KVM_CAP_DISABLE_QUIRKS is irrevocably broken. The capability does not
advertise the set of quirks which may be disabled to userspace, so it is
impossible to predict the behavior of KVM. Worse yet,
KVM_CAP_DISABLE_QUIRKS will tolerate any value for cap->args[0], meaning
it fails to reject attempts to set invalid quirk bits.
The only valid workaround for the quirky quirks API is to add a new CAP.
Actually advertise the set of quirks that can be disabled to userspace
so it can predict KVM's behavior. Reject values for cap->args[0] that
contain invalid bits.
Finally, add documentation for the new capability and describe the
existing quirks.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220301060351.442881-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_CAP_PPC_AIL_MODE_3 to advertise the capability to set the AIL
resource mode to 3 with the H_SET_MODE hypercall. This capability
differs between processor types and KVM types (PR, HV, Nested HV), and
affects guest-visible behaviour.
QEMU will implement a cap-ail-mode-3 to control this behaviour[1], and
use the KVM CAP if available to determine KVM support[2].
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document all currently existing operations, flags and explain under
which circumstances they are available. Document the recently
introduced absolute operations and the storage key protection flag,
as well as the existing SIDA operations.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20220211182215.2730017-10-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Availability of the KVM_CAP_S390_MEM_OP_EXTENSION capability signals that:
* The vcpu MEM_OP IOCTL supports storage key checking.
* The vm MEM_OP IOCTL exists.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20220211182215.2730017-9-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Channel I/O honors storage keys and is performed on absolute memory.
For I/O emulation user space therefore needs to be able to do key
checked accesses.
The vm IOCTL supports read/write accesses, as well as checking
if an access would succeed.
Unlike relying on KVM_S390_GET_SKEYS for key checking would,
the vm IOCTL performs the check in lockstep with the read or write,
by, ultimately, mapping the access to move instructions that
support key protection checking with a supplied key.
Fetch and storage protection override are not applicable to absolute
accesses and so are not applied as they are when using the vcpu memop.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20220211182215.2730017-7-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
User space needs a mechanism to perform key checked accesses when
emulating instructions.
The key can be passed as an additional argument.
Having an additional argument is flexible, as user space can
pass the guest PSW's key, in order to make an access the same way the
CPU would, or pass another key if necessary.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20220211182215.2730017-6-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
This way we can more easily find the next free IOCTL number when
adding new IOCTLs.
Fixes: be50b2065d ("kvm: x86: Add support for getting/setting expanded xstate buffer")
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20220128154025.102666-1-frankja@linux.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Because KVM_GET_SUPPORTED_CPUID is meant to be passed (by simple-minded
VMMs) to KVM_SET_CPUID2, it cannot include any dynamic xsave states that
have not been enabled. Probing those, for example so that they can be
passed to ARCH_REQ_XCOMP_GUEST_PERM, requires a new ioctl or arch_prctl.
The latter is in fact worse, even though that is what the rest of the
API uses, because it would require supported_xcr0 to be moved from the
KVM module to the kernel just for this use. In addition, the value
would be nonsensical (or an error would have to be returned) until
the KVM module is loaded in.
Therefore, to limit the growth of system ioctls, add a /dev/kvm
variant of KVM_{GET,HAS}_DEVICE_ATTR, and implement it in x86
with just one group (0) and attribute (KVM_X86_XCOMP_GUEST_SUPP).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With KVM_CAP_XSAVE, userspace uses a hardcoded 4KB buffer to get/set
xstate data from/to KVM. This doesn't work when dynamic xfeatures
(e.g. AMX) are exposed to the guest as they require a larger buffer
size.
Introduce a new capability (KVM_CAP_XSAVE2). Userspace VMM gets the
required xstate buffer size via KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2).
KVM_SET_XSAVE is extended to work with both legacy and new capabilities
by doing properly-sized memdup_user() based on the guest fpu container.
KVM_GET_XSAVE is kept for backward-compatible reason. Instead,
KVM_GET_XSAVE2 is introduced under KVM_CAP_XSAVE2 as the preferred
interface for getting xstate buffer (4KB or larger size) from KVM
(Link: https://lkml.org/lkml/2021/12/15/510)
Also, update the api doc with the new KVM_GET_XSAVE2 ioctl.
