field
Documentation/filesystems/proc.txt: describe /proc/<pid>/map_files
mm: incorporate read-only pages into transparent huge pages
vmstat: do not use deferrable delayed work for vmstat_update
mm: more aggressive page stealing for UNMOVABLE allocations
mm: always steal split buddies in fallback allocations
mm: when stealing freepages, also take pages created by splitting buddy page
mincore: apply page table walker on do_mincore()
mm: /proc/pid/clear_refs: avoid split_huge_page()
mm: pagewalk: fix misbehavior of walk_page_range for vma(VM_PFNMAP)
mempolicy: apply page table walker on queue_pages_range()
arch/powerpc/mm/subpage-prot.c: use walk->vma and walk_page_vma()
memcg: cleanup preparation for page table walk
numa_maps: remove numa_maps->vma
numa_maps: fix typo in gather_hugetbl_stats
pagemap: use walk->vma instead of calling find_vma()
clear_refs: remove clear_refs_private->vma and introduce clear_refs_test_walk()
...
Including:
- Update of all defconfigs
- Addition of a bunch of config options to modernise our defconfigs
- Some PS3 updates from Geoff
- Optimised memcmp for 64 bit from Anton
- Fix for kprobes that allows 'perf probe' to work from Naveen
- Several cxl updates from Ian & Ryan
- Expanded support for the '24x7' PMU from Cody & Sukadev
- Freescale updates from Scott:
"Highlights include 8xx optimizations, some more work on datapath device
tree content, e300 machine check support, t1040 corenet error reporting,
and various cleanups and fixes."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU2/LSAAoJEFHr6jzI4aWATDAQAKPU6v2Mq0sLnGst69waHU/Q
vvpIq9hqVeSr6znHhrnazc3iQTLk0acqIdxUl/dT+5ADhi9+FxGD5Ckk+BH1DDve
g6mQelSMlVZF9hKonHsbr4iUuTUyZyx2vj2qjdgOaRiv9Xubq6vUFNeolq3AeHxv
J33vqRTmowj3VJ52u+V1dmzXQGfUye7DG2jHpjXoBieZsroTvyuYm5GoIPblWFO6
zbYRh6IitALnQRtXfwIManPyWMkJti9JX8PwDkmvacr+V+MXbrksHpIOITMhNlo1
WsVnFMpxuk80XuUfhaKZgISgBSfCqBckvKDn2QwztF2/kBnV6Su5xiOKVgouzM6B
myy+maiMZlNJlNjqdMK5v2bqMXICP048zgfMbDN2e1K25jSSlRawt0RngoCQO2EP
7aWmEDAlL3shgzkl68pj1fevQokxC/40C1yExIgAa9C31+bjtMz4Xb1SfN1SSveW
7uWEY/eG9eLsrSE1CeBDvh6B8BRdyuIHgPhux4Tgc/bUtBGFQ29NuXwKh3QCeEy9
9wWrRGx3U69eP06Ey7P5js3jPTQs80bjJewyGaiPQF5XHB89To8Dg8VfXjEV49Dx
Pa3OLL5QsQloKfEBiEhQeGfKYImC00pVYAxc0qpmnr9T+25Ri1TLdF1EBAwriSYE
5p9kSW+ZIht0lvzsdPNm
=xDU3
-----END PGP SIGNATURE-----
Merge tag 'powerpc-3.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
Pull powerpc updates from Michael Ellerman:
- Update of all defconfigs
- Addition of a bunch of config options to modernise our defconfigs
- Some PS3 updates from Geoff
- Optimised memcmp for 64 bit from Anton
- Fix for kprobes that allows 'perf probe' to work from Naveen
- Several cxl updates from Ian & Ryan
- Expanded support for the '24x7' PMU from Cody & Sukadev
- Freescale updates from Scott:
"Highlights include 8xx optimizations, some more work on datapath
device tree content, e300 machine check support, t1040 corenet
error reporting, and various cleanups and fixes"
* tag 'powerpc-3.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux: (102 commits)
cxl: Add missing return statement after handling AFU errror
cxl: Fail AFU initialisation if an invalid configuration record is found
cxl: Export optional AFU configuration record in sysfs
powerpc/mm: Warn on flushing tlb page in kernel context
powerpc/powernv: Add OPAL soft-poweroff routine
powerpc/perf/hv-24x7: Document sysfs event description entries
powerpc/perf/hv-gpci: add the remaining gpci requests
powerpc/perf/{hv-gpci, hv-common}: generate requests with counters annotated
powerpc/perf/hv-24x7: parse catalog and populate sysfs with events
perf: define EVENT_DEFINE_RANGE_FORMAT_LITE helper
perf: add PMU_EVENT_ATTR_STRING() helper
perf: provide sysfs_show for struct perf_pmu_events_attr
powerpc/kernel: Avoid initializing device-tree pointer twice
powerpc: Remove old compile time disabled syscall tracing code
powerpc/kernel: Make syscall_exit a local label
cxl: Fix device_node reference counting
powerpc/mm: bail out early when flushing TLB page
powerpc: defconfigs: add MTD_SPI_NOR (new dependency for M25P80)
perf/powerpc: reset event hw state when adding it to the PMU
powerpc/qe: Use strlcpy()
...
