x86 does not automatically set rflags.rf during event injection. This patch
does partial job, setting rflags.rf upon fault injection. It does not handle
the setting of RF upon interrupt injection on rep-string instruction.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch updates RF for rep-string emulation. The flag is set upon the first
iteration, and cleared after the last (if emulated). It is intended to make
sure that if a trap (in future data/io #DB emulation) or interrupt is delivered
to the guest during the rep-string instruction, RF will be set correctly. RF
affects whether instruction breakpoint in the guest is masked.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Haswell and newer Intel CPUs have support for RTM, and in that case DR6.RTM is
not fixed to 1 and DR7.RTM is not fixed to zero. That is not the case in the
current KVM implementation. This bug is apparent only if the MOV-DR instruction
is emulated or the host also debugs the guest.
This patch is a partial fix which enables DR6.RTM and DR7.RTM to be cleared and
set respectively. It also sets DR6.RTM upon every debug exception. Obviously,
it is not a complete fix, as debugging of RTM is still unsupported.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
free_nested needs the loaded_vmcs to be valid if it is a vmcs02, in
order to detach it from the shadow vmcs. However, this is not
available anymore after commit 26a865f4aa (KVM: VMX: fix use after
free of vmx->loaded_vmcs, 2014-01-03).
Revert that patch, and fix its problem by forcing a vmcs01 as the
active VMCS before freeing all the nested VMX state.
Reported-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the RFLAGS.RF is set, then no #DB should occur on instruction breakpoints.
However, the KVM emulator injects #DB regardless to RFLAGS.RF. This patch fixes
this behavior. KVM, however, still appears not to update RFLAGS.RF correctly,
regardless of this patch.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RFLAGS.RF was cleaned in several functions (e.g., syscall) in the x86 emulator.
Now that we clear it before the execution of an instruction in the emulator, we
can remove the specific cleanup of RFLAGS.RF.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When an instruction is emulated RFLAGS.RF should be cleared. KVM previously did
not do so. This patch clears RFLAGS.RF after interception is done. If a fault
occurs during the instruction, RFLAGS.RF will be set by a previous patch. This
patch does not handle the case of traps/interrupts during rep-strings. Traps
are only expected to occur on debug watchpoints, and those are anyhow not
handled by the emulator.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RFLAGS.RF is always zero after popf. Therefore, popf should not updated RF, as
anyhow emulating popf, just as any other instruction should clear RFLAGS.RF.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When skipping an emulated instruction, rflags.rf should be cleared as it would
be on real x86 CPU.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
the cpu state settable by user space.
This is necessary to avoid races in s390 SIGP/reset handling which
happen because some SIGPs are handled in QEMU, while others are
handled in the kernel. Together with the busy conditions as return
value of SIGP races happen especially in areas like starting and
stopping of CPUs. (For example, there is a program 'cpuplugd', that
runs on several s390 distros which does automatic onlining and
offlining on cpus.)
As soon as the MPSTATE interface is used, user space takes complete
control of the cpu states. Otherwise the kernel will use the old way.
Therefore, the new kernel continues to work fine with old QEMUs.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJTxSp+AAoJEBF7vIC1phx8RYgP/0mBaV3isXrCR+iisLJYNJjq
s6Ssl9TUMR3+lRZ9epytRd02UfkBGqVaW+HtRh5JP5KKAGSn2i3eB9WDAY7bD8i7
DVLVE2aO7okw1Z2G6CEO27dRfS0SCAfj/X77BRISyqVxK4eY86lAhQdyU5nB67TR
c0Fk4YHwjeBoQxZTAQr2xL4052gkB+Jp/PpltszILonsYNASOsxbcHqH4t+0SFmo
FGXydBn6eN+e3fWQSxetkrxvj14sj5K6ljiZoSMyw5nDfyrRn8RcCX87GjNLG+GR
X0eFB9Nl83NQoC5ksQtojunsx57+cEMgoWbdK7mxoqp+6+wJrvYB2eSKY77RYH4J
2xIy3klF/ypSZt7gxwL0pugi9QodGW39mA+stuezKUwyPalpMxHmRRwvHitGJjkP
KwvWc4m2QebKJ6RHhgkvZ0gMaVUJcqitrlXUxWgAAcH6MNBIC1g2ufsxnv51V/O6
SnspBWTPVDUqO6bJP4brJiAt8K7Jx3Bg5frpyN0jparh8Nmu3Kwfz0RtDYrUYyOe
p2o2lzY5L6gvY3iOrhvoc9zbpbyuycon8nUP4WOh/eGvIM2WV6cxmkck1Fo/wNso
evunS1FNvbN7Wxk5h4/XSVsfdcM/mUa3E7cVxgpg8+Aqse9qfpM35BlNWR+zf0G+
AdF90u/I+3mcRKWoSrKu
=86qw
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-20140715' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into kvm-next
This series enables the "KVM_(S|G)ET_MP_STATE" ioctls on s390 to make
the cpu state settable by user space.