Signed-off-by: Guang Zeng <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-19-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds basic support for delivering 2 level event channels to a guest.
Initially, it only supports delivery via the IRQ routing table, triggered
by an eventfd. In order to do so, it has a kvm_xen_set_evtchn_fast()
function which will use the pre-mapped shared_info page if it already
exists and is still valid, while the slow path through the irqfd_inject
workqueue will remap the shared_info page if necessary.
It sets the bits in the shared_info page but not the vcpu_info; that is
deferred to __kvm_xen_has_interrupt() which raises the vector to the
appropriate vCPU.
Add a 'verbose' mode to xen_shinfo_test while adding test cases for this.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The number of GPA bits supported for a RISC-V Guest/VM is based on the
MMU mode used by the G-stage translation. The KVM RISC-V will detect and
use the best possible MMU mode for the G-stage in kvm_arch_init().
We add a generic VM capability KVM_CAP_VM_GPA_BITS which can be used by
the KVM userspace to get the number of GPA (guest physical address) bits
supported for a Guest/VM.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Reviewed-and-tested-by: Atish Patra <atishp@rivosinc.com>
For SEV to work with intra host migration, contents of the SEV info struct
such as the ASID (used to index the encryption key in the AMD SP) and
the list of memory regions need to be transferred to the target VM.
This change adds a commands for a target VMM to get a source SEV VM's sev
info.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Should instruction emulation fail, include the VM exit reason, etc. in
the emulation_failure data passed to userspace, in order that the VMM
can report it as a debugging aid when describing the failure.
Suggested-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Until more flags for kvm_run.emulation_failure flags are defined, it
is undetermined whether new payload elements corresponding to those
flags will be additive or alternative. As a hint to userspace that an
alternative is possible, wrap the current payload elements in a union.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-2-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handling the migration of TSCs correctly is difficult, in part because
Linux does not provide userspace with the ability to retrieve a (TSC,
realtime) clock pair for a single instant in time. In lieu of a more
convenient facility, KVM can report similar information in the kvm_clock
structure.
Provide userspace with a host TSC & realtime pair iff the realtime clock
is based on the TSC. If userspace provides KVM_SET_CLOCK with a valid
realtime value, advance the KVM clock by the amount of elapsed time. Do
not step the KVM clock backwards, though, as it is a monotonic
oscillator.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM host kernel is running in HS-mode needs so we need to handle
the SBI calls coming from guest kernel running in VS-mode.
This patch adds SBI v0.1 support in KVM RISC-V. Almost all SBI v0.1
calls are implemented in KVM kernel module except GETCHAR and PUTCHART
calls which are forwarded to user space because these calls cannot be
implemented in kernel space. In future, when we implement SBI v0.2 for
Guest, we will forward SBI v0.2 experimental and vendor extension calls
to user space.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
Add new types of KVM stats, linear and logarithmic histogram.
Histogram are very useful for observing the value distribution
of time or size related stats.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210802165633.1866976-2-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration
and apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmDV2bEPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDEr8P/ivwROx5NwGcHGmU5RfUCT3aFqhtVHHwD/lu
jPcgoO61kz9TelOu6QRaVuK+mVHxcq3iP4R8nPq/QCkUlEXTmK2xkyhXhGXSYpH4
6jM8+BbC3eG7iAxx6H0UM4JTl4Riwat6ZZtXpWEWs9TKqOHOQYFpMkxSttwVZ1CZ
SjbtFvXLEdzKn6PzUWnKdBNMV/mHsdAtohZit9oJOc4ttc8072XxETQ4TFQ+MSvA
j9zY9QPmWzgcZnotqRRu9sbTGO2vxtXuUtY3sjdD8+C9OgSe9qvpnNjymcmfwaMu
1fBkfh65oaO4ItJBdGOUOoEcFqwN5imPiI7CB/O+ZYkO9sBCuTUPSQwPkyiwXb9r
bUkTaQw2nZiNWsqR1x07fQ2sGYbMp5mnmgmqiV4MUWkLmFp9LZATCWYTTn24cBNS
6SjVP6/8S0r3EhLnYjH0Pn1we5PooU1EF6RlCAd3ewYoo+9fPnwjNYwIWH5i5wB7
+tnei44NACAw9cfbos+BYQQ/dY15OSFzLzIMomlabB7OpXOdDg3H6tJnPbFwWwXb
9nF8XdHqxeDVVVrDCAx1BSodSXm9xqgnQM2RDGTUnpVcAfqAr3MXX6VsyKQDzj8T
QXF9qOVCBAABv6BXAvSQ6mvMJZDUVbUPEPhf7kXzF46JsRd6A7wWoU/OnMGHQ/w7
wjvH8HVy
=fWBV
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for v5.14.