LKP has triggered a compiler warning after my recent patch "mm: account
pmd page tables to the process":
mm/mmap.c: In function 'exit_mmap':
>> mm/mmap.c:2857:2: warning: right shift count >= width of type [enabled by default]
The code:
> 2857 WARN_ON(mm_nr_pmds(mm) >
2858 round_up(FIRST_USER_ADDRESS, PUD_SIZE) >> PUD_SHIFT);
In this, on tile, we have FIRST_USER_ADDRESS defined as 0. round_up() has
the same type -- int. PUD_SHIFT.
I think the best way to fix it is to define FIRST_USER_ADDRESS as unsigned
long. On every arch for consistency.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces a new module parameter for the KVM module; when it
is present, KVM attempts a bit of polling on every HLT before scheduling
itself out via kvm_vcpu_block.
This parameter helps a lot for latency-bound workloads---in particular
I tested it with O_DSYNC writes with a battery-backed disk in the host.
In this case, writes are fast (because the data doesn't have to go all
the way to the platters) but they cannot be merged by either the host or
the guest. KVM's performance here is usually around 30% of bare metal,
or 50% if you use cache=directsync or cache=writethrough (these
parameters avoid that the guest sends pointless flush requests, and
at the same time they are not slow because of the battery-backed cache).
The bad performance happens because on every halt the host CPU decides
to halt itself too. When the interrupt comes, the vCPU thread is then
migrated to a new physical CPU, and in general the latency is horrible
because the vCPU thread has to be scheduled back in.
With this patch performance reaches 60-65% of bare metal and, more
important, 99% of what you get if you use idle=poll in the guest. This
means that the tunable gets rid of this particular bottleneck, and more
work can be done to improve performance in the kernel or QEMU.
Of course there is some price to pay; every time an otherwise idle vCPUs
is interrupted by an interrupt, it will poll unnecessarily and thus
impose a little load on the host. The above results were obtained with
a mostly random value of the parameter (500000), and the load was around
1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU.
The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll,
that can be used to tune the parameter. It counts how many HLT
instructions received an interrupt during the polling period; each
successful poll avoids that Linux schedules the VCPU thread out and back
in, and may also avoid a likely trip to C1 and back for the physical CPU.
While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second.
Of these halts, almost all are failed polls. During the benchmark,
instead, basically all halts end within the polling period, except a more
or less constant stream of 50 per second coming from vCPUs that are not
running the benchmark. The wasted time is thus very low. Things may
be slightly different for Windows VMs, which have a ~10 ms timer tick.
The effect is also visible on Marcelo's recently-introduced latency
test for the TSC deadline timer. Though of course a non-RT kernel has
awful latency bounds, the latency of the timer is around 8000-10000 clock
cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC
deadline timer, thus, the effect is both a smaller average latency and
a smaller variance.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kim Phillips reported following build failure.
LD init/built-in.o
mm/built-in.o: In function `free_pages_prepare':
mm/page_alloc.c:770: undefined reference to `.kernel_map_pages'
mm/built-in.o: In function `prep_new_page':
mm/page_alloc.c:933: undefined reference to `.kernel_map_pages'
mm/built-in.o: In function `map_pages':
mm/compaction.c:61: undefined reference to `.kernel_map_pages'
make: *** [vmlinux] Error 1
Reason for this problem is that commit 031bc5743f
("mm/debug-pagealloc: make debug-pagealloc boottime configurable")
forgot to remove the old declaration of kernel_map_pages() for some
architectures. This patch removes them to fix build failure.
Reported-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Register a notifier for a OPAL message indicating that the machine
should prepare itself for a graceful power off.
OPAL will tell us if the power off is a reboot or shutdown, but for now
we perform the same orderly_poweroff action.
Signed-off-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Freescale updates from Scott:
"Highlights include 8xx optimizations, some more work on datapath device
tree content, e300 machine check support, t1040 corenet error reporting,
and various cleanups and fixes."
Currently a PAMU driver patch is very likely to receive some
checkpatch complaints about the code in the context of the
patch. This patch is an attempt to fix most of that and make
the driver more readable
Also fixed a subset of the sparse and coccinelle reported
issues.
Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
When unbinding and rebinding the driver on a system with a card in PHB0, this
error condition is reached after a few attempts:
ERROR: Bad of_node_put() on /pciex@3fffe40000000
CPU: 0 PID: 3040 Comm: bash Not tainted 3.18.0-rc3-12545-g3627ffe #152
Call Trace:
[c000000721acb5c0] [c00000000086ef94] .dump_stack+0x84/0xb0 (unreliable)
[c000000721acb640] [c00000000073a0a8] .of_node_release+0xd8/0xe0
[c000000721acb6d0] [c00000000044bc44] .kobject_release+0x74/0xe0
[c000000721acb760] [c0000000007394fc] .of_node_put+0x1c/0x30
[c000000721acb7d0] [c000000000545cd8] .cxl_probe+0x1a98/0x1d50
[c000000721acb900] [c0000000004845a0] .local_pci_probe+0x40/0xc0
[c000000721acb980] [c000000000484998] .pci_device_probe+0x128/0x170
[c000000721acba30] [c00000000052400c] .driver_probe_device+0xac/0x2a0
[c000000721acbad0] [c000000000522468] .bind_store+0x108/0x160
[c000000721acbb70] [c000000000521448] .drv_attr_store+0x38/0x60
[c000000721acbbe0] [c000000000293840] .sysfs_kf_write+0x60/0xa0
[c000000721acbc50] [c000000000292500] .kernfs_fop_write+0x140/0x1d0
[c000000721acbcf0] [c000000000208648] .vfs_write+0xd8/0x260
[c000000721acbd90] [c000000000208b18] .SyS_write+0x58/0x100
[c000000721acbe30] [c000000000009258] syscall_exit+0x0/0x98
We are missing a call to of_node_get(). pnv_pci_to_phb_node() should
call of_node_get() otherwise np's reference count isn't incremented and
it might go away. Rename pnv_pci_to_phb_node() to pnv_pci_get_phb_node()
so it's clear it calls of_node_get().
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When pages are not 4K, PGDIR table is allocated with kmalloc(). In order to
optimise TLB handlers, aligned memory is needed. kmalloc() doesn't provide
aligned memory blocks, so lets use a kmem_cache pool instead.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <scottwood@freescale.com>
On powerpc 8xx, in TLB entries, 0x400 bit is set to 1 for read-only pages
and is set to 0 for RW pages. So we should use _PAGE_RO instead of _PAGE_RW
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Some powerpc like the 8xx don't have a RW bit in PTE bits but a RO
(Read Only) bit. This patch implements the handling of a _PAGE_RO flag
to be used in place of _PAGE_RW
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[scottwood@freescale.com: fix whitespace]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Fix this:
CC arch/powerpc/sysdev/fsl_pci.o
arch/powerpc/sysdev/fsl_pci.c: In function 'fsl_pcie_check_link':
arch/powerpc/sysdev/fsl_pci.c:91:1: error: the frame size of 1360 bytes is larger than 1024 bytes [-Werror=frame-larger-than=]
when configuring FRAME_WARN, by refactoring indirect_read_config()
to take hose and bus number instead of the 1344-byte struct pci_bus.
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Remove slice_set_psize() which is not used.
It was added in 3a8247cc2c "powerpc: Only demote individual slices
rather than whole process" but was never used.
Remove vsx_assist_exception() which is not used.
It was added in ce48b21007 "powerpc: Add VSX context save/restore,
ptrace and signal support" but was never used.
Remove generic_mach_cpu_die() which is not used.
Its last caller was removed in 375f561a41 "powerpc/powernv: Always go
into nap mode when CPU is offline".
Remove mpc7448_hpc2_power_off() and mpc7448_hpc2_halt() which are
unused.
These were introduced in c5d56332fd "[POWERPC] Add general support for
mpc7448hpc2 (Taiga) platform" but were never used.
This was partially found by using a static code analysis program called
cppcheck.
Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
[mpe: Update changelog with details on when/why they are unused]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
RTAS events require arguments be passed in big endian while hypercalls
have their arguments passed in registers and the values should therefore
be in CPU endian.
The "ibm,suspend_me" 'RTAS' call makes a sequence of hypercalls to setup
one true RTAS call. This means that "ibm,suspend_me" is handled
specially in the ppc_rtas() syscall.
The ppc_rtas() syscall has its arguments in big endian and can therefore
pass these arguments directly to the RTAS call. "ibm,suspend_me" is
handled specially from within ppc_rtas() (by calling rtas_ibm_suspend_me())
which has left an endian bug on little endian systems due to the
requirement of hypercalls. The return value from rtas_ibm_suspend_me()
gets returned in cpu endian, and is left unconverted, also a bug on
little endian systems.
rtas_ibm_suspend_me() does not actually make use of the rtas_args that
it is passed. This patch removes the convoluted use of the rtas_args
struct to pass params to rtas_ibm_suspend_me() in favour of passing what
it needs as actual arguments. This patch also ensures the two callers of
rtas_ibm_suspend_me() pass function parameters in cpu endian and in the
case of ppc_rtas(), converts the return value.
migrate_store() (the other caller of rtas_ibm_suspend_me()) is from a
sysfs file which deals with everything in cpu endian so this function
only underwent cleanup.
This patch has been tested with KVM both LE and BE and on PowerVM both
LE and BE. Under QEMU/KVM the migration happens without touching these
code pathes.
For PowerVM there is no obvious regression on BE and the LE code path
now provides the correct parameters to the hypervisor.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When PE's frozen count hits maximal allowed frozen times, which is
5 currently, it will be forced to be offline permanently. Once the
PE is removed permanently, rebooting machine is required to bring
the PE back. It's not convienent when testing EEH functionality.
The patch exports the maximal allowed frozen times through debugfs
entry (/sys/kernel/debug/powerpc/eeh_max_freezes).