This is necessary to avoid races in s390 SIGP/reset handling which
happen because some SIGPs are handled in QEMU, while others are
handled in the kernel. Together with the busy conditions as return
value of SIGP races happen especially in areas like starting and
stopping of CPUs. (For example, there is a program 'cpuplugd', that
runs on several s390 distros which does automatic onlining and
offlining on cpus.)
As soon as the MPSTATE interface is used, user space takes complete
control of the cpu states. Otherwise the kernel will use the old way.
Therefore, the new kernel continues to work fine with old QEMUs.
We should advertise all capabilities, including those that can
be enabled.
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's document that this is a capability that may be enabled per-vm.
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Capabilities can be enabled on a vcpu or (since recently) on a vm. Document
this and note for the existing capabilites whether they are per-vcpu or
per-vm.
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can get rid of the tasklet used for waking up a VCPU in the hrtimer
code but wakeup the VCPU directly.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's move the vcpu wakeup code to a central point.
We should set the vcpu->preempted flag only if the target is actually sleeping
and before the real wakeup happens. Otherwise the preempted flag might be set,
when not necessary. This may result in immediate reschedules after schedule()
in some scenarios.
The wakeup code doesn't require the local_int.lock to be held.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The start_stop_lock is no longer acquired when in atomic context, therefore we
can convert it into an ordinary spin_lock.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
local_int.lock is not used in a bottom-half handler anymore, therefore we can
turn it into an ordinary spin_lock at all occurrences.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch cleans up the code in handle_wait by reusing the common code
function kvm_vcpu_block.
signal_pending(), kvm_cpu_has_pending_timer() and kvm_arch_vcpu_runnable() are
sufficient for checking if we need to wake-up that VCPU. kvm_vcpu_block
uses these functions, so no checks are lost.
The flag "timer_due" can be removed - kvm_cpu_has_pending_timer() tests whether
the timer is pending, thus the vcpu is correctly woken up.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch fix bug reported in https://bugzilla.kernel.org/show_bug.cgi?id=73331,
after the patch http://www.spinics.net/lists/kvm/msg105230.html applied, there is
some progress and the L2 can boot up, however, slowly. The original idea of this
fix vid injection patch is from "Zhang, Yang Z" <yang.z.zhang@intel.com>.
Interrupt which delivered by vid should be injected to L1 by L0 if current is in
L1, or should be injected to L2 by L0 through the old injection way if L1 doesn't
have set External-interrupt exiting bit. The current logic doen't consider these
cases. This patch fix it by vid intr to L1 if current is L1 or L2 through old
injection way if L1 doen't have External-interrupt exiting bit set.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: "Zhang, Yang Z" <yang.z.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Certain instructions (e.g., mwait and monitor) cause a #UD exception when they
are executed in user mode. This is in contrast to the regular privileged
instructions which cause #GP. In order not to mess with SVM interception of
mwait and monitor which assumes privilege level assertions take place before
interception, a flag has been added.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Certain instructions, such as monitor and xsave do not support big real mode
and cause a #GP exception if any of the accessed bytes effective address are
not within [0, 0xffff]. This patch introduces a flag to mark these
instructions, including the necassary checks.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulator accesses are always done a page at a time, either by the emulator
itself (for fetches) or because we need to query the MMU for address
translations. Speed up these accesses by using kvm_read_guest_page
and, in the case of fetches, by inlining kvm_read_guest_virt_helper and
dropping the loop around kvm_read_guest_page.