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration
and apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
Add a fallback mechanism to the in-kernel instruction emulator that
allows userspace the opportunity to process an instruction the emulator
was unable to. When the in-kernel instruction emulator fails to process
an instruction it will either inject a #UD into the guest or exit to
userspace with exit reason KVM_INTERNAL_ERROR. This is because it does
not know how to proceed in an appropriate manner. This feature lets
userspace get involved to see if it can figure out a better path
forward.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210510144834.658457-2-aaronlewis@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit defines the API for userspace and prepare the common
functionalities to support per VM/VCPU binary stats data readings.
The KVM stats now is only accessible by debugfs, which has some
shortcomings this change series are supposed to fix:
1. The current debugfs stats solution in KVM could be disabled
when kernel Lockdown mode is enabled, which is a potential
rick for production.
2. The current debugfs stats solution in KVM is organized as "one
stats per file", it is good for debugging, but not efficient
for production.
3. The stats read/clear in current debugfs solution in KVM are
protected by the global kvm_lock.
Besides that, there are some other benefits with this change:
1. All KVM VM/VCPU stats can be read out in a bulk by one copy
to userspace.
2. A schema is used to describe KVM statistics. From userspace's
perspective, the KVM statistics are self-describing.
3. With the fd-based solution, a separate telemetry would be able
to read KVM stats in a less privileged environment.
4. After the initial setup by reading in stats descriptors, a
telemetry only needs to read the stats data itself, no more
parsing or setup is needed.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com> #arm64
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-3-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that we have H_RPT_INVALIDATE fully implemented, enable
support for the same via KVM_CAP_PPC_RPT_INVALIDATE KVM capability
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210621085003.904767-6-bharata@linux.ibm.com
The VMM may not wish to have it's own mapping of guest memory mapped
with PROT_MTE because this causes problems if the VMM has tag checking
enabled (the guest controls the tags in physical RAM and it's unlikely
the tags are correct for the VMM).
Instead add a new ioctl which allows the VMM to easily read/write the
tags from guest memory, allowing the VMM's mapping to be non-PROT_MTE
while the VMM can still read/write the tags for the purpose of
migration.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210621111716.37157-6-steven.price@arm.com
Add a new VM feature 'KVM_ARM_CAP_MTE' which enables memory tagging
for a VM. This will expose the feature to the guest and automatically
tag memory pages touched by the VM as PG_mte_tagged (and clear the tag
storage) to ensure that the guest cannot see stale tags, and so that
the tags are correctly saved/restored across swap.
Actually exposing the new capability to user space happens in a later
patch.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
[maz: move VM_SHARED sampling into the critical section]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210621111716.37157-3-steven.price@arm.com
This hypercall is used by the SEV guest to notify a change in the page
encryption status to the hypervisor. The hypercall should be invoked
only when the encryption attribute is changed from encrypted -> decrypted
and vice versa. By default all guest pages are considered encrypted.
The hypercall exits to userspace to manage the guest shared regions and
integrate with the userspace VMM's migration code.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <90778988e1ee01926ff9cac447aacb745f954c8c.1623174621.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is a new version of KVM_GET_SREGS / KVM_SET_SREGS.
It has the following changes:
* Has flags for future extensions
* Has vcpu's PDPTRs, allowing to save/restore them on migration.
* Lacks obsolete interrupt bitmap (done now via KVM_SET_VCPU_EVENTS)
New capability, KVM_CAP_SREGS2 is added to signal
the userspace of this ioctl.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Modeled after KVM_CAP_ENFORCE_PV_FEATURE_CPUID, the new capability allows
for limiting Hyper-V features to those exposed to the guest in Hyper-V
CPUIDs (0x40000003, 0x40000004, ...).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace BIT() in KVM's UPAI header with _BITUL(). BIT() is not defined
in the UAPI headers and its usage may cause userspace build errors.