Requested-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The conditions that one specific PE's frozen count exceeds the maximal
allowed times (EEH_MAX_ALLOWED_FREEZES) and it's in isolated or recovery
state indicate the PE was removed permanently implicitly. The patch
introduces flag EEH_PE_REMOVED to indicate that explicitly so that we
don't depend on the fixed maximal allowed times, which can be varied as
we do in subsequent patch.
Flag EEH_PE_REMOVED is expected to be marked for the PE whose frozen
count exceeds the maximal allowed times, or just failed from recovery.
Requested-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PE#0 should be regarded as valid for P7IOC, while it's invalid for
PHB3. The patch adds flag EEH_VALID_PE_ZERO to differentiate those
two cases. Without the patch, we possibly see frozen PE#0 state is
cleared without EEH recovery taken on P7IOC as following kernel logs
indicate:
[root@ltcfbl8eb ~]# dmesg
:
pci 0000:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0000:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0001:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0001:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0002:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0002:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0003:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0003:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0003:20 : [PE# 002] Secondary bus 32..63 associated with PE#2
:
EEH: Clear non-existing PHB#3-PE#0
EEH: PHB location: U78AE.001.WZS00M9-P1-002
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, all non-dot symbols are being treated as function descriptors
in ABIv1. This is incorrect and is resulting in perf probe not working:
# perf probe do_fork
Added new event:
Failed to write event: Invalid argument
Error: Failed to add events.
# dmesg | tail -1
[192268.073063] Could not insert probe at _text+768432: -22
perf probe bases all kernel probes on _text and writes,
for example, "p:probe/do_fork _text+768432" to
/sys/kernel/debug/tracing/kprobe_events. In-kernel, _text is being
considered to be a function descriptor and is resulting in the above
error.
Fix this by changing how we lookup symbol addresses on ppc64. We first
check for the dot variant of a symbol and look at the non-dot variant
only if that fails. In this manner, we avoid having to look at the
function descriptor.
While at it, also separate out how this works on ABIv2 where
we don't have dot symbols, but need to use the local entry point.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Once upon a time, at least 9 years ago (< 2.6.12), _TIF_SYSCALL_T_OR_A
meant "TRACE or AUDIT". But these days it means TRACE or AUDIT or
SECCOMP or TRACEPOINT or NOHZ.
All of those are implemented via syscall_dotrace() so rename the flag to
that to try and clarify things.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We removed the last usage of CPU_FTR_IABR in commit 1ad7d70562
"powerpc/xmon: Enable HW instruction breakpoint on POWER8".
Mark it as free.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Turning snoops on is the last step in CAPP recovery. Sapphire is expected to
have reinitialized the PHB and done the previous recovery steps.
Add mode argument to opal call to do this. Driver can turn snoops off although
it does not currently.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This driver provides UIO access to memory of a peripheral connected
to the Freescale enhanced local bus controller (eLBC) interface
using the general purpose chip-select mode (GPCM).
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In commit a3e5b356b3 "powerpc: Don't use local named register variable
in current_thread_info" Anton changed the way we did current_thread_info()
to accommodate LLVM, and it was not meant to have any effect elsewhere.
Unfortunately it has exposed a gcc bug, where r1 gets copied into
another register and then gcc uses that register to restore the toc
after a function call, even when that register is volatile and has been
clobbered by the function call.
We could revert Anton's patch, but it's not clear the original code is
safe either, we may just have been lucky.
The cleanest solution is to just use the existing CURRENT_THREAD_INFO()
asm macro, and call it using inline asm.
Segher points out we don't need volatile on the asm, if the result of
the shift is unused it's fine for the compiler to elide it.
Fixes: a3e5b356b3 ("powerpc: Don't use local named register variable in current_thread_info")
Reported-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In LE kernel, we currently have a hack for kexec that resets the exception
endian before starting a new kernel as the kernel that is loaded could be a
big endian or a little endian kernel. In kdump case, resetting exception
endian fails when one or more cpus is disabled. But we can ignore the failure
and still go ahead, as in most cases crashkernel will be of same endianess
as primary kernel and reseting endianess is not even needed in those cases.
This patch adds a new inline function to say if this is kdump path. This
function is used at places where such a check is needed.
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
[mpe: Rename to kdump_in_progress(), use bool, and edit comment]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Wire up sys_execveat(). This passes the selftests for the system call.