This final tweak saves 30-100 more clock cycles (4-10%), bringing the
count (as measured by kvm-unit-tests) down to 720-1100 clock cycles on
a Sandy Bridge Xeon host, compared to 2300-3200 before the whole series
and 925-1700 after the first two low-hanging fruit changes.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the CS base is not page-aligned, the linear address of the code could
get close to the page boundary (e.g. 0x...ffe) even if the EIP value is
not. So we need to first linearize the address, and only then compute
the number of valid bytes that can be fetched.
This happens relatively often when executing real mode code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We do not need a memory copying loop anymore in insn_fetch; we
can use a byte-aligned pointer to access instruction fields directly
from the fetch_cache. This eliminates 50-150 cycles (corresponding to
a 5-10% improvement in performance) from each instruction.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
do_insn_fetch_bytes will only be called once in a given insn_fetch and
insn_fetch_arr, because in fact it will only be called at most twice
for any instruction and the first call is explicit in x86_decode_insn.
This observation lets us hoist the call out of the memory copying loop.
It does not buy performance, because most fetches are one byte long
anyway, but it prepares for the next patch.
The overflow check is tricky, but correct. Because do_insn_fetch_bytes
has already been called once, we know that fc->end is at least 15. So
it is okay to subtract the number of bytes we want to read.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hoist the common case up from do_insn_fetch_byte to do_insn_fetch,
and prime the fetch_cache in x86_decode_insn. This helps a bit the
compiler and the branch predictor, but above all it lays the
ground for further changes in the next few patches.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
rip_relative is only set if decode_modrm runs, and if you have ModRM
you will also have a memopp. We can then access memopp unconditionally.
Note that rip_relative cannot be hoisted up to decode_modrm, or you
break "mov $0, xyz(%rip)".
Also, move typecast on "out of range value" of mem.ea to decode_modrm.
Together, all these optimizations save about 50 cycles on each emulated
instructions (4-6%).
Signed-off-by: Bandan Das <bsd@redhat.com>
[Fix immediate operands with rip-relative addressing. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86_decode_insn already sets a default for seg_override,
so remove it from the zeroed area. Also replace set/get functions
with direct access to the field.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A lot of initializations are unnecessary as they get set to
appropriate values before actually being used. Optimize
placement of fields in x86_emulate_ctxt
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the if conditional - that will help us avoid
an "else initialize to 0" Also, rearrange operators
for slightly better code.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The same information can be gleaned from ctxt->d and avoids having
to zero/NULL initialize intercept and check_perm
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Core emulator functions all belong in emulator.c,
x86 should have no knowledge of emulator internals
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "if/return" checks are useless, because we return X86EMUL_CONTINUE
anyway if we do not return.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can just blindly move all 16 bytes of ctxt->src's value to ctxt->dst.
write_register_operand will take care of writing only the lower bytes.
Avoiding a call to memcpy (the compiler optimizes it out) gains about
200 cycles on kvm-unit-tests for register-to-register moves, and makes
them about as fast as arithmetic instructions.
We could perhaps get a larger speedup by moving all instructions _except_
moves out of x86_emulate_insn, removing opcode_len, and replacing the
switch statement with an inlined em_mov.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are several checks for "peculiar" aspects of instructions in both
x86_decode_insn and x86_emulate_insn. Group them together, and guard
them with a single "if" that lets the processor quickly skip them all.
Make this more effective by adding two more flag bits that say whether the
.intercept and .check_perm fields are valid. We will reuse these
flags later to avoid initializing fields of the emulate_ctxt struct.
This skims about 30 cycles for each emulated instructions, which is
approximately a 3% improvement.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Despite the provisions to emulate up to 130 consecutive instructions, in
practice KVM will emulate just one before exiting handle_invalid_guest_state,
because x86_emulate_instruction always sets KVM_REQ_EVENT.