Fixes: fb04a1eddb ("KVM: X86: Implement ring-based dirty memory tracking")
Signed-off-by: Joe Richey <joerichey@google.com>
Message-Id: <20210521085849.37676-3-joerichey94@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
New features:
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
- Alexandru is now a reviewer (not really a new feature...)
Fixes:
- Proper emulation of the GICR_TYPER register
- Handle the complete set of relocation in the nVHE EL2 object
- Get rid of the oprofile dependency in the PMU code (and of the
oprofile body parts at the same time)
- Debug and SPE fixes
- Fix vcpu reset
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmCCpuAPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD2G8QALWQYeBggKnNmAJfuihzZ2WariBmgcENs2R2
qNZ/Py6dIF+b69P68nmgrEV1x2Kp35cPJbBwXnnrS4FCB5tk0b8YMaj00QbiRIYV
UXbPxQTmYO1KbevpoEcw8NmR4bZJ/hRYPuzcQG7CCMKIZw0zj2cMcBofzQpTOAp/
CgItdcv7at3iwamQatfU9vUmC0nDdnjdIwSxTAJOYMVV1ENwtnYSNgZVo4XLTg7n
xR/5Qx27PKBJw7GyTRAIIxKAzNXG2tDL+GVIHe4AnRp3z3La8sr6PJf7nz9MCmco
ISgeY7EGQINzmm4LahpnV+2xwwxOWo8QotxRFGNuRTOBazfARyAbp97yJ6eXJUpa
j0qlg3xK9neyIIn9BQKkKx4sY9V45yqkuVDsK6odmqPq3EE01IMTRh1N/XQi+sTF
iGrlM3ZW4AjlT5zgtT9US/FRXeDKoYuqVCObJeXZdm3sJSwEqTAs0JScnc0YTsh7
m30CODnomfR2y5X6GoaubbQ0wcZ2I20K1qtIm+2F6yzD5P1/3Yi8HbXMxsSWyYWZ
1ldoSa+ZUQlzV9Ot0S3iJ4PkphLKmmO96VlxE2+B5gQG50PZkLzsr8bVyYOuJC8p
T83xT9xd07cy+FcGgF9veZL99Y6BLHMa6ZwFUolYNbzJxqrmqyR1aiJMEBIcX+aP
ACeKW1w5
=fpey
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.13
New features:
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
- Alexandru is now a reviewer (not really a new feature...)
Fixes:
- Proper emulation of the GICR_TYPER register
- Handle the complete set of relocation in the nVHE EL2 object
- Get rid of the oprofile dependency in the PMU code (and of the
oprofile body parts at the same time)
- Debug and SPE fixes
- Fix vcpu reset
The command is used for copying the incoming buffer into the
SEV guest memory space.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <c5d0e3e719db7bb37ea85d79ed4db52e9da06257.1618498113.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The command is used to create the encryption context for an incoming
SEV guest. The encryption context can be later used by the hypervisor
to import the incoming data into the SEV guest memory space.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <c7400111ed7458eee01007c4d8d57cdf2cbb0fc2.1618498113.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After completion of SEND_START, but before SEND_FINISH, the source VMM can
issue the SEND_CANCEL command to stop a migration. This is necessary so
that a cancelled migration can restart with a new target later.
Reviewed-by: Nathan Tempelman <natet@google.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Steve Rutherford <srutherford@google.com>
Message-Id: <20210412194408.2458827-1-srutherford@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The command is used for encrypting the guest memory region using the encryption
context created with KVM_SEV_SEND_START.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by : Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <d6a6ea740b0c668b30905ae31eac5ad7da048bb3.1618498113.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a capability for userspace to mirror SEV encryption context from
one vm to another. On our side, this is intended to support a
Migration Helper vCPU, but it can also be used generically to support
other in-guest workloads scheduled by the host. The intention is for
the primary guest and the mirror to have nearly identical memslots.
The primary benefits of this are that:
1) The VMs do not share KVM contexts (think APIC/MSRs/etc), so they
can't accidentally clobber each other.
2) The VMs can have different memory-views, which is necessary for post-copy
migration (the migration vCPUs on the target need to read and write to
pages, when the primary guest would VMEXIT).