Check success of execveat(3, '../execveat', 0)... [OK]
Check success of execveat(5, 'execveat', 0)... [OK]
Check success of execveat(6, 'execveat', 0)... [OK]
Check success of execveat(-100, '/home/pranith/linux/...ftests/exec/execveat', 0)... [OK]
Check success of execveat(99, '/home/pranith/linux/...ftests/exec/execveat', 0)... [OK]
Check success of execveat(8, '', 4096)... [OK]
Check success of execveat(17, '', 4096)... [OK]
Check success of execveat(9, '', 4096)... [OK]
Check success of execveat(14, '', 4096)... [OK]
Check success of execveat(14, '', 4096)... [OK]
Check success of execveat(15, '', 4096)... [OK]
Check failure of execveat(8, '', 0) with ENOENT... [OK]
Check failure of execveat(8, '(null)', 4096) with EFAULT... [OK]
Check success of execveat(5, 'execveat.symlink', 0)... [OK]
Check success of execveat(6, 'execveat.symlink', 0)... [OK]
Check success of execveat(-100, '/home/pranith/linux/...xec/execveat.symlink', 0)... [OK]
Check success of execveat(10, '', 4096)... [OK]
Check success of execveat(10, '', 4352)... [OK]
Check failure of execveat(5, 'execveat.symlink', 256) with ELOOP... [OK]
Check failure of execveat(6, 'execveat.symlink', 256) with ELOOP... [OK]
Check failure of execveat(-100, '/home/pranith/linux/tools/testing/selftests/exec/execveat.symlink', 256) with ELOOP... [OK]
Check success of execveat(3, '../script', 0)... [OK]
Check success of execveat(5, 'script', 0)... [OK]
Check success of execveat(6, 'script', 0)... [OK]
Check success of execveat(-100, '/home/pranith/linux/...elftests/exec/script', 0)... [OK]
Check success of execveat(13, '', 4096)... [OK]
Check success of execveat(13, '', 4352)... [OK]
Check failure of execveat(18, '', 4096) with ENOENT... [OK]
Check failure of execveat(7, 'script', 0) with ENOENT... [OK]
Check success of execveat(16, '', 4096)... [OK]
Check success of execveat(16, '', 4096)... [OK]
Check success of execveat(4, '../script', 0)... [OK]
Check success of execveat(4, 'script', 0)... [OK]
Check success of execveat(4, '../script', 0)... [OK]
Check failure of execveat(4, 'script', 0) with ENOENT... [OK]
Check failure of execveat(5, 'execveat', 65535) with EINVAL... [OK]
Check failure of execveat(5, 'no-such-file', 0) with ENOENT... [OK]
Check failure of execveat(6, 'no-such-file', 0) with ENOENT... [OK]
Check failure of execveat(-100, 'no-such-file', 0) with ENOENT... [OK]
Check failure of execveat(5, '', 4096) with EACCES... [OK]
Check failure of execveat(5, 'Makefile', 0) with EACCES... [OK]
Check failure of execveat(11, '', 4096) with EACCES... [OK]
Check failure of execveat(12, '', 4096) with EACCES... [OK]
Check failure of execveat(99, '', 4096) with EBADF... [OK]
Check failure of execveat(99, 'execveat', 0) with EBADF... [OK]
Check failure of execveat(8, 'execveat', 0) with ENOTDIR... [OK]
Invoke copy of 'execveat' via filename of length 4093:
Check success of execveat(19, '', 4096)... [OK]
Check success of execveat(5, 'xxxxxxxxxxxxxxxxxxxx...yyyyyyyyyyyyyyyyyyyy', 0)... [OK]
Invoke copy of 'script' via filename of length 4093:
Check success of execveat(20, '', 4096)... [OK]
/bin/sh: 0: Can't open /dev/fd/5/xxxxxxx(... a long line of x's and y's, 0)... [OK]
Check success of execveat(5, 'xxxxxxxxxxxxxxxxxxxx...yyyyyyyyyyyyyyyyyyyy', 0)... [OK]
Tested on a 32-bit powerpc system.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The highlight is the series that reworks the idle management on powernv, which
allows us to use deeper idle states on those machines.
There's the fix from Anton for the "BUG at kernel/smpboot.c:134!" problem.
An i2c driver for powernv. This is acked by Wolfram Sang, and he asked that we
take it through the powerpc tree.
A fix for audit from rgb at Red Hat, acked by Paul Moore who is one of the audit
maintainers.
A patch from Ben to export the symbol map of our OPAL firmware as a sysfs file,
so that tools can use it.
Also some CXL fixes, a couple of powerpc perf fixes, a fix for smt-enabled, and
the patch to add __force to get_user() so we can use bitwise types.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUk+oCAAoJEFHr6jzI4aWADBAP/i/CJ+cu6o4mzNDdfs8bnxqn
RGZCSV+SrkTZPcoLbLiM9iaqq34ORVIn7hwkhkTz2/koluMVfTsqtVulMoFf+hVd
GTVt81MjMFzA3hM3bXEV58KRT79+64K54dLCe0F7OaD6f4AikKR4LLz/PY0EBMiZ
2h13uQlfglaMeYTsaD9eeUpIIKs7+PwsNqUknmN9We07WWfxWqnRpiTR4TYTMXx4
3lQPvCnnHokwDqjuKgwiqDVSaCfCl8laS1i+BPk0G0aRV1AnPDvR3MhgVb2IpNxX
Joxy2D1HSawwDhqHOsId8dkGZXOM4vzo+Y658qnC1XfThqE0MhA+kCfa5/b6xlOR
K7nDO5A41B6nXB3mMOQh/szTXSIa8KJRTR3ibbJJrMdF6F0TN0JLLQNUcmM4j/5D
vvgZEzvFNZhWX98ktlQLde2E4ClWJg6mWESCGSgJeVjIXaxe/6GneIa8vLKm5QMu
OoykNsASMDGqddYMGoYeX/mSsvjPjK0PDO2q19sPbkP8xpyDLx6J8xo+5hO4l8xc
0Cdb38ECfeno+w5oKAnjidHnz0KYBsuYFLeS+rV0b8sUSWAzfdEjSn2AVIQ8gLOv
IOCAqwZ5tL9EcUs+AKru5EHtBEV+2XB54xPRxfdFS/k+vYRE7MpS3ipxveIynN2l
eRxf9hsSO7ASNDd0b3ID
=GXdK
-----END PGP SIGNATURE-----
Merge tag 'powerpc-3.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
Pull second batch of powerpc updates from Michael Ellerman:
"The highlight is the series that reworks the idle management on
powernv, which allows us to use deeper idle states on those machines.