However, we only need to do this if an interrupt could be injected,
which happens a) if an interrupt shadow bit (STI or MOV SS) has gone
away; b) if the interrupt flag has just been set (other instructions
than STI can set it without enabling an interrupt shadow).
This cuts another 700-900 cycles from the cost of emulating an
instruction (measured on a Sandy Bridge Xeon: 1650-2600 cycles
before the patch on kvm-unit-tests, 925-1700 afterwards).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the next patch we will need to know the full state of the
interrupt shadow; we will then set KVM_REQ_EVENT when one bit
is cleared.
However, right now get_interrupt_shadow only returns the one
corresponding to the emulated instruction, or an unconditional
0 if the emulated instruction does not have an interrupt shadow.
This is confusing and does not allow us to check for cleared
bits as mentioned above.
Clean the callback up, and modify toggle_interruptibility to
match the comment above the call. As a small result, the
call to set_interrupt_shadow will be skipped in the common
case where int_shadow == 0 && mask == 0.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
About 25% of the time spent in emulation of invalid guest state
is wasted in checking whether emulation is required for the next
instruction. However, this almost never changes except when a
segment register (or TR or LDTR) changes, or when there is a mode
transition (i.e. CR0 changes).
In fact, vmx_set_segment and vmx_set_cr0 already modify
vmx->emulation_required (except that the former for some reason
uses |= instead of just an assignment). So there is no need to
call guest_state_valid in the emulation loop.
Emulation performance test results indicate 1650-2600 cycles
for common instructions, versus 2300-3200 before this patch on
a Sandy Bridge Xeon.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commit 575203 the MCE subsystem in the Linux kernel for AMD sets bit 18
in MSR_K7_HWCR. Running such a kernel as a guest in KVM on an AMD host results
in a GPE injected into the guest because kvm_set_msr_common returns 1. This
patch fixes this by masking bit 18 from the MSR value desired by the guest.
Signed-off-by: Matthias Lange <matthias.lange@kernkonzept.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We encountered a scenario in which after an INIT is delivered, a pending
interrupt is delivered, although it was sent before the INIT. As the SDM
states in section 10.4.7.1, the ISR and the IRR should be cleared after INIT as
KVM does. This also means that pending interrupts should be cleared. This
patch clears upon reset (and INIT) the pending interrupts; and at the same
occassion clears the pending exceptions, since they may cause a similar issue.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We have noticed that qemu-kvm hangs early in the BIOS when runnning nested
under some versions of VMware ESXi.
The problem we believe is because KVM assumes that the platform preserves
the 'G' but for any segment register. The SVM specification itemizes the
segment attribute bits that are observed by the CPU, but the (G)ranularity bit
is not one of the bits itemized, for any segment. Though current AMD CPUs keep
track of the (G)ranularity bit for all segment registers other than CS, the
specification does not require it. VMware's virtual CPU may not track the
(G)ranularity bit for any segment register.
Since kvm already synthesizes the (G)ranularity bit for the CS segment. It
should do so for all segments. The patch below does that, and helps get rid of
the hangs. Patch applies on top of Linus' tree.
Signed-off-by: Jim Mattson <jmattson@vmware.com>
Signed-off-by: Alok N Kataria <akataria@vmware.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch
- adds s390 specific MP states to linux headers and documents them
- implements the KVM_{SET,GET}_MP_STATE ioctls
- enables KVM_CAP_MP_STATE
- allows user space to control the VCPU state on s390.
If user space sets the VCPU state using the ioctl KVM_SET_MP_STATE, we can disable
manual changing of the VCPU state and trust user space to do the right thing.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Highlight the aspects of the ioctls that are actually specific to x86
and ia64. As defined restrictions (irqchip) and mp states may not apply
to other architectures, these parts are flagged to belong to x86 and ia64.
In preparation for the use of KVM_(S|G)ET_MP_STATE by s390.
Fix a spelling error (KVM_SET_MP_STATE vs. KVM_SET_MPSTATE) on the way.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The function "__cpu_is_stopped" is not used any more. Let's remove it and
expose the function "is_vcpu_stopped" instead, which is actually what we want.
This patch also converts an open coded check for CPUSTAT_STOPPED to
is_vcpu_stopped().
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>