This does not change the threat model for AMD SEV. Any memory involved
is still owned by the primary guest and its initial state is still
attested to through the normal SEV_LAUNCH_* flows. If userspace wanted
to circumvent SEV, they could achieve the same effect by simply attaching
a vCPU to the primary VM.
This patch deliberately leaves userspace in charge of the memslots for the
mirror, as it already has the power to mess with them in the primary guest.
This patch does not support SEV-ES (much less SNP), as it does not
handle handing off attested VMSAs to the mirror.
For additional context, we need a Migration Helper because SEV PSP
migration is far too slow for our live migration on its own. Using
an in-guest migrator lets us speed this up significantly.
Signed-off-by: Nathan Tempelman <natet@google.com>
Message-Id: <20210408223214.2582277-1-natet@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a capability, KVM_CAP_SGX_ATTRIBUTE, that can be used by userspace
to grant a VM access to a priveleged attribute, with args[0] holding a
file handle to a valid SGX attribute file.
The SGX subsystem restricts access to a subset of enclave attributes to
provide additional security for an uncompromised kernel, e.g. to prevent
malware from using the PROVISIONKEY to ensure its nodes are running
inside a geniune SGX enclave and/or to obtain a stable fingerprint.
To prevent userspace from circumventing such restrictions by running an
enclave in a VM, KVM restricts guest access to privileged attributes by
default.
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <0b099d65e933e068e3ea934b0523bab070cb8cea.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This capability will allow the user to know which KVM_GUESTDBG_* bits
are supported.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401135451.1004564-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement the hypervisor side of the KVM PTP interface.
The service offers wall time and cycle count from host to guest.
The caller must specify whether they want the host's view of
either the virtual or physical counter.
Signed-off-by: Jianyong Wu <jianyong.wu@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201209060932.212364-7-jianyong.wu@arm.com
This is how Xen guests do steal time accounting. The hypervisor records
the amount of time spent in each of running/runnable/blocked/offline
states.
In the Xen accounting, a vCPU is still in state RUNSTATE_running while
in Xen for a hypercall or I/O trap, etc. Only if Xen explicitly schedules
does the state become RUNSTATE_blocked. In KVM this means that even when
the vCPU exits the kvm_run loop, the state remains RUNSTATE_running.
The VMM can explicitly set the vCPU to RUNSTATE_blocked by using the
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT attribute, and can also use
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST to retrospectively add a given
amount of time to the blocked state and subtract it from the running
state.
The state_entry_time corresponds to get_kvmclock_ns() at the time the
vCPU entered the current state, and the total times of all four states
should always add up to state_entry_time.
Co-developed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce KVM_CAP_PPC_DAWR1 which can be used by QEMU to query whether
KVM supports 2nd DAWR or not. The capability is by default disabled
even when the underlying CPU supports 2nd DAWR. QEMU needs to check
and enable it manually to use the feature.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Instead of adding a plethora of new KVM_CAP_XEN_FOO capabilities, just
add bits to the return value of KVM_CAP_XEN_HVM.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
It turns out that we can't handle event channels *entirely* in userspace
by delivering them as ExtINT, because KVM is a bit picky about when it
accepts ExtINT interrupts from a legacy PIC. The in-kernel local APIC
has to have LVT0 configured in APIC_MODE_EXTINT and unmasked, which
isn't necessarily the case for Xen guests especially on secondary CPUs.
To cope with this, add kvm_xen_get_interrupt() which checks the
evtchn_pending_upcall field in the Xen vcpu_info, and delivers the Xen
upcall vector (configured by KVM_XEN_ATTR_TYPE_UPCALL_VECTOR) if it's
set regardless of LAPIC LVT0 configuration. This gives us the minimum
support we need for completely userspace-based implementation of event
channels.
This does mean that vcpu_enter_guest() needs to check for the
evtchn_pending_upcall flag being set, because it can't rely on someone
having set KVM_REQ_EVENT unless we were to add some way for userspace to
do so manually.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Allow the Xen emulated guest the ability to register secondary
vcpu time information. On Xen guests this is used in order to be
mapped to userspace and hence allow vdso gettimeofday to work.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
The vcpu info supersedes the per vcpu area of the shared info page and
the guest vcpus will use this instead.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Add KVM_XEN_ATTR_TYPE_SHARED_INFO to allow hypervisor to know where the
guest's shared info page is.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
This will be used to set up shared info pages etc.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>