There's the fix from Anton for the "BUG at kernel/smpboot.c:134!"
problem.
An i2c driver for powernv. This is acked by Wolfram Sang, and he
asked that we take it through the powerpc tree.
A fix for audit from rgb at Red Hat, acked by Paul Moore who is one of
the audit maintainers.
A patch from Ben to export the symbol map of our OPAL firmware as a
sysfs file, so that tools can use it.
Also some CXL fixes, a couple of powerpc perf fixes, a fix for
smt-enabled, and the patch to add __force to get_user() so we can use
bitwise types"
* tag 'powerpc-3.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux:
powerpc/powernv: Ignore smt-enabled on Power8 and later
powerpc/uaccess: Allow get_user() with bitwise types
powerpc/powernv: Expose OPAL firmware symbol map
powernv/powerpc: Add winkle support for offline cpus
powernv/cpuidle: Redesign idle states management
powerpc/powernv: Enable Offline CPUs to enter deep idle states
powerpc/powernv: Switch off MMU before entering nap/sleep/rvwinkle mode
i2c: Driver to expose PowerNV platform i2c busses
powerpc: add little endian flag to syscall_get_arch()
power/perf/hv-24x7: Use kmem_cache_free() instead of kfree
powerpc/perf/hv-24x7: Use per-cpu page buffer
cxl: Unmap MMIO regions when detaching a context
cxl: Add timeout to process element commands
cxl: Change contexts_lock to a mutex to fix sleep while atomic bug
powerpc: Secondary CPUs must set cpu_callin_map after setting active and online
- spring cleaning: removed support for IA64, and for hardware-assisted
virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken because
the (non-KVM) XSAVES patches inadvertently changed the KVM userspace
ABI whenever XSAVES was enabled; hence, this part is going to stable.
Guest support is just a matter of exposing the feature and CPUID leaves
support.
Right now KVM is broken for PPC BookE in your tree (doesn't compile).
I'll reply to the pull request with a patch, please apply it either
before the pull request or in the merge commit, in order to preserve
bisectability somewhat.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJUkpg+AAoJEL/70l94x66DUmoH/jzXYkptSW9NGgm79KqxGJlD
lzLnLBkitVvx++Mz5YBhdJEhKKLUlCtifFT1zPJQ/pthQhIRSaaAwZyNGgUs5w5x
yMGKHiPQFyZRbmQtZhCInW0BftJoYHHciO3nUfHCZnp34My9MP2D55W7/z+fYFfQ
DuqBSE9ThyZJtZ4zh8NRA9fCOeuqwVYRyoBs820Wbsh4cpIBoIK63Dg7k+CLE+ZV
MZa/mRL6bAfsn9W5bnOUAgHJ3SPznnWbO3/g0aV+roL/5pffblprJx9lKNR08xUM
6hDFLop2gDehDJesDkY/o8Ckp1hEouvfsVpSShry4vcgtn0hgh2O5/6Orbmj6vE=
=Zwq1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"3.19 changes for KVM:
- spring cleaning: removed support for IA64, and for hardware-
assisted virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken
because the (non-KVM) XSAVES patches inadvertently changed the KVM
userspace ABI whenever XSAVES was enabled; hence, this part is
going to stable. Guest support is just a matter of exposing the
feature and CPUID leaves support"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (179 commits)
KVM: move APIC types to arch/x86/
KVM: PPC: Book3S: Enable in-kernel XICS emulation by default
KVM: PPC: Book3S HV: Improve H_CONFER implementation
KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register
KVM: PPC: Book3S HV: Remove code for PPC970 processors
KVM: PPC: Book3S HV: Tracepoints for KVM HV guest interactions
KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
arch: powerpc: kvm: book3s_paired_singles.c: Remove unused function
arch: powerpc: kvm: book3s_pr.c: Remove unused function
arch: powerpc: kvm: book3s.c: Remove some unused functions
arch: powerpc: kvm: book3s_32_mmu.c: Remove unused function
KVM: PPC: Book3S HV: Check wait conditions before sleeping in kvmppc_vcore_blocked
KVM: PPC: Book3S HV: ptes are big endian
KVM: PPC: Book3S HV: Fix inaccuracies in ICP emulation for H_IPI
KVM: PPC: Book3S HV: Fix KSM memory corruption
KVM: PPC: Book3S HV: Fix an issue where guest is paused on receiving HMI
KVM: PPC: Book3S HV: Fix computation of tlbie operand
KVM: PPC: Book3S HV: Add missing HPTE unlock
KVM: PPC: BookE: Improve irq inject tracepoint
arm/arm64: KVM: Require in-kernel vgic for the arch timers
...
At the moment, if p and x are both of the same bitwise type
(eg. __le32), get_user(x, p) produces a sparse warning.
This is because *p is loaded into a long then cast back to typeof(*p).
When typeof(*p) is a bitwise type (which is uncommon), such a cast needs
__force, otherwise sparse produces a warning.
For non-bitwise types __force should have no effect, and should not hide
any legitimate errors.
Note that we are casting to typeof(*p) not typeof(x). Even with the
cast, if x and *p are of different types we should get the warning, so I
think we are not loosing the ability to detect any actual errors.
virtio would like to use bitwise types with get_user() so fix these
spurious warnings by adding __force.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
[mpe: Fill in changelog with more details]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently the H_CONFER hcall is implemented in kernel virtual mode,
meaning that whenever a guest thread does an H_CONFER, all the threads
in that virtual core have to exit the guest. This is bad for
performance because it interrupts the other threads even if they
are doing useful work.
The H_CONFER hcall is called by a guest VCPU when it is spinning on a
spinlock and it detects that the spinlock is held by a guest VCPU that
is currently not running on a physical CPU. The idea is to give this
VCPU's time slice to the holder VCPU so that it can make progress
towards releasing the lock.
To avoid having the other threads exit the guest unnecessarily,
we add a real-mode implementation of H_CONFER that checks whether
the other threads are doing anything. If all the other threads
are idle (i.e. in H_CEDE) or trying to confer (i.e. in H_CONFER),
it returns H_TOO_HARD which causes a guest exit and allows the
H_CONFER to be handled in virtual mode.
Otherwise it spins for a short time (up to 10 microseconds) to give
other threads the chance to observe that this thread is trying to
confer. The spin loop also terminates when any thread exits the guest
or when all other threads are idle or trying to confer. If the
timeout is reached, the H_CONFER returns H_SUCCESS. In this case the
guest VCPU will recheck the spinlock word and most likely call
H_CONFER again.
This also improves the implementation of the H_CONFER virtual mode
handler. If the VCPU is part of a virtual core (vcore) which is
runnable, there will be a 'runner' VCPU which has taken responsibility
for running the vcore. In this case we yield to the runner VCPU
rather than the target VCPU.
We also introduce a check on the target VCPU's yield count: if it
differs from the yield count passed to H_CONFER, the target VCPU
has run since H_CONFER was called and may have already released
the lock. This check is required by PAPR.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
There are two ways in which a guest instruction can be obtained from
the guest in the guest exit code in book3s_hv_rmhandlers.S. If the
exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal
instruction), the offending instruction is in the HEIR register
(Hypervisor Emulation Instruction Register). If the exit was caused
by a load or store to an emulated MMIO device, we load the instruction
from the guest by turning data relocation on and loading the instruction
with an lwz instruction.
Unfortunately, in the case where the guest has opposite endianness to
the host, these two methods give results of different endianness, but
both get put into vcpu->arch.last_inst. The HEIR value has been loaded
using guest endianness, whereas the lwz will load the instruction using
host endianness. The rest of the code that uses vcpu->arch.last_inst
assumes it was loaded using host endianness.
To fix this, we define a new vcpu field to store the HEIR value. Then,
in kvmppc_handle_exit_hv(), we transfer the value from this new field to
vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness
differ.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This removes the code that was added to enable HV KVM to work
on PPC970 processors. The PPC970 is an old CPU that doesn't
support virtualizing guest memory. Removing PPC970 support also
lets us remove the code for allocating and managing contiguous
real-mode areas, the code for the !kvm->arch.using_mmu_notifiers
case, the code for pinning pages of guest memory when first
accessed and keeping track of which pages have been pinned, and
the code for handling H_ENTER hypercalls in virtual mode.
Book3S HV KVM is now supported only on POWER7 and POWER8 processors.
The KVM_CAP_PPC_RMA capability now always returns 0.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently the calculations of stolen time for PPC Book3S HV guests
uses fields in both the vcpu struct and the kvmppc_vcore struct. The
fields in the kvmppc_vcore struct are protected by the
vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for
running the virtual core. This works correctly but confuses lockdep,
because it sees that the code takes the tbacct_lock for a vcpu in
kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in
vcore_stolen_time(), and it thinks there is a possibility of deadlock,
causing it to print reports like this:
=============================================
[ INFO: possible recursive locking detected ]
3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted
---------------------------------------------
qemu-system-ppc/6188 is trying to acquire lock:
(&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
but task is already holding lock:
(&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(&vcpu->arch.tbacct_lock)->rlock);
lock(&(&vcpu->arch.tbacct_lock)->rlock);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by qemu-system-ppc/6188:
#0: (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f98>] .vcpu_load+0x28/0xe0 [kvm]
#1: (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecb41b0>] .kvmppc_vcpu_run_hv+0x530/0x1530 [kvm_hv]
#2: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]
stack backtrace:
CPU: 40 PID: 6188 Comm: qemu-system-ppc Not tainted 3.18.0-rc7-kvm-00016-g8db4bc6 #89
Call Trace:
[c000000b2754f3f0] [c000000000b31b6c] .dump_stack+0x88/0xb4 (unreliable)
[c000000b2754f470] [c0000000000faeb8] .__lock_acquire+0x1878/0x2190
[c000000b2754f600] [c0000000000fbf0c] .lock_acquire+0xcc/0x1a0
[c000000b2754f6d0] [c000000000b2954c] ._raw_spin_lock_irq+0x4c/0x70
[c000000b2754f760] [d00000000ecb1fe8] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
[c000000b2754f7f0] [d00000000ecb25b4] .kvmppc_remove_runnable.part.3+0x44/0xd0 [kvm_hv]
[c000000b2754f880] [d00000000ecb43ec] .kvmppc_vcpu_run_hv+0x76c/0x1530 [kvm_hv]
[c000000b2754f9f0] [d00000000eb9f46c] .kvmppc_vcpu_run+0x2c/0x40 [kvm]
[c000000b2754fa60] [d00000000eb9c9a4] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm]
[c000000b2754faf0] [d00000000eb94538] .kvm_vcpu_ioctl+0x498/0x760 [kvm]
[c000000b2754fcb0] [c000000000267eb4] .do_vfs_ioctl+0x444/0x770
[c000000b2754fd90] [c0000000002682a4] .SyS_ioctl+0xc4/0xe0
[c000000b2754fe30] [c0000000000092e4] syscall_exit+0x0/0x98
In order to make the locking easier to analyse, we change the code to
use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and
preempt_tb fields. This lock needs to be an irq-safe lock since it is
used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv()
functions, which are called with the scheduler rq lock held, which is
an irq-safe lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
The B (segment size) field in the RB operand for the tlbie
instruction is two bits, which we get from the top two bits of
the first doubleword of the HPT entry to be invalidated. These
bits go in bits 8 and 9 of the RB operand (bits 54 and 55 in IBM
bit numbering).
The compute_tlbie_rb() function gets these bits as v >> (62 - 8),
which is not correct as it will bring in the top 10 bits, not
just the top two. These extra bits could corrupt the AP, AVAL
and L fields in the RB value. To fix this we shift right 62 bits
and then shift left 8 bits, so we only get the two bits of the
B field.
The first doubleword of the HPT entry is under the control of the
guest kernel. In fact, Linux guests will always put zeroes in bits
54 -- 61 (IBM bits 2 -- 9), but we should not rely on guests doing
this.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Winkle is a deep idle state supported in power8 chips. A core enters
winkle when all the threads of the core enter winkle. In this state
power supply to the entire chiplet i.e core, private L2 and private L3
is turned off. As a result it gives higher powersavings compared to
sleep.
But entering winkle results in a total hypervisor state loss. Hence the
hypervisor context has to be preserved before entering winkle and
restored upon wake up.
Power-on Reset Engine (PORE) is a dedicated engine which is responsible
for powering on the chiplet during wake up. It can be programmed to
restore the register contests of a few specific registers. This patch
uses PORE to restore register state wherever possible and uses stack to
save and restore rest of the necessary registers.
With hypervisor state restore things fall under three categories-
per-core state, per-subcore state and per-thread state. To manage this,
extend the infrastructure introduced for sleep. Mainly we add a paca
variable subcore_sibling_mask. Using this and the core_idle_state we can
distingush first thread in core and subcore.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Deep idle states like sleep and winkle are per core idle states. A core
enters these states only when all the threads enter either the
particular idle state or a deeper one. There are tasks like fastsleep
hardware bug workaround and hypervisor core state save which have to be
done only by the last thread of the core entering deep idle state and
similarly tasks like timebase resync, hypervisor core register restore
that have to be done only by the first thread waking up from these
state.
The current idle state management does not have a way to distinguish the
first/last thread of the core waking/entering idle states. Tasks like
timebase resync are done for all the threads. This is not only is
suboptimal, but can cause functionality issues when subcores and kvm is
involved.
This patch adds the necessary infrastructure to track idle states of
threads in a per-core structure. It uses this info to perform tasks like
fastsleep workaround and timebase resync only once per core.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Originally-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The secondary threads should enter deep idle states so as to gain maximum
powersavings when the entire core is offline. To do so the offline path
must be made aware of the available deepest idle state. Hence probe the
device tree for the possible idle states in powernv core code and
expose the deepest idle state through flags.
Since the device tree is probed by the cpuidle driver as well, move
the parameters required to discover the idle states into an appropriate
common place to both the driver and the powernv core code.
Another point is that fastsleep idle state may require workarounds in
the kernel to function properly. This workaround is introduced in the
subsequent patches. However neither the cpuidle driver or the hotplug
path need be bothered about this workaround.
They will be taken care of by the core powernv code.
Originally-by: Srivatsa S. Bhat <srivatsa@mit.edu>
